Electrodeposited metals with EP-SCE and conventional (CONV) method
\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"6821",leadTitle:null,fullTitle:"Natural Hazards - Risk Assessment and Vulnerability Reduction",title:"Natural Hazards",subtitle:"Risk Assessment and Vulnerability Reduction",reviewType:"peer-reviewed",abstract:"This book addresses different aspects of natural hazards and vulnerabilities, with a focus on prevention and protection. It consists of nine chapters, five on flood events addressing vulnerabilities, risk assessments, impacts, sensitivity analyses, and mitigation measures, two on climate change and reconstruction of natural hazard events such as avalanches and rockslides, and two on tsunamis and volcanoes. All chapters provide relevant information and useful elements for readers interested and concerned about the lack of action or its ineffectiveness in containing the vulnerabilities and risks of possible natural hazards worldwide.",isbn:"978-1-78984-821-2",printIsbn:"978-1-78984-820-5",pdfIsbn:"978-1-83881-728-2",doi:"10.5772/intechopen.73232",price:119,priceEur:129,priceUsd:155,slug:"natural-hazards-risk-assessment-and-vulnerability-reduction",numberOfPages:180,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"855e55f0cd51410f7013bb47181d3321",bookSignature:"José Simão Antunes do Carmo",publishedDate:"December 12th 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6821.jpg",numberOfDownloads:10542,numberOfWosCitations:14,numberOfCrossrefCitations:17,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:25,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:56,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 17th 2018",dateEndSecondStepPublish:"February 7th 2018",dateEndThirdStepPublish:"April 8th 2018",dateEndFourthStepPublish:"June 27th 2018",dateEndFifthStepPublish:"August 26th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo",profilePictureURL:"https://mts.intechopen.com/storage/users/67904/images/system/67904.jpg",biography:"José Simão Antunes do Carmo obtained his master’s degree in Hydraulics and Water Resources in 1990 from the University of Lisbon and his Ph.D. in Engineering Sciences in 1995 from the University of Coimbra, Portugal. He was director of several undergraduate and master’s courses in Civil Engineering and Environmental Engineering in the period 1995-2010. He was a scientific advisor of twenty-five master’s dissertations and two Ph.D. theses in Hydraulics and Water Resources. He has published two books, sixty-five papers in scientific journals, fifteen book chapters, and more than one hundred papers in international conferences. He has edited eleven books and a special issue of a scientific journal. He is a member of the editorial board of several international journals. His main areas of scientific research are hydrodynamics, morphodynamics, coastal management, river and coastal processes, climate change, natural hazards, risks, and vulnerabilities.",institutionString:"University of Coimbra",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"664",title:"Geological Disaster",slug:"geological-disaster"}],chapters:[{id:"62132",title:"Vulnerability, Urban Design and Resilience Management",doi:"10.5772/intechopen.78585",slug:"vulnerability-urban-design-and-resilience-management",totalDownloads:1144,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"After 30 years without any serious flooding, and over half a century without any major floods (the river Seine’s last “important” flooding in Paris took place in January 1955), the 2016 event questions our capacity to evaluate the flood hazard and its impacts. For the Ile-de-France region, the hazard occurred outside defined periods of vigilance, as a result of heavy rains downstream of the main protection structures formed by reservoirs. For this reason, these large protection works only had a very moderate influence on the event. Management of the 2016 event has been analysed on the basis of local measures whose effectiveness varied depending on the context. Among the positive lessons to be drawn, the 2016 floods revealed the high level of resilience of the Matra district in Romorantin. This resilient district, which has high urban qualities, has shown that, in the French regulatory context, flood risks can be treated effectively by appropriate development projects.",signatures:"Bruno Barroca",downloadPdfUrl:"/chapter/pdf-download/62132",previewPdfUrl:"/chapter/pdf-preview/62132",authors:[{id:"242380",title:"Dr.",name:"Bruno",surname:"Barroca",slug:"bruno-barroca",fullName:"Bruno Barroca"}],corrections:null},{id:"62488",title:"Index of Proportional Risk (IRP) Flood-Risk Assessment Model and Comparison to Collected Data",doi:"10.5772/intechopen.79443",slug:"index-of-proportional-risk-irp-flood-risk-assessment-model-and-comparison-to-collected-data",totalDownloads:1026,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"After the publication of the flood directive hazard and risk maps, risk assessment and risk evaluation became useful tools to set priorities for flood management and for countermeasure financing. Regione Piemonte, in collaboration with Politecnico di Torino and University of Turin, proposed a procedure for risk assessment (named IRP model, Index of Proportional Risk), already applied in different case studies. The comparison among the obtained results and the collected data on damages recorded during the recent 2016 flood in Piemonte region showed the effectiveness of the IRP procedure for the quantitative assessment of direct damages. The IRP model can also be usefully applied to the revision and the updating of flood directive risk maps and to assess the cost/benefit ratio of the designed countermeasures (National Repository for Soil defense (Re.N.Di.S.) procedure).",signatures:"Luca Franzi, Gennaro Bianco, Alessandro Pezzoli and Angelo Besana",downloadPdfUrl:"/chapter/pdf-download/62488",previewPdfUrl:"/chapter/pdf-preview/62488",authors:[{id:"25144",title:"Dr.",name:"Luca",surname:"Franzi",slug:"luca-franzi",fullName:"Luca Franzi"},{id:"181692",title:"Dr.",name:"Alessandro",surname:"Pezzoli",slug:"alessandro-pezzoli",fullName:"Alessandro Pezzoli"},{id:"241814",title:"Prof.",name:"Gennaro",surname:"Bianco",slug:"gennaro-bianco",fullName:"Gennaro Bianco"},{id:"242105",title:"Prof.",name:"Angelo",surname:"Besana",slug:"angelo-besana",fullName:"Angelo Besana"}],corrections:null},{id:"63411",title:"Insight into the Correlation between Land Subsidence and the Floods in Regions of Indonesia",doi:"10.5772/intechopen.80263",slug:"insight-into-the-correlation-between-land-subsidence-and-the-floods-in-regions-of-indonesia",totalDownloads:1568,totalCrossrefCites:4,totalDimensionsCites:4,hasAltmetrics:1,abstract:"Land subsidence by definition is the lowering of ground level from certain elevation references. The rates of subsidence can commonly vary between 1 and 20 centimeters per year and even more in certain places. Subsidence produces impacts such as infrastructure damage, problems with drainage, wider expansion of flood water, as well as tidal inundation (flooding by sea water at coastal areas experiencing land subsidence). These impacts are quite costly. All this is disastrous. In a number of regions of Indonesia, land subsidence and negative impacts in the shape of flooding and tidal inundation clearly exist. In Jakarta and Bandung we can see that the subsiding areas close to rivers frequently suffer from flooding. Tidal inundation is a regular feature at subsiding coastal areas such as Jakarta, Blanakan, Semarang, and Demak. Since these negative impacts are clearly formed a disaster while mitigation and or adaptation is still a big homework, in this case for better adaptation and mitigation in the future, understanding deeply the correlation of land subsidence and flooding is necessary as discused in this chapter. We conclude that the correlation is quite tremendous and indeed producing a disaster.",signatures:"Heri Andreas, Hasanuddin Z. Abidin, Irwan Gumilar, Teguh P. Sidiq,\nDina A. Sarsito and Dhota Pradipta",downloadPdfUrl:"/chapter/pdf-download/63411",previewPdfUrl:"/chapter/pdf-preview/63411",authors:[{id:"238146",title:"Prof.",name:"Hasanuddin",surname:"Zainal Abidin",slug:"hasanuddin-zainal-abidin",fullName:"Hasanuddin Zainal Abidin"},{id:"238147",title:"Dr.",name:"Irwan",surname:"Gumilar",slug:"irwan-gumilar",fullName:"Irwan Gumilar"},{id:"238148",title:"Dr.",name:"Dina",surname:"Anggreni Sarsito",slug:"dina-anggreni-sarsito",fullName:"Dina Anggreni Sarsito"},{id:"238150",title:"Dr.",name:"Dhota",surname:"Pradipta",slug:"dhota-pradipta",fullName:"Dhota Pradipta"},{id:"242381",title:"Dr.",name:"Heri",surname:"Andreas",slug:"heri-andreas",fullName:"Heri Andreas"},{id:"257886",title:"MSc.",name:"Teguh",surname:"P Sidiq",slug:"teguh-p-sidiq",fullName:"Teguh P Sidiq"}],corrections:null},{id:"62352",title:"Assessing the Impact of Land Use Changes and Rangelands and Forest Degradation on Flooding Using Watershed Modeling System",doi:"10.5772/intechopen.77041",slug:"assessing-the-impact-of-land-use-changes-and-rangelands-and-forest-degradation-on-flooding-using-wat",totalDownloads:1194,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:"Extensive flood damages all over the world necessitate flood risk mitigation. Land use changes affect hydrological characteristics such as total runoff and flood’s peak flow. This study investigates the impacts of land use change on flooding of the Boostan dam catchment in Golestan province, Iran. For this purpose, watershed modeling system (WMS) is used to compare different types of land uses between 1996 and 2006 using corresponding maps. After calibration and validation of the model in each period of time, flooding of the catchment was evaluated using two representative parameters of peak flow and volume of flood. Comparison of land use maps in 1996 and 2006 revealed the total rangelands have been increased while good rangeland areas decreased, fair rangeland increased, and poor rangeland remained relatively constant. It means the region faces decrease in high-quality rangelands in the catchment. Also the forest areas decreased. Both degradation of rangeland and deforestation intensify flooding. But peak flow and flood volume of the whole catchment have been mitigated. Because in spite of negligible change in total curve number (CN) of the catchment, rangelands in downstream and near residential areas converted to agricultural lands and upstream agricultural lands transformed to high- and medium-density rangelands. This means that distribution of land use changes was in such a way, influential upstream areas in flooding, associated with reduced CNs. So the implemented biological measures have reduced the flooding potential of the catchment. Sensitivity analysis of the model showed that 5% decrease in CN can cause 40% decrease in peak flow of the catchment and in contrast and 5% increase in CN can enhance flood peak flow up to 60%.",signatures:"Nafise Moghadasi, Iman Karimirad and Vahedberdi Sheikh",downloadPdfUrl:"/chapter/pdf-download/62352",previewPdfUrl:"/chapter/pdf-preview/62352",authors:[{id:"245168",title:"Ph.D. Student",name:"Nafise",surname:"Moghaddasi",slug:"nafise-moghaddasi",fullName:"Nafise Moghaddasi"},{id:"245170",title:"MSc.",name:"Iman",surname:"Karimirad",slug:"iman-karimirad",fullName:"Iman Karimirad"},{id:"245172",title:"Dr.",name:"Vahedberdi",surname:"Sheikh",slug:"vahedberdi-sheikh",fullName:"Vahedberdi Sheikh"}],corrections:null},{id:"62591",title:"Extent of 2014 Flood Damages in Chenab Basin Upper Indus Plain",doi:"10.5772/intechopen.79687",slug:"extent-of-2014-flood-damages-in-chenab-basin-upper-indus-plain",totalDownloads:1184,totalCrossrefCites:5,totalDimensionsCites:6,hasAltmetrics:0,abstract:"This chapter analyzes the extent of flood damages in the Chenab basin upper Indus plain. The upper Indus plain is a fertile area and supports millions of human population and diverse economic activities. Every year in summer, the combined action of monsoon rain water and meltwater (melting of snow and glaciers) augment rivers discharge leading to damaging flood. The study region is prone to floods. The upstream areas of Chenab basin are mountainous and experiences characteristics of flash floods, whereas riverine floods dominate the lower reach. In wake of observed climate change, there is a rising trend in temperature, which indicates the early and rapid melting of snow and glaciers in the catchment areas. The analysis reveals that the spatial and temporal scales of violent weather events have also been grown during the past three decades. The substantial increase in heavy precipitation events and rapid melting of snow in the headwater region, siltation in river channels, human encroachments on the active flood plain and bursting of embankments have further escalated the flooding events. Analysis further reveals that in the study region, almost every year, the floodwater overflows the levees and cause damages to standing crops, infrastructure and sources of livelihood, and incurs human casualties.",signatures:"Shakeel Mahmood and Razia Rani",downloadPdfUrl:"/chapter/pdf-download/62591",previewPdfUrl:"/chapter/pdf-preview/62591",authors:[{id:"232797",title:"Mr.",name:"Shakeel",surname:"Mahmood",slug:"shakeel-mahmood",fullName:"Shakeel Mahmood"},{id:"258314",title:"Ms.",name:"Razia",surname:"Rani",slug:"razia-rani",fullName:"Razia Rani"}],corrections:null},{id:"62845",title:"Towards the Reduction of Vulnerabilities and Risks of Climate Change in the Community-Based Tourism, Namibia",doi:"10.5772/intechopen.79250",slug:"towards-the-reduction-of-vulnerabilities-and-risks-of-climate-change-in-the-community-based-tourism-",totalDownloads:1064,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Climate change is one of the contemporary issues in the world that has proven to have direct impact on the development of different nations. Community-based tourism has been identified as a potential contributor to household security. In this chapter, the analyses were derived from regional consultations in the two regions with community members, traditional leaders, and key stakeholders. In Namibia and particularly Kunene and Zambezi regions, community-based tourism has expanded, providing employment to the residents of these communities. Similarly, there has been an increase in joint venture agreements between local communities and external investors in areas such as constructions of lodges, tented camps and tour guiding. The community-based tourism sectors in Zambezi region and Kunene region are prone to climatic hazards, in particular, frequent floods and prolonged drought. This chapter recommends inclusive climate change adaptive strategies that promote climate proof infrastructure for tourism establishment. An effective community-based tourism intervention for the Zambezi region is necessitated by a well-informed and consultative planning and execution to reduce the effects of flood. For Kunene region, community-based tourism interventions should be aimed at addressing the risks resulting from drought. It should, therefore, prioritise sustainable water security and environmental management practices.",signatures:"Selma Lendelvo, Margaret N. Angula, Immaculate Mogotsi and Karl Aribeb",downloadPdfUrl:"/chapter/pdf-download/62845",previewPdfUrl:"/chapter/pdf-preview/62845",authors:[{id:"243845",title:"Dr.",name:"Selma",surname:"Lendelvo",slug:"selma-lendelvo",fullName:"Selma Lendelvo"},{id:"253651",title:"Ms.",name:"Margaret",surname:"Angula",slug:"margaret-angula",fullName:"Margaret Angula"},{id:"253653",title:"Ms.",name:"Immaculate",surname:"Mogotsi",slug:"immaculate-mogotsi",fullName:"Immaculate Mogotsi"},{id:"253654",title:"Mr.",name:"Karl",surname:"Aribeb",slug:"karl-aribeb",fullName:"Karl Aribeb"}],corrections:null},{id:"61775",title:"Using the Monoplotting Technique for Documenting and Analyzing Natural Hazard Events",doi:"10.5772/intechopen.77321",slug:"using-the-monoplotting-technique-for-documenting-and-analyzing-natural-hazard-events",totalDownloads:935,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Historical or present-day oblique terrestrial photographs documenting natural disasters are abundant in archives and may be easily taken nowadays. While in most cases they provide highly informative details, they can hardly be georeferenced, which prevents their systematic use for analyzing and documenting the events and any related signs of damage. In this chapter, we present a monoplotting software program developed at WSL (the WSL Monoplotting Tool) that allows the georeferencing of ordinary individual photographs in order to produce georeferenced vector data by drawing them directly on the photographs and exchanging them with traditional geographic information systems (GIS-Systems). We