Mechanical properties of Al-Ce binary alloys.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9389",leadTitle:null,fullTitle:"Global Warming and Climate Change",title:"Global Warming and Climate Change",subtitle:null,reviewType:"peer-reviewed",abstract:"Global Warming and Climate Change includes scientific and social scientific studies that consider problems stemming from the phenomena of a warming Earth atmosphere, including natural responses to thermal flux, implications for transformations of energy pathways, human actions to adjust, adapt, and mitigate the effects of changing climates, and engineering and design efforts to stop the warming of and reverse the impacts to our environments. A small volume can only touch on several aspects of our challenges and can only offer a small glimpse at the activities of scientists and social scientists around the world, but the array of chapters herein offers unique insight into the scholarship.",isbn:"978-1-83880-995-9",printIsbn:"978-1-83880-994-2",pdfIsbn:"978-1-83880-996-6",doi:"10.5772/intechopen.84934",price:119,priceEur:129,priceUsd:155,slug:"global-warming-and-climate-change",numberOfPages:124,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"435d35b33ec04fe921640a514feb19e4",bookSignature:"John P. Tiefenbacher",publishedDate:"June 3rd 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",numberOfDownloads:5906,numberOfWosCitations:1,numberOfCrossrefCitations:10,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:20,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 4th 2019",dateEndSecondStepPublish:"September 9th 2019",dateEndThirdStepPublish:"November 8th 2019",dateEndFourthStepPublish:"January 27th 2020",dateEndFifthStepPublish:"March 27th 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher, Ph.D., is a Professor of Geography and Environmental Studies at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the US–Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to adaptation to climate change, spatial responses of wine growing to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes, and disability as vulnerability to global warming-induced hazards in the Arctic.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"631",title:"Global Warming",slug:"global-warming"}],chapters:[{id:"71858",title:"Introductory Chapter: Climates, Change, and Climate Change",doi:"10.5772/intechopen.92192",slug:"introductory-chapter-climates-change-and-climate-change",totalDownloads:840,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:null,signatures:"John P. Tiefenbacher",downloadPdfUrl:"/chapter/pdf-download/71858",previewPdfUrl:"/chapter/pdf-preview/71858",authors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],corrections:null},{id:"70313",title:"The Developing World’s Contribution to Global Warming and the Resulting Consequences of Climate Change in These Regions: A Nigerian Case Study",doi:"10.5772/intechopen.85052",slug:"the-developing-world-s-contribution-to-global-warming-and-the-resulting-consequences-of-climate-chan",totalDownloads:1232,totalCrossrefCites:3,totalDimensionsCites:10,hasAltmetrics:1,abstract:"Hundreds of millions of urban dwellers in low- and middle-income nations are at risk as 4-5 of the global weather-driven disasters experienced are consequent of a changing climate. Studies have shown that residents in least developed countries have ten times more chances of being affected by these climate disasters than those in wealthy countries. Further, critical views have it, that it would take over 100years for lower income countries to attain the resiliency of developed countries. Unfortunately, global South is surrounded by a myriad of socio-economic and environmental factors limiting their fight against climate crisis. It is this germane reality that provoked the cause of this review. Hence, this paper reviewed the developing world’s contribution to global warming and the resulting consequences of climate change with focus on Nigeria. This purposive approach adopted an analysis of secondary data related to climate information. The findings from the paper affirmed that impacts of climate change in developing countries include loss in agriculture/forestry resources, water shortage, food insecurity, biodiversity loss, health risks among others. Finally, it identified the major factors that exacerbate climate crisis, the human actions that trigger global warming and adaptive and mitigation approaches to minimize climate change related disasters.",signatures:"Angela Oyilieze Akanwa and Ngozi Joe-Ikechebelu",downloadPdfUrl:"/chapter/pdf-download/70313",previewPdfUrl:"/chapter/pdf-preview/70313",authors:[{id:"262653",title:"Dr.",name:"Angela Oyilieze",surname:"Akanwa",slug:"angela-oyilieze-akanwa",fullName:"Angela Oyilieze Akanwa"},{id:"309477",title:"Ph.D. Student",name:"Ngozi",surname:"Joe-Ikechebelu",slug:"ngozi-joe-ikechebelu",fullName:"Ngozi Joe-Ikechebelu"}],corrections:null},{id:"69171",title:"Deciphering the Climate Change Conundrum in Zimbabwe: An Exposition",doi:"10.5772/intechopen.84443",slug:"deciphering-the-climate-change-conundrum-in-zimbabwe-an-exposition",totalDownloads:966,totalCrossrefCites:7,totalDimensionsCites:9,hasAltmetrics:0,abstract:"The notion that climate change has created development opportunities largely remains poorly understood despite phenomenal evidence that points toward positive gains across the broad socio-economic spectrum. Current understanding has largely concentrated on the negative effects of climate change, with limited exposition on the benefits associated with climatic responses. This article collates and reviews evidence that interventions to curtail climate change impacts have unlocked several development opportunities and potentially contribute in improving the living standards of many communities in Zimbabwe. It argues that although climate change effects permeate all the socio-economic development sectors of the country, the collective interventions by government, development partners and individuals on mitigation and adaptation actions could lead to a development trajectory that is evident in a number of indicators toward poverty alleviation, particularly through improved food, energy, water, and health access. The article, however, questions the sustainability of these unfolding benefits and advises on the need to enhance mechanisms for climatic programming in the country’s development plans, policies and strategies.",signatures:"Nelson Chanza and Veronica Gundu-Jakarasi",downloadPdfUrl:"/chapter/pdf-download/69171",previewPdfUrl:"/chapter/pdf-preview/69171",authors:[{id:"264749",title:"Dr.",name:"Nelson",surname:"Chanza",slug:"nelson-chanza",fullName:"Nelson Chanza"},{id:"309871",title:"Dr.",name:"Veronica",surname:"Gundu-Jakarasi",slug:"veronica-gundu-jakarasi",fullName:"Veronica Gundu-Jakarasi"}],corrections:null},{id:"68928",title:"Mathematical Model for CO2 Emissions Reduction to Slow and Reverse Global Warming",doi:"10.5772/intechopen.88961",slug:"mathematical-model-for-co-sub-2-sub-emissions-reduction-to-slow-and-reverse-global-warming",totalDownloads:1269,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"This chapter aims to provide climate policy makers with smooth patterns of global carbon dioxide (CO2) emissions consistent with the UN climate targets. An accessible mathematical approach is used to design such models. First, the global warming is quantified with time to determine when the climate targets will be hit in case of no climate mitigation. Then, the remaining budget for CO2 emissions is derived based on recent data. Considering this for future emissions, first proposed is an exponential model for their rapid reduction and long-term stabilization slightly above zero. Then, suitable interpolations are performed to ensure a smooth and flexible transition to the exponential decline. Compared to UN climate simulation models, the designed smooth pathways would, in the short term, overcome a global lack of no-carbon energy and, in the long term, tolerate low emissions that will almost disappear as soon as desired from the 2040s with no need for direct removal of CO2.",signatures:"Nizar Jaoua",downloadPdfUrl:"/chapter/pdf-download/68928",previewPdfUrl:"/chapter/pdf-preview/68928",authors:[{id:"308371",title:"Dr.",name:"Nizar",surname:"Jaoua",slug:"nizar-jaoua",fullName:"Nizar Jaoua"}],corrections:null},{id:"70450",title:"Reducing Green House Effect Caused by Soot via Oxidation Using Modified LaFe1-xCuxO3 Catalysts",doi:"10.5772/intechopen.90460",slug:"reducing-green-house-effect-caused-by-soot-via-oxidation-using-modified-lafe-sub-1-x-sub-cu-sub-x-su",totalDownloads:574,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Soot has been the cause of global warming since the dawn of diesel engines. Soot oxidation in the diesel particulate filters fixated at the exhaust of the engine has been a boon to reduce the particulate matter from entering the atmosphere. Here we have attempted to synthesize the smooth powder of supported and macro-porous perovskite LaFeO3 and its doped variant with 5, 10, 20, and 30% copper on B site. Subsequent catalysts, termed as LFO and LFCO- (5, 10, 20, 30) with formula LaFe1-xCuxO3, were investigated as catalysts for soot oxidation reaction. The structural and physical and chemical attributes of LaFe1-xCuxO3 and LaFeO3 are characterized by XRD patterns, FESEM, BET, particle size analysis measurements. Undoped LaFeO3 with desired textural structures were successfully prepared, employing the citric-acid auto combustion method, and the porous sample exhibits the best activity towards redox reactions, pointing out the enriched activity at redox sites of fabrication of porous perovskite for the responses. By correlating with the catalytic activities and the physical and chemical properties, of both doped and undoped samples, it is inferred that the best activity obtained from the porous LaFe0.9Cu0.10O3 is attributed to its extensive surface area corresponding to least particle size, precious active lattice oxygen, high oxygen storage capacity and vigorous surface activity.",signatures:"Paritosh C. Kulkarni",downloadPdfUrl:"/chapter/pdf-download/70450",previewPdfUrl:"/chapter/pdf-preview/70450",authors:[{id:"311338",title:"Mr.",name:"Paritosh C.",surname:"Kulkarni",slug:"paritosh-c.-kulkarni",fullName:"Paritosh C. Kulkarni"}],corrections:null},{id:"63386",title:"Ca-Cu Chemical Looping Process for Hydrogen and/or Power Production",doi:"10.5772/intechopen.80855",slug:"ca-cu-chemical-looping-process-for-hydrogen-and-or-power-production",totalDownloads:1025,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"It has been widely reckoned the potential of developing novel CO2 capture technologies aiming at low-energy penalties and reduced cost as a solution for fighting against climate change. The Ca-Cu chemical looping process emerged as a promising technology for producing hydrogen and/or power with inherently low CO2 emissions. The core of this concept is the calcination of the CaCO3 by coupling in the same solid bed the exothermic reduction of a CuO-based material, improving the efficiency of the CO2 sorbent regeneration step. Significant progress has been made since its first description in 2009, fulfilling the validation of the key stage under relevant conditions for the process in 2016. This chapter compiles the main advances in the Ca-Cu process regarding material development, reactor and process design and lab-scale testing, as well as in process simulation at large scale.",signatures:"Isabel Martínez, Jose R. Fernández and Gemma Grasa",downloadPdfUrl:"/chapter/pdf-download/63386",previewPdfUrl:"/chapter/pdf-preview/63386",authors:[{id:"261508",title:"Dr.",name:"Isabel",surname:"Martínez",slug:"isabel-martinez",fullName:"Isabel Martínez"},{id:"261681",title:"Dr.",name:"Jose R.",surname:"Fernández",slug:"jose-r.-fernandez",fullName:"Jose R. Fernández"},{id:"261682",title:"Dr.",name:"Gemma",surname:"Grasa",slug:"gemma-grasa",fullName:"Gemma Grasa"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74511",slug:"corrigendum-to-has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-de",title:"Corrigendum to: Has the Yield Curve Accurately Predicted the Malaysian Economy in the Previous Two Decades?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74511.pdf",downloadPdfUrl:"/chapter/pdf-download/74511",previewPdfUrl:"/chapter/pdf-preview/74511",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74511",risUrl:"/chapter/ris/74511",chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]}},chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]},book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11468",leadTitle:null,title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tHigh entropy alloys were defined based on the conception of configuration entropy maximum, usually containing more than 5 components, and provide more alloys in the space of compositions. It has been extensively reported the trade-off between the strength and ductility has been broken. The strength and ductility can be increased simultaneously. The mainly reported mechanisms include but are not limited, to unique solid solution strengthening behaviors; twinning plastics behaviors; nanoprecipitation behaviors; slow diffusion and dynamic behaviors; lower stacking fault energy. The reported examples for the breaking of strength and ductility trade-off, let us believe the high entropy alloys also potentially break the trade-off for the magnetic alloys, and electrical conductivity alloys, and to break the properties limits of traditional materials.
