Open access peer-reviewed chapter

Anticancer Plants in Islamic Traditional Medicine

Written By

Behjat Javadi, Milad Iranshahy and Seyed Ahmad Emami

Submitted: May 29th, 2014 Reviewed: June 23rd, 2015 Published: September 2nd, 2015

DOI: 10.5772/61111

Chapter metrics overview

2,214 Chapter Downloads

View Full Metrics


Islamic Traditional Medicine (ITM) is a holistic and comprehensive medical school that has antecedents over 12 centuries ago.


  • Anticancer Plants
  • Cancer treatment

1. Introduction

Islamic Traditional Medicine (ITM) is a holistic system of medicine which flourished during the Islamic Golden Age (750-1258 AD). It was practiced and taught throughout the Islamic territory. In that era, Muslim and non-Muslim medical scholars, especially Iranian physicians and pharmacists, translated the scientific knowledge which they inherited from ancient Greece and Iran. They endeavored to revive and develop this medical knowledge, remove superstitious ideas and faults from it, and establish an authentic medical school. Although most ITM scientists were not Arabs, the majority of their books are written in Arabic, the lingua franca of the Islamic civilization. Razi (Razhes; 865-925 AD), Ahwazi (Haly Abbas; 930-994 AD), Avicenna (980-1037AD), Jorjani (1042-1136 AD), and Aqili Khorasani (18th century) are eminent Iranian physicians who had the most contributions to ITM promotion.

Although significant progress has been made in cancer control in the last few decades, the effectiveness of modern therapeutic approach is often limited by toxic effects on other organs. Moreover, a large number of people in the world have limited or no access to cancer treatment services. Accordingly, utilizing information from traditional medicine systems to identify alternative methods to prevent and control cancer would be desirable. Furthermore, use of traditional medicine can lead to the discovery of new bioactive compounds as well as available, safe and affordable drugs.

In Islamic medicine, cancer was a known disease with many options for treatment. In the majority of ITM textbooks there is a chapter dedicated to cancer definition, symptoms, etiology, diagnosis, prevention, and management.

In this chapter we will discuss cancer, its etiology and management in the view of Islamic Traditional Medicine. In addition, ITM medicinal plants used to treat different types of cancers and modern pharmacological data confirming their traditional usage will be inserted in tables.


2. Cancer definition from ITM point of view

ITM is based on the theory of humorism which posits that the human body consists of four basic fluids, namely humors. The four humors are blood, phlegm, yellow bile, and black bile and each one corresponds to paired qualities: blood is hot and wet, phlegm is cold and wet, yellow bile is hot and dry, and black bile is cold and dry. A proper balance between humors is essential to maintaining health. Accordingly, all diseases and disabilities including cancer result from an excess or putridity of these humors.

According to ITM, cancer is a kind of black bile swelling which is accompanied by pain, pulsation, inflammation, and angiogenesis [1]. Blood vessels surrounding a tumor are overfilled and stiff and contain a dark and black blood [2]. The reason for the appellation “cancer” is due to the similarity between the shape of a cancerous tumor affecting an organ and a crab grasping its prey. It may also due to the spherical shape and darkness of tumor and origination of blood vessels from its milieu which resembles crab’s feet [3]. Cancer frequently affects soft and porous organs and for this reason, it mainly involves breast and innervated organs (such as uterus) in females, and throat, larynx, testicles and penis in males [1].

Initially, cancer is the size of a broad bean or smaller, hard, spherical, mobile, dark, and slightly warm [3]. It will then begin to grow gradually and reach to the size of a walnut or larger. It might be curable during its early stages of development, but diagnosis is difficult in these stages. On the other hand, upon progression and appearance of clinical manifestations, treatment of cancer would be difficult or even impossible [1].

Ocular, nasal cavity, breast, uterine, liver, and other visceral organs and skin cancers are among the most frequently mentioned cancers in ITM texts. Cancers are divided into two main types: ulcerative and nonulcerative cancers.

Some cancerous tumors are easily ulcerated but some others are not. Cancerous wounds usually spread centripetally and their discharges are purulent. Use of appropriate medications can prevent the ulceration of susceptible tumors. In contrast, some cancerous tumors that are not prone to ulceration would be ulcerated following the administration of improper drugs [1].

Advanced and large tumors are very sensitive and painful, with a distinctive red to yellow color and a caustic and burning pain. Such tumors might erupt spontaneously and a purulent and bloody discharge may appear on wound surface. The resulting wounds are very sensitive and can produce corrosion in surrounding tissues [2].


3. Cancer etiology

According to ITM, excessive accumulation of abnormal black bile in a body site is the main cause of cancer. Aging, prolonged stress exposure, consuming cold and dry food items and hardwork are leading causes of increasing black bile production [1]. In some cases, hemorrhage (such as menstruation, abnormal uterine hemorrhage, or hemorrhoids bleeding) is a defending mechanism against the accumulation of bad humors in the body. Therefore, completely stopping the bleeding by surgical procedures and other medications can result in a black bile accretion and consequently increasing the risk of cancer and other diseases originating from excessive black bile (including cancer, melancholia, liver problems, psoriasis, etc.) [2].


4. Cancer management

Islamic traditional medicine suggested multiple strategies to the control and treatment of cancer. Surgical manipulation, venesection, diet adjustment, and use of natural medicines including solid, semisolid, and liquid dosage forms with oral and external route of administration are among these methods.