report on the application of the monoplotting tool on selected study cases of natural events or protection infrastructures in Switzerland.",signatures:"Conedera Marco, Bozzini Claudio, Ryter Ueli, Bertschinger Thalia and Krebs Patrik",downloadPdfUrl:"/chapter/pdf-download/61775",previewPdfUrl:"/chapter/pdf-preview/61775",authors:[{id:"244697",title:"Dr.",name:"Marco",surname:"Conedera",slug:"marco-conedera",fullName:"Marco Conedera"},{id:"244699",title:"MSc.",name:"Claudio",surname:"Bozzini",slug:"claudio-bozzini",fullName:"Claudio Bozzini"},{id:"244700",title:"MSc.",name:"Patrik",surname:"Krebs",slug:"patrik-krebs",fullName:"Patrik Krebs"},{id:"253452",title:"Mr.",name:"Ueli",surname:"Ryter",slug:"ueli-ryter",fullName:"Ueli Ryter"},{id:"253462",title:"MSc.",name:"Thalia",surname:"Bertschinger",slug:"thalia-bertschinger",fullName:"Thalia Bertschinger"}],corrections:null},{id:"62834",title:"Tsunami Hazard Assessment for the Hokuriku Region, Japan: Toward Disaster Mitigation for Future Earthquakes",doi:"10.5772/intechopen.79688",slug:"tsunami-hazard-assessment-for-the-hokuriku-region-japan-toward-disaster-mitigation-for-future-earthq",totalDownloads:965,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"In Japan, compared with the Pacific coast, the Japan Sea coast has low seismicity and has experienced very few occurrences of historical tsunami damage. These characteristics lead to some difficulties in the promotion of disaster prevention education, because the Japan Sea coast has not often been threatened by earthquakes and tsunamis. In our study, focusing on the Hokuriku region in Japan, we conducted a tsunami simulation and examined the resulting tsunami hazard map. Three potential faults of Mw7.6 earthquake were selected to generate the tsunami. In addition, we calculated these three events with Mw7.8, given the inherent uncertainty in source parameters. Aside from tsunami height, arrival time, inundation height, and inundation area, we calculated the seismic intensity and the liquefaction occurrence rate by simplified methods. Our results indicated that Suzu City in Ishikawa Prefecture, located in the northeastern part of the Noto Peninsula, has a relatively high potential risk of tsunami as well as strong motion and liquefaction. Thus, Suzu City would represent a highly appropriate area in which to promote disaster prevention education in the Hokuriku region.",signatures:"Michihiro Ohori, Yuri Masukawa and Keisuke Kojima",downloadPdfUrl:"/chapter/pdf-download/62834",previewPdfUrl:"/chapter/pdf-preview/62834",authors:[{id:"237993",title:"Associate Prof.",name:"Michihiro",surname:"Ohori",slug:"michihiro-ohori",fullName:"Michihiro Ohori"},{id:"257859",title:"MSc.",name:"Yuri",surname:"Masukawa",slug:"yuri-masukawa",fullName:"Yuri Masukawa"},{id:"257910",title:"Prof.",name:"Keisuke",surname:"Kojima",slug:"keisuke-kojima",fullName:"Keisuke Kojima"}],corrections:null},{id:"62769",title:"Disaster Mitigation Model of Eruption Based on Local Wisdom in Indonesia",doi:"10.5772/intechopen.79217",slug:"disaster-mitigation-model-of-eruption-based-on-local-wisdom-in-indonesia",totalDownloads:1462,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Kelud is one of the most active volcanoes in Indonesia and suffered a major eruption in 2014. Although they are not part of the super volcano, the impact of the eruption is extraordinary. However, the eruption is not too worrying for the surrounding community. The lack of disaster victims caused by the eruption in 2014 became a successful representation of disaster mitigation models owned by local communities in answering the eruption problem. The easy evacuation process and quickly post-eruption rehabilitation illustrate a pattern of environmental adaptation around the volcano. This discussion focuses on how the people behavior around the volcano in responding to the challenge of eruption? How the role of local government in preparing the community in the face of an eruption, and what actions are done so that the rehabilitation process can take place quickly? To answer all these questions, the researchers collected relevant data through observation, documentation, and interviews with the local communities and local government representatives directly involved in disaster mitigation measures. In addition, the researchers also revealed local traditions that are considered capable of supporting the process of preparing the community in answering the eruption challenges and becoming part of disaster mitigation in the volcanic region.",signatures:"Eko Hariyono and Solaiman Liliasari",downloadPdfUrl:"/chapter/pdf-download/62769",previewPdfUrl:"/chapter/pdf-preview/62769",authors:[{id:"214360",title:"Dr.",name:"Eko",surname:"Hariyono",slug:"eko-hariyono",fullName:"Eko Hariyono"},{id:"219699",title:"Prof.",name:"Liliasari",surname:"S",slug:"liliasari-s",fullName:"Liliasari S"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7606",title:"Coastal and Marine Environments",subtitle:"Physical Processes and Numerical Modelling",isOpenForSubmission:!1,hash:"dd1227726856d58b88116129b0de8384",slug:"coastal-and-marine-environments-physical-processes-and-numerical-modelling",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/7606.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3088",title:"Updates in Volcanology",subtitle:"New Advances in Understanding Volcanic Systems",isOpenForSubmission:!1,hash:"16d9b1a78c646969f6405d7e17039df5",slug:"updates-in-volcanology-new-advances-in-understanding-volcanic-systems",bookSignature:"Karoly Nemeth",coverURL:"https://cdn.intechopen.com/books/images_new/3088.jpg",editedByType:"Edited by",editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5499",title:"Earthquakes",subtitle:"Tectonics, Hazard and Risk Mitigation",isOpenForSubmission:!1,hash:"a02b8c4079277fc2301b3fac46856ca4",slug:"earthquakes-tectonics-hazard-and-risk-mitigation",bookSignature:"Taher Zouaghi",coverURL:"https://cdn.intechopen.com/books/images_new/5499.jpg",editedByType:"Edited by",editors:[{id:"39860",title:"Dr.",name:"Taher",surname:"Zouaghi",slug:"taher-zouaghi",fullName:"Taher Zouaghi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-background-diagnosis-types-management-prevention-and-implications-of-chromosomal-abnorma",title:"Corrigendum: Background, Diagnosis, Types, Management/Prevention and Implications of Chromosomal Abnormalities",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79673.pdf",downloadPdfUrl:"/chapter/pdf-download/79673",previewPdfUrl:"/chapter/pdf-preview/79673",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79673",risUrl:"/chapter/ris/79673",chapter:{id:"78995",slug:"background-diagnosis-types-management-prevention-and-implications-of-chromosomal-abnormalities",signatures:"Subhadra Poornima, Saranya Vadrevu and Imran Ali Khan",dateSubmitted:"July 20th 2021",dateReviewed:"August 5th 2021",datePrePublished:"October 18th 2021",datePublished:"March 23rd 2022",book:{id:"10333",title:"Down Syndrome and Other Chromosome Abnormalities",subtitle:null,fullTitle:"Down Syndrome and Other Chromosome Abnormalities",slug:"down-syndrome-and-other-chromosome-abnormalities",publishedDate:"March 23rd 2022",bookSignature:"Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10333.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"191609",title:"Dr.",name:"Imran",middleName:null,surname:"Ali Khan",fullName:"Imran Ali Khan",slug:"imran-ali-khan",email:"imkhan@ksu.edu.sa",position:null,institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"251073",title:"Dr.",name:"Subhadra",middleName:null,surname:"Poornima",fullName:"Subhadra Poornima",slug:"subhadra-poornima",email:"subhadrapoornima1@gmail.com",position:null,institution:null},{id:"427527",title:"Ms.",name:"Saranya",middleName:null,surname:"Vadrevu",fullName:"Saranya Vadrevu",slug:"saranya-vadrevu",email:"saranyavadrevu430@gmail.com",position:null,institution:null}]}},chapter:{id:"78995",slug:"background-diagnosis-types-management-prevention-and-implications-of-chromosomal-abnormalities",signatures:"Subhadra Poornima, Saranya Vadrevu and Imran Ali Khan",dateSubmitted:"July 20th 2021",dateReviewed:"August 5th 2021",datePrePublished:"October 18th 2021",datePublished:"March 23rd 2022",book:{id:"10333",title:"Down Syndrome and Other Chromosome Abnormalities",subtitle:null,fullTitle:"Down Syndrome and Other Chromosome Abnormalities",slug:"down-syndrome-and-other-chromosome-abnormalities",publishedDate:"March 23rd 2022",bookSignature:"Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10333.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"191609",title:"Dr.",name:"Imran",middleName:null,surname:"Ali Khan",fullName:"Imran Ali Khan",slug:"imran-ali-khan",email:"imkhan@ksu.edu.sa",position:null,institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"251073",title:"Dr.",name:"Subhadra",middleName:null,surname:"Poornima",fullName:"Subhadra Poornima",slug:"subhadra-poornima",email:"subhadrapoornima1@gmail.com",position:null,institution:null},{id:"427527",title:"Ms.",name:"Saranya",middleName:null,surname:"Vadrevu",fullName:"Saranya Vadrevu",slug:"saranya-vadrevu",email:"saranyavadrevu430@gmail.com",position:null,institution:null}]},book:{id:"10333",title:"Down Syndrome and Other Chromosome Abnormalities",subtitle:null,fullTitle:"Down Syndrome and Other Chromosome Abnormalities",slug:"down-syndrome-and-other-chromosome-abnormalities",publishedDate:"March 23rd 2022",bookSignature:"Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/10333.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"31178",title:"Prof.",name:"Subrata",middleName:"Kumar",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11795",leadTitle:null,title:"Nut Crops - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe book “Nut Crops - New Insights” will cover the technologies, fields, and categories related to nut crop cultivation, growth, micropropagation, pathogen defense, weed control, and biotechnological applications in crop science with special reference to nuts.
\r\n\r\n\tThis book aims to have scientific chapters concerned with all aspects of nut science and particularly the biological, agricultural engineering, social and ecological knowledge application for nut crops management in the tropical and subtropical regions.
\r\n\r\n\tThis book aims to encourage the researchers to demonstrate how the field experiments contribute to the understanding of the biophysical processes related to crop development, growth, and the formation and realization of yield.
\r\n\r\n\tThe book “Nut Crops - New Insights” will provide a platform for all knowledge seekers to get the best of research that has been done around the globe relevant to plant nutrition, nut production, crop cultivation, etc. The readership of the book will include researchers and students of crop science and individuals with similar academic levels.
",isbn:"978-1-80356-633-7",printIsbn:"978-1-80356-632-0",pdfIsbn:"978-1-80356-634-4",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"1843d68aceace005d335966147f9b751",bookSignature:"Dr. Muhammad Akram",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11795.jpg",keywords:"Nuts, Edible Crops, Growth Regulators, Cultivar, Crop Cultivation, Micropropagation, Nut Breeding, Weed Control, Insecticides, Plant Pathogens, Nutritional Improvement, Nut Nutrition",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 17th 2022",dateEndSecondStepPublish:"June 3rd 2022",dateEndThirdStepPublish:"August 2nd 2022",dateEndFourthStepPublish:"October 21st 2022",dateEndFifthStepPublish:"December 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Chairperson and Associate Professor in the Department of Eastern Medicine, Government College University Faisalabad, Pakistan and ex-chairman in the Department of Eastern Medicine and Surgery, University of Poonch, Pakistan. Dr. Muhammad Akram serves as an editor and invited reviewer of several national and international journals and he has numerous publications and presentations to his credit.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"215436",title:"Dr.",name:"Muhammad",middleName:null,surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram",profilePictureURL:"https://mts.intechopen.com/storage/users/215436/images/system/215436.jpg",biography:"Dr. Muhammad Akram is an Associate Professor in the Department of Eastern Medicine, Government College University Faisalabad, Pakistan. He received his Ph.D. from Hamdard University Karachi-Pakistan in 2013. Dr. Akram was a chairman in the Department of Eastern Medicine and Surgery, University of Poonch, Rawalakot Azad Kashmir from 2015 to 2017. He received many honors and awards during his career. He serves as an editor and invited reviewer of several national and international journals. He has numerous publications and presentations to his credit, and he is an active member of several professional societies. Dr. Akram’s research interests include hyperuricemia, xanthine oxidase inhibition by some selected medicinal plants, enzyme inhibition, Indusyunic medicine, phytochemistry, poisonous plants, bioactivity, and phytopharmaceutical evaluation of herbal drugs and their natural products, biochemistry, and bioinformatics.",institutionString:"Government College University, Faisalabad",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453622",firstName:"Tea",lastName:"Jurcic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"tea@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"9710",title:"Olive Oil",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"2f673efc0d0213f2d937fc89e65a24df",slug:"olive-oil-new-perspectives-and-applications",bookSignature:"Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/9710.jpg",editedByType:"Edited by",editors:[{id:"215436",title:"Dr.",name:"Muhammad",surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9445",title:"Alternative Medicine",subtitle:"Update",isOpenForSubmission:!1,hash:"3b5a02b419c5277facf2b2e0905bdb64",slug:"alternative-medicine-update",bookSignature:"Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/9445.jpg",editedByType:"Edited by",editors:[{id:"215436",title:"Dr.",name:"Muhammad",surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"49021",title:"Mechanical Property Evaluation of Electrodeposited Nanocrystalline Metals by Micro-testing",doi:"10.5772/61267",slug:"mechanical-property-evaluation-of-electrodeposited-nanocrystalline-metals-by-micro-testing",body:'Micro-electro-mechanical systems (MEMS) devises are usually fabricated using film deposition process. Deposition of metallic film can be classified into two major categories, one is the dry process and the other is the wet process. Dry process involves the use of gas or metallic vapor for deposition or directly deposit metal atoms on the surface of a substrate by sputtering. The process is simple, but the deposition rate is very slow, such as sub-nm to several nm in a second [1, 2]. Thus, the deposition is limited to sub-μm-scale structures in industrial applications and not favorable for fabrication of MEMS components that require structural support. As one type of the wet process, electroplating has been used in the industrial fabrication of MEMS and integrated circuit (IC) thanks to the fast deposition rate, low production cost, and simple operation [3, 4].
In recent years, the miniaturization of MEMS and IC merges into a nano-scale regime, also called nanotechnology. The component size or wire width of the structures reach several tens of nanometers. In the filling of small gaps, some problems arise as schematically shown in Figure 1. Since liquid solutions are used in the wet process, when the substrate is not covered with the electrolyte or hydrogen gas, bubbles evolve in the reaction adsorbed on the substrate, the area not having contact with the electrolyte would lead to formation of voids and pin-holes [5]. To accomplish successful gap-filling, we have developed an electroplating method with supercritical CO2 emulsion (EP-SCE) [6, 7]. In this system, micelles formed with surfactant encapsulates supercritical CO2. These micelles randomly bounce on the surface of the cathode and desorb evolved hydrogen bubbles. In reaction areas where the micelle is in contact, deposition must be stopped and eventually resume with bulk concentration of electrolyte. These features, which are called periodic plating characteristics (PPC) [8, 9], will contribute to the gap or hole filling in EP-SCE and attained Cu filling of a hole 70 nm in diameter and 350 nm in depth as shown in Figure 2 [10, 11]. Results of the metal deposition using EP-SCE are summarized in Table 1. On each metal deposition, electrolytes with the same base were used while the EP-SCE contains additional surfactant and emulsified with supercritical CO2.
Failures found in filling of gaps with electrodeposition.