\r\n\r\n\tThe book will provide a discussion on the future of high entropy alloys, which will be applied in corrosion resistant alloys; irradiation resistant alloys, etc. The high-entropy alloys will also be extended to the high entropy fibers, high entropy films, and high entropy ceramics and the high throughput computation and modulations and AI and machine learning, even the high throughput screening technologies will be applied for the design and developments of the alloys.
",isbn:"978-1-80356-111-0",printIsbn:"978-1-80356-110-3",pdfIsbn:"978-1-80356-112-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",bookSignature:"Prof. Yong A Zhang",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",keywords:"High Entropy Alloys, Strengthening Mechanism, Toughness, Serration Behaviours, Soft Magnetic Properties, Coercivity, Magnetism, Ductility, Resistivity, Electrical Conductivity, Strength, Biomedical Alloys",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 27th 2022",dateEndSecondStepPublish:"March 30th 2022",dateEndThirdStepPublish:"May 29th 2022",dateEndFourthStepPublish:"August 17th 2022",dateEndFifthStepPublish:"October 16th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor at University of Science and Technology Beijing and pioneering researcher in the high entropy materials. Professor Zhang proposed a parameter to evaluate the entropy for multicomponent alloys.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"203937",title:"Prof.",name:"Yong",middleName:"A",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang",profilePictureURL:"https://mts.intechopen.com/storage/users/203937/images/system/203937.jpg",biography:'Dr Yong Zhang is a professor/doctoral supervisor at University of Science and Technology Beijing (USTB). The invention of trace rare earth elements can improve the glass forming ability (GFA) of amorphous alloys, which has been widely used in academia and industries. The first body-centered cubic (BBC) alloy with high strength and high entropy (HE) was synthesized. The ratio parameter w of solution configuration entropy and mixing enthalpy is put forward to evaluate the configuration entropy of materials, which has been proved by a large number of documents to be effective in predicting the formation of solid solution and amorphous phases. HE alloy fiber and HE alloy photo-thermal selective films have been successfully studied.\r\nDr Zhang participated in publishing the monograph "Amorphous and HE Alloys”, "Advanced HE Alloys Technology”, "High Entropy Materials, A Brief Introduction”, and "Magnetic Sensors-Development Trends and Applications”. "Stainless Steels and Alloys”, "Engineering Steels and HE Alloys”, "HE Alloys, Fundamental and Applications”, "HE Alloys, Innovations, advances, and appications”etc. He participated in the National Natural Science Second Prize, the Ministry of Education Natural Science First Prize, the Second Prize, and the Shanxi Provincial Education Department Natural Science First Prize. He is also a member of the amorphous Committee of the Metal Society, a Fellow of the China Materials Research Society, and a Fellow of the Nuclear Materials Society.\r\nDr Zhang participated in organizing the conference on HE alloys and serration behaviors, and served as the chairman of the branch; He is also a science and technology correspondent of Guangdong Province and a guest professor of North University of China. He has been selected as one thousand talents in Qinghai Province, and has been selected as an excellent talent program of the Ministry of Education in the new century. He has edited albums of “Serration and Noise Behaviors in Advanced Materials” and “Nanostructured HE Alloys”. “The new advances in HE alloys”, bcc structured HE alloys, etc. Professor Zhang devoted himself to studying serration behavior, high-throughput technology and collective effect in materials science.',institutionString:"University of Science and Technology Beijing",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Science and Technology Beijing",institutionURL:null,country:{name:"China"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6802",title:"Graphene Oxide",subtitle:"Applications and Opportunities",isOpenForSubmission:!1,hash:"075b313e11be74c55a1f66be5dd56b40",slug:"graphene-oxide-applications-and-opportunities",bookSignature:"Ganesh Kamble",coverURL:"https://cdn.intechopen.com/books/images_new/6802.jpg",editedByType:"Edited by",editors:[{id:"236420",title:"Dr.",name:"Ganesh",surname:"Kamble",slug:"ganesh-kamble",fullName:"Ganesh Kamble"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6656",title:"Phase Change Materials and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"9b257f8386280bdde4633d36124787f2",slug:"phase-change-materials-and-their-applications",bookSignature:"Mohsen Mhadhbi",coverURL:"https://cdn.intechopen.com/books/images_new/6656.jpg",editedByType:"Edited by",editors:[{id:"228366",title:"Dr.",name:"Mohsen",surname:"Mhadhbi",slug:"mohsen-mhadhbi",fullName:"Mohsen Mhadhbi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6805",title:"Electrical and Electronic Properties of Materials",subtitle:null,isOpenForSubmission:!1,hash:"f6b6930e7ae9d0704f68b5c180526309",slug:"electrical-and-electronic-properties-of-materials",bookSignature:"Md. Kawsar Alam",coverURL:"https://cdn.intechopen.com/books/images_new/6805.jpg",editedByType:"Edited by",editors:[{id:"199691",title:"Dr.",name:"Md. Kawsar",surname:"Alam",slug:"md.-kawsar-alam",fullName:"Md. Kawsar Alam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6851",title:"New Uses of Micro and Nanomaterials",subtitle:null,isOpenForSubmission:!1,hash:"49e0ab8961c52c159da40dd3ec039be0",slug:"new-uses-of-micro-and-nanomaterials",bookSignature:"Marcelo Rubén Pagnola, Jairo Useche Vivero and Andres Guillermo Marrugo",coverURL:"https://cdn.intechopen.com/books/images_new/6851.jpg",editedByType:"Edited by",editors:[{id:"112233",title:"Dr.Ing.",name:"Marcelo Rubén",surname:"Pagnola",slug:"marcelo-ruben-pagnola",fullName:"Marcelo Rubén Pagnola"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9393",title:"Engineering Steels and High Entropy-Alloys",subtitle:null,isOpenForSubmission:!1,hash:"d33466a3272f97353a6bf6d76d7512a5",slug:"engineering-steels-and-high-entropy-alloys",bookSignature:"Ashutosh Sharma, Zoia Duriagina, Sanjeev Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/9393.jpg",editedByType:"Edited by",editors:[{id:"145236",title:"Dr.",name:"Ashutosh",surname:"Sharma",slug:"ashutosh-sharma",fullName:"Ashutosh Sharma"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7360",title:"Fillers",subtitle:"Synthesis, Characterization and Industrial Application",isOpenForSubmission:!1,hash:"4cb5f0dcdfc23d6ec4c1d5f72f726ab4",slug:"fillers-synthesis-characterization-and-industrial-application",bookSignature:"Amar Patnaik",coverURL:"https://cdn.intechopen.com/books/images_new/7360.jpg",editedByType:"Edited by",editors:[{id:"43660",title:"Associate Prof.",name:"Amar",surname:"Patnaik",slug:"amar-patnaik",fullName:"Amar Patnaik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9360",title:"Perovskite Materials, Devices and Integration",subtitle:null,isOpenForSubmission:!1,hash:"4068d570500b274823e17413e3547ff8",slug:"perovskite-materials-devices-and-integration",bookSignature:"He Tian",coverURL:"https://cdn.intechopen.com/books/images_new/9360.jpg",editedByType:"Edited by",editors:[{id:"259466",title:"Prof.",name:"He",surname:"Tian",slug:"he-tian",fullName:"He Tian"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"50843",title:"Yeasts as Potential Source for Prebiotic β-Glucan: Role in Human Nutrition and Health",doi:"10.5772/63647",slug:"yeasts-as-potential-source-for-prebiotic-glucan-role-in-human-nutrition-and-health",body:'\nOne of the important biopolymers present in some cereals and fungi is the β-glucan. This polysaccharide plays an important role in the immune system, skin protection, among others. In addition to their cholesterol-lowering and potential cancer-preventing properties, β-glucans may be useful in controlling blood glucose levels. The β-D-glucans from yeast and some plants have been shown to have antitumor and antibacterial activity when injected or ingested by animals in experimentation [1–7].