4.1. Surgery and manipulation

Surgery is used to eradicate tumors in their early stages of development. Small tumors which are distant from vital organs are good candidates for surgery. The tumor should be cut from its origin and some parts of adjacent nonaffected tissues should be excised as well. In addition, bleeding should be allowed until large blood volumes come out and surrounding tissue should be pressed in order to expel blood mixed with black bile thoroughly. Afterwards, the injured site should be salved or cauterized. However, if the cancerous tumor is located in the vicinity of sensitive and vital organs, surgical procedure and cauterization would be very dangerous and may change the cancer to a nonhealing ulcer [2, 4].

Regular venesection is also suggested during the initial phases of cancer, to withdraw black bile blood from body.

4.2. Nutrition therapy

In Islamic traditional medicine, dietary recommendations have been proposed to slow the progression of advanced tumors that cannot be manipulated due to metastasis concerns. In these cases, nutritional care would increase the longevity of patients. Food items with wet temperament which produce high-quality blood like beer, almond oil, fresh small fishes, soft-boiled egg yolk, lamb, bird meat, ripe and sweet apples, sweet plums, bananas, raisin, black gram (Vigna mungo (L.) Hepper), spinach (Spinacia oleracea L.), pumpkin, light wine, and fresh cow’s milk and dough are administered [1]. On the other hand, excessive intake of foodstuffs which induce black bile production in the body (such as eggplant (Solanum melongena L.), lentil (Lens esculenta Moench), date (Phoenix dactylifera L.), cabbage (Brassica oleracea L.), beef, black and thick wine, and salt-cured meat) is severely restricted [5].

4.3. Pharmacotherapy

As mentioned above, from the Islamic Traditional Medicine point of view, an excess of abnormal black bile in various body sites can lead to cancer formation. In order to treat cancer, black bile should be expelled from the body by using an appropriate purgative, and then preventing the generation and accumulation of black bile in vessels as far as possible [2]. For this purpose, many single and compound medications of herbal, animal, and mineral origin have been recommended.

The essential point in pharmacotherapy of cancers and tumors is avoiding the use of caustic and irritant medications to prevent further stimulation and ulceration [2].

Cancer medications can be administered internally (oral, enemas, vaginal douches, etc.) or applied topically (cataplasms, topical oils, liniments, lotions, dusting powders, etc.) [1, 3]. Administration of local anticancer drugs has the following purposes: cancer eradication, metastasis prevention, preventing ulceration, and healing ulcerated tumors.


5. Mechanisms of action of anticancer drugs

Anticancer drugs act through different mechanisms:

  1. Black bile purgatives are common anticancer drugs which can facilitate elimination of abnormal black bile from whole body. Purgatives should be administered frequently. From the ITM point of view, clover dodder (Cuscuta epithymum Murr.) is the most valuable black bile purgative, which is commonly used to treat diseases caused by a surplus or imbalance of this humor such as all types of cancer, melancholia, leprosy, vitiligo, etc. For this purpose, a mixture of clover dodder with cheese whey or hydromel should be administered frequently. A decoction of the plant in oxymel is also prescribed [3]. Common polypody (Polypodium vulgare L.), French lavender (Lavandula stoechas L.), colocynth [Citrullus colocynthis (L.) Schrad.], and black hellebore (Helleborus niger L.) are other potent black bile purgatives.

  2. Antiulcer drugs can inhibit ulceration of tumors. Urtica pilulifera L. and Aloe vera (L.) Burm.f. are examples of such plants.

  3. Wound-healing medications accelerate healing of cancerous wounds. Althaea officinalis L., Brassica oleracea L., and Viola odorata L. have wound-healing activity.

  4. Analgesic drugs relieve cancer pain. Parietaria officinalis L. and Solanum nigrum L. are plants with analgesic effect.


6. Anticancer plants

One hundred and seven plant species from 53 families have been mentioned to be effective in the management and curing of different types of cancers. Plants Latin and Arabic names, their families, medicinal parts, dosage forms, and routes of administration are given in Table 1.