Cross-sectional SEM images of (a) Hole test element group (TEG) with holes of 70 nm in diameter and aspect ratio of 5, (b) expanded image of (a), and (c) TEG filled with Cu electroplated in EP-SCE with copper particles.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
EP-SCE | \n\t\t\tStructures | \n\t\t\tEqui-axial grains | \n\t\t\tEqui-axial grains | \n\t\t\tEqui-axial grains | \n\t\t
Grain size | \n\t\t\t8 nm | \n\t\t\t100 nm | \n\t\t\t50 μm | \n\t\t|
Impurities | \n\t\t\t2 at% of carbon | \n\t\t\t0.1 at% of carbon near substrate | \n\t\t\tNot detected by XPS | \n\t\t|
Preferred orientation | \n\t\t\tNo | \n\t\t\t- | \n\t\t\t- | \n\t\t|
CONV | \n\t\t\tStructures | \n\t\t\tColumnar grains | \n\t\t\tPolycrystalline with high density of twin boundary | \n\t\t\tEqui-axial grains | \n\t\t
Grain size | \n\t\t\t4.4x0.8 μm | \n\t\t\t1 μm | \n\t\t\t60 μm | \n\t\t|
Impurities | \n\t\t\tTrace | \n\t\t\t0.1 at% of carbon near substrate | \n\t\t\tOxygen as oxides | \n\t\t|
Preferred orientation | \n\t\t\t<110> fiber texture | \n\t\t\t- | \n\t\t\t- | \n\t\t
Electrodeposited metals with EP-SCE and conventional (CONV) method
Micro-sized components used in MEMS fabricated by electrodeposition need to be tested to ensure device lifetime or tolerance to mechanical damage. MEMS are made up of components below 100 μm in size. For example, MEMS-based accelerometers or gyroscopes are widely used in cell phones, gaming consoles, and location-based devices. Some examples shown in Figure 3 are optical switch (3a) and gyro sensor (3b). Micro-components used in MEMS such as micro-spring, bending beams, and structural support of MEMS suffer from mechanical straining and need suitable mechanical properties. For mechanical property evaluation on such materials, conventional indentation or wear test is insufficient. Moreover, when the sample size comes to micro-scales, the classical physics are not always useful. Sample size effect, which will be described in a later section, emerges. Thus, a micro-testing method with a specimen whose sample size is in the same scales as the actual MEMS components is needed.
Examples of MEMS devises (a) optical switch and (b) gyro sensor.
The strength of metals has been shown to increase with decreasing sample size, known as “smaller is stronger” and also referred to as size effect [16]. For example, thin film experiments, including wafer curvature [17] bulge tests [18] and MEMS-based tests [19], have consistently shown an increase of strength with decreasing sample size. The majority of research investigating the size effect of metals by means of the micro-testing technique has focused on single crystalline metals [20, 21, 22, 23, 24, 25] and metallic grasses [26, 27, 28, 29]. Only limited data exists for metals with microstructures. Rinaldi et al. [30] and Jang and Greer [31] have investigated nickel nanocrystalline nano-pillars. However, their trends for strength as a function of sample size show opposite trend: Jang and Greer observe a “smaller is weaker” power-law dependence in nanocrystalline Ni; while Rinaldi et al. report very scattered results with slight strengthening with decreasing sample size for 30 nm-grained nanocrystalline Ni. Thus, currently the experimental findings for sample size effect on nanocrystalline materials are inconclusive, and there is much uncertainty with respect to the deformation mechanism and combined effect of different size effects. Sample size effect on polycrystalline pillar has great interest in industries owing to miniaturization of MEMS devices reaching to its component scales at sub-micro or nano regime.
Crystal growth in conventional Ni electrodeposition is investigated using additive-free Watt’s bath. The substrate was films of pure Cu annealed at 673 K for 1 hour in vacuum. Ni layers with a thickness of about 25 μm were electrodeposited under agitation with magnetic stirring bar.
Microstructure of film cross-sections were evaluated by a scanning electron microscope (SEM) equipped with an electron backscatter diffraction pattern (EBSD) detector. The orientation map shown in Figure 4a was overlaid with a grain boundary map where Σ3 boundaries were colored yellow. The fraction of grain boundary was summarized in Figure 4b as low-angle grain boundaries (LAGB) with misorientation between 2° and 15°, high-angle grain boundaries (HAGB) with misorientation above 15°, and Σ3 boundaries. Fine columnar grains with diameter of around 100–200 nm have grown toward the film surface as shown in Figure 4a. Most of the grain boundaries dividing columnar grains are Σ3 boundaries, corresponding to twin boundaries, although the stacking fault energy of Ni is relatively high [32]. High density of twins, 42% among HAGB in this film, was also reported in various kinds of electrodeposited metals [33, 34, 35].
(a) Cross-sectional orientation maps of electrodeposited Ni layer. Σ3 boundaries are indicated as yellow lines in the figure. (b) Fractions of boundaries shown in (a) with different nature. Boundaries with misorientation between 2° and 15° classified as low-angle boundaries (LAGB) and misorientation angle above 15° are high-angle boundaries (HAGB). Σ3 boundaries that are HAGB satisfy the Brandon criterion (Σ3).
Transmission electron microscopy (TEM) observations in the vicinity of the interface between the electrodeposited Ni and Cu are shown in Figure 5 as bright field TEM image in 5a and schematic illustration corresponding to the TEM image in 5b [12]. In the epitaxial region, only about 100-nm thick contains high density of dislocations. Misfit strain of 2.5% due to the difference in the lattice constants of Cu (3.615 nm) and Ni (3.524 nm) arises between the electrodeposited Ni layer and Cu substrate. We consider that the observed dislocations were introduced to accommodate this misfit strain. Since the orientation of the epitaxial region is almost the same as that of the Cu substrate, an epitaxial region was formed to minimize the interfacial energy between the electrodeposited Ni layer and Cu substrate. The misfit strain, however, restricts the growth of the epitaxial region up to about 100 nm. Ahead of the epitaxial regions, columnar grains without an orientation relationship with respect to the Cu substrate form are shown in Figure 4. TEM image of the Ni film 1.4 μm away from interface is shown in Figure 6. The thickness of the twin is about 10 nm, which is substantially narrower than the twins observed in EBSD shown in Figure 6. From the TEM observation, these narrow twins with a thickness of about 10 nm were frequently observed while they cannot be detected in EBSD. We suppose that the twins in the electrodeposited Ni layer formed during electrodeposition reaction in the course of lateral movement of {111} facet shown in Figure 5a. Change in stacking sequence occurred at {111} facet could turn into a nucleus of twin grain. Fujiwara et al. [36, 37, 38] also proposed a similar model of twin formation parallel to the growth direction during the melt growth of Si.
(a) Bright field TEM images showing the cross-sectional microstructure near the interface between the electrodeposited Ni layer and Cu substrate and (b) schematic illustration of (a).
Bright field TEM image showing the microstructure within the columnar grain at 1.4 μm away from the interface between the electrodeposited Ni layer and Cu substrate.
Mechanical properties of Ni film electrodeposited in conventional Watt’s bath was evaluated using micro-cantilever. Cantilevers were milled out of the Ni film using focused ion beam (FIB) with different beam directions to investigate anisotropic mechanical properties. Micro-bending test had been used to investigate size dependent effect [39], local mechanical properties of lath martensite [40], and anisotropic fracture toughness of the NiAl single crystal [41]. In the cantilever specimen, deformation takes place at the fixed end on the tension at the upper side and compression at the lower side. Therefore, site specific influence of structure on the mechanical properties and deformation behavior can be examined.
Two cantilevers of 10 x 10 x 50 μm were fabricated with beams parallel and perpendicular to growth direction. As shown in Figure 7, columnar grains are aligned to the growth direction indicated in black arrow. The bending test had been carried out by indenting at the cross mark on the beam that is 40 μm away from fixed end. Force displacement curve in Figure 8 shows clear increase in the bending stress of the parallel cantilever. Maximum stress obtained was 2, 080 and 1, 582 MPa for the parallel and perpendicular cantilevers, respectively, with respect to the growth direction [42].
FIB images of the cantilevers fabricated by FIB. Beam directions are (a) 0° and (b) 90° with respect to growth direction indicated in black arrow.
Load-displacement curve of the bending test. Specimen (a) and specimen (b) have beam directions of 0° and 90° with respect to growth direction, respectively.
In the deformation of fcc metals in which the slip system is {111} <110>, dislocation easily glides along the (111) twin plane. Ni film electrodeposited in conventional Watt’s bath had high density of (111) coherent twin boundary parallel to growth direction. For the cantilever with parallel columnar grains, dislocations can move away from the stress concentration area. On the other hand, for the cantilever with perpendicular columnar grains, dislocations stop at the neutral plane. Longer slide distance of dislocations means effective stress relaxation at the fixed end, which enhances the apparent strength of the cantilever.
EP-SCE was conducted to deposit Ni on Cu substrate. Agitation with addition of surfactant, polyoxyethylene lauryl ether (C12H25(OCH2CH2)15OH) enables an electrolyte and supercritical CO2 to form emulsions with CO2-in-water (C/W) type micelles [43]. Additive-free Watt’s bath was emulsified with CO2. Electrodepositions on Cu substrate were conducted at different pressure of 6, 10, 15, 20 MPa including conventional electroplating (CONV).
The TEM bright field image shown inFigure 9is nickel film fabricated by EP-SCE at 15MPa viewed from growth direction [13]. Figure 10 shows average grain size of the films fabricated at different pressures based on measurement of around 100 grains in TEM. Equi-axial grains were found in all samples viewed from the sample surface and cross section. Grain refinement can be achieved by pulsed plating characteristics as stated by Chang et al., where the bouncing micelles promote nucleation by inhibiting grain growth [9]. Density of the CO2 inside micelles increases with the increase in pressure, especially near the transition point from gas to supercritical phase. Change in density of the dispersed phase in emulsion will have an effect on the micelle structure and dispersion conditions. Thus, the change in grain size by different applied pressure was expected.
(a) Plan-view TEM bright field image of EP-SCE nickel and (b) grain size distribution from more than 500 of grains observed in TEM.
Grain size of the films electrodeposited at different pressures evaluated by TEM.
The impurity content of the film obtained from glow discharge optical emission spectroscopy (GDOES) should be noted. The carbon content could contribute to the grain refinement, which is shown in Table 2 including impurities of boron and oxygen. Comparing with CONV-plated nickel with and without surfactant, some impurities derived from surfactants were detected. However, in the emulsified state, surfactants consumed by the formation of micelles and the number of surfactants adsorbed and involved in the film could decrease. Similar concentration levels of oxygen among CONV- and EP-SCE-plated films imply surfactant extinction at the surface when surfactants are mainly composed of carbon and oxygen. These results show that carbon derives from CO2 dissolved in an electrolyte.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
CONV without surfactant | \n\t\t\t0.000785 | \n\t\t\t0.015 | \n\t\t\t0.027 | \n\t\t
CONV with surfactant | \n\t\t\t0.00564 | \n\t\t\t0.46 | \n\t\t\t2.54 | \n\t\t
EP-SCE at 6MPa | \n\t\t\t0.000910 | \n\t\t\t1.91 | \n\t\t\t0.0220 | \n\t\t
EP-SCE at 10MPa | \n\t\t\t0.00114 | \n\t\t\t2.43 | \n\t\t\t0.0355 | \n\t\t
EP-SCE at 15MPa | \n\t\t\t0.00114 | \n\t\t\t2.61 | \n\t\t\t0.0305 | \n\t\t
EP-SCE at 20MPa | \n\t\t\t0.00102 | \n\t\t\t2.17 | \n\t\t\t0.0153 | \n\t\t
Concentration of impurities in deposited film
Codeposition of carbon in electrodeposition has been reported by Chung and Tsai in supercritical CO2 deposition [44] and Yamachika et al. using Au-Ni bath with citric acid [45], indicating that carbon originates from CO2 and citric acid, respectively. Although carbon dioxide is chemically stable, production of hydrocarbons from carbon dioxide had been demonstrated in electrochemical reduction [46]. When the reduction of CO2 dissolved in electrolyte occurred, carbon involved in the deposited nickel film results in Ni-C alloy deposition. In alloy electrodeposition where the foreign elements are incorporated as interstitials, crystalline size decreased when composition of foreign elements increased [47]. The alloying elements inhibit grain growth in the deposition process leading to the formation of amorphous film [48, 49]. The EP-SCE nickel also showed decreased grain size with increasing carbon content. Lattice constant observed in the X-ray diffraction (XRD) showed expansion corresponding to 2% of the solute carbon. Supersaturation of carbon solute in nickel deposits, where carbon can easily segregated on the grain boundary [50] and inhibit grain growth that results in nanocrystalline Ni deposits.
Mechanical properties of nanocrystalline EP-SCE nickel, including the effect of grain size and sample size, were investigated using a micro-compression test. Non-tapered micro-pillars were fabricated by FIB from the region analyzed by the EBSD technique. Sequences of pillar fabrication are illustrated in Figure 11 with corresponding scanning ion microscope (SIM) images. In the course of fabrication, we first made a pillar that has the thickness of thin plate of around 100 μm and was shaped as shown in Figure 11a. Using irradiation of 45° from the thin plate, we made a small pillar from the bigger one as shown in Figure 11b. The ion beam from the side of the specimen allowed the fabrication of a pillar with uniform dimensions (non-tapered, non-filleted). Finally, we milled each side of the pillar at a tilt angle of ±2.3° with 400 pA ion beam to minimize ion bombardment damage. A 20-μm square cross-section pillar fabricated from nickel film plated in EP-SCE at different pressures was employed to investigate grain size effect on plated nickel.
Procedures of making a compression pillar and SIM images showing the pillar after the procedure: (a) perpendicular irradiation and (b) irradiation from 45° from the thin plate.
Micro-compression tests of nanocrystalline Ni with different grain size were conducted and the deformed pillars were observed as shown in Figure 12. All the pillars were deformed by broad shear banding crossing through top to bottom. However, the nickel film electrodeposited at 6 and 20 MPa, which has a larger grain size of 15 nm, had shown notable difference of bulging on the pillar surface as shown in Figure 12a and 12c. Micro-compression test results are shown in Figure 13 as true stress–true plastic strain curves. No clear relationships were found between deformation morphology and stress-strain behavior. Highest maximum stress of 3, 500 MPa was observed in the film electrodeposited at 15 MPa, which had the smallest grain size of 8 nm. The contribution on strengths of supersaturated carbon interstitials was calculated based on Fleischer formulation [51]. A 7.9 MPa of strengthening responsible for 2 at% of interstitial carbon is negligible compared to 3.5 GPa of maximum stress. The high strength in EP-SCE nickel could be due to a suppressed Hall-Petch breakdown. The strength of nanocrystalline Ni with grain size of 8 nm is on the extrapolated Hall-Petch slope from nickel alloy as shown in Figure 14. One-third of hardness values of pure nickel [52, 53, 54] and Ni-W alloy [55] are included in the Hall-Petch plot assuming Tabor relation [56] as well as 0.2% yield stress in the present micro-compression test. The suppression of Hall-Petch breakdown is consistent with a literature reported by Schuh et al., the hardness of Ni-W alloy has fallen at 8–9 nm and suggested that the alloying with tungsten has suppressed the Hall-Petch breakdown [55]. They concluded that the slow diffusion of tungsten in nickel increase required stress for activation of Coble creep and grain boundary sliding. Present electrodeposited nickel have 2.6 at% of carbon impurities and 2.0 at% of interstitial carbon, and the rest of the carbon could be segregated at the grain boundaries. Contrary to the tungsten in nickel, carbon has very high diffusivities in nickel via interstitial site diffusion. Yin et al. reported an effect of interstitials on creep deformation via Coble creep and grain boundary sliding [57]. On that literature, interstitially dissolved atoms are reported to effectively enhance creep resistance. Hall-Petch breakdown represents a transition of deformation mechanism from dislocation-mediated to grain-boundary-mediated. Thus, if the grain boundaries are reinforced by impurities, dislocation motion dominates the deformation at much smaller grain size and results in suppressed Hall-Petch breakdown [58].