\nCereal grains, such as barley, oats, and rye, and fungi, such as
Glucans are glucose polymers, classified according to their interchain linkage as being either α- or β-linked. β-glucans are a heterogeneous group of non-starch polysaccharides, consisting of D-glucose monomers linked by β-glycosidic bonds [13]. The central skeleton of the β-glucans is formed by linear monomers of D-glucose connected at position β-(1-3), with side chains attached to β-(1-6) or β-(1-4)-D-glucopyranosyl unit linkage (Figure 1). In yeast, the skeleton is branching at β-(1-6) and in plants and bacteria at β-(1-4) unit linkage [14–16]. In mushrooms, molecules with binding β-(1-6) and others with connections β-(1-6) and β-(1-4), whether or not linked to protein, were reported [17]. Significant structural differences in β-glucans are characterized by the glycosidic linkage ratios depending on both the source and method of isolation. In the cereal β-glucans, for example, the trisaccharide-to-tetrasaccharide ratios follow the order of wheat (4.2–4.5), barley (2.8–3.3), and oat (2.0–2.4) [18].
\nPolymer of β (1-3)-D-glycopyranosyl units with branching at β (1-6) and β (1-4)-D-glycopyranosyl units.
In the last decades, the β-glucans have received special attention for its biological activity. Numerous beneficial effects have been attributed to this polymer, in particular due to its immunomodulatory potential. However, beyond the modulatory action of the immune system, several other activities related to β-glucans have been evaluated and proven, as their antitumoral, anti-inflammatory, antimutagenic, and antioxidant action, their hypoglycemic and hypocholesterolemic capacity, and also their protective effect against infections [19]. The β-glucans have a long scientific history, encompassing hundreds of studies. However, this molecule is not properly explored even in therapy, as an additive in food or feed, probably due to its relatively expensive price—about U$ 36/kg (brand Macrogard; Biorigin, Quatá, São Paulo, Brazil). Research involving the biological activity of this polymer originated in the 1940s, with the renowned scientist Pillemer and his colleagues, who obtained a crude-insoluble extract of the cell wall of the
The immune system operates seeking to protect the organism from infections that can be caused by various agents, including bacteria, viruses, fungi, and parasites. The cells and molecules of the immune system are highly specialized in the defense against infection. Individuals with a compromised immune defense system due to various factors, such as age, chronic infection, or malnutrition, are subject to several problems, including arthritis, reduced healing capacity, reduced proliferation of bone marrow cells with consequent low defense cell counts, anemia, and increased incidence of all types of microbial infections. Studies also show that one of the main elements of the process of aging is a decrease in the functional effectiveness of the immune system [22]. Among the immunologically competent cells, macrophages play a major role in the initiation and maintenance of immune response both innate and adaptive [15]. In addition to the functions of phagocytosis and the release of lysosomal enzymes, macrophages are also responsible for the release of a number of cytokines and inflammatory mediators can stimulate the immune system in general [22].
\nThe β-glucan belongs to the class of substances BRMs, or a variety of different substances known as Biological Response Modifiers. being able to trigger a series of events in the immune response [23], increasing the immune defense of the host by activating the functions of cells of the immune system [20]. This polymer is currently considered as one of the most potent stimulators of the immune response, effective both orally or intravenously, completely non-toxic and safe [15]. The response of β-glucan in vertebrates begins with its recognition by receptors present on the cell surface of various immune cells, such as macrophages, neutrophils, dendritic cells, and natural killer cells (NK), and receptors have also been described presently as non-immune cells, endothelial cells, fibroblasts, alveolar epithelial, and Langerhans cells [20]. The various receptors present on the cell membranes of immune cells related to the recognition of β-glucan in vertebrates are dectin-1, complement receptor 3 (CR3), lactosylceramide receptor, Toll-like receptor 2 (TLR-2), and scavenger receptors [24, 25]. The dectin-1 is a type II transmembrane protein with receptor extracellular domain CDR which is responsible for carbohydrate recognition, and a cytoplasmic tail with immunoreceptor ITAM (tyrosine-based activating motif) involved in superoxide production by macrophages in response to the immunosystem defense. The dectin-1 can mediate diverse cellular responses, including phagocytosis and endocytosis. This protein may also induce the production of cytokines and inflammatory chemokines, such as tumor necrosis factor (TNF-α), macrophage inflammatory protein-2 (MIP-2), and interleukin-12 (IL-12) [16]. The receptor CR3 stimulates cytokine secretion by NK cells, especially in the presence of pathogens. This receptor acts as a cell adhesion molecule since it has a binding site for carbohydrates located on the terminal carbon, and thus a receptor for the phagocyte β-glucan [15].
\nAnticarcinogenic substances are able to reduce, delay, or even prevent the development of malignancies [26]. Different studies have shown anticarcinogenic action of β-glucans and their derivatives [1, 2, 4]. At the end of 1970s, a study on mice with subcutaneous tumor implantation revealed that extracts containing high concentrations of β-glucan significantly reduced growth of mammary carcinomas and melanomas in animals treated and verified an increase in survival of these animals [27]. Kogan et al. [6] observed increased inhibition in the occurrence of lung metastases up to 94% in animals that received oral administration of β-glucan during treatment with cyclophosphamide for Lewis lung carcinoma. Several surveys show the effectiveness of antitumor action of β-glucans in chemotherapy and the improvement in the survival of patients with different types of cancer. A study involving women with malignant breast tumors confirmed the activation and proliferation of monocytes in peripheral blood of patients upon oral administration of β-glucan. According to the researchers, clinical improvement in the survival of patients with no evidence of any recurrent side effects was demonstrated [4]. The effective immune response against tumor cells mediated by β-glucans is based on the activation and expansion of several immune functions, among them the activation of cytotoxic T cells specifically attack cancer cells [28]. The CD4+ T lymphocytes play a role as modulators of immune cells to produce multiple cytokines. The latter are mediators essential for the generation of an effective immune response involving CD8+ T cells, which are necessary for the defense against tumor cells [1]. The effects of β-glucan in lymphocyte activation involving the antitumor immune response have been reported in experimental animal and human models. A study of 30 patients with advanced prostate cancer, who were treated by oral administration of a soluble fraction of β-glucan (carboxymethyl glucan), revealed that after administration there was a significant increase in CD3+, CD4+, and CD8+ in peripheral blood of patients and consequent stimulation of the immune system [2].
\nSince β-glucans affect immune function stimulating various immune cell activations, studies were performed to demonstrate the effective application of this immunomodulatory compound in treatment of diseases. Patients with severe periodontitis have failed for the recruitment and activation of macrophages [29]. β-glucans induce macrophage activation and establishment of Th1, and their use may be responsible for the inhibition of tissue destruction in periodontal disease. The use of β-glucan in dental treatment has been systematically evaluated in recent years. Studies with animals showed a significantly reduced periodontal bone loss after oral administration of β-(1-3),(1-6) glucan [30]. Acar et al. [31] investigated the effects of non-surgical periodontal therapy (NPT) with an adjunctive use of systemic β-glucan on clinical, microbiological, and gingival parameters. Their findings showed that β-glucan might increase the concentration of TGF-β1, thereby augmenting periodontal healing potential. Proposals for treating allergic diseases using β-glucans have also been reported. A new therapeutic strategy for allergic diseases using β-glucan was proposed, with beneficial action in restoring the function of type 2 T-helper cells. Through the application of subcutaneous injections in child patients, β-glucan was demonstrated to be able to modulate allergic sensitization in patients, greatly improving their quality of life [32]. Furthermore, the antibacterial, antiviral, and antifungal properties of β-glucan and its derivatives are also reported. Different studies have shown the protective effect of β-glucan to
The search for higher human living standards and greater longevity has generated the need for the development of nutritional alternatives that result in improved general health which means more enjoyment of life, less diseases and less time, and money required for medical needs. In this context, special foods enriched with molecules with health benefits are been developed. Some studies dealing with the enormous benefits of β-glucan as a nutritional supplement [31, 35–37]. Used as adjunctive to the positive effects of antioxidants, lipid balance enhancers, antibiotics, and other therapeutics, the β-glucans are currently considered a true antiaging supplement. These properties are associated with several studies which have shown biological activity of β-glucan, describing its action modulating the immune system and antitumor action [1, 3].