Scientific name Family Arabic common
Part used Cancer type Administration and locality Ref.
Acacia nilotica (L.) Delile
syn. Acacia arabica (Lam.) Willd.
Fabaceae samgh G eye ocular suppository [3]
Allium ampeloprasum L.
syn. Allium porrum L.
Liliaceae korrath Le all types decoction(O) [6]
Aloe vera (L.) Burm.f. Liliaceae sabr Sa uterus
ulcerating tumor
internal organs
[1, 3]
Alpinia officinarum Hance Zingiberaceae khawlanjan Rh all types electuary(O) [8, 9]
Althaea officinalis L. Malvaceae khatmi R all types
vaginal bath
[1, 3]
[2, 7]
Alyssum homalocarpum (Fisch. & C. A.Mey.) Boiss. Brassicaceae tudari
Se internal organs
cataplasm [2, 5, 9-11]
Amaranthus blitum L. Amaranthaceae baghlat al-yamaaniah Ap uterus cataplasm [7]
Anchusa azurea Mill.
syn. Anchusa italica Retz.
Boraginaceae lesan al-thawr Le all types syrup [7]
Anethum graveolens L. Apiaceae shebeth Ap uterus unguent
topical oil
[1, 3]
Beta vulgris L. Chenopodiaceae salq Le all types decoction(O) [6]
Boswellia sacra Flueck.
syn. Boswellia carteri Birdw.
Burseraceae kondor Ogr eye condensed smoke as collyrium [2, 3, 5,
8, 9]
Brassica oleracea L. Brassicaceae karnab Le
all types
vaginal bath
cooked (E)
[1, 3, 7]
[6, 8, 9]
Capparis spinosa L. Capparaceae kabar Rb uterus
all types
[1, 5]
Carthamus tinctorius L. Asteraceae moasfar Se all types raw seeds(O) [6]
Carum carvi L. Apiaceae kerawia Se all types raw seeds(O) [6]
Cassia fistula L. Fabaceae khiar shanbar Lg tongue
ulcerated cancer
extract (E) [3]
Chamaemelum nobile (L.) All. syn. Anthemis nobilis L. Asteraceae babunaj Fl uterus unguent
topical oil
[1, 3, 7, 12]
Cicer arietinum L. Fabaceae homs Se skin
all types
ulcerating tumor
[8, 9]
Cichorium intybus L. Asteraceae hindeba Le uterus
all types
ulcerating tumor
[1, 6, 8]
Cinnamomum cassia (L.)
Luraceae salikhah Br liver electuary [2]
Cistus creticus L.
syn. Cistus ladaniferus Curtis
Cistaceae ladan Fl all types oil (E) [3]
Citrullus colocynthis (L.) Schrad. Cucurbitaceae hanzal Fr internal organs decoction(O)
Commiphora mukul (Hook. ex Stocks) Engl. Burseraceae moql Ogr uterus unguent [1, 3, 7]
Convolvulus pseudoscammonia C. Koch Convolvulaceae saqmunia Rdj internal organs decoction(O)
Cordia myxa L. Boraginaceae debgh Fr uterine cancer decoction(O) [12]
Coriandrum sativum L. Apiaceae kozborah Le
all types
vaginal douche
extract (E)
[1, 3]
[2, 7, 9]
[8, 9]
[6, 7]
Crocus sativus L. Iridaceae za`afaran St eye
metastatic ulcerating tumor
[1, 2, 11, 13]
Cucurbita maxima Duchartre,
Cucurbita pepo L.
Cucurbitaceae qar`a Fr internal organs cooked (O)
extract lotion
[1, 6-8]
Cuscuta epithymum (L.) L. Cuscutaceae aftimun Ap all types
ulcerating tumor
[1-4, 6, 8-10]
Cymbopogon schoenanthus (L.) Spreng. Poaceae ezkher Fl liver electuary [2]
Cynara scolymus L. Asteraceae kankarzad G cataplasm [2]
Dorema ammoniacum D. Don Apiaceae oshaq Ogr all types unguent [3, 8, 14]
Dracunculus vulgaris Schott syn. Arum dracunculus L. Araceae luf al-hayyah Be
[2, 3, 5, 8-10]
Ecballium elaterium (L.) A. Rich. Cucurbitaceae qetha al-hemar Fr all types liniment(E) [1, 3]
Erysimum × cheiri (L.) Crantz
syn. Cheiranthus ×cheiri L.
Brassicaceae kheiri Fl all types
oil(E) [3, 7]
Ferula gummosa Boiss. Apiaceae ghennah Ogr all types unguent [8]
Ficus carica L. Moraceae teen Fr tongue
all types
ulcerating tumor
cooked (O)
[12, 13]
Glycyrrhiza glabra L. Fabaceae sous R all types
vaginal douche
[7, 15]
Helleborus niger L. Ranunculaceae kharbaq aswad R internal organs decoction(O)
[1, 7, 10]
Hordeum vulgare L. Poaceae sha`eer Se all types decoction(O) [1, 3, 6, 7]
Inula helenium L. Asteraceae rasan R skin lotion [14]
Iris × germanica L.
syn. Iris ×florentina L.
irsa R uterus unguent [3]
Jasminum sambac (L.) Aiton
Aegle marmelos (L.) Corrêa ex Roxb.
razeqi Fl uterus unguent
topical oil
Juglans regia L. Juglandaceae Jawz G ulcerating tumor dusting powder(E) [2, 14]
Lactuca sativa (L.) Mill. Asteraceae khas Le all types
[1, 3]
[6, 7]
Laurus nobilis L. Lauraceae hab al-ghar Se tongue
[1, 3]
Lavandula stoechas L. Lamiaceae ostokhoddus Ap internal organs decoction(O)
Lawsonia inermis L Lythraceae henna Le uterus unguent
Lens culinaris Medik.
syn. Lens esculenta Moench
Fabaceae adas Se uterus
ulcerating tumor
vaginal douche
Lilium candidum L. Liliaceae susan Fl uterus unguent
oil (E)
[1, 3]
Linum usitatissimum L. Linaceae katan Se
all types
oil (E)
vaginal bath
decoction (E)
[1, 2, 7]