SEM images of the deformed pillars (a) 6 MPa, (b) 10 MPa, (c) 15 MPa, and (d) 20 MPa.
True stress–true plastic strain curves of a micro-pillar from films electrodeposited at different pressures.
Hall-Petch plot representing 0.2% yield stress as well as one-third of hardness value found in literature.
Figure 15 displays the stress strain curves of pillars with sample size ranging from 5 μm to 30 μm prepared from single crystal and nanocrystalline Ni [59]. Due to multiple slip glides across the pillar or toward the base, large work hardening was observed in single crystal pillar compression. This result is similar to the compression of <111> oriented nickel pillar by Frick et al [20]. They observed dislocation lines throughout the pillar and base of the pillar, which indicates dislocation interaction by multiple slip and accumulation of dislocation at the pillar base. Thus, the stress needs to activate dislocation source inside the pillar increased with increasing strain. The following softening is believed to be a result of macroscopic shear by the activation of different slip systems due to increased stress. The deformation mechanism of nanocrystalline metal is believed to be a grain boundary process, such as grain boundary sliding or grain rotation. Considering the deformation mechanism, activation of dislocation source, which believed to be a possible explanation of size-dependent strength [16], did not play a main role in plastic deformation of nanocrystalline materials. Thus, the sample size effect on electrodeposited nanocrystalline Ni was not expected. However, the micro-compression test shows obvious increase in both yield stress and flow stress with decreasing sample size from 20 μm to 5 μm.
Engineering stress-strain curves for micro-compression of (a) single crystal Ni pillar and (b) nanocrystalline Ni pillars with different pillar sizes.
The stress as a function of pillar diameter for single crystal and nanocrystalline Ni was shown in Figure 16 [59]. The scaling exponent of 0.25 for the peak stress of single crystal Ni is small compared to 0.64 observed by Dimiduk et al. using non-tapered single crystal Ni (269) [21]. This can be explained by the change in dislocation mechanisms inside the pillars since different loading directions were taken. Relatively large sample sizes and multiple slips in the present work provide dislocation pile-ups and interaction of dislocation results in more dislocations inside the pillar that hinders sample size effect; note that the strength taken as a peak stress in stress strain curve is due to the uncertainty of yield point. For nanocrystalline Ni, which believed to deform without dislocation activation, the scaling exponent of 0.057 was observed. Although the exponent is quite low, strength obviously increased from 3.6 GPa to 4.1 GPa in 30 to 5 μm pillars. Reports on size effect of nanocrystalline materials are very limited and still controversial. Rinaldi et al. found increased strengths with the decreasing diameter of pillars from 270 to 160 nm in diameter-fabricated from nanocrystalline nickel with 30 nm of grain size [30]. On the contrary, Jang and Greer demonstrated size-induced weakening in 60 nm grained nickel nanopillars with a diameter between 3, 000 nm and 100 nm [31]. This contradiction can be explained based on the deformation mechanisms. Jang observed a transition of deformation mechanisms from dislocation-mediated to grain-boundary-mediated, while grain-boundary-mediated deformation supposedly dominated in the present work. Grain boundary sliding is reported to involve several grains in formation of micro-shear band along the grain boundaries. Sums of these shear band formation will cause macroscopic yield in the present micro-compression test. Microscopic strains can generate on the large area of grain boundaries, which lies on the same plane with larger shear strain. This corrective motion of grain boundaries has been known as cooperative grain boundary sliding (CGBS) [60]. Zerin and Mukherjee observed bimodal distribution of sliding offset length on each CGBS event, which indicates breaking up of large sliding grain block into small grain blocks by secondary CGBS operation. This is observed with increase of strain, i.e., work hardening. CGBS events could initiate from the flat segment of grain boundaries and the number of these segments decreased when the sample size becomes smaller. Larger samples have segments of grain boundaries with longer distance to sliding direction and can deform with smaller stress. This is in good agreement with the change in exponent with increased strain, where large grain blocks in large samples can break up while small samples deform by CGBS with small grain blocks.
Strengths in micro-compression, peak stress for single crystal Ni, 1% flow stress, and 0.2% offset stress for nanocrystalline Ni are shown in a double-logarithmic graph. Solid lines represent power law fittings and each exponent is shown on the right.
Cu films were electrodeposited on Cu substrate in sulfate bath with and without additives. Current density of 2A/dm2 and 10 A/dm2 were used to deposit around 20 μm of Cu film. Investigation on microstructure of the electrodeposited Cu film was conducted immediately after the electroplating process and continued until self-annealing was observed. Cross-section EBSD was employed to measure grain size.
Cross-sectional EBSD maps for sample normal direction of self-annealed plated Cu films on Cu substrate at current density 100 mA/cm2 (a) after 24 hours of incubation, (b) after 140 days of incubation, and (c) after 250 days of incubation. Dashed line indicates the interface.
Cross-sectional orientation maps obtained from EBSD analysis on Cu film deposited without additives are shown in Figure 17 [35]. Initial grain size was measured as 330 nm and enlarged to 860 nm after 250 days of incubation in vacuum. On the other hand, Cu film deposited with additives had large grain size near 1μm, which is obviously different from one of the Cu film that was as-deposited without additives and more similar to the film after self-annealing. The Cu film electrodeposited with additives may had been self-annealed soon after electrodeposition before characterization of structures. Many factors influence self-annealing, such as film thickness, incorporated impurities, and initial crystal structures [61, 62, 63]. Additives are usually used to smoothen the film and are known to refine initial grains while inhibiting grain growth during electroplating. Although the incorporated impurity inhibits recrystallization and slow down self-annealing, the significantly decreased grain size accelerates it and may have results in self-annealing within sample preparation for structure observation. Stangl et al. reported the effect of additives where the addition of a slight amount of additives cause nearly 8 times faster recrystallization at room temperature [61].
Table 3 shows the change in the fraction of grain boundaries with incubation time. All self-annealed microstructures in the electroplated Cu film contained a relatively high fraction of HAGB. Fraction of HAGB in the electroplated Cu film gradually decreased with the increase in incubation time. The increase in grain size results in decreased grain boundary area of HAGB, with lower boundary free energy in the materials. Therefore, the driving force of self-annealing of the electroplated Cu film at room temperature is boundary free energy of the high fraction of HAGB. This suggestion about driving force is supported by many researchers [62, 64]. In addition, the fraction of twin boundaries is increased by incubation time as shown in Table 3. Figure 18 shows the recrystallized area of Cu film after 140 days of incubation. Orientation of the individual grains are shown in Figure 18b as {110} pole figure with (111) plane, the sharing in each grain are marked with the dashed line. Grain A–E sharing (111) plane with each other, such as A/B, B/D, D/E, and B/C. Moreover, geometries of the twin plane and (111) plane seem identical, i.e., angles of grain boundaries between A and B, and D and E are close to the angles of (111) plane in the pole figure, which indicates these twin planes are coherent twin boundaries. The twin boundary, especially the coherent twin boundary has extremely low boundary free energy compared to HAGBs [64]. Practically, the fraction of HAGBs was found to decrease as self-annealing proceeds. Therefore, we suggest that the self-annealing was affected by the high fraction of HAGBs in the initial structure of the electroplated Cu film.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t||
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
24 hours | \n\t\t\t9.60 | \n\t\t\t90.40 | \n\t\t\t25.52 | \n\t\t
140 days | \n\t\t\t17.18 | \n\t\t\t82.82 | \n\t\t\t29.68 | \n\t\t
250 days | \n\t\t\t37.46 | \n\t\t\t62.54 | \n\t\t\t29.22 | \n\t\t
Fractions of grain boundaries
(a) Enlarged view of the cross-sectional EBSD map of plated Cu film after 140 days of incubation, and A to E in the map are equal to each grains. The yellow line shows twin boundaries. (b) {110} pole figures corresponding to the grain of A to E and the dashed line indicates the (111) plane.
The non-tapered micro-pillar was fabricated to evaluate mechanical properties and size effects of electrodeposited Cu films. The reduction in the number of grains within the sample may alter the mechanical properties of materials, which is one of the size effects [65]. In order to discuss the size effect, Cu films were electrodeposited using various current densities to change grain size whereas the size of all pillars is constant.
Table 4 shows average grain size, where measurement and calculation were made from more than 500 of grains observed in EBSD [66]. Grain boundary maps obtained from EBSD are shown in Figure 19. Grain size of the electrodeposited Cu film was smaller when higher current density was used. Square pillars with 20 μm on a side were fabricated using FIB from each deposited film. Compression test results are shown in Figure 20. The strength of the pillar increased with decreasing grain size corresponding to the well-known Hall-Petch relationship [67, 68]. Slight difference in flow stress in the compression test of two pillars plated at 0.5 A/dm2 might be caused by the specimen size effect stated by Armstrong [69]. When the ratio between the specimen size (S) and average grain size (G), shown as:
is small, deformations of the specimen depends on the individual grain in the sample. In extreme conditions, for a single crystal specimen where S/G ratio below one, yield stress is determined by the orientation of the single crystal. When the number of grains within the specimen becomes lower, it means smaller S/G ratio; the effect of orientation for each grain in deformation behavior become stronger. The S/G ratio of pillars of 0.5 A/dm2 is smaller than pillars of 5.0 A/dm2 or 2.0 A/dm2 as shown in Table 4. Therefore, the deviation of flow curve in the compression test with the pillars with S/G ratio is smaller than 25 affected crystallographic orientations.
Grain boundary maps of electrodeposited Cu films. Cu film electrodeposited (a) at 0.5 A/dm2, (b) at 2.0 A/dm2, and (c) at 5.0 A/dm2.
True stress–true plastic strain curves of the Cu pillars electrodeposited. Cu electrodeposited (a) at 0.5 A/dm2, (b) at 2.0 A/dm2, and (c): at 5.0 A/dm2.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
0.5 | \n\t\t\t0.93 | \n\t\t\t21.5 | \n\t\t\t276 | \n\t\t
2.0 | \n\t\t\t0.78 | \n\t\t\t25.6 | \n\t\t\t309 | \n\t\t
5.0 | \n\t\t\t0.64 | \n\t\t\t31.3 | \n\t\t\t330 | \n\t\t
Grain size, S/G ratio, and yield strength of the Cu pillars
Cu electrodeposition using EP-SCE with Watt’s bath was conducted. Same high pressure apparatus in Ni deposition was used to deposit 10 μm of Cu film on Cu substrate. Figure 21 shows FIB images of deposited film [14]. Grain size of as-deposited Cu was significantly refined to 100 nm compared to CONV Cu. The cause of grain refinement could be corresponded to the one observed in Ni deposition. However, elemental analysis reveals very low level of impurities incorporated in the Cu film. Carbon impurity inside Cu film deposited in EP-SCE and CONV observed in GDOES is shown in Figure 22. Similar carbon distribution observed in CONV and EP-SCE Cu film indicates that the carbon impurity derives from an identical source. In both electrolytes, additives such as suppresser, accelerator, and leveler were used. These additives are adsorbed at the substrate and involved into the film during electroplating reaction. Thus, the CO2 dissolved in the electrolyte used in EP-SCE had not reduced to carbon, which is different from Ni electrodeposition. More importantly, EP-SCE Cu showed significant microstructure evolution at room temperature as shown in Figure 21. Grain size of the film increased to 1 μm after two months of storage in a vacuum at room temperature. This is correspondent with self-annealing observed in Cu film deposited in conventional electroplating. Orientation maps shown in Figure 23 overlaid with HAGB and twin boundary in black and yellow lines. Structure change accompanied with the evolution of twin boundary was correspondingly observed with the one in the CONV Cu. High fraction of twin boundary, 70% of HAGB, should be the result of lowering boundary free energy in the process of self-annealing as discussed in Chapter 3.1.1.
FIB images of Cu film obtained by EP-SCE (2.0 A/dm2 for 120 min) (a) as electroplating (b) after two months.
Carbon impurity concentrations in the copper film fabricated by (a) EP-SCE and (b) CONV observed using GDOES.
Orientation maps obtained from EP-SCE Cu after two months of storage. Grain boundaries of HAGB and twin boundaries are overlaid in black and yellow lines.
Mechanical properties of Cu before and after self-annealing was evaluated using micron-sized pillar fabricated using FIB. Figure 24 shows true stress-strain curve of Cu pillars fabricated from the films of as-deposited and two months after EP-SCE, including the results of CONV Cu [14]. A significant difference is observed in the mechanical strength among as-deposited EP-SCE and CONV. Engineering stress of the as-deposited EP-SCE pillar was about 300 MPa higher than the CONV pillar. And strength decreased by self-annealing to the same level of the CONV pillar. Deformation behavior is very similar in both self-annealed EP-SCE pillar and CONV pillar, in agreement to the identical microstructure observed. There is linear work hardening regime in the compression test of the CONV pillar and self-annealed EP-SCE pillar, but is not observed in the compression test of as-deposited EP-SCE pillar. Figure 25 shows the SEM image of pillars after the compressive deformation. In the Cu pillar of CONV, many slip traces can be observed on the surface of the individual grains. Therefore, the deformations can be assumed to occur as dislocation activation inside grains. On the contrary, sharp shear band crossing through the pillar is observed in the as-deposited EP-SCE pillar, which explains no linear hardening in compressive deformation. SEM images from different sides indicated the shear sliding of the pillar top. Decrease in the cross-sectional area is followed by shear localization responsible for the work softening behavior in micro-compression of as-deposited EP-SCE. This is because the dislocation storage is strikingly limited by grain refinement when the grain size is in sub-micron meter regime.
Engineering stress-strain curves in micro-compressions of pillars fabricated from as deposited EP-SCE copper film two months after deposition of EP-SCE copper film and CONV copper film.
SEM images of post-deformed copper pillar of (a) as-deposited EP-SCE, (b) two months after EP-SCE, and (c) CONV.
Besides limited work hardening, yield stress was increased in the as-deposited EP-SCE pillar compared to self-annealed EP-SCE and CONV pillar. The main reason of strengthening is considered to be grain refinement strengthening. It is widely accepted that grain refinement strengthening is explained as a shortage of dislocation pile-up length due to the decreased distance between grain boundaries. This strengthening contribution was formulated by Hall and Petch and is known as Hall-Petch relationship [67, 68]:
where σ, σ0, and k are yield strength, friction stress, and the constant for the material, respectively. We calculated the increase in yield strength with decreased grain size from 1.0 to 0.1 μm using the equation. When we refer constant k (MPa⋅m0.5) as 0.14 in previous report on copper [70], the calculated increase in strength was about 300 MPa. This is in good agreement with experimental results of this study. Hence, Cu pillar of as-deposited EP-SCE can be explained only by grain refinement of EP-SCE. Considering the results of GDOES, grain boundary strengthening should be the main factor contributing to the increase of mechanical strength.
This chapter describes recent progress in electroplating of micro/nano structures and the evaluation of mechanical properties by micro-testing technique in our group.
Nanocrystalline metals were successfully fabricated using electrodepositon with supercritical CO2 emulsion. Bouncing micelles desorb hydrogen bubbles and accelerate nucleation by hindering grain growth results in nanocrystalline deposition without defects. Very high strength found in nickel nanocrystals are corresponded to the co-deposited carbon from CO2. Micro-compression test demonstrated the feasibility for MEMS devices owing to the high strength of nickel. Follow-up micro-testing are also reviewed in this chapter.
Columnar structures of CONV Ni had shown anisotropic mechanical property in micro-cantilever bending. Geometrics of the grains alter the movement of dislocations, resulting in direction-dependent strength of electrodeposited nickel.