\nIn recent years, there has been increasing interest in the effect of the use of β-glucan as a dietary supplement. Different studies seek to prove the use of this polysaccharide in the diet has several health benefits. The beneficial effects of consistent intake of β-glucan and its action in reducing cholesterol levels in the blood have been systematically studied. A study of 20 hypercholesterolemic patients, who received daily dietary supplement containing 5.8 g of β-glucan for 4 weeks, reported a 9% decrease in cholesterol level in the intervention group, while there was no difference in the placebo (maltodextrin) group [7]. Nicolosi et al. [38] observed a significant reduction in total and LDL cholesterol in hypercholesterolemic obese patients after 8 weeks of intake of orange juice supplemented with β-glucan. The action of β-glucan on cholesterol reduction can be explained in terms of the reduction in bile reabsorption or the increase in viscosity in the small intestine. However, a more likely explanation relates to the size of the molecule and its subsequent absorption by the intestine. According to Kim et al. [37], molecules of small size, which are consequently less viscous, are less effective in lowering cholesterol. Studies with β-glucan of low molecular size (370,000–1,000,000) reported this polysaccharide ineffective in reducing the cholesterol level [39], whereas Braaten et al. [7] reported a significant reduction in cholesterol levels in the blood of patients who included β-glucan of molecular size above 1.2 million in their diet. β-glucans become a great special food in a diet designed to adjunct in diabetic patients. The action of this polymer in lowering blood glucose level is also reported in the literature. Research has demonstrated the antidiabetic effect of IL-1 cytokine, which increases insulin production, resulting in the lowering of blood glucose levels [40, 41]. Since the β-glucan acts on the activation of macrophages, and these are considered the major source of IL-1 in the human body, this polymer becomes useful in diets designed for diabetic patients. According to Regand et al. [42], the physiological activity of β-glucan in reducing glycemic responses has been mostly attributed to its effect in increasing viscosity in the upper digestive tract. The introduction of β-glucan in the diet may decrease the incidence of colds, respiratory diseases, in addition to alleviating the symptoms caused by these diseases, since this polymer increases the body’s potential to defend against invading pathogens [31]. A study with seventy-five marathon runners showed that daily administration of β-glucan can prevent upper respiratory tract (URTI) symptoms and improve overall health and mood following a competitive marathon [36]. More recently, a study of 162 healthy participants with recurring infections who received a diet supplemented with β-(1-3),(1-6) glucan showed a reduction in the number of symptomatic common cold infections by 25% and the mean symptom score was 15% lower compared to the control group [35].
\nβ-glucan has been prominent among the ingredients used as supplements in animal feed in order to reduce the risk of chronic diseases both in mammals and in fish and birds [43], since they are able to absorb mycotoxins, thus decreasing their toxic effect and mediating their removal from the body [44]. Different food supplements containing β-glucan are available for commercial use for animals. Among them, Bio-Mos® is used in the prevention of infectious diseases of various origins and MTB100® in the elimination of the mycotoxins and inhibition of their toxic effect, both manufactured by Alltech Inc. (Nicholasville, KY). Animals treated with foods supplemented with β-glucan exhibit greater resistance to pathogenic microorganisms, and bacteria or viruses requiring lower dosages of antibiotics or antivirals to deal with infections [5].
\nMany processes and raw materials of obtaining β-glucans have been described, but the challenge is finding the best extraction leading to high purity with the great immunostimulant and antitumor action, periodontal therapy, among others. After the discovery of the benefits of β-glucan for animals and humans, various processes of purification and isolation of this polysaccharide have been developed [44]. The research for new methods of obtaining β-glucan is being conducted prioritizing a non-aggressive extraction, which preserves the most of the original structure of the macromolecule. Currently, β-glucan used as additive in feed is produced by the cultivation of
The basic process of β-glucan extraction involves the lysis of cells (chemical, biochemical, mechanical, or by autohydrolysis), separation of cell wall (centrifugation or filtration), extraction, and purification (precipitation and centrifugation). The yeast cells are normally processed to produce β-glucan, mannan, and yeast extract. One important aspect of the technology to produce β-glucan and other valuable products from yeasts is the method of cell wall lysis. Yeast autolysis is used in the industrial processes due to the low cost, fractionation efficiency, and quality of products obtained. Firstly, the fresh yeast cells are autolysed, and the cell wall is separated by centrifugation.
\nThe yeast cell wall has a thickness of 100–200 nm, and the wall is not only for protection and structural function but is also metabolically important [48]. The thickness and structure of the wall could vary depending on several factors like the strain, the industrial process of yeasts, and culture conditions. The concentration of β-glucans also depends on these parameters since the wall is used for the β-glucan extraction. The outer layer of mannoproteins retains the periplasmic proteins conferring resistance to the cells of yeasts and acts as a barrier to external attack of enzymes and some other molecules [49]. The layer of glucan is more internal and linked with chitin in adjacent layers to the plasma membrane and confers rigidity and the cell shape [50].
\nAutolysis is an irreversible process caused by intracellular enzymes of yeast under stress conditions, such as temperature, pH, yeast concentrations unsuitable for the survival of the cells. This process is based mainly on heat treatment and causes lysis of the cells from activation of a group of intracellular enzymes that breaks the wall [51]. According to Nagodawithana [51], lysis occurs primarily because of the enzymes β-(1-3) glucanase and protease. Enzymes β-(1-6) glucanases and mannanases participate in solubilizing the matrix of the cell wall, and over forty enzymes have been identified in
Thereafter, the β-glucan is extracted from autolysed yeast cells by hot alkaline hydrolysis (NaOH) and purified by citric acid precipitation. Another combination of alkali and inorganic acid to extract β-(1-3) glucan was performed by Sandula et al., [54], followed the method described by Machová et al., [55] to obtain water-insoluble β-(1-3) glucan from
The research of modification of β-1,3 glucan has been performed aiming to improve biological properties. Others steps to obtain modified glucan like methylation, permethylation, carboxymethylation, sulfoethylation, and ultrasonication Depending on the application or use of this molecule. Carboxymethylation of the glucans was made with glucan or chitin–glucan complex suspended in a mixture with 30% NaOH and isopropanol, and stirred at 10°C for 1 h. The degree of substitution of the carboxymethylated glucan was 0.56 or 0.91 for glucan and 0.43 for chitin–glucan complex, depending on the amount of monochloroacetic acid used [57]. The procedure of sulfoethylation of the glucans was performed using sodium β-chloroethylsulfonate in isopropanol solution [58], and permethylation of baker’s yeast glucan was carried out according to Ciucanu & Kerek [59] using powdered NaOH. The immunomodulatory activity was detected in fibrillar (non-soluble) and partially hydrolyzed baker’s yeast glucan as well as its soluble derivatives prepared by carboxymethylation and sulfoethylation. All these glucans showed anti-infective activity against
The evolution of β-(1,3) glucan use in the pharmaceutical and medical areas, as well as food and feed, depends on the development of more economical and efficient methods of extraction, purification, and chemical modification of this interesting molecule. Although their biological properties are amply evidenced, more studies are needed about its application, making this knowledge more available to benefit the health of human and animal.
\nβ-(1-3) glucan is a promising healthier food and feed additive whose special properties certified ranging from the activation of the immune system, replacement of antibiotics in animal production, particularly for fish and pork, and various therapies: antitumor, allergic and respiratory diseases, periodontitis and peritonitis. This polymer has also proven to be available as food ingredient for the control of cholesterol and diabetes in special foods. Despite having started their studies for some decades, this molecule remains expensive and not widely available, with the technology dominated by a few producers.
\nThe extraction methods using alkali and acid, with previous pre-treatments, and the step of purification and chemical modification, are needed to obtain β-glucan according to specific biological properties. The solubility, molecular size, level of protein, and degree of methylation are essential parameters to be considered for these properties. This work also highlighted some technological aspects of economic obtaining of β-glucan from yeast.
\nAuto manufacturers are under commercial and regulatory pressure to improve engine efficiency. Potential solutions include direct fuel injection, higher compression ratios, and turbochargers. All these solutions can cause higher operating temperatures and pressures. Al-Si-Mg or Al-Si-Cu-Mg alloys, typically solution treated and aged, are used for automotive products because of their good mechanical properties at room temperature and easy processing. However, these alloys rapidly lose strength above their aging temperature, typically around 155°C. For engines to be able to operate between 180 and 300°C, a different paradigm for alloy design is needed. The requirement for high-temperature lightweight alloys is not restricted to automobile components. Aerospace and military sectors, as well as commercial sectors such as trucking and industrial equipment, all require alloys that meet the increased demands of new fuel-efficient designs.
\nSeveral strategies have been employed to improve the performance characteristics of aluminum alloys. The addition of Cu generally improves both room temperature and high-temperature strength, although there can be an impact on corrosion because of a greater change in electrode potential with variations in the amount of copper in solid solution and the presence of nonuniformities in solid solution concentration [1]. The addition of transition metals such as Zr, Mn, and V is being used to stabilize the precipitates in alloys of the Al-Cu-Mg and Al-Si-Mg system. Many types of metal matrix composites have been developed that will generally improve modulus, yield strength, and elevated temperature properties although the composites are generally less ductile and are more difficult to process.
\nCerium addition can improve the performance characteristics of both solid-solution-strengthened and precipitation-strengthened aluminum alloys, particularly at elevated temperatures.
\nMondolfo [2] reviewed the aluminum-cerium and the aluminum-cerium-iron system and reported that small additions of Ce do not produce appreciable improvements and that the alloys did not have a wide application. He reported that a eutectic is formed with 13% Ce at 638°C. In a later work [3], he reported that an increase of strength without loss of conductivity and improved machinability had been claimed for cerium additions to aluminum alloys. He referenced sources that claimed an Al-CeAl4 eutectic at approximately 12% Ce.
\nAn analysis of the Al-Ce-Fe system produced via powder metallurgy showed extraordinary strengths in an Al-8Fe-4Ce alloy at temperatures up to 343°C [4]. There was no documented attempt to cast these materials.
\nThere has been some experimental work to use Ce as a component of cast aluminum alloys. Shikun [5, 6] reviewed the effect of cerium additions on the cast microstructure and solidification range of an Al-4.5Cu alloy. He concluded that the addition of cerium improved castability but the mechanical properties were not studied. Belov [7] explored Ce for the development of creep-resistant aluminum alloys in combination with transition metals such as Zr, Mn, Cr, Fe, and Ni. Later [8], Belov focused on the Al-Ce-Ni system. He concluded that alloys of the Al-Ce-Ni ternary eutectic system had high mechanical properties at room and elevated temperatures along with good casting characteristics.