Liquidambar orientalis Mill. Altingiaceae mi`a Ba all types unguent [3]
Lycium afrum L Solanaceae hozoz Le
uterus extract
vaginal douche
Malva pusilla Sm.
syn. Malva rotundifolia L.
Malvaceae khabaazi Fl uterus vaginal bath
Melilotus officinalis (L.) Pall. Fabaceae eklil al-malek pod eye
cataplasm [1, 3]
Melissa officinalis L. Lamiaceae badranjbuyeh Le all types syrup [7]
Myrtus communis L. Myrtaceae as Se
all types topical oil
extract enema
Narcissus tazetta L. Amaryllidaceae narjes Fl uterus unguent
topical oil
[1, 3]
Olea europaea L. Oleaceae zeytun Fr uterus
metastatic cancerous wounds
topical oil
oil sediment (E)
[1, 3]
Opopanax chironium W.D.J.Koch Apiaceae jawshir Ogr all types unguent [3, 14]
Origanum syriacum L.
syn. Origanum maru L.
Lamiaceae mormahur Ap metastatic cancerous wounds cataplasm [13]
Papaver somniferum L. var. album (Mill.) M.A. Veselovskaya Papaveraceae khashkhash Se
ocular suppository
[1-3, 5, 12]
Parietaria officinalis
Urticaceae hashishatah al-zojaj Le all types extract(E) [5]
Phoenix dactylifera L. Arecaceae tamr Fr tongue decoction(E) [3]
Physalis alkekengi L Solanaceae kaknaj Fr all types
Pinus gerardiana Wall. ex D.Don Pinaceae jalghuzah N all types [6]
Pinus spp. Pinaceae ratinaj Re uterus cataplasm [7]
Pistacia atlantica Desf.
Pistacia terebinthus L.
Anacardiaceae elk al-anbat Ogr uterus
all types
unguent [1, 3, 6, 8]
Pistacia lentiscus L. Anacardiaceae mastaki Ogr all types unguent
[1, 3]
Plantago indica L.
syn. Plantago psyllium L.
Plantaginaceae bazr qotuna Se
ulcerating tumor
all types
[3, 8]
Plantago major L. Plantaginaceae lesan al-hamal Se
ulcerating tumor
vaginal douche
[1-3, 7, 12]
Plantago ovata Forssk.
syn, Plantago ispaghula Roxb. ex Fleming
Plantaginaceae isbaghul Se
all types
vaginal douche [1, 6]
Platanus orientalis L. Plantanaceae dolb Le skin decoction (E)
vaginal bath
Polygonum aviculare L Polygonaceae asa al-ra`ee Ap uterus unguent
extract (E)
[7, 15]
Polypodium vulgare L. Polypodiaceae basfayaj Rh internal organs decoction(O)
[1, 7]
Polyporus officinalis (Vill.) Fr. Polyporaceae ghariqun all types decoction(O) [4, 7]
Portulaca oleracea L. Portulaceae rejlah Le ulcerating tumor
all types
extract liniment enema
[3, 8]
Prunus dulcis (Mill.) D.A.Webb Rosaceae samgh al-llawz G
all types
oil (O)
[1, 3, 6, 12]
Punica granatum L. Punicaceae romman Fr
ulcerating tumor
juice(O) [1]
Raphanus raphanistrum subsp. sativus (L.) Domin
syn. Raphanus sativus L.
Brassicaceae fojl tro all types decoction(O) [6]
Rhus coriaria L. Anacardiaceae sumaagh
Ricinus communis L. Euphorbiaceae kherwa`a Se uterus unguent
oil (E)
[1, 3]
Rosa × damascena Herrm. Rosaceae ward Fl eye
ulcerating tumor
vaginal douche
[2, 3, 7, 12]
Salix aegyptiaca L. Salicaceae khelaf W skin dusting powder(E) [2]
Sempervivum tectorum L. Crassulaceae hay al-alam Fl all types extract
[3, 7]
Sesbania bispinosa
(Jacq.) W. Wight
Fabaceae sisban Le cataplasm [9]
Sisymbrium officinale (L.) Scop.
syn. Erysimum officinale L.
Brassicaceae arismun, khabbe Se hard swelling cancer nonulcerating tumor
[8, 9]
Smilax china
Smilacaceae khashab sini R skin decoction(O) [8]
Solanum americanum Mill.
syn. Solanum nigrum L.
Solanaceae enab al-tha`alab Le uterus
all types
[1-3, 6, 7]
[5, 8-10]
Spinacia oleracea L. Chenopodiaceae esfanakh Le internal organs cooked (O) [1, 6]
Tamarix gallica L. Tamaricaceae tarfa Le
all types
decoction(O) [5]
Tanacetum parthenium (L.) Sch.Bip. Asteraceae oqhowan Fl skin
extract cataplasm
[1, 3]
Terminalia bellirica (Gaertn.) Roxb. Combretaceae amolaj Fr all types liniment [7]
Terminalia chebula Retz. Combretaceae ehalilaj kaboli Fr internal organs decoction(O)
Trigonella foenum-graecum L. Fabaceae holbah Se
all types
[1, 6, 7]
Triticum spelta L. Poaceae khondorus Se all types baked(O) [6]
Urtica pilulifera L. Urticaceae anjorah Se
all types
ulcerating tumor
ash dusting powder(E)
[3, 8, 9, 11, 13]
Valeriana celtica L. Valerianaceae sonbol R liver electuary [2]
Vigna mungo (L.) Hepper syn. Phaseolus mungo L. Fabaceae maash Se internal organs cooked(O) [1, 6]
Viola odorata L. Violaceae banafsaj Ap uterus decoction(E)
vaginal bath
[7, 15]
Vitis vinifera L. Vitaceae enab Urf verjuice
all types
all types
ulcerating tumor uterine cancer
concentrated juice(O)
raw Fr(O)
[3, 6, 7]
[6, 10]
Zingiber officinale Roscoe Zingiberaceae zanjabil Rh liver
Ziziphus jujuba Mill.
syn. Ziziphus vulgaris Lam.
Rhamnaceae onnab Fr ulcerating tumor
decoction(O) [12]