Micro-compressions in Cu and Ni revealed size-dependent strength. Materials with S/G ratio smaller than 25 may involve large deviation in mechanical strength. Although in nanocrystalline metals with large S/G ratio tested, increasing strength with decreasing sample size was observed in nickel. This may have corresponded to the CGBS involved in plastic deformation, but further work is needed to explain the detailed mechanisms.
A highly coordinated multistep process involving the stroma, blood vessels, and cytoskeleton is the leading cause of death in cancer. Invasion, migration, extravasation, and angiogenesis are all important factors in successful metastasis. Invasion is a limited process that occurs at the tumor-host interface, where tumor and stromal cells exchange enzymes and cytokines that modify local ECM and promote cell movement [1]. The ability of cells to move and divide is controlled by dynamic changes. Most cancers are characterized by changes in the expression levels of numerous protein kinases. As a result, most cancer cells show dynamic alterations in cytoskeletal proteins. The capacity of cancer cells to divide, infiltrate, and generate distal metastases is complicated by their migratory nature, the plasticity of cell migration, and these dynamic alterations. The importance of dynamic alterations in the modulation of the function of various cytoskeletal polymers in cancer cells is highlighted in this work. Actin (which generates MF), myosin (mini-filaments), tubulin (MT), and several IF protein families, such as keratins, desmins, peripherin, vimentin, internexins, and others, are among these monomers [2]. The mesenchymal-to-epithelial transition (MET) theory was established to explain these phenomena when histological examinations revealed that macrometastases have epithelial phenotypes rather than mesenchymal phenotypes [3]. DTCs undergo MET to transition from a mesenchymal to an epithelial form, allowing them to multiply at the metastatic site and develop into macrometastases, according to this view. The involvement of the actin cytoskeleton, microtubules, and intermediate filaments in EMT is explored in this paper, as well as how these cytoskeleton proteins can be exploited as a possible biomarker. The S100 family is a subgroup of calcium-binding proteins with EF-hands that regulate a number of cellular processes by interacting with a variety of protein targets. S100A4 expression has been found in fibroblasts, blood cells, and endothelial cells, and it is thought to be one of the mesenchymal cell markers involved in the epithelial-mesenchymal transition (EMT) [4, 5]. The capacity to migrate efficiently in cell motility experiments is a characteristic trait of S100A4-positive cells, but ectopic production of S100A4 in S100A4-negative cells increases migration [6]. Monomers of folded 10S and unfolded extended 6S versions of Nom-muscle myosin (NM IIA) protein exist. The latter has the ability to form filaments [7]. In cancer, genetic changes that impact protein kinases are quite common [8, 9]. Mutations or deletions that induce loss of function or enhanced catalysis are the most common. Activating mutations might have unanticipated consequences for several cytoskeletal systems. Mutations in the small GTPase RhoA, for example, may result in enhanced activation of proteins that regulate minifilament production [10].
These events result in abnormal molecular activities in cancer cells, such as enhanced cell motility, invasion, division, and mechanosensing. The occurrence of many isoforms of these proteins, some of which have non-overlapping activities, complicates the investigation of these alterations. Actin, tubulin, and myosin are all isoforms, and IF comes in a variety of forms and variations. One of the main goals of this project is to present a broad, although incomplete, view of the field. Finding possible areas that could be targeted specifically to treat a variety of cancers in human cancer A431 cells, we show that S100A4 expression is increased during EMT mediated by the transcription factor ZEB2. In addition, we show the interaction between endogenous S100A4 and p53 in cells and that the interaction takes place within the cell nucleus. We also show that knockdown of S100A4 results in stabilization of p53 at the protein level. Further, knockdown of S100A4 is shown to increase the transcriptional activity of p53, resulting in p53-dependent growth arrest [11]. Transgelin (TAGLN) has been shown to have a role in the genesis of proteinuria, although the mechanism by which it does so is unclear. The goal of this research was to look at the involvement of TAGLN in the development of proteinuria. The study’s distinctive feature is that it provides an updated, birds-eye view of the global changes in the cytoskeleton, which includes changes in tubulin and intermediate filaments as well as actin and actin binding proteins.
The cytoskeleton provides the mechanical strength and integrity that allows cells to maintain their shape and movement. Figure 1 depicts the situation. As seen in the first step, epithelial cancer cells undergo EMT, losing their cell-cell connections and gaining the potential to penetrate the surrounding tissue parenchyma. These EMT-induced cells can subsequently intravasate into the systemic circulation and survive in the circulation before reaching the target site in the third stage. The cells must then extravasate into the tissue parenchyma in the fourth phase before going into dormancy or becoming micro metastases. MET activation in the fifth phase is required for subsequent improvement and potentially life-threatening mega metastases.
The metastatic cascade is represented by the EMT-MET model.
The epithelial cytoskeleton is remodeled during EMT, resulting in cell polarity loss and extracellular matrix remodeling (ECM). The cells then become motile and have the ability to invade [12]. The cytoskeleton’s critical function in the EMT process is described in the following sections:
Actin filament remodeling is linked to EMT [13], and it is one of the most important components of the cytoskeleton. G-actin (globular actin) is a monomeric unit, while F-actin (fibrous actin) is a polymeric filament. G-actin is distributed uniformly throughout the cytoplasm and nucleus. With the simultaneous hydrolysis of ATP, G-actin rapidly polymerizes to create F-actin under specific physiological conditions. Actomyosin mediates cell spreading and adherence to the ECM by producing conspicuous bundles of F-actin known as stress fibers. Stress fibers attach to focal adhesions and have a function in cell adhesion and morphogenesis as a result. Within the leading cell edge, actin filaments engage with actin-binding proteins and myosin II to deliver F-actin. For cell migration, this is a crucial process. Through its ATP-dependent motor activity, myosin II is thought to play a key role in the construction and disassembly of the actin cytoskeleton [14]. Different biological activities such as cell motility, cell shape, and so on rely on actin organization [15]. Gene expression, post-translational protein modification, and cytoskeleton remodeling all play a role in the EMT process [16]. Recent research has discovered that cells in intermediate phases of EMT have increased tumor-cell spreading ability. E-cadherin complexes have also been demonstrated to be connected to the dynamic actin framework via -catenin and stabilized by inhibiting RhoA activity and activating Rac and cdc42 [13, 17]. Cell-surface receptors, such as integrins, bind to ECM components and play a vital role in altering cell attachment, which is necessary for motility and invasion. A multi-protein complex binds to the actin cytoskeleton and achieves integrin-mediated cell-matrix adhesion.
The actin cytoskeleton is made up of actin microfilaments and a large number of actin-binding proteins (ABPs). ABPs are proteins that regulate the formation and disassembly of actin microfilaments. This is important for cell motility, division, and cancer growth, all of which require coordinated actin filament turnover and remodeling [18]. Actin filaments are grouped in a loosely ordered meshwork in lamellipodia, which is referred to as dendritic networks [19], whereas actin filaments are arranged in parallel bundles in filopodia [20]. The action of specific actin-organizing proteins is required for these two types of organizations. During migration, the depolymerization of actin and debranching allows for the dynamic remodeling of the actin network as well as the cyclic extension and retraction of lamellipodia, which generates the pushing force that propels the cell forward. The cell body follows the orientation of the front lamellipodia due to the contraction of actin filaments. Filopodia are made up of closely packed parallel actin filaments with tapered ends facing the plasma membrane. Small crosslinking actin-binding proteins like fascin are principally responsible for bundling filopodia filaments [13, 21].
Cells are thought to be able to penetrate the tissue barrier by forming invadopodia, which are F-actin protrusions that breakdown the ECM, allowing cell penetration [22]. Invadopodia are actin-rich protrusions that are engaged in cell penetration and are related with ECM degradation via local deposition of proteases. The Arp2/3 (actin-related protein2/3) complex is a seven-subunit protein that is regulated by the WAVE and WASP families of WH2 domain-containing proteins (WAVE1, 2, and 3, WASP, and N-WASP), which bind both the Arp2/3 complex and actin monomers [23]. Arp2/3 is a protein complex that aids in the polymerization of actin filaments. Arp2/3 is typically overexpressed in cancers such as breast and liver carcinomas, implying a link between dynamic actin rearrangement and cancer progression [24]. Cortactin, an actin-binding protein, also binds to Arp2/3, allowing active Arp2/3 complexes to be located on the sidewalls of existing actin filaments, resulting in branched arrays of F-actin. Cortactin overexpression has been discovered during metastasis [25, 26]. Facin, an actin-binding protein that stimulates the development of invadopodia and filopodia, is increased during migration [27]. Gelsolin is essential for the formation of lamellipodia and podosomes, both of which are critical protrusions for motile cells [28]. The actin nucleating proteins that regulate cell mobility and organization are known as formins. EMT has been shown to upregulate formin expression at the leading edge in mesenchymal-transformed cells [29]. The gene coding for ABPs has been found to have altered transcription or translation in several cancer types, according to studies. Because ABP expressions vary throughout cancer types, changes in the actin cytoskeleton are a common characteristic of tumor cells. In breast cancer tissues, ARPC2 (actin-related protein2/3 complex) expression is greater and ARPC2 expression is associated with EMT and metastasis [13, 30]. Filamin deficiency has been found to be prevalent in carcinomas such as colon, prostate, and breast cancer [31]. As a result, migration is boosted, which is linked to a bad prognosis [32]. Higher levels of-actinin (actin filament cross-linker) are linked to a bad prognosis in breast cancer, as well as the degree of clinical progression and lymph node status [33].
Rho GTPases play a role in a range of cellular activities, including cell migration, cell polarity, and cell cycle progression, by controlling actin, MT dynamics, and regulating cytoskeleton and cell adhesion dynamics. It has been established that increased expression of Rho GTPases genes associated with a metastatic phenotype in a variety of cancer types, and are tightly related to the actomyosin cytoskeleton’s overall control [34]. Rac1, RhoA, and Cdc42 are members of the Rho family of GTPases, which regulate actin cytoskeleton organization such as cytoskeletal dynamics, cell-cell junction assembly/disassembly, and integrin-matrix adhesion. Controlling the activities of Rho GTPases is critical during the growth-factor-induced EMT. Rho signaling activity is controlled by guanine nucleotide exchange factors (GEFs) which catalyze the exchange of GDP to GTP. During growth factor-induced EMT, controlling the activities of Rho GTPases is crucial. Guanine nucleotide exchange factors (GEFs), which catalyze the conversion of GDP to GTP, regulate Rho signaling activity. GTPase-activating proteins (GAPs) facilitate intrinsic GTPase activity to re-form the GDP bound state, which inactivates Rho action. Finally, the inactive GTPase domains and their covalently linked lipid groups engage with the guanine nucleotide dissociation inhibitors (GDIs). As show in Figure 2, the GDIs prevent GDP from being dissociated from Rho GTPases, which could inhibit spontaneous activation [35].
The diagram depicted Rho GTPase cycle.
Rho GTPase activity in cells is regulated by Rho-dependent factors, as shown in this diagram. GEFs can stimulate Rho-GTPases to engage with downstream actomyosin-regulating effectors by activating the exchange of GDP for GTP, whereas GAPs bind to the GTPase and boost the intrinsic GTPase activity by switching bound GTP to GDP. The GDIs interact with the GDP-bound version of the molecule, preventing GTP binding and thus activation. This illustration is based on Raftopoulou and Hall [36]. Rho GTPases function as molecular switches that cycle between a GDP-bound inactive form and a GTP-bound active form to govern signal transduction pathways [13, 36].
Rho governs cytoskeleton alterations and stimulates actin stress fiber production, impacting cell-cell or cell-matrix adhesion. Rho signaling is important in the regulation of actin-myosin contraction because it stimulates actin reorganization, which leads to the formation of stress fibers. Many of these regulatory mechanisms become unregulated in cancer cells, which contributes to invasive behavior during metastasis, according to recent research [37].
In EMT, all aspects of the actin cytoskeleton and intermediate filaments are well identified, but the function of microtubules (MT) is still being explored. MTs are an important part of the cytoskeleton and play an important role in movement, intracellular transport and supporting cell shape [38]. MTs are composed of α and β-tubulin dimers, which mostly grow and shrink from the positive end and produce dynamic instability [39]. The function of MTs depends on their assembly and stability, which are regulated by post-translational modifications and interactions with various stable and destabilizing proteins [40]. Calmodulin regulated spectrin associated protein (CAMSAP3) is an MT-binding protein required to maintain MT tissue. It has been shown that the loss of CAMSAP3 promotes Akt dependent EMT through tubulin acetylation [41]. Studies have shown that the microtubule-interacting protein EB1 (end-binding protein) is located in one location and interacts with the microtubules. EB1 is a negative regulator of microtubule stability and promotes the migration of tumor cells. It modulates the dynamics of MT both in vitro and in vivo [42, 43]. Stathmin is an MT regulatory protein that depolymerizes MT and strengthens and regulates MT dynamics. MT destabilization is related to the phosphorylation of stathmin at its four serine residues [44]. In some human cancers, such as Wilms’ sarcomas and tumors, stathmin levels have been elevated and have been associated with more aggressive metastases [45]. During EMT, MT plays a significant role in cell migration. Anti-MT drugs act on the one hand by inhibiting cell division, but also by inhibiting cell migration by stopping the formation of projections of MT-based membranes [46, 47]. Stability variability in MT regulates cortical F-actin by activating or inhibiting various Rho GTPases [13, 48]. Aside from their roles in cell division and migration, MT is also important for cell polarization. The creation of a polarized MT required for morphogenesis and cell migration is thought to be aided by cortical control of MT. Although MT indirectly contributes to cell-cell adhesion through dynamic remodeling of the actin network, the role of MT in regulating migration or EMT by interacting with cell-cell adhesion is currently being investigated. Reveal that the MT-interacting protein stathmin is important in cell migration and metastasis via MT-actin cytoskeleton crosstalk [49]. Novel pharmaceutical techniques could be created using this relationship, in which the actin cytoskeleton is targeted via MT, to overcome the toxic effects associated with some actin-based medicines.
Intermediate filaments (IF) are important cytoskeletal components that provide structural support and mechanical strength. One of the largest gene families in the human genome encodes more than 50 different IF proteins, and this family contains five different IF classes. Types I-IV are located in the cytoplasm and include vimentin, which is a classic marker of EMT, and its expression is related to the aggressive phenotype of epithelial cancer. Compared with actin cytoskeleton and MT, IF also shows a different tissue expression pattern. Type I IF keratin is epithelial-specific and is essential for the mechanical stability of epithelial cells. During EMT, the reduction of keratin is generally considered to be the histological and biochemical characteristics of cancer cells [50, 51]. Type III IF, vimentin, is a typical marker of EMT. Vimentin expression is up-regulated during EMT of epithelial cells, and it has been reported to increase vimentin expression in various cancer cell lines. It is used as an indicator of poor prognosis [52]. During EMT, vimentin helps determine and maintain cell shape. Recent studies have shown that the expression of vimentin is related to active prostate cancer cell lines, and its knockdown significantly reduces the activity and invasiveness of tumor cells [13, 53]. It shows that vimentin is significantly increased in polyploid giant cancer cells (PGCCs). Vimentin intermediate filaments are responsible for expanding morphology and increasing migration [54]. In general, vimentin expression has significant characteristics during EMT, including tumor cell migration and invasion.