\nAl-Si alloys are the most important Al-based foundry alloys. They have good mechanical properties, narrow solidification ranges, and good fluidity. Gröbner [9] considered aluminum alloys containing up to 25 at.% Ce and 45 at.% Si and studied several Al-Ce-Si systems where the aluminum was held at a constant 90 at.% and the concentrations of Ce and Si varied between 0 and 10%. He showed that small Ce additions could provide high-temperature stable AlCeSi phases in equilibrium with Al-Si-rich melt. He concluded that Ce between 1 and 5 at.% could be used as a grain refiner.
\nThe development of Al-Ce casting alloys is driven by the increasing demands for high-temperature-tolerant aluminum alloys and the use for the excess cerium that was available as a by-product of the production of the heavy rare earths.
\nThe equilibrium diagram, Ce-Al crystal structure data, and Ce-Al lattice parameter date were reviewed in 1988 [10], and a eutectic composition of Al and Al11Ce3 was shown at 4 at.% Ce at 640°C. This reference confirms the Al-rich compound had previously been incorrectly identified as Al-CeAl4. Recently calculated Thermo-Calc data predicted a eutectic of Al11Ce3 at 580°C at 10 wt.% [2.09 at.%] [11].
\nTypical microstructures of the Al-Ce binary composition are shown in Figure 1 [12]. The as-cast microstructures show a very fine interconnected Al11Ce3 eutectic microstructure in a pure aluminum phase. The intermetallic can be as small as 50 nm wide at permanent mold cooling rates. These structures are stable up to the melting point of the aluminum phase. The intermetallics cannot dissolve since Ce has extremely low solubility in the aluminum matrix. A solubility diagram for the binary Al-Ce system is shown in Figure 2. Yield strength retention is about three times conventional alloys when tested at 300°C. When Ce is used with solid solution strengthening elements such as Mg or Zn, room temperature properties remain stable regardless of exposure times with exposure temperatures up to 400°C. The data in Figure 3 shows an actual increase in room temperature properties after exposure at 400°C. This is due to the homogenization of magnesium that is not uniformly distributed because of low and variable cooling rates in the cast structure. In solid-solution-strengthened alloys, there are no phases that dissolve or coarsen such as the Mg2Si in 300 series alloys or the Al2Cu in 200 series.
\n(A) As-cast microstructure of Al-Ce8 binary alloy. (B) Al-Ce8 binary showing sub-micron width laths.
Ce solubility in aluminum.
Long-term exposure data of Al-Ce alloys measured at room temperature compared to some standard casting alloys.
Load partitioning studies in compression conducted by Oak Ridge National Laboratory at their Vulcan Beam Line show unusual load sharing behavior between the matrix and the Al11Ce3 intermetallic. As illustrated in Figure 4, as the compressive stress increases, a higher proportion of that stress is transferred to the intermetallic. An extensive analysis of the strengthening mechanisms and microstructural analysis of the Al-Ce system can be found in Ref. [11].
\nPhase load sharing for Al-12Ce-0.4 Mg under compressive load. Shaded region denotes differences between binary and ternary alloy composition’s mechanical response from Ref. [
At room temperature, the Al11Ce3 intermetallic is not an effective strengthening mechanism. Mechanical properties for pure binary compositions are shown in Table 1. To develop reasonable room temperature strengths, other alloying elements such as Mg, Zn, Cu, Si, or others can be added along with Ce to strengthen the aluminum matrix. Sun [13] reported on a comprehensive study of 19 binary systems of Ce and 4d or 5d transition metals using high-throughput first-principles calculations. Understanding the reaction mechanics between Ce and other alloying elements can be used to identify elements that could independently strengthen the aluminum matrix without interference from the Ce as well as those that form compounds with the Ce that can synergistically increase the strength or potentially immobilize elements required for strengthening during heat treatment.
\n\n | Tensile MPa | \nYield MPa | \n%E | \n
---|---|---|---|
Al-16Ce | \n144 | \n68 | \n2.5 | \n
Al-12Ce | \n163 | \n58 | \n13.5 | \n
Al-10Ce | \n152 | \n50 | \n8 | \n
Al-8Ce | \n148 | \n40 | \n19 | \n
Al-6Ce | \n103 | \n30 | \n25 | \n
Mechanical properties of Al-Ce binary alloys.
In commercially pure aluminum, magnesium in solid solution gives a near-linear concentration dependence of strength at a given strain. The solid solution hardening is a result of an interaction between the mobile dislocations and the solute atoms [14]. In an Al-8Ce alloy, the addition of 10% magnesium increases the yield strength by over 300% from about 50 MPa to about 162 MPa. There is no evidence that the formation of some CeMg intermetallic is a significant factor in the strength increase, with the primary mechanism being the matrix strengthening by the magnesium.
\nThe addition of copper to the alloy forms immobile Cu-Ce phases. This is illustrated in Figure 5 using a 4.5% Cu alloy with the addition of 1 and 8% Ce. Most of the Cu is not free to strengthen the alloy since it is tied up with the Ce phase. On the other hand, the modification of the traditional grain boundary phases improves the hot tear resistance of the alloy and reduces intergranular corrosion. Additional Cu needs to be added to create “free Cu” that can participate in heat treat response. For copper-containing alloy such as A206 (Figure 6), the cerium acts as a diffusion barrier, preventing the formation of copper-depleted zones. In all alloys tested, the addition of small amounts of cerium increases their resistance to intergranular corrosion, as shown in Figure 7.
\nAs cerium addition moves from 0 to 8%, the cerium phase dominates grain boundary phases and restricts Cu diffusion.
The addition of Ce to Al-Cu alloys acts as a diffusion barrier by blocking grain boundary motion.
ASTM G110-92(15) intergranular attack test; submerged in hydrogen peroxide with NaCl.
The addition of scandium to Al-Ce alloys has been investigated [15]. At levels of 0.4% Sc, room temperature hardness levels increased by 20%, and room temperature hardness values after 300°C exposure for 100 hours increased by 60%. While the ternary Al-Ce-Sc had good thermal stability, the room temperature hardness values are not sufficient for structural castings. The addition of Mg at levels of up to 12.15% resulted in significant improvement in hardness at room and elevated temperatures.
\nSilicon as an alloying element in the Al-Ce system can be used to control the coefficient of thermal expansion, but the additions at higher levels cause several processing issues. While increasing the silicon in a binary composition with aluminum will reduce the solidification range up to the eutectic composition, the addition of Ce will increase that range which may make the alloy more difficult to feed in traditional casting applications. The solidification range of a standard Al7Si alloy is approximately 70°C. It was experimentally determined using thermal analysis that as the ratio of Ce to Si in an alloy is increased, the solidification range increases as well. At a Ce/Si ratio of 3.16, the solidification range increases to 120°C. At a Ce/Si ratio of 0.46, that solidification range is reduced to 82°C. Generally, maintaining a Ce/Si ratio of about 0.5 results in an alloy with excellent castability. The Ce will also form CeSi phases making some of the Si unavailable for combining with Mg when added to form Mg2Si strengthening precipitates. However, Si-rich alloys contain enough excess Si that the response to heat treatment is not affected.
\nIn conventional hard particle-reinforced aluminum alloys, failure at elevated temperature can occur when the matrix softens and causes particle decoherence. Secondarily, the aluminum loses stiffness at high temperature, minimizing the modulus improvement attempted by the introduction of high modulus particles. Alloys containing Ce retain a higher percentage of modulus at elevated temperatures. Figure 8 shows the modulus retention of an Al10Mg8Ce-F alloy compared with 7075-T6.
\nComparison of room temperature and 350C modulus between Al10Mg8Ce-F and 7075-T6.
Preliminary work has been completed using SiC and carbon nanotubes as reinforcement in AlCe and AlCeSi alloys as well as Al2O3 in AlCeMg alloys. The addition of 50 nm Al2O3 at reinforcement levels of about 0.1% results in a tensile strength improvement of 12%. As shown in Figure 9, a substantial number of particles are in the grain and are not exclusively pushed into the grain boundaries. Particles in the grain enhance Orowan strengthening by resisting dislocation passing in the presence of closely spaced hard particles. Whether this is directly due to the cerium content of the alloy or other processing techniques is unknown. More data and functional testing is required to fully understand the use of Al-Ce alloys as a composite matrix material.
\nFifty nm alumina particles in a matrix of AlMg10Ce8 alloy. Large white particles are aluminum oxide formed during melt processing.
Much of the early work in the Al-Ce system concentrated on casting alloys. The casting characteristics of the binary Al-Ce systems are as good as the aluminum-silicon system but can change as additional alloying elements are added [16]. When other alloying elements are used such as silicon, magnesium, or copper, the solidification range is determined primarily by the secondary alloying elements. Standard systems for melting, degassing, and alloy cleaning of cast alloys can be used without modification for the conventional casting of aluminum-cerium alloys.
\nAt solidification rates typical of castings in Ce alloys that contain more than 7% Mg, a homogenization heat treatment can be used to improve mechanical properties [17]. This treatment reduces the size and volume fraction of magnesium pools that can segregate in high magnesium alloys. The amount of cerium does not affect the segregation behavior. The alloys have been cast successfully in most traditional casting processes, such as sand, permanent mold, low pressure permanent, and die casting. Figure 10 shows a cylinder head poured as a gravity casting showing the good fluidity of the alloy system.
\nAir cooled cylinder head poured from Al-Ce binary alloy.
Mechanical properties for the ternary Al-Ce-Mg system have been studied at both room and elevated temperatures (Table 2). The room temperature properties can be improved by both homogenization and hot isostatic pressing. One of the key attributes in the Al-Ce-Mg system is the recovery of mechanical properties at room temperature when exposed to elevated temperatures for prolonged periods of time. This alloy system does not contain any precipitates that become unstable after prolonged high-temperature exposure.