Table 1.

Medicinal plants mentioned in Islamic Traditional Medicine textbooks effective in the management of cancer.

Use: E = external use, O = oral use. Part used Ap = aerial parts, Ba = balsam, Be = berries, Br = bark, Ff = fresh fruit, Fl = flowers, Fp = fruit pericarp, Fr = fruit, G = gum, Gre = gum resin, Le = leaves, Mu: mucilage, N = nuts, O = oil, Ogr = oleo-gum resin, Ore = oleoresin, R = root, Rb = root bark, Re = resin, Rdj = Root dry juice, Rf = Ripe fruit, Rh = rhizome, Se = seeds, Sh =shoots, So = seed oil, St = stigma, Tap root = Tro, Sa = sap, Urf = Unripe fruit, W = wood, Wp = whole plant.


7. Anticancer and cytotoxic activities of ITM plant species

Many ITM-suggested plants have been shown to exert anticancer activities with different mechanisms such as cytotoxic, antitumor, antiproliferative, cytostatic, and cell-migration-inhibiting effects. Pharmacological data reinterpreting ITM evidence of cancer phytotherapy are given in Table 2.

Species Plant part(s)/compound Solvent Activity Cell line Ref.
Aegle marmelos (L.) Corrêa ex Roxb. Stem bark ethanol cytotoxic K-562, Raji, Jurkat, HEL, Colo38, HL-60, CEM, B-16, MCF-7 and MDA-MB-231 [16-18]
methanol, ethyl acetate and n-hexane Brine shrimp [19]
Stem bark, roots and leaves/Zeorin, dustanin, aegeline, epilupeol, lupenone and marmin - CEM-SS [20]
1-hydroxy-5,7-dimethoxy-2-naphthalene- carboxaldehyde (marmelin) - antitumor HCT-116 colon cancer cell tumor xenograft in nude mice [21]
Allium porrum L. Bulbs/12-keto-porrigenin and 2,3-seco-porrigenin - antiproliferative J774, WEHI 164, P388 and K3R-1 [22]
Bulbs/Porrigenins A and B - IGR-1, J774, WEHI 164 and P388 [23]
Saponins - J774 and WEHI 164 [24]
Aloe vera (L.) Burm.f. Leaves aqueous ethanolic extract (70%) cytotoxic K562 [25]
Flavonoids - MCF-7 [26]
Di(2-ethylhexyl)phthalate - K562, HL60 and U937 [27]
Aloe-emodin - cytotoxic and antitumor Neuroblastoma cells (IMR-32, IMR-5, AF8, and SJ-N-KP), pPNET cells (TC32) and Ewing’s sarcoma cells (TC106) [28]
PC3 [29]
cytotoxic MCC [30]
U-373MG and U87 glioma cells [31, 32]
T24 human bladder cancer cells [33]
Gastric cancer cells [34]
MCF-7 [35]
antitumor Ehrlich ascitis carcinoma (EAC) [36]
Anthemis nobilis L. Sesquiterpene lactones - cytotoxic HeLa and KB [37]
Beta vulgris L. Root extract and betanin water cytotoxic and antitumor MCF-7, PC3 and HepG2 [38-41]
Boswellia carteri Birdw. α and β-boswellic acid acetate from resin -