The materials and methods are described in the following steps:
S100A4 interacts with p53 in the nucleus S100 family proteins have no known enzymatic activity, and therefore it is generally believed that S100 proteins function through interaction with other proteins to regulate their functions. Nuclear colocalization between S100A4 and p53 was however apparent both in untreated and cisplatin-treated A549 cells [11]. Therefore, to investigate the suggested interaction between S100A4 and p53. IP of endogenous S100A4 in A549 cells resulted in coprecipitation of endogenous p53 in untreated cells. In addition, the amount of coprecipitated p53 increased after treatment of the cells with the p53-stabilizing drug Nutlin-3A Figure 3. To validate the interaction between S100A4 and p53 and to retrieve information about the subcellular location of the interaction, using antibodies targeting S100A4 and p53 Figure 3. The results from PLA supported the interaction between S100A4 and p53 in cells, and also underscored the dramatic increase in the interaction after treatment with Nutlin-3A. In addition, in situ PLA clearly showed that the subcellular location of the interaction between S100A4 and p53 was in the nucleus Figure 3.
Immunoblot analysis of p53 and S100A4 protein levels in A549 cells in response to Nutlin-3A treatment at indicated time-points.
The cytoskeleton protein transgelin is designated in the following phases:
For stratification of the immune milieu based on function and activity, a group of important immune-related genes that have been widely researched in carcinogenicity were discovered. A scatter plot was used to display statistically significant genes in each category, as well as all relationships within each categorization.
According to their function and activity, a group of well-known cancer genes that have been widely examined in carcinogenicity were gathered and divided into cell cycle-related and apoptosis-related pathways. The apoptosis-related star genes were divided into two groups: G0-G1 and G2-M. The expression profile data for each class was used to determine the associations between TAGLN and the star genes.
Differentially expressed genes (DEGs) were identified using Gene Expression Omnibus microarray expression profiling datasets and processed using the short time series expression miner to cluster DEGs in proteinuria progression and build a gene interaction network [55].
Western blotting dry was used to determine the quantity of extracted P53. In one input, the total protein extracted from cells was displayed, whereas flow-through indicated unbound protein (4-A) [11]. This method was chosen to avoid the presence of antibodies, which could cause more P53 aggregation. To conduct the negative staining experiment, recombinant S100A4 protein was purified under natural conditions. Luciferase IIA immunoprecipitated from A431/ZEB2-WT cells was analyzed using Western blotting [11]. Elution displays the amount of protein that separated from the immunocomplex, while beads reflect the immunocomplex. To see if p53 stabilization alone has an effect on cellular S100A4 levels. Nutlin-3A prevents p53 from interacting with MDM2, the ubiquitin E3 ligase that ubiquitinates p53 and sends it to the proteasome for destruction. We were unable to identify any changes in the messenger RNA (mRNA) level of S100A4, indicating that the increase in S100A4 in response to Nutlin-3A was due to protein stabilization. Knockdown of S100A4 results in increased cisplatin-induced apoptosis S100A4 knockdown by itself did not induce apoptosis, but still the increased p53 levels could prime the cells for apoptosis activation.
Cells were cultured on 9 mm glass coverslips (VWR), fixed with 4% paraformaldehyde (VWR), and permeabilized with 0.5% Triton X-100 (Sigma). Primary and secondary Alexa Fluor conjugated antibodies (Life Technologies) were used for 1 hour of staining. Nuclear staining was done with DAPI (Sigma). An inverted Nikon Eclipse Ti microscope and a custom-built prism-based TIRF microscope with 60× objectives were used for confocal and TIRF microscopy [56]. Samples were analyzed with the help of sample.
S100A4 interacts with p53 in the nucleus because S100 family members have no known enzymatic activity, it is usually assumed that they control their activities via interacting with other proteins [11]. Non-muscle myosin IIA and p53 have already been identified as possible S100A4-interacting proteins. As a result, we started to look into the possible relationship between S100A4 and p53. In untreated cells, IP of endogenous S100A4 resulted in coprecipitation of endogenous p53.
In addition, as shown in Figure 4, the amount of coprecipitated p53 increased after the cells were treated with the p53-stabilizing medication Nutlin-3A. We used antibodies targeting S100A4 and p53 to perform in situ PLA35 to confirm the interaction between S100A4 and p53 and to acquire information regarding the subcellular location of the interaction. PLA findings confirmed the contact between S100A4 and p53 in cells, as well as the substantial increase in the interaction following Nutlin-3A therapy. Furthermore, in situ PLA clearly demonstrated that the subcellular location of the interaction between S100A4 and p53 was in the nucleus as shown in Figure 4.
S100A4 interacts with p53 in the nucleus.
To utilizing cisplatin, a cytotoxic agent that promotes apoptosis in p53-dependent cells, to see if this was the case. We found higher cisplatin sensitivity in S100A4 shRNA cells relative to control cells using both a short-term cell viability assay and a clonogenic survival experiment as shown in Figure 5. We employed different assays to analyze cell mortality after S100A4 knockdown to learn more about the cisplatin response. S100A4 is significantly silenced as shown in Figure 5.
Knockdown of S100A4 results in increased cisplatin sensitivity.
Recent research has revealed that scientists are concentrating their efforts on combination therapies that target numerous molecules in the same signaling pathway, multiple pathways in the same tumor, or both cancer cells and immune cells [57, 58]. Combination medicines are still being studied, and they will help us better understand drug resistance processes in the future. As a result, recent theories propose that targeting EMT and cytoskeletal proteins could be a unique way to battle cancer medication resistance. Normal cell physiology requires actin. As a result, despite their promise in vitro and in vivo, prospective actin-specific chemotherapeutics have yet to be tested. Due to their non-specific targeting of normal tissues, which causes cardiotoxicity and renal difficulties, they have not been successful [59, 60]. Increasing data suggests that the commencement of the EMT process and metastasis causes an increase in the number of EMT-related actin-binding proteins (ABPs) involved with actin cytoskeleton remodeling. As a result, controlling ABP expression may aid in preventing cancer cells from migrating and increasing their sensitivity to therapeutic therapies. Arp2/3, cortactin, formins, and fascin have all been studied extensively. Other ABPs, which could be potential targets in carcinogenesis, are, however, understudied. The actin cytoskeleton and ABPs are difficult to target for anti-cancer therapy, because ABPs are involved in the creation of contractile structures in cardiac and skeletal muscles [13, 61]. The intermediate filaments vimentin and nestin are linked to several cancers. When it comes to EMT, vimentin is a marker for mesenchymal cells. Anti-tumor medications have been discovered to change microtubule dynamics, which affect mitosis and apoptosis [62]. Microtubules have a big role in tumor migration and invasion during EMT. These anti-tumor medications stop cancer cells from dividing and forming membrane protrusions caused by network-based microtubules, which cause cell migration and invasion. Eribulin is a MI depolymerization medication that is used to treat metastatic breast cancer patients. In breast cancer, this medication suppresses angiogenesis, vascular remodeling, and EMT [63, 64]. The anti-tumor medication diaryloxazole PC-046 has a high oral bioavailability. It is a synthetically produced small molecule microtubule destabilizing agent. When compared to other microtubule destabilizing agents, this medication is reported to have a lower rate of MDR cross-resistance. Drug resistance in cancer cells is influenced by many signaling pathways involved in EMT and cytoskeletal proteins [65].
Anti-apoptotic effects and drug efflux pumps are increased in EMT cells. As a result, recent theories imply that focusing on EMT and cytoskeletal proteins could be a unique way to battle cancer treatment resistance. Chemotherapy is commonly used in the treatment of cancer, either alone or in combination with radiotherapy or surgery. Multiple breakthroughs in cancer treatment have been made in recent years, while medication resistance, which has been one of the leading causes of cancer death, has increased [66, 67]. In a drug-filled environment, EMT cells are thought to have the ability to develop selectively. While some studies imply that EMT may not totally contribute to cancer metastasis, others reveal that EMT is strongly linked to treatment resistance in cancer cells. Anti-microtubule drug resistance is thought to be caused by changes in the drug target, such as altered microtubule dynamics, tubulin mutations, modified tubulin isotype expression, and altered microtubule regulatory proteins, according to a large body of research. Other cytoskeletal proteins that can regulate microtubule regulation via signaling or structural links have also been discovered may be essential factors of anti-microtubule resistance [68, 69]. ADCs (antibody-drug conjugates) are a new type of targeted anticancer therapy that has been shown to be effective in MDR cancer. When a high-affinity antibody (Ab) binds with the drug and pushes a targeted drug delivery into the cell, this ADC causes apoptosis in tumor cells. In Figure 6, aside from producing a cytotoxic load paired with tumor cell death, this Ab-drug combination also blocks the cells’ pro-survival receptor. The discovery of ADC could lead to the development of other combination medicines, such as immunotherapy. A lot of work is being done right now to improve the efficacy and targetability of ADCs in the treatment of cancers.
Diagram depicting the antibody-drug conjugate (ADC) mode of action in a cancer cell.
In Figure 6, (i) high-affinity antibody binds to the drug. ADC is formed when an antibody binds to a drug and enters the cell’s double lipid-membrane layer, causing cell death. (ii) ADC attaches to a cancer cell’s pro-survival receptor, blocking its function and triggering apoptosis. (iii) ADC binds to both the cancer cell’s membrane-surface antigen and an immune system effector cell, causing cancer cells to be lysed by cellular cytotoxicity.
It was necessary to conduct research. The plasticity of the cytoskeleton, motility, multi-drug resistance, and immunosuppressive properties have revealed a great deal about the plasticity of the cytoskeleton, motility, and immunosuppressive properties during the transformation of an epithelial cell to a mesenchymal cell. The cell’s signaling systems, and how it adapts in order to live although there has recently been an emphasis on finding new cytoskeletal markers that can be used to detect cancer. Recent research suggests that cytoskeleton dynamics and EMT have a strong association, which can be used to find possible biomarkers. Epithelial cells lose their apical-basolateral polarity and adopt a fibroblast-like motility characteristic during EMT. S100A4 is a mesenchymal marker that is essential for improved mesenchymal cell motility. We chose to study the interactions between NMIIA and S100A4 in a cellular model of EMT because both proteins are expected to work together to generate the mesenchymal cell phenotype. There is less evidence for an S100A4-NMIIA complex in vivo. In this study, we report on control of cytoskeletal dynamics in cancer through a combination of actin and S100A4 protin. The interaction between S100A4 and p53 in the nucleus, and also that S100A4 negatively affects cellular p53 protein levels. In situ PLA was utilized to look at the interaction between p53 and S100A4. We were able to confirm not just the connection between S100A4 and wt p53, but also that it occurs in the cell nucleus, using this method. The difficulties in identifying the connection between p53 and S100A4 might be explained if the interaction between S100A4 and p53 represents a stage in the biological processes that leads to p53 ubiquitination and destruction. Our findings imply that S100A4 is involved in MDM2-dependent p53 ubiquitination and degradation, given the nucleus localization of the interaction between S100A4 and p53 and the fact that lower S100A4 levels result in enhanced p53 stability.
The findings provided here are particularly significant because p53 is one of the most well-known tumor suppressor proteins. An abundance of evidence suggests that p53 inactivation is essentially required for tumor growth. S100A4, a protein that is commonly overexpressed in malignancies and has been linked to poor prognosis, may contribute to p53 degradation through its interaction with p53, according to the findings. These findings clearly indicate why high S100A4 expression is advantageous to tumor development, and they also explain why S100A4 has a poor prognostic impact in clinical trials. Taken together, the findings imply that, in addition to raising the risk of metastasis as previously demonstrated, increased S100A4 expression in malignancies has the ability to suppress p53 activity. This research also suggests that S100A4 expression in clinical samples should be investigated in connection to cisplatin sensitivity to see if S100A4 may be used as a predictor of cisplatin therapy response. Also TAGLN mediated regulatory network implicated in proteinuria development was used. These findings add to our understanding of the molecular pathways driving proteinuria etiology. Recent study has uncovered a significant feature of the protein that makes it a promising candidate for further investigation as a therapeutic target: its specific control of activity levels and expression in cancer cell lines. In both epithelial and mesenchymal cells, the Rho family GTPases play an important role in directing the dynamics of the actin cytoskeleton. There is strong evidence that EMT is linked to the production of the vimentin protein, which is phosphorylated and reoriented in cells, regulating cell contraction and focal adhesion assembly and disassembly. During metastasis, there is also crosstalk between distinct components of the cytoskeleton. The use of actin-binding proteins as new therapeutic targets has a lot of promise for the creation of specific cancer medicines, according to researchers also when employing phenotypic screening to get positive results, there are a lot of procedural concerns to keep in mind. In conclusion, in addition to the crucial role of the RLC phosphorylation in driving the myosin IIA’s conformations. These novel findings and analyses are attracting a lot of attention because they have the potential to lead to ground-breaking outcomes in our fight against cancer and drug-resistant cancer cells by combining traditional cancer therapy with EMT-related mechanisms. The findings imply that the mix of cytoskeletal components plays a critical role in the modulation of cytoskeletal dynamics in cancer.
In our mission to support the dissemination of knowledge, we travel throughout the world to present our publications and support our Authors and Academic Editors. We attend international symposia, conferences, workshops and book fairs as well as business meetings with science, academic and publishing professionals. Take a look at the current events.
",metaTitle:"IntechOpen events",metaDescription:"In our mission to support the dissemination of knowledge, we travel worldwide to present our publications, authors and editors at international symposia, conferences, and workshops, as well as attend business meetings with science, academia and publishing professionals. We are always happy to host our scientists in our office to discuss further collaborations. Take a look at where we’ve been, who we’ve met and where we’re going.",metaKeywords:null,canonicalURL:"/page/events",contentRaw:'[{"type":"htmlEditorComponent","content":"May 18, 2022 | 1:00 PM - 2:00 PM CEST
\\n\\n\\n\\n\\n\\n
03 - 12 June 2022
\\n\\nPutra World Trade Centre, Kuala Lumpur, Malaysia
\\n\\nIntechOpen Represented by BOOKS INTERNATIONAL (M) SDN BHD
\\n\\n\\n\\n
24 - 27 August 2022, Beijing, China
\\n\\nIntechOpen Represented by China Publishers Services (CPS)
\\n\\n\\n\\n\\n\\n
19 - 23 October 2022, Frankfurt, Germany
\\n\\n\\n\\n
Guadalajara International Book Fair
\\n\\n26 November - 04 December 2022, Guadalajara, Mexico
\\n\\nIntechOpen Represented by LSR Libros Servicios y Representaciones SA de CV
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
May 18, 2022 | 1:00 PM - 2:00 PM CEST
\n\n\n\n\n\n
03 - 12 June 2022
\n\nPutra World Trade Centre, Kuala Lumpur, Malaysia
\n\nIntechOpen Represented by BOOKS INTERNATIONAL (M) SDN BHD
\n\n\n\n
24 - 27 August 2022, Beijing, China
\n\nIntechOpen Represented by China Publishers Services (CPS)
\n\n\n\n\n\n
19 - 23 October 2022, Frankfurt, Germany
\n\n\n\n
Guadalajara International Book Fair
\n\n26 November - 04 December 2022, Guadalajara, Mexico
\n\nIntechOpen Represented by LSR Libros Servicios y Representaciones SA de CV
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:73},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:273},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"3",title:"Health Sciences",slug:"health-sciences",parent:null,numberOfBooks:1849,numberOfSeries:3,numberOfAuthorsAndEditors:47943,numberOfWosCitations:30921,numberOfCrossrefCitations:20932,numberOfDimensionsCitations:48801,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"3",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10482",title:"Human Tooth and Developmental Dental Defects",subtitle:"Compositional and Genetic Implications",isOpenForSubmission:!1,hash:"82a91346a98d34805e30511d6504bd4c",slug:"human-tooth-and-developmental-dental-defects-compositional-and-genetic-implications",bookSignature:"Ana Gil de Bona and Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:"Edited by",editors:[{id:"203919",title:"Dr.",name:"Ana",middleName:null,surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10878",title:"Bioethical Issues in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"a6f32d3f2227df637fffd969a0cb5ed7",slug:"bioethical-issues-in-healthcare",bookSignature:"Peter A. Clark",coverURL:"https://cdn.intechopen.com/books/images_new/10878.jpg",editedByType:"Edited by",editors:[{id:"58889",title:"Dr.",name:"Peter A.",middleName:null,surname:"Clark",slug:"peter-a.-clark",fullName:"Peter A. Clark"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editedByType:"Edited by",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11044",title:"Dysphagia",subtitle:"New Advances",isOpenForSubmission:!1,hash:"8961f55525f51bd82d3daa09debd158f",slug:"dysphagia-new-advances",bookSignature:"Monjur Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/11044.jpg",editedByType:"Edited by",editors:[{id:"206355",title:"Associate Prof.",name:"Monjur",middleName:null,surname:"Ahmed",slug:"monjur-ahmed",fullName:"Monjur Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10473",title:"Sarcoidosis",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"4bffdfb8619408d0a5608527292b6985",slug:"sarcoidosis-new-perspectives",bookSignature:"Seyyed Shamsadin Athari and Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/10473.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",middleName:null,surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10835",title:"Autonomic Nervous System",subtitle:"Special Interest Topics",isOpenForSubmission:!1,hash:"48ac242dc6c5073b2590a509c44628e2",slug:"autonomic-nervous-system-special-interest-topics",bookSignature:"Theodoros Aslanidis and Christos Nouris",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",editedByType:"Edited by",editors:[{id:"200252",title:"Dr.",name:"Theodoros",middleName:null,surname:"Aslanidis",slug:"theodoros-aslanidis",fullName:"Theodoros Aslanidis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10792",title:"Radiation Oncology",subtitle:null,isOpenForSubmission:!1,hash:"4bdaabf921c75d51fc30e7076ab83f2a",slug:"radiation-oncology",bookSignature:"Badruddeen, Usama Ahmad, Mohd Aftab Siddiqui and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10792.jpg",editedByType:"Edited by",editors:[{id:"345932",title:"Dr.",name:null,middleName:null,surname:"Badruddeen",slug:"badruddeen",fullName:"Badruddeen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11236",title:"Heart Transplantation",subtitle:"New Insights in Therapeutic Strategies",isOpenForSubmission:!1,hash:"057f326c913ef980a7aaedb700047c03",slug:"heart-transplantation-new-insights-in-therapeutic-strategies",bookSignature:"Norihide Fukushima",coverURL:"https://cdn.intechopen.com/books/images_new/11236.jpg",editedByType:"Edited by",editors:[{id:"284629",title:"Prof.",name:"Norihide",middleName:null,surname:"Fukushima",slug:"norihide-fukushima",fullName:"Norihide Fukushima"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11377",title:"Chagas Disease",subtitle:"From Cellular and Molecular Aspects of Trypanosoma cruzi-Host Interactions to the Clinical Intervention",isOpenForSubmission:!1,hash:"b9bf20f391782bc73924ff9bfb3ccbeb",slug:"chagas-disease-from-cellular-and-molecular-aspects-of-trypanosoma-cruzi-host-interactions-to-the-clinical-intervention",bookSignature:"Rubem Menna-Barreto",coverURL:"https://cdn.intechopen.com/books/images_new/11377.jpg",editedByType:"Edited by",editors:[{id:"174902",title:"Dr.",name:"Rubem",middleName:null,surname:"Menna-Barreto",slug:"rubem-menna-barreto",fullName:"Rubem Menna-Barreto"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1849,seriesByTopicCollection:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],seriesByTopicTotal:3,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:10514,totalCrossrefCites:134,totalDimensionsCites:305,abstract:null,book:{id:"314",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"46479",doi:"10.5772/57353",title:"Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease",slug:"floating-drug-delivery-systems-for-eradication-of-helicobacter-pylori-in-treatment-of-peptic-ulcer-d",totalDownloads:2861,totalCrossrefCites:137,totalDimensionsCites:300,abstract:null,book:{id:"3839",slug:"trends-in-helicobacter-pylori-infection",title:"Trends in Helicobacter pylori Infection",fullTitle:"Trends in Helicobacter pylori Infection"},signatures:"Yousef Javadzadeh and Sanaz Hamedeyazdan",authors:[{id:"94276",title:"Prof.",name:"Yousef",middleName:null,surname:"Javadzadeh",slug:"yousef-javadzadeh",fullName:"Yousef Javadzadeh"},{id:"98229",title:"Dr.",name:"Sanaz",middleName:null,surname:"Hamedeyazdan",slug:"sanaz-hamedeyazdan",fullName:"Sanaz Hamedeyazdan"}]},{id:"25512",doi:"10.5772/30872",title:"Epidemiology of Psychological Distress",slug:"epidemiology-of-psychological-distress",totalDownloads:8815,totalCrossrefCites:94,totalDimensionsCites:253,abstract:null,book:{id:"727",slug:"mental-illnesses-understanding-prediction-and-control",title:"Mental Illnesses",fullTitle:"Mental Illnesses - Understanding, Prediction and Control"},signatures:"Aline Drapeau, Alain Marchand and Dominic Beaulieu-Prévost",authors:[{id:"84582",title:"Dr.",name:"Aline",middleName:null,surname:"Drapeau",slug:"aline-drapeau",fullName:"Aline Drapeau"},{id:"84605",title:"Dr.",name:"Alain",middleName:null,surname:"Marchand",slug:"alain-marchand",fullName:"Alain Marchand"},{id:"84606",title:"Dr.",name:"Dominic",middleName:null,surname:"Beaulieu-Prévost",slug:"dominic-beaulieu-prevost",fullName:"Dominic Beaulieu-Prévost"}]},{id:"64762",doi:"10.5772/intechopen.82511",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10441,totalCrossrefCites:106,totalDimensionsCites:240,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"27687",doi:"10.5772/29869",title:"Heavy Metals and Human Health",slug:"heavy-metals-and-human-health",totalDownloads:18966,totalCrossrefCites:87,totalDimensionsCites:197,abstract:null,book:{id:"1012",slug:"environmental-health-emerging-issues-and-practice",title:"Environmental Health",fullTitle:"Environmental Health - Emerging Issues and Practice"},signatures:"Simone Morais, Fernando Garcia e Costa and Maria de Lourdes Pereira",authors:[{id:"13875",title:"Prof.",name:"Simone",middleName:null,surname:"Morais",slug:"simone-morais",fullName:"Simone Morais"},{id:"79715",title:"Prof.",name:"Maria De Lourdes",middleName:null,surname:"Pereira",slug:"maria-de-lourdes-pereira",fullName:"Maria De Lourdes Pereira"},{id:"87294",title:"Prof.",name:"Fernando",middleName:null,surname:"Garcia E Costa",slug:"fernando-garcia-e-costa",fullName:"Fernando Garcia E Costa"}]}],mostDownloadedChaptersLast30Days:[{id:"64851",title:"Herbal Medicines in African Traditional Medicine",slug:"herbal-medicines-in-african-traditional-medicine",totalDownloads:14512,totalCrossrefCites:33,totalDimensionsCites:56,abstract:"African traditional medicine is a form of holistic health care system organized into three levels of specialty, namely divination, spiritualism, and herbalism. The traditional healer provides health care services based on culture, religious background, knowledge, attitudes, and beliefs that are prevalent in his community. Illness is regarded as having both natural and supernatural causes and thus must be treated by both physical and spiritual means, using divination, incantations, animal sacrifice, exorcism, and herbs. Herbal medicine is the cornerstone of traditional medicine but may include minerals and animal parts. The adjustment is ok, but may be replaced with –‘ Herbal medicine was once termed primitive by western medicine but through scientific investigations there is a better understanding of its therapeutic activities such that many pharmaceuticals have been modeled on phytochemicals derived from it. Major obstacles to the use of African medicinal plants are their poor quality control and safety. Traditional medical practices are still shrouded with much secrecy, with few reports or documentations of adverse reactions. However, the future of African traditional medicine is bright if viewed in the context of service provision, increase of health care coverage, economic potential, and poverty reduction. Formal recognition and integration of traditional medicine into conventional medicine will hold much promise for the future.",book:{id:"6302",slug:"herbal-medicine",title:"Herbal Medicine",fullTitle:"Herbal Medicine"},signatures:"Ezekwesili-Ofili Josephine Ozioma and Okaka Antoinette Nwamaka\nChinwe",authors:[{id:"191264",title:"Prof.",name:"Josephine",middleName:"Ozioma",surname:"Ozioma Ezekwesili-Ofili",slug:"josephine-ozioma-ezekwesili-ofili",fullName:"Josephine Ozioma Ezekwesili-Ofili"},{id:"211585",title:"Prof.",name:"Antoinette",middleName:null,surname:"Okaka",slug:"antoinette-okaka",fullName:"Antoinette Okaka"}]},{id:"76640",title:"Control of Clinical Laboratory Errors by FMEA Model",slug:"control-of-clinical-laboratory-errors-by-fmea-model",totalDownloads:1208,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Patient safety is an aim for clinical applications and is a fundamental principle of healthcare and quality management. The main global health organizations have incorporated patient safety in their review of work practices. The data provided by the medical laboratories have a direct impact on patient safety and a fault in any of processes such as strategic, operational and support, could affect it. To provide appreciate and reliable data to the physicians, it is important to emphasize the need to design risk management plan in the laboratory. Failure Mode and Effect Analysis (FMEA) is an efficient technique for error detection and reduction. Technical Committee of the International Organization for Standardization (ISO) licensed a technical specification for medical laboratories suggesting FMEA as a method for prospective risk analysis of high-risk processes. FMEA model helps to identify quality failures, their effects and risks with their reduction/elimination, which depends on severity, probability and detection. Applying FMEA in clinical approaches can lead to a significant reduction of the risk priority number (RPN).",book:{id:"9808",slug:"contemporary-topics-in-patient-safety-volume-1",title:"Contemporary Topics in Patient Safety",fullTitle:"Contemporary Topics in Patient Safety - Volume 1"},signatures:"Hoda Sabati, Amin Mohsenzadeh and Nooshin Khelghati",authors:[{id:"340486",title:"M.Sc.",name:"Hoda",middleName:null,surname:"Sabati",slug:"hoda-sabati",fullName:"Hoda Sabati"},{id:"348872",title:"M.Sc.",name:"Amin",middleName:null,surname:"Mohsenzadeh",slug:"amin-mohsenzadeh",fullName:"Amin Mohsenzadeh"},{id:"348874",title:"MSc.",name:"Nooshin",middleName:null,surname:"Khelghati",slug:"nooshin-khelghati",fullName:"Nooshin Khelghati"}]},{id:"64762",title:"Mechanism and Health Effects of Heavy Metal Toxicity in Humans",slug:"mechanism-and-health-effects-of-heavy-metal-toxicity-in-humans",totalDownloads:10456,totalCrossrefCites:107,totalDimensionsCites:242,abstract:"Several heavy metals are found naturally in the earth crust and are exploited for various industrial and economic purposes. Among these heavy metals, a few have direct or indirect impact on the human body. Some of these heavy metals such as copper, cobalt, iron, nickel, magnesium, molybdenum, chromium, selenium, manganese and zinc have functional roles which are essential for various diverse physiological and biochemical activities in the body. However, some of these heavy metals in high doses can be harmful to the body while others such as cadmium, mercury, lead, chromium, silver, and arsenic in minute quantities have delirious effects in the body causing acute and chronic toxicities in humans. The focus of this chapter is to describe the various mechanism of intoxication of some selected heavy metals in humans along with their health effects. Therefore it aims to highlight on biochemical mechanisms of heavy metal intoxication which involves binding to proteins and enzymes, altering their activity and causing damage. More so, the mechanism by which heavy metals cause neurotoxicity, generate free radical which promotes oxidative stress damaging lipids, proteins and DNA molecules and how these free radicals propagate carcinogenesis are discussed. Alongside these mechanisms, the noxious health effects of these heavy metals are discussed.",book:{id:"7111",slug:"poisoning-in-the-modern-world-new-tricks-for-an-old-dog-",title:"Poisoning in the Modern World",fullTitle:"Poisoning in the Modern World - New Tricks for an Old Dog?"},signatures:"Godwill Azeh Engwa, Paschaline Udoka Ferdinand, Friday Nweke Nwalo and Marian N. Unachukwu",authors:[{id:"241837",title:"Mr.",name:"Godwill Azeh",middleName:null,surname:"Engwa",slug:"godwill-azeh-engwa",fullName:"Godwill Azeh Engwa"},{id:"274194",title:"BSc.",name:"Paschaline Ferdinand",middleName:null,surname:"Okeke",slug:"paschaline-ferdinand-okeke",fullName:"Paschaline Ferdinand Okeke"},{id:"286975",title:"Dr.",name:"Friday",middleName:null,surname:"Nweke Nwalo",slug:"friday-nweke-nwalo",fullName:"Friday Nweke Nwalo"},{id:"286976",title:"Dr.",name:"Marian",middleName:null,surname:"Unachukwu",slug:"marian-unachukwu",fullName:"Marian Unachukwu"}]},{id:"65467",title:"Anesthesia Management for Large-Volume Liposuction",slug:"anesthesia-management-for-large-volume-liposuction",totalDownloads:6203,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The apparent easiness with which liposuction is performed favors that patients, young surgeons, and anesthesiologists without experience in this field ignore the many events that occur during this procedure. Liposuction is a procedure to improve the body contour and not a surgery to reduce weight, although recently people who have failed in their plans to lose weight look at liposuction as a means to contour their body figure. Tumescent liposuction of large volumes requires a meticulous selection of each patient; their preoperative evaluation and perioperative management are essential to obtain the expected results. The various techniques of general anesthesia are the most recommended and should be monitored in the usual way, as well as monitoring the total doses of infiltrated local anesthetics to avoid systemic toxicity. The management of intravenous fluids is controversial, but the current trend is the restricted use of hydrosaline solutions. The most feared complications are deep vein thrombosis, pulmonary thromboembolism, fat embolism, lung edema, hypothermia, infections and even death. The adherence to the management guidelines and prophylaxis of venous thrombosis/thromboembolism is mandatory.",book:{id:"6221",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery"},signatures:"Sergio Granados-Tinajero, Carlos Buenrostro-Vásquez, Cecilia\nCárdenas-Maytorena and Marcela Contreras-López",authors:[{id:"273532",title:"Dr.",name:"Sergio Octavio",middleName:null,surname:"Granados Tinajero",slug:"sergio-octavio-granados-tinajero",fullName:"Sergio Octavio Granados Tinajero"}]},{id:"30178",title:"Chest Mobilization Techniques for Improving Ventilation and Gas Exchange in Chronic Lung Disease",slug:"chest-mobilization-techniques-for-improving-ventilation-and-gas-exchange-in-chronic-lung-disease",totalDownloads:31227,totalCrossrefCites:0,totalDimensionsCites:5,abstract:null,book:{id:"648",slug:"chronic-obstructive-pulmonary-disease-current-concepts-and-practice",title:"Chronic Obstructive Pulmonary Disease",fullTitle:"Chronic Obstructive Pulmonary Disease - Current Concepts and Practice"},signatures:"Donrawee Leelarungrayub",authors:[{id:"73709",title:"Associate Prof.",name:"Jirakrit",middleName:null,surname:"Leelarungrayub",slug:"jirakrit-leelarungrayub",fullName:"Jirakrit Leelarungrayub"}]}],onlineFirstChaptersFilter:{topicId:"3",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81663",title:"Cultural Competence and the Education of CSD Professionals in Times of COVID-19",slug:"cultural-competence-and-the-education-of-csd-professionals-in-times-of-covid-19",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.104649",abstract:"This manuscript aims to discuss the experiences and expectations regarding the cultural competence of Brazilian CSD students and the challenges brought by the COVID-19 pandemic. Cultural awareness has been one of the competencies focused on by CSD programs in Brazil. However, travel and face-to-face contact with persons from different cultures and environments is just one of the possible ways of experiencing cultural awareness. The interruption of these opportunities due to the COVID-19 pandemic did not reduce the interest in learning and improving cultural abilities. It is possible to think about alternatives for embedding discussions and experiences regarding cultural sensitivity in students’ routine studies and practice.",book:{id:"11592",title:"COVID-19 Pandemic, Mental Health and Neuroscience - New Scenarios for Understanding and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/11592.jpg"},signatures:"Fernanda Dreux M. Fernandes, Maria Vitoria do Amaral and Cibelle La Higuera Amato"},{id:"82886",title:"Polysaccharide Chiral Stationary Phases for the Achiral and Chiral Separation of Cannabinoids",slug:"polysaccharide-chiral-stationary-phases-for-the-achiral-and-chiral-separation-of-cannabinoids",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.106251",abstract:"Polysaccharide-based chiral stationary phases (CSPs) have been widely utilized in the pharmaceutical, agricultural, and natural product industries since their first-reported use and subsequent commercialization more than 50 years ago. Although they have been traditionally used for the separation of small drug molecules containing one or more chiral centers, their uses have recently grown to include achiral separations in emerging fields like the cannabis industry. The ability to separate and study individual cannabinoids is critical to understanding their impact in both medicinal and recreational applications. Furthermore, it is not difficult to envision a future where cannabinoids, particularly for medicinal use, are treated like pharmaceuticals—that is requiring rigorous purity testing, including the determination of chiral purity. While current methods of analysis are sufficient for the separation of achiral cannabinoid mixtures, some critical chiral pairs like cannabichromene cannot be separated fully. This is where the use of polysaccharide CSPs is and will continue to be important, as a chiral resolution will be needed to satisfy these potential requirements. This chapter will cover an introduction and evolution of polysaccharide CSPs, including a discussion on their unique separations mechanism, and review a number of the applications described in the literature of their uses for the achiral and chiral separation of cannabinoids.",book:{id:"11714",title:"Cannabinoids - Recent Perspectives and Applications in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/11714.jpg"},signatures:"Weston J. Umstead"},{id:"83022",title:"Influence of Maternal Exercise on Maternal and Offspring Metabolic Outcomes",slug:"influence-of-maternal-exercise-on-maternal-and-offspring-metabolic-outcomes",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.106566",abstract:"Epigenetic transmission of metabolic disease to an offspring increases their risk for development of metabolic disease later in life. With the increasing rates of obesity in women of child-bearing age it is critical to develop strategies to prevent perpetuating metabolic disease across generations. Maternal exercise during gestation imprints offspring metabolic phenotype, thus increasing their imperviousness to metabolic assaults later in life. In rodent models, maternal exercise before and during gestation leads to enhanced offspring glycemic control, mitochondrial bioenergetics, and lower adiposity, which decreases their risk for development of future metabolic disease. In humans, maternal gestational exercise decreases pregnancy complications and improves maternal and offspring metabolism on both the whole-body and the cellular level. Maternal exercise restores the obesity-induced metabolic derangements, restoring maternal and offspring metabolic phenotype. While unknown, different exercise modalities might have a differential effect, however, evidence remains scarce.",book:{id:"11879",title:"Maternal and Child Health",coverURL:"https://cdn.intechopen.com/books/images_new/11879.jpg"},signatures:"Filip Jevtovic and Linda May"},{id:"82906",title:"Emerging Trends in the Management of Cryptogenic Epilepsy",slug:"emerging-trends-in-the-management-of-cryptogenic-epilepsy",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.106382",abstract:"Cryptogenic epilepsy, accounting for ~40% of adult-onset epilepsies and a lesser proportion in paediatrics, is defined as epilepsy of presumed symptomatic nature in which the cause has not been identified. It has a higher prevalence of refractory seizures when compared to those with idiopathic epilepsy (40 vs. 26%). These patients are usually treated with multiple anti-epileptic drugs, yet the total number of which used is inversely proportional to their efficacy. Moreover, these children may have significantly worse behavioural problems and can result in substantial cognitive impairments when older. Luckily, the number of cryptogenic epilepsy cases is diminishing due to better diagnostic abilities in recent years. We aim to divide this chapter into three parts. First, we hope to discuss our working algorithm and explain the use and advantages of different imaging modalities including high-field 3-Tesla MRI with morphological analysis for accurate localisation of the epileptogenic foci. We shall then elaborate the concept of the epileptogenic circuit and explore the selection criteria for more invasive approaches, such as depth electrodes and SEEG. Last but not the least, we aim to discuss the surgical treatments, including VNS and DBS, and their outcomes in these patients.",book:{id:"11585",title:"Epilepsy - Seizures Without Triggers",coverURL:"https://cdn.intechopen.com/books/images_new/11585.jpg"},signatures:"Joyce Shuk Wan Chow and Tak Lap Poon"},{id:"82941",title:"Current and Potential Applications of Artificial Intelligence in Metabolic Bariatric Surgery",slug:"current-and-potential-applications-of-artificial-intelligence-in-metabolic-bariatric-surgery",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.106365",abstract:"Artificial intelligence (AI) is an umbrella term, which refers to different methods that simulate the process of human learning. As is the case with medicine in general, the field of bariatric metabolic surgery has lately been overwhelmed by evidence relevant to the applications of AI in numerous aspects of its clinical practice, including prediction of complications, effectiveness for weight loss and remission of associated medical problems, improvement of quality of life, intraoperative features, and cost-effectiveness. Current studies are highly heterogeneous regarding their datasets, as well as their metrics and benchmarking, which has a direct impact on the quality of research. For the non-familiar clinician, AI should be deemed as a novel statistical tool, which, in contradistinction to traditional statistics, draws their source data from real-world databases and registries rather than idealized cohorts of patients and is capable of managing vast amounts of data. This way, AI is supposed to support decision-making rather than substitute critical thinking or surgical skill development. As with any novelty, the clinical usefulness of AI remains to be proven and validated against established methods.",book:{id:"11687",title:"Bariatric Surgery - Past and Present",coverURL:"https://cdn.intechopen.com/books/images_new/11687.jpg"},signatures:"Athanasios G. Pantelis"},{id:"82407",title:"Current Diagnostic Tests for Dry Eye Disease in Sjögren’s Syndrome",slug:"current-diagnostic-tests-for-dry-eye-disease-in-sj-gren-s-syndrome",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.103671",abstract:"Sjogren’s syndrome (Sicca Syndrome) is mainly characterized by the presence of dry eye disease (DED). The diagnosis of DED in patients with Sjogren’s syndrome has been limited to tests such as the Schirmer test, tear breakup time (TBUT), and corneal stains; however, currently we can evaluate the functional unit in detail lacrimal, which is affected in patients with dry eye and Sjögren’s syndrome; thanks to technology that provides objective details for this difficult diagnostic. The newer evaluations that provide the greatest diagnostic value for Sjogren’s syndrome are: noninvasive keratograph tear rupture time (NIKBUT), tear meniscus height (TMH), Schirmer’s test, meibography, ocular surface disease index (OSDI), Vital stains of the ocular surface, Matrix Metalloproteinase 9 (MMP-9), Tear osmolarity (TearLab); all of these are important complements to the existing tests, which, although less objective, are not substitutable.",book:{id:"11702",title:"Eye Diseases - Recent Advances, New Perspectives and Therapeutic Options",coverURL:"https://cdn.intechopen.com/books/images_new/11702.jpg"},signatures:"María del Rosario Sánchez Valerio"}],onlineFirstChaptersTotal:806},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"82804",title:"Psychiatric Problems in HIV Care",doi:"10.5772/intechopen.106077",signatures:"Seggane Musisi and Noeline Nakasujja",slug:"psychiatric-problems-in-hiv-care",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82827",title:"Epidemiology and Control of Schistosomiasis",doi:"10.5772/intechopen.105170",signatures:"Célestin Kyambikwa Bisangamo",slug:"epidemiology-and-control-of-schistosomiasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"82817",title:"Perspective Chapter: Microfluidic Technologies for On-Site Detection and Quantification of Infectious Diseases - The Experience with SARS-CoV-2/COVID-19",doi:"10.5772/intechopen.105950",signatures:"Andres Escobar and Chang-qing Xu",slug:"perspective-chapter-microfluidic-technologies-for-on-site-detection-and-quantification-of-infectious",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82667",title:"Perspective Chapter: Analysis of SARS-CoV-2 Indirect Spreading Routes and Possible Countermeasures",doi:"10.5772/intechopen.105914",signatures:"Cesare Saccani, Marco Pellegrini and Alessandro Guzzini",slug:"perspective-chapter-analysis-of-sars-cov-2-indirect-spreading-routes-and-possible-countermeasures",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82559",title:"Perspective Chapter: Bioinformatics Study of the Evolution of SARS-CoV-2 Spike Protein",doi:"10.5772/intechopen.105915",signatures:"Črtomir Podlipnik, Radostina Alexandrova, Sebastian Pleško, Urban Bren and Marko Jukič",slug:"perspective-chapter-bioinformatics-study-of-the-evolution-of-sars-cov-2-spike-protein",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82521",title:"Challenges in Platelet Functions in HIV/AIDS Management",doi:"10.5772/intechopen.105731",signatures:"Gordon Ogweno",slug:"challenges-in-platelet-functions-in-hiv-aids-management",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Future Opportunities and Tools for Emerging Challenges for HIV/AIDS Control",coverURL:"https://cdn.intechopen.com/books/images_new/11575.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82701",title:"Pathology of Streptococcal Infections",doi:"10.5772/intechopen.105814",signatures:"Yutaka Tsutsumi",slug:"pathology-of-streptococcal-infections",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yutaka",surname:"Tsutsumi"}],book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82634",title:"Bacterial Sexually Transmitted Disease",doi:"10.5772/intechopen.105747",signatures:"Lebeza Alemu Tenaw",slug:"bacterial-sexually-transmitted-disease",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"82552",title:"Perspective Chapter: SARS-CoV-2 Variants - Two Years Post-Onset of the Pandemic",doi:"10.5772/intechopen.105913",signatures:"Adekunle Sanyaolu, Aleksandra Marinkovic, Stephanie Prakash, Chuku Okorie, Abdul Jan, Priyank Desai, Abu Fahad Abbasi, Jasmine Mangat, Zaheeda Hosein, Kareem Hamdy, Nafees Haider, Nasar Khan, Rochelle Annan, Olanrewaju Badaru, Ricardo Izurieta and Stella Smith",slug:"perspective-chapter-sars-cov-2-variants-two-years-post-onset-of-the-pandemic",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"82380",title:"Evolution of Parasitism and Pathogenic Adaptations in Certain Medically Important Fungi",doi:"10.5772/intechopen.105206",signatures:"Gokul Shankar Sabesan, Ranjit Singh AJA, Ranjith Mehenderkar and Basanta Kumar Mohanty",slug:"evolution-of-parasitism-and-pathogenic-adaptations-in-certain-medically-important-fungi",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fungal Infectious Diseases - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11400.jpg",subseries:{id:"4",title:"Fungal Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Fungal Infectious Diseases",value:4,count:1,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:3,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:5,group:"subseries"},{caption:"Viral Infectious Diseases",value:6,count:10,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ghana Health Service",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Brasília",country:{name:"Brazil"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"1",type:"subseries",title:"Oral Health",keywords:"Oral Health, Dental Care, Diagnosis, Diagnostic Imaging, Early Diagnosis, Oral Cancer, Conservative Treatment, Epidemiology, Comprehensive Dental Care, Complementary Therapies, Holistic Health",scope:"
\r\n\tThis topic aims to provide a comprehensive overview of the latest trends in Oral Health based on recent scientific evidence. Subjects will include an overview of oral diseases and infections, systemic diseases affecting the oral cavity, prevention, diagnosis, treatment, epidemiology, as well as current clinical recommendations for the management of oral, dental, and periodontal diseases.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/1.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11397,editor:{id:"173955",title:"Prof.",name:"Sandra",middleName:null,surname:"Marinho",slug:"sandra-marinho",fullName:"Sandra Marinho",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGYMQA4/Profile_Picture_2022-06-01T13:22:41.png",biography:"Dr. Sandra A. Marinho is an Associate Professor and Brazilian researcher at the State University of Paraíba (Universidade Estadual da Paraíba- UEPB), Campus VIII, located in Araruna, state of Paraíba since 2011. She holds a degree in Dentistry from the Federal University of Alfenas (UNIFAL), while her specialization and professional improvement in Stomatology took place at Hospital Heliopolis (São Paulo, SP). Her qualifications are: a specialist in Dental Imaging and Radiology, Master in Dentistry (Periodontics) from the University of São Paulo (FORP-USP, Ribeirão Preto, SP), and Doctor (Ph.D.) in Dentistry (Stomatology Clinic) from Hospital São Lucas of the Pontifical Catholic University of Rio Grande do Sul (HSL-PUCRS, Porto Alegre, RS). She held a postdoctoral internship at the Federal University from Jequitinhonha and Mucuri Valleys (UFVJM, Diamantina, MG). She is currently a member of the Brazilian Society for Dental Research (SBPqO) and the Brazilian Society of Stomatology and Pathology (SOBEP). Dr. Marinho's experience in Dentistry mainly covers the following subjects: oral diagnosis, oral radiology; oral medicine; lesions and oral infections; oral pathology, laser therapy and epidemiological studies.",institutionString:null,institution:{name:"State University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,series:{id:"3",title:"Dentistry",doi:"10.5772/intechopen.71199",issn:"2631-6218"},editorialBoard:[{id:"267724",title:"Prof.",name:"Febronia",middleName:null,surname:"Kahabuka",slug:"febronia-kahabuka",fullName:"Febronia Kahabuka",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZpJQAW/Profile_Picture_2022-06-27T12:00:42.JPG",institutionString:"Muhimbili University of Health and Allied Sciences, Tanzania",institution:{name:"Muhimbili University of Health and Allied Sciences",institutionURL:null,country:{name:"Tanzania"}}},{id:"70530",title:"Dr.",name:"Márcio",middleName:"Campos",surname:"Oliveira",slug:"marcio-oliveira",fullName:"Márcio Oliveira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRm0AQAS/Profile_Picture_2022-08-01T12:34:46.jpg",institutionString:null,institution:{name:"State University of Feira de Santana",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82735",title:"The Influence of Salivary pH on the Prevalence of Dental Caries",doi:"10.5772/intechopen.106154",signatures:"Laura-Cristina Rusu, Alexandra Roi, Ciprian-Ioan Roi, Codruta Victoria Tigmeanu and Lavinia Cosmina Ardelean",slug:"the-influence-of-salivary-ph-on-the-prevalence-of-dental-caries",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82357",title:"Caries Management Aided by Fluorescence-Based Devices",doi:"10.5772/intechopen.105567",signatures:"Atena Galuscan, Daniela Jumanca and Aurora Doris Fratila",slug:"caries-management-aided-by-fluorescence-based-devices",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"81894",title:"Diet and Nutrition and Their Relationship with Early Childhood Dental Caries",doi:"10.5772/intechopen.105123",signatures:"Luanna Gonçalves Ferreira, Giuliana de Campos Chaves Lamarque and Francisco Wanderley Garcia Paula-Silva",slug:"diet-and-nutrition-and-their-relationship-with-early-childhood-dental-caries",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:69,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:65,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:56,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:93,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:191,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:110,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:114,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:110,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/49021",hash:"",query:{},params:{id:"49021"},fullPath:"/chapters/49021",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()