\nRoom and elevated temperature properties of Al-10Mg-8Ce compared to common piston alloys.
Extrusions have been produced for applications where improved high-temperature performance or resistance to corrosion is desired. In these alloys, extrusion improves the properties through a combination of work hardening and alignment of the intermetallic. Extrusions have been produced at 300°C billet temperature and at extrusion ratios of 5.75–1 and 52–1 from an Al10Mg8Ce alloy. A comparison of average permanent mold properties to extruded properties is shown in Table 3. As the extrusion ratio increases, tensile strength remains constant, with the elongation increasing and yield strength decreasing. The mechanical properties can be affected by the starting microstructure of the billet. Structural extrusions have also been produced as shown in Figure 11.
\nComparison of extruded data at different extrusion ratios with cast Al10Mg8Ce.
Structural extrusion produced for the marine industry.
The alloy system has been used for both the direct write and powder bed fusion. Manca [18] has reported high mechanical properties of Al-3Ce-7Cu in both high-temperature tension and compression testing via selective laser melting. Fine eutectic phases of Al11Ce3 and Al6.5CeCu6.5 were found in the microstructure. High hardness values were noted after annealing at 400°C due to the precipitation of nanosized particles. Kessler [19] used induction heated Al-Ce wire to take advantage of the inherent rheology of molten Al-Ce and the high enthalpy of fusion for the reactive Ce-containing intermetallic. This intermetallic phase enhances the surface energy and stabilizes the extruded filament, imparting shape stability and facilitating layer-to-layer joining.
\nAs an alloying element used typically in the 1–10% weight range, cerium is relatively inexpensive. Its cost is in the range of $4–5/lb. and is widely available. The as-alloyed cost of Al-Ce material is competitive with other high-performance aluminum alloy systems. Further cost reduction in Ce is enabled by direct metallothermic reduction of cerium oxide. Luna [20] directly reduced the oxide on a laboratory scale in aluminum alloys containing between 0.5 and 4.0 wt.% Mg. This technique is now being developed on a commercial scale.
\nAluminum-cerium alloys are being rapidly developed as alternatives to Al-Si and Al-Cu alloys. These alloys have good fabrication characteristics and excellent corrosion performance. The alloys have superior performance at elevated temperatures and long exposure times. The use of the least expensive of the rare earth elements and standard processing methods makes the transition to use Al-Ce alloys available for lightweight high-performance applications in the automotive, trucking, aerospace, and other industrial sectors.
\n"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11648",title:"Current Status and Ecological Aspects of Seabirds",subtitle:null,isOpenForSubmission:!0,hash:"7754b354f7deebdb8576189aefbdbc5c",slug:null,bookSignature:"Dr. Muhammad Nawaz Rajpar",coverURL:"https://cdn.intechopen.com/books/images_new/11648.jpg",editedByType:null,editors:[{id:"183095",title:"Dr.",name:"Muhammad Nawaz",surname:"Rajpar",slug:"muhammad-nawaz-rajpar",fullName:"Muhammad Nawaz Rajpar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11470",title:"Graphene - Recent Advances, Future Perspective and Applied Applications",subtitle:null,isOpenForSubmission:!0,hash:"409e022e3baf48795e816576a6ee66e3",slug:null,bookSignature:"Dr. Mujtaba Ikram, Dr. Asghari Maqsood and Dr. Aneeqa Bashir",coverURL:"https://cdn.intechopen.com/books/images_new/11470.jpg",editedByType:null,editors:[{id:"286820",title:"Dr.",name:"Mujtaba",surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11600",title:"Recent Update on Multiple Myeloma\ufeff",subtitle:null,isOpenForSubmission:!0,hash:"c8e2b12df4fc2d313aced448fe08a63e",slug:null,bookSignature:"Dr. Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/11600.jpg",editedByType:null,editors:[{id:"37255",title:"Dr.",name:"Khalid",surname:"Al-Anazi",slug:"khalid-al-anazi",fullName:"Khalid Al-Anazi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11586",title:"Schizophrenia - Recent Advances and Patient-Centered Treatment Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2ba14221aca01660b2547004d9b5c2d9",slug:null,bookSignature:"Dr. Jane Yip",coverURL:"https://cdn.intechopen.com/books/images_new/11586.jpg",editedByType:null,editors:[{id:"156214",title:"Dr.",name:"Jane",surname:"Yip",slug:"jane-yip",fullName:"Jane Yip"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11519",title:"Vibration Monitoring and Analysis - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"f0d2d82a5c1a49020abf39dc8aabd89d",slug:null,bookSignature:"Dr.Ing. Louay Yousuf",coverURL:"https://cdn.intechopen.com/books/images_new/11519.jpg",editedByType:null,editors:[{id:"322417",title:"Dr.Ing.",name:"Louay",surname:"Yousuf",slug:"louay-yousuf",fullName:"Louay Yousuf"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11445",title:"Multi-Agent Technologies and Machine Learning",subtitle:null,isOpenForSubmission:!0,hash:"d980826615baa6e33456e2a79064c5e8",slug:null,bookSignature:"Prof. Igor Sheremet",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",editedByType:null,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11468",title:"High Entropy Alloys - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"3b4ef3ce01f8f9b113dc28ac847b8c0d",slug:null,bookSignature:"Prof. Yong A Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/11468.jpg",editedByType:null,editors:[{id:"203937",title:"Prof.",name:"Yong",surname:"Zhang",slug:"yong-zhang",fullName:"Yong Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11525",title:"Wood Industry - Past, Present and Future Outlook",subtitle:null,isOpenForSubmission:!0,hash:"ccb74142053c89e0e572ac1c5d717a11",slug:null,bookSignature:"Prof. Guanben Du and Dr. Xiaojian Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/11525.jpg",editedByType:null,editors:[{id:"291315",title:"Prof.",name:"Guanben",surname:"Du",slug:"guanben-du",fullName:"Guanben Du"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11484",title:"Thin Film Deposition - Fundamentals, Processes, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9c10a55203c2f0f7d47c743e6cfa2492",slug:null,bookSignature:"Dr. Dongfang Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11484.jpg",editedByType:null,editors:[{id:"177814",title:"Dr.",name:"Dongfang",surname:"Yang",slug:"dongfang-yang",fullName:"Dongfang Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11620",title:"Tomato - From Cultivation to Processing Technology",subtitle:null,isOpenForSubmission:!0,hash:"cdc23b5aad5d52bc0f0327c453ac7a1b",slug:null,bookSignature:"Prof. Pranas Viskelis, Dr. Dalia Urbonavičienė and Dr. Jonas Viskelis",coverURL:"https://cdn.intechopen.com/books/images_new/11620.jpg",editedByType:null,editors:[{id:"83785",title:"Prof.",name:"Pranas",surname:"Viskelis",slug:"pranas-viskelis",fullName:"Pranas Viskelis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11597",title:"Glioblastoma - Current Evidences",subtitle:null,isOpenForSubmission:!0,hash:"da69711754eb5ed95bdea15fcfab0b2a",slug:null,bookSignature:"Prof. Amit Agrawal",coverURL:"https://cdn.intechopen.com/books/images_new/11597.jpg",editedByType:null,editors:[{id:"100142",title:"Prof.",name:"Amit",surname:"Agrawal",slug:"amit-agrawal",fullName:"Amit Agrawal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:24},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:124},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:419},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"1150",title:"Orthopedics",slug:"orthopedics",parent:{id:"202",title:"Surgery",slug:"surgery"},numberOfBooks:31,numberOfSeries:0,numberOfAuthorsAndEditors:745,numberOfWosCitations:443,numberOfCrossrefCitations:276,numberOfDimensionsCitations:665,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1150",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10711",title:"Arthroscopy",subtitle:null,isOpenForSubmission:!1,hash:"afa83f11ba2442e7612f5b8c6aa3c659",slug:"arthroscopy",bookSignature:"Carlos Suarez-Ahedo",coverURL:"https://cdn.intechopen.com/books/images_new/10711.jpg",editedByType:"Edited by",editors:[{id:"235976",title:"M.D.",name:"Carlos",middleName:null,surname:"Suarez-Ahedo",slug:"carlos-suarez-ahedo",fullName:"Carlos Suarez-Ahedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9801",title:"A Comprehensive Review of Compartment Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ba676e67fb29de60aee9048ff13bf479",slug:"a-comprehensive-review-of-compartment-syndrome",bookSignature:"Saqeb Beig Mirza and Khaled Elawady",coverURL:"https://cdn.intechopen.com/books/images_new/9801.jpg",editedByType:"Edited by",editors:[{id:"99767",title:"Dr.",name:"Saqeb Beig",middleName:null,surname:"Mirza",slug:"saqeb-beig-mirza",fullName:"Saqeb Beig Mirza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9522",title:"Tibia Pathology and Fractures",subtitle:null,isOpenForSubmission:!1,hash:"a458a39d8281ed7fda0548fbb75927a2",slug:"tibia-pathology-and-fractures",bookSignature:"Dimitrios D. Nikolopoulos, George K. Safos and John Michos",coverURL:"https://cdn.intechopen.com/books/images_new/9522.jpg",editedByType:"Edited by",editors:[{id:"228477",title:"Dr.",name:"Dimitrios D.",middleName:null,surname:"Nikolopoulos",slug:"dimitrios-d.-nikolopoulos",fullName:"Dimitrios D. Nikolopoulos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9350",title:"Knee Surgery",subtitle:"Reconstruction and Replacement",isOpenForSubmission:!1,hash:"78aa92dc594a2cc0f60f28b640b28c10",slug:"knee-surgery-reconstruction-and-replacement",bookSignature:"João Bosco Sales Nogueira, José Alberto Dias Leite, Leonardo Heráclio Do Carmo Araújo and Marcelo Cortez Bezerra",coverURL:"https://cdn.intechopen.com/books/images_new/9350.jpg",editedByType:"Edited by",editors:[{id:"215718",title:"M.Sc.",name:"João Bosco Sales",middleName:null,surname:"Nogueira",slug:"joao-bosco-sales-nogueira",fullName:"João Bosco Sales Nogueira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7975",title:"Limb Amputation",subtitle:null,isOpenForSubmission:!1,hash:"4cf345d93bc54587899c69ce6d3b07f2",slug:"limb-amputation",bookSignature:"Masaki Fujioka",coverURL:"https://cdn.intechopen.com/books/images_new/7975.jpg",editedByType:"Edited by",editors:[{id:"53197",title:"Prof.",name:"Masaki",middleName:null,surname:"Fujioka",slug:"masaki-fujioka",fullName:"Masaki Fujioka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editedByType:"Edited by",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7548",title:"Meniscus of the Knee",subtitle:"Function, Pathology and Management",isOpenForSubmission:!1,hash:"a82a659a178c693e15f88dcfb8fb2782",slug:"meniscus-of-the-knee-function-pathology-and-management",bookSignature:"Taiceer Abdulwahab and Karl Almqvist",coverURL:"https://cdn.intechopen.com/books/images_new/7548.jpg",editedByType:"Edited by",editors:[{id:"204153",title:"Dr.",name:"Taiceer",middleName:null,surname:"Abdulwahab",slug:"taiceer-abdulwahab",fullName:"Taiceer Abdulwahab"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8676",title:"Hip Surgeries",subtitle:null,isOpenForSubmission:!1,hash:"35280afd3082f1a6b3c10bdc0ae447f6",slug:"hip-surgeries",bookSignature:"Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/8676.jpg",editedByType:"Edited by",editors:[{id:"68911",title:"Dr.",name:"Nahum",middleName:null,surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6585",title:"Total Hip Replacement",subtitle:"An Overview",isOpenForSubmission:!1,hash:"fc19d9c4ee5073fbab74a0e2aed20ba2",slug:"total-hip-replacement-an-overview",bookSignature:"Vaibhav Bagaria",coverURL:"https://cdn.intechopen.com/books/images_new/6585.jpg",editedByType:"Edited by",editors:[{id:"37266",title:"Dr.",name:"Vaibhav",middleName:null,surname:"Bagaria",slug:"vaibhav-bagaria",fullName:"Vaibhav Bagaria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6755",title:"Recent Advances in Arthroscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5c122c5b88bdc03c130d34ad2ac2d722",slug:"recent-advances-in-arthroscopic-surgery",bookSignature:"Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/6755.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",middleName:"Wimal",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6337",title:"Update in Management of Foot and Ankle Disorders",subtitle:null,isOpenForSubmission:!1,hash:"8b2f0af3f51f43cce1e3e36375ea3220",slug:"update-in-management-of-foot-and-ankle-disorders",bookSignature:"Thanos Badekas",coverURL:"https://cdn.intechopen.com/books/images_new/6337.jpg",editedByType:"Edited by",editors:[{id:"66087",title:"Dr.",name:"Thanos",middleName:null,surname:"Badekas",slug:"thanos-badekas",fullName:"Thanos Badekas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:31,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"26862",doi:"10.5772/27413",title:"Titanium as a Biomaterial for Implants",slug:"titanium-as-a-biomaterial-for-implants",totalDownloads:16232,totalCrossrefCites:50,totalDimensionsCites:123,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Carlos Oldani and Alejandro Dominguez",authors:[{id:"70012",title:"Dr.",name:"Carlos",middleName:null,surname:"Oldani",slug:"carlos-oldani",fullName:"Carlos Oldani"},{id:"73445",title:"MSc.",name:"Alejandro",middleName:"Anibal",surname:"Dominguez",slug:"alejandro-dominguez",fullName:"Alejandro Dominguez"}]},{id:"50915",doi:"10.5772/63266",title:"Doped Bioactive Glass Materials in Bone Regeneration",slug:"doped-bioactive-glass-materials-in-bone-regeneration",totalDownloads:3462,totalCrossrefCites:13,totalDimensionsCites:33,abstract:"In the arena of orthopaedic surgery, autograft is considered to be the gold standard for correction of fracture repair or other bone pathologies. But, it has some limitations such as donor site morbidity and shortage of supply, which evolved the use of allograft that also has some disadvantages such as immunogenic response to the host, low osteogenicity as well as possibilities of disease transmission. Despite the benefits of autografts and allografts, the limitations of each have necessitated the pursuit of alternatives biomaterials that has the ability to initiate osteogenesis, and the graft should closely mimic the natural bone along with regeneration of fibroblasts. A variety of artificial materials such as demineralised bone matrix, coralline hydroxyapatite and calcium phosphate-based ceramics such as hydroxyapatite (HA), β-tricalcium phosphate (β-TCP) and bioactive glass have been used over the decades to fill bone defects almost without associated soft tissue development. Most of them were having only the properties of osteointegration and osteoconduction. Only bioactive glass possesses osteogenic property that stimulates proliferation and differentiation of osteoprogenitor cells and in some cases influencing the fibroblastic properties. But, this material has also some disadvantages such as short-term and low mechanical strength along with decreased fracture resistance; but, this was further minimised by ion doping that positively enhanced new bone formation. There are many metal ions such as magnesium (Mg), strontium (Sr), manganese (Mn), iron (Fe), zinc (Zn), silver (Ag) and some rare earths that have been doped successfully into bioactive glass to enhance their mechanical and biological properties. In some of the cases, mesoporous bioactive glass materials with or without such doping have also been employed (with homogeneous distribution of pores in the size ranging between 2 and 50 nm). These biomaterials can be served as scaffold for bone regeneration with adequate mechanical properties to restore bone defects and facilitate healing process by regeneration of soft tissues as well. This chapter encompasses the use of bioactive glass in bulk and mesoporous form with doped therapeutic ions, their role in bone tissue regeneration, use as delivery of growth factors as well as coating material for orthopaedic implants.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Samit Kumar Nandi, Arnab Mahato, Biswanath Kundu and Prasenjit\nMukherjee",authors:[{id:"60514",title:"Dr.",name:"Samit",middleName:null,surname:"Nandi",slug:"samit-nandi",fullName:"Samit Nandi"}]},{id:"26863",doi:"10.5772/26362",title:"The Bearing Surfaces in Total Hip Arthroplasty – Options, Material Characteristics and Selection",slug:"the-bearing-surfaces-in-total-hip-arthroplasty-options-material-characteristics-and-selection",totalDownloads:9436,totalCrossrefCites:10,totalDimensionsCites:21,abstract:null,book:{id:"938",slug:"recent-advances-in-arthroplasty",title:"Recent Advances in Arthroplasty",fullTitle:"Recent Advances in Arthroplasty"},signatures:"Hamid Reza Seyyed Hosseinzadeh, Alireza Eajazi and Ali Sina Shahi",authors:[{id:"66361",title:"Dr.",name:"Alireza",middleName:null,surname:"Eajazi",slug:"alireza-eajazi",fullName:"Alireza Eajazi"},{id:"74857",title:"Dr.",name:"Hamid Reza",middleName:null,surname:"Seyyed Hosseinzadeh",slug:"hamid-reza-seyyed-hosseinzadeh",fullName:"Hamid Reza Seyyed Hosseinzadeh"},{id:"173207",title:"Dr.",name:"Alisina",middleName:null,surname:"Shahi",slug:"alisina-shahi",fullName:"Alisina Shahi"}]},{id:"50276",doi:"10.5772/62523",title:"Regenerative Medicine: A New Paradigm in Bone Regeneration",slug:"regenerative-medicine-a-new-paradigm-in-bone-regeneration",totalDownloads:3347,totalCrossrefCites:10,totalDimensionsCites:19,abstract:"Bone defects are the cause of functional disability and the restoration of skeletal function remains an important challenge on orthopedics, neurosurgery and oral and maxillofacial surgery. Because of the limitations of the currently used techniques for the reconstruction of bone defects and the difficulties for the implementation of new therapeutic strategies, a new paradigm in the field of reconstructive surgery has arisen, leading to tissue engineering and regenerative medicine. Mesenchymal stem cells (MSC) have emerged as a promising alternative for the treatment of bone lesions. It was postulated that the therapeutic action was the result of proliferation and differentiation of MSCs, replacing injured tissue. However, recent studies have shown that MSCs secrete a number of trophic factors that have a strong effect during repair and tissue regeneration. This represents a shift from a paradigm centered on MSC proliferation and differentiation to a new paradigm in which the MSCs exert their beneficial effect by the secretion of paracrine factors that induce endogenous repair mechanisms. This chapter will bring together basic and clinical aspects, focused on novel findings on MSC paracrine effect and the development of new therapeutic strategies based on growth factors, cytokines and signaling molecules involved in bone regeneration.",book:{id:"5164",slug:"advanced-techniques-in-bone-regeneration",title:"Advanced Techniques in Bone Regeneration",fullTitle:"Advanced Techniques in Bone Regeneration"},signatures:"Orlando Chaparro and Itali Linero",authors:[{id:"179436",title:"Dr.",name:"Orlando",middleName:null,surname:"Chaparro",slug:"orlando-chaparro",fullName:"Orlando Chaparro"},{id:"180151",title:"Dr.",name:"Itali",middleName:null,surname:"Linero",slug:"itali-linero",fullName:"Itali Linero"}]},{id:"42805",doi:"10.5772/53245",title:"Predictors of Pain and Function Following Total Joint Replacement",slug:"predictors-of-pain-and-function-following-total-joint-replacement",totalDownloads:3092,totalCrossrefCites:1,totalDimensionsCites:16,abstract:null,book:{id:"3394",slug:"arthroplasty-update",title:"Arthroplasty",fullTitle:"Arthroplasty - Update"},signatures:"Michelle M. Dowsey and Peter F. M. Choong",authors:[{id:"80820",title:"Prof.",name:"Peter",middleName:null,surname:"Choong",slug:"peter-choong",fullName:"Peter Choong"},{id:"82173",title:"Dr.",name:"Michelle",middleName:"Maree",surname:"Dowsey",slug:"michelle-dowsey",fullName:"Michelle Dowsey"}]}],mostDownloadedChaptersLast30Days:[{id:"55812",title:"Postural Restoration: A Tri-Planar Asymmetrical Framework for Understanding, Assessing, and Treating Scoliosis and Other Spinal Dysfunctions",slug:"postural-restoration-a-tri-planar-asymmetrical-framework-for-understanding-assessing-and-treating-sc",totalDownloads:7603,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"Current medical practice does not recognize the influence of innate, physiological, human asymmetry on scoliosis and other postural disorders. Interventions meant to correct these conditions are commonly based on symmetrical models of appearance and do not take into account asymmetric organ weight distribution, asymmetries of respiratory mechanics, and dominant movement patterns that are reinforced in daily functional activities. A model of innate, human asymmetry derived from the theoretical framework of the Postural Restoration Institute® (PRI) explicitly describes the physiological, biomechanical, and respiratory components of human asymmetry. This model is important because it gives an accurate baseline for understanding predisposing factors for the development of postural disorders, which, without intervention, will likely progress to structural dysfunction. Clinical tests to evaluate tri-planar musculoskeletal relationships and function, developed by PRI, are based on this asymmetric model. These tests are valuable for assessing patient’s status in the context of human asymmetry and in guiding appropriate exercise prescription and progression. Balancing musculoskeletal asymmetry is the aim of PRI treatment. Restoration of relative balance decreases pain, restores improved alignment, and strengthens appropriate muscle function. It can also halt the progression of dysfunction and improve respiration, quality of life, and appearance. PRI’s extensive body of targeted exercise progressions are highly effective due to their basis in the tri-planar asymmetric human model.",book:{id:"5816",slug:"innovations-in-spinal-deformities-and-postural-disorders",title:"Innovations in Spinal Deformities and Postural Disorders",fullTitle:"Innovations in Spinal Deformities and Postural Disorders"},signatures:"Susan Henning, Lisa C. Mangino and Jean Massé",authors:[{id:"204825",title:"Dr.",name:"Susan",middleName:null,surname:"Henning",slug:"susan-henning",fullName:"Susan Henning"},{id:"206242",title:"Dr.",name:"Lisa C",middleName:null,surname:"Mangino",slug:"lisa-c-mangino",fullName:"Lisa C Mangino"},{id:"206245",title:"Dr.",name:"Jean",middleName:null,surname:"Massé",slug:"jean-masse",fullName:"Jean Massé"}]},{id:"62871",title:"Successful Knee Arthroscopy: Techniques",slug:"successful-knee-arthroscopy-techniques",totalDownloads:1652,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Knee arthroscopy is one of the most common arthroscopic procedures required of an orthopedic surgeon. A successful case hinges primarily on adequate pre-operative planning, proper intra-operative set-up and thoughtful portal placement. This chapter will discuss in detail the necessary ingredients of a smooth and successful knee arthroscopy case. Advanced techniques to deal with intra-operative difficulties will be presented. Though uncommon, complications arising from knee arthroscopy will be presented and their management techniques described. Common procedures will be discussed, including simple knee arthroscopic debridement, arthroscopic cartilage reconstruction, anterior cruciate ligament reconstruction, and meniscus repair. Surgical steps for a safe and smooth case will be presented.",book:{id:"6755",slug:"recent-advances-in-arthroscopic-surgery",title:"Recent Advances in Arthroscopic Surgery",fullTitle:"Recent Advances in Arthroscopic Surgery"},signatures:"Chia-Liang Ang",authors:[{id:"218149",title:"Dr.",name:"Chia Liang",middleName:null,surname:"Ang",slug:"chia-liang-ang",fullName:"Chia Liang Ang"}]},{id:"54481",title:"Pelvic Osteotomies for Developmental Dysplasia of the Hip",slug:"pelvic-osteotomies-for-developmental-dysplasia-of-the-hip",totalDownloads:2589,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Treatment of developmental dysplasia of the hip (DDH) is based on concentric reducibility of the femoral head, patient age and the status of triradiate cartilage. Patients in walking age are indicated for pelvic osteotomy to correct the dysplastic acetabulum. Salter innominate osteotomy and Pemberton osteotomy are the most widely used procedures to treat the developmental dysplasia of the hip in early childhood. Although short-term results of the pelvic osteotomies are reported well, some long-term sequalae such as coxa valga caused by Kalamchi type II osteonecrosis of the femoral head, leg length discrepancy and impingement of hip may occur.",book:{id:"5439",slug:"developmental-diseases-of-the-hip-diagnosis-and-management",title:"Developmental Diseases of the Hip",fullTitle:"Developmental Diseases of the Hip - Diagnosis and Management"},signatures:"Chunho Chen, Ting-Ming Wang and Ken N. Kuo",authors:[{id:"189672",title:"M.D.",name:"Chunho",middleName:null,surname:"Chen",slug:"chunho-chen",fullName:"Chunho Chen"},{id:"189675",title:"Dr.",name:"Tingming",middleName:null,surname:"Wang",slug:"tingming-wang",fullName:"Tingming Wang"},{id:"189859",title:"Prof.",name:"Ken N",middleName:null,surname:"Kuo",slug:"ken-n-kuo",fullName:"Ken N Kuo"}]},{id:"72475",title:"Tibial Plateau Fracture",slug:"tibial-plateau-fracture",totalDownloads:1205,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Tibial plateau fractures are a common orthopedic injury. These fractures involve the articular surface of the tibia that is part of the knee joint. Plateau fractures can range from low energy injuries with little or no displacement to complex fractures with significant associated injuries. Stability of these injuries depends on a combination of bony and associated ligamentous injuries. Treatment consists of a wide spectrum of therapies which have been discussed in this chapter. Complications such as compartment syndrome, post-traumatic arthritis, chronic pain, malunion, and wound problems (in addition to other complications) can develop.",book:{id:"9522",slug:"tibia-pathology-and-fractures",title:"Tibia Pathology and Fractures",fullTitle:"Tibia Pathology and Fractures"},signatures:"Christian M. Schmidt II, Jan P. Szatkowski and John T. Riehl",authors:null},{id:"70683",title:"Restoration of Cervical and Lumbar Lordosis: CBP® Methods Overview",slug:"restoration-of-cervical-and-lumbar-lordosis-cbp-methods-overview",totalDownloads:1380,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Low back and neck pain disorders are among the leading causes for work loss, suffering, and health care expenditures throughout the industrialized world. It has been extensively demonstrated that sagittal plane alignment of the cervical and lumbar spines impacts human health and well-being. Today there are reliable and predictable means through the application of extension spinal traction as part of comprehensive rehabilitation programs to restore the natural curvatures of the spine. High-quality evidence points to Chiropractic BioPhysics® (CBP®) methods offering superior long-term outcomes for treating patients with various craniocervical and lumbosacral disorders. CBP technique is a full spine and posture rehabilitation approach that incorporates mirror image® exercises, spinal and postural adjustments, and unique traction applications in the restoration of normal/ideal spinal alignment. Recent randomized controlled trials using CBP’s unique extension traction methods in conjunction with various conventional physiotherapeutic methods have demonstrated those who restore normal lordosis (cervical or lumbar) get symptomatic relief that lasts up to 2 years after treatment. Comparative groups receiving various ‘cookie-cutter’ conventional treatments experience only temporary symptomatic relief that regresses as early as 3 months after treatment. The economic impact/benefit of CBPs newer sagittal spine rehabilitation treatments demand continued attention from clinicians and researchers alike.",book:{id:"9154",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",title:"Spinal Deformities in Adolescents, Adults and Older Adults",fullTitle:"Spinal Deformities in Adolescents, Adults and Older Adults"},signatures:"Paul A. Oakley, Ibrahim M. Moustafa and Deed E. Harrison",authors:[{id:"308067",title:"Dr.",name:"Paul A.",middleName:null,surname:"Oakley",slug:"paul-a.-oakley",fullName:"Paul A. Oakley"},{id:"308068",title:"Dr.",name:"Deed E.",middleName:null,surname:"Harrison",slug:"deed-e.-harrison",fullName:"Deed E. Harrison"},{id:"311314",title:"Prof.",name:"Ibrahim M.",middleName:null,surname:"Moustafa",slug:"ibrahim-m.-moustafa",fullName:"Ibrahim M. Moustafa"},{id:"410567",title:"Dr.",name:"Paul A.",middleName:null,surname:"Oakley",slug:"paul-a.-oakley",fullName:"Paul A. Oakley"},{id:"410568",title:"Dr.",name:"Ibrahim M.",middleName:null,surname:"Moustafa",slug:"ibrahim-m.-moustafa",fullName:"Ibrahim M. Moustafa"},{id:"410569",title:"Dr.",name:"Deed E.",middleName:null,surname:"Harrison",slug:"deed-e.-harrison",fullName:"Deed E. Harrison"}]}],onlineFirstChaptersFilter:{topicId:"1150",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/50843",hash:"",query:{},params:{id:"50843"},fullPath:"/chapters/50843",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()