inhibits cell migration
HCT-8, A2780 and B16F10
cytotoxic HT-1080
Triterpene acids from resin IMR-32, NB-39 and SK-N-SH [43]
Frankincense oil The bladder carcinoma J82 [44]
Verticilla-4(20),7,11-triene Hep-G2 [45]
Brassica oleracea L. Sulforaphane - cytotoxic MDAH 2774 and SkOV-3 [46]
Erucin CACO-2, HL60, K562 and LNCaP [47]
Leaves acidified methanol HeLa and HepG2 [48]
2-Pyrrolidinone reach extract PC3 and HeLa [49]
Brassinin - PC3 [50]
Capparis spinosa L. Polysaccharides and alkaloids from fruits water cytotoxic and antitumor HepG2 and transplanted ascites tumor H22 [51, 52]
Carthamus tinctorius L. Carthamus tinctorius and Panax ginseng - cytotoxic and antitumor MDA-MB-231 breast cancer cell and normal human mammary gland cell lines [53]
- antitumor T739 lung cancer and S180 Sarcoma in mice [54]
Not mentioned methanol cytotoxic HT-29 [55]
Carum carvi L. Thymoquinone from seeds - cytotoxic TNBC cells [56]
Cassia fistula L. Rhein from flowers - cytotoxic COLO 320 DM [57]
Stem bark methanol [58]
Furanoflavones from stem bark - NB4, A549, SHSY5Y, PC3, and MCF7 [59]
Fistulaquinone A from fruits NB4 and PC3 [60]
Cicer arietinum L. C-25 protein - cytotoxic KB cell line [61]
Cichorium intybus L. Leaves chloroform antiproliferative HeLa, MCF7 and A431 [62]
Lactucin and 13,14-seco-stigma 9(11),14(15)-dien-3alpha-ol - cytotoxic A2780 [63]
Cinnamomum cassia (L.) J.Presl Cinnamaldehyde - cytotoxic HL60 [64]
Bark methanol/hexane/ethyl acetate HeLa, A549, SK-OV-3, SK-MEL-2, XF-498 and HCT-15 [65]
aqueous SiHa [66]
2'-Benzoyloxycinnamaldehyde - LNCaP, PC-3 and DU145 [67]
Coumacasia HL60 and A549 [68]
Cistus creticus L. Labdane-type diterpenoids from leaves - cytotoxic KB, P-388; and NSCLC-N6 [69]
CCRF-CEM, MOLT3, H33AJ-JA-13, HUT78, H9, KM3, NAMALWA, JIYOYE, DAUDI, SDK, K562, HL60 and U973 [70-72]
Shoot ethanol HeLa, MDA-MB-453 and FemX [73]
Commiphora mukul Engl.
Guggulsterones - cytotoxic PC3, HL60 and U973 [74]
Coriandrum sativum L. Linalool - antitumor Sarcoma-180 solid tumor [75]
Leaves ethanol cytotoxic HT-29 [76]
Crocus sativus L.
Stigma ethanol antitumor Sarcoma-180 (S-180), Ehrlich ascites Carcinoma (EAC) and Dalton's lymphoma ascites (DLA) [77]
cytotoxic HeLa, A549 and HepG2 [78, 79]
Crocin, crocetin, safranal and picrocrocin
- HeLa, MCF-7, PC3, k562 and HepG2 [80-86]
Crocin antitumor C26 colon carcinoma [87]
Cucurbita maxima Duchartre, Seeds methanol cytotoxic Brine shrimp [88]
Aerial parts antitumor Ehrlich ascites Carcinoma [89]
Triterpenes - cytotoxic HL60 and P388 [90]
Cucurbita pepo L. Leaves hydroalcoholic cytotoxic HepG2 and CT26 [91]
Cuscuta epithymum Mur. Aerial parts chloroform and hydroalcoholic cytotoxic HeLa, HT29 and MDA-MB-46 [92]
Ecballium elaterium (L.) A. Rich. Cucurbitacin E - cytotoxic ZR-75-1, COLO 679, OV_95_CC3 and PC-3 [93, 94]
Fruits water AGS and KYSE30 [95]
Cucurbitacin-D - NSCLC-N6 [96]
Ficus carica L. Leaves, fruits and latex ethanol, ethyl acetate and dichloromethane cytotoxic HeLa [97]
Glycyrrhiza glabra L. Root cytotoxic 4T1 [98]
Inula helenium L. Root methanol cytotoxic HT-29, MCF-7, Capan-2 and G1 [99]
ethanol cytotoxic MDA-MB-23 [100]
Jasminum sambac (L.) Aiton
Leaves ethanol cytotoxic Brine shrimp [101]
Juglans regia L. Juglanin A and B - cytotoxic Hep G2 [102]
Leaves chloroform BHY, MCF7,
and HT-29
Juglanones A and B - A549, MCF-7, BEL-7402, HeLa, COLO205, BGC-823, and
5,7-Dihydroxy-3,4′-dimethoxyflavone and regiolone MCF-7 and BHY [105]
Lactuca sativa (L.) Mill. Sesquiterpene lactones - cytotoxic HeLa and HCT-116 [106]
Laurus nobilis L. Leaves n-hexane cytotoxic Brine shrimp [107]
Sesquiterpene lactones - Jurkat
, HL-60 and LoVo
A2780 [109]
Essential oil - C32, ACHN, LNCaP, and MCF-7 [110]
Lawsonia inermis L. Bicoumarin, biflavonoid, and biquinone compounds from flowers - cytotoxic MCF-7, Hela, HCT-116, and HT-29 [111]
Linum usitatissimum L. Secoisolariciresinol and anhydrosecoisolariciresinol - cytotoxic MCF-7 and MDA-MB-231 [112]
Melissa officinalis L. Essential oil - cytotoxic A549, MCF-7, Caco-2, HL-60, K562 and B16F10 [113]
Aerial parts ethanol HCT-116 [114]
Leaves water cytotoxic and antitumor MCF-7, MDA-MB-468 and MDA-MB-231; DMBA-induced mammary tumors [115]
Citral and essential oil - cytotoxic GBM [116]
Myrtus communis L. Phloroglucinols
- cytotoxic MT-4 cells,
HepG2 and DU145
Narcissus tazetta L. Alkaloids - [118]
Stems and leaves alkaloid extraction cytotoxic HL-60, K562, KT1/A3, and A3 [119]
Olea europaea L. Erythrodiol - cytotoxic HL-60 [120]
Hydroxytyrosol rich extract from leaves methanol/water MCF-7 [121]
Maslinic acid - HT29 [122]
Tyrosol esters MCF10A [123]
Papaver somniferum L. var. album (Mill.) M.A. Noscapine - anticancer Refractory Multiple Myeloma, Non-Hodgkin's Lymphoma and Chronic Lymphocytic Leukemia [124]
Physalis alkekengi L. 5α-Hydroxy-25,27-dihydro-4,7-didehydro-7-deoxyneophysalin A - cytotoxic PC-3 and LNCaP [125]
Physalin HT1080 and A375-S2 [126, 127]
Pistacia atlantica Desf.
Polyphenol-rich extract
ethanol/water cytotoxic HT29 [128]
Pistacia lentiscus L. Gum extract hexane cytotoxic HCT116 [129]
Plantago major L. Leaves hot water cytotoxic Antileukemia and anticarcinoma [130]
Luteolin-7-O-β-glucoside - TK-10, MCF-7 and UACC-62 [131]
Platanus orientalis L. Flavonoids - cytotoxic Human leukemic cell lines and skin cancer cell lines [132-136]
Polygonum aviculare L Aerial parts methanol cytotoxic MCF-7 [137]
Portulaca oleracea L. Triterpenoids - cytotoxic HepG2 [138]
Not mentioned methanol CNE-1, HeLa
and HT-29 and MCF-7
Seed HepG2 [140]
Alkaloids - K562, A549, MCF-7 and MDA-MB-435 [141]
Punica granatum L. Genistein and extract not mentioned cytotoxic MCF-7, MMTV-Wnt-1, [142]
Polyphenols juice cytotoxic and antitumor BT-474 and MDA-MB-231 [143]
Fruit rind extract and fowers methanol cytotoxic A549 and MCF-7 [144-146]
Galactomannan polysaccharide
- cytotoxic and antitumor A375, HCT116, and HepG2; DLA and EAC murine ascites and EAC solid tumor mouse models [147]
Raphanus sativus L. 4-(Methylthio)-3-butenyl isothiocyanate - cytotoxic murine leukaemia cell line (L1210) [148]
4-Methylthio-butanyl derivatives - cytotoxic A549, SK-OV-3, SK-MEL-2, and HCT-15 [149]
Ricinus communis L. Leaves volatile oil cytotoxic SK-MEL-28 and HeLa [150]
Rosa × damascena Mill. Flowers volatile oil cytotoxic SW742 [151]
Smilax china
Phenylpropanoid glycosides - cytotoxic
KB, HeLa, DLD-1, MCF-7, A-549 and Med [152]
Kaempferol-7-O-beta-D-glucoside A375 and HL60 [153]
Polyphenols MCF-7 and MDA-MB-231 [154]
Solanum nigrum L. Steroidal glycosides
- cytotoxic
HT-29, HCT-15, LNCaP, PC-3, T47D, HepG2, NCI-H460, MCF-7, SF-268 and MDA-MB-231 [155, 156]
Glycoprotein MCF-7, HCT-116 and HT-29 [157-160]
Aerial parts methanol cytotoxic HeLa and Vero [161]
Leaves water AU565 [162]
Not mentioned hydro-alcoholic HepG2 and CT26 [91]
Solamargine - K562 [163]
Polyphenol rich extract water PZ-HPV-7 [164]
Berries ethanol Jurkat and HL-60 [165]
Tanacetum parthenium L. Parthenolide - anticancer Leukemia [166]
Terminalia chebula Willd. ex Flem. Tannins - cytotoxic A-549, SK-OV-3, SK-MEL-2, XF-498 and HCT-15 [167]
Fruits methanol HOS-1 [168]
Trigonella foenum-graecum L. Seeds water cytotoxic HL-60
TCP, B-cell lymphomas, FRO and MCF7 [169]
Diosgenin - A549
Viola odorata L. Cyclotides - cytotoxic MCF-7 and MCF-7/ADR [170]
Vitis vinifera L. Resveratrol - cytotoxic 3T6 and HL60 [171]
Seed extract methanol KB cells [172]
Viniferin-enriched extracts ethanol/water HCC1954, HCC1500 and MCF7 [173, 174]
Zingiber officinale Roscoe [6]-Paradol and structurally related compounds - cytotoxic KB [175]
Gingerols and diarylheptanoids - HL-60, A431, K562, HeLa, HCT-116, HT-29 and K562/ADR [176-181]

Table 2.

Anticancer activities of ITM plant species.


8. Conclusion

Taken together, it can be concluded that what physicians of Islamic medicine used for cancer treatment is proven through modern research. Out of 107 plant species which are introduced in Islamic Iranian medicine for cancer treatment, 59 plants or their chemical compounds have proven to possess cytotoxic and antitumor activity in recent investigations and some have entered clinical trials and their effectiveness has been evaluated on humans.

These findings show the profound insight of Islamic physicians on cancer treatment. In spite of the lack of modern facilities and developed equipment, they introduced anticancer plants that have shown cytotoxic properties in new researches. The correlation between these findings signifies the originality of past experiences and studies, representing a worthwhile fund and valuable science dating back more than twelve centuries. This heritage is based on the experiences of thousands years of Greek, Indian and ancient Iranian physicians and relies on immense number of clinical trials on thousands of people. Furthermore, the application of traditional medicinal knowledge reinterpreted by modern data can lead to more effective and evidence-based use of medicinal plants, which can contribute to therapeutic decisions on different illnesses.


  1. 1. Jorjâni SI. Zakhireh Khârazmshâhi (Treasure of Khârazmshâh). Photoprint of the manuscript dated 1206 AD, edited with Introduction by A.A. Saeedi Sirjani. Tehran: The lranian Culture Foundation; 1977. pp. 358, 562-563, 585-586 (in Persian)
  2. 2. Razi MZ. Al-Hâwi fi al-Tibbe (Continens). Toaymi H K (ed). Vol.4. Beirut: Dar Ihya al-Turath al-Arabi; 2002. pp. 5-16 (in Arabic)
  3. 3. Ibn Sina HA. Al-Qanun fi al-Tibb (The Canon of Medicine). Vol.4. New Delhi: Jamia Hamdard; 1998. pp. 195-197(in Arabic)
  4. 4. Ahwazi Arjani AA. Kamel al-Sina'ah al-Tibbiyah (The Perfect Art of the Medicine) (in Arabic). Al-Dassuqi I (ed). Saadat Press; 1877. P.190-191 (in Arabic)
  5. 5. Qarshi I. Al-Shamel fi al-Sinaat al-Tibbiah (Comprehensive Book on the Art of Medicine). Ziedan Y (ed). Vol. 7. Abu Dhabi: al-Majma’ al-Thaqafi (Publications of the Cultural Centre); 1999. pp. 943-944 (in Arabic)
  6. 6. Jorjâni SI. Al-Aghrâz al-Tibbiah wa al-Mabâhethi al-Alâiiah (Medical goals and Alaâii’s discussions). Photoprint of the manuscript dated 1399 AD, edited with Introduction by P.N. Khanlari. Tehran: The Iranian Culture Foundation; 1966. pp. 555-558 (in Persian)
  7. 7. Chashti MAK. Exir-e-Azam. 2 edn., Delhi: Nami Monshi Nolkshur; 1884. pp. 308-313 (in Persian)
  8. 8. Tonekaboni, M.M. Tohfat al-Momenin (Rarity of the Faithful). Qum: Nour Vahy Press; 2011. pp.126-278, 328-423 (in Persian)
  9. 9. Aqili Khorasani MH. Makhzan al-Adwiah (Drug Treasure). Reprinted from a copy which was printed in Calcutta dated in 1844. Tehran: Enqelab-e Eslami Publishing and Educational Organization; 1992. pp. 530-797 (in Persian)
  10. 10. Ibn Beytar Z. Al-Jamee Le-Mofradaat al-Adwiah wal-Aghziyah (Comprehensive Book in Simple Drugs and Foods). Beirut: Dar- Al-Kotob Al-ilmiyah; 2001. pp. 160-185 (in Arabic)
  11. 11. al-Ghassani A. Hadiqat Al-Azhar fi Mahiyat Al-’Ushb wa Al-’Uqar (Garden of Flowers in the Explanation of the Character of Herbs and Drugs). Beirut: Dar Al-Gharb Al-Islami; 1990. p.10 (in Arabic)
  12. 12. Razi MZ. Taqasim Al-‘Ilal (Kitab At-Taqsim Wa at-Tasgir). Hamami SM (ed). Aleppo: Aleppo University Publications, Institute for the History of Arabic Science; 1992. pp.416-582 (in Arabic)
  13. 13. Ibn Beytar Z. Al-Moghni fi-al-Tebb. Digital photo of a handwritten manuscript dated 1834 AD. pp. 210-213 (in Arabic)
  14. 14. Tabari A. Ferdows al-Hekmah fi al-Tibb (Paradise of Wisdom on Medicine). Al-Seddiqi (ed). Berlin: Aftab Press; 1928. pp.228-230 (in Arabic)
  15. 15. Akhawayni Bukhari AB. Hedayat al-Mota’allemin fi al-Tibb (An Educational Guide for Medical Students). Matini J (ed). Mashhad: Ferdowsi University of Mashhad Publication; 1992. pp. 606-607 (in Arabic)
  16. 16. Lampronti I, Martello D, Bianchi N, Borgatti M, Lambertini E, Piva R, et al. In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine. 2003;10(4):300-8. PMID: 12809360
  17. 17. Costa-Lotufo LV, Khan MTH, Ather A, Wilke DV, Jimenez PC, Pessoa C, et al. Studies of the anticancer potential of plants used in Bangladeshi folk medicine. J Ethnopharmacol. 2005;99(1):21-30. PMID: 15848015
  18. 18. Khan MT, Lampronti I, Martello D, Bianchi N, Jabbar S, Choudhuri MS, et al. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines. Int J Oncol. 2002;21(1):187-92. PMID: 12063567
  19. 19. Hamid K, Diba F, Urmi KF, Uddin ME, Zohera FT, Habib MR. In vitro antioxidant and cytotoxicity screening of different bark extracts of Aegle marmelos L. J Appl Pharmaceut Sci. 2012;2(3):92-5.
  20. 20. Mustahil NA, Riyanto S, Sukari MA, Rahmani M, Mohd Nor SM, Ali AM. Antileukemic activity of extracts and constituents of Aegle marmelos. Res J Chem Environ. 2013;17(1):62-7.
  21. 21. Subramaniam D, Giridharan P, Murmu N, Shankaranarayanan NP, May R, Houchen CW, et al. Activation of apoptosis by 1-hydroxy-5,7-dimethoxy-2-naphthalene- carboxaldehyde, a novel compound from Aegle marmelos. Canc Res. 2008;68(20):8573-81. doi: 10.1158/0008-5472.CAN-08-2372.
  22. 22. Abdullaev FI. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exper Biol Med. 2002;227(1):20-5. PMID: 11788779
  23. 23. Carotenuto A, Fattorusso E, Lanzotti V, Magno S, De Feo V, Carnuccio R, et al. Porrigenins A and B, novel cytotoxic and antiproliferative sapogenins isolated from Allium porrum. J Natural Prod. 1997;60(10):1003-7. PMID: 9358643
  24. 24. Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Di Rosa M, Ianaro A. Cytotoxic saponins from bulbs of Allium porrum L. J Agric Food Chem. 2000;48(8):3455-62. PMID: 10956133
  25. 25. Lee KH, Kang HG, Cho CH, Lee MJ, Lee JH, Kim CH. Antimutagenic and antileukemic activities of Aloe vera L. Natural Prod Sci. 2000;6(2):56-60.
  26. 26. Jose J, Sudhakaran S, Sumesh Kumar TM, Jayaraman S, Jayadevi Variyar E. A comparative evaluation of anticancer activities of flavonoids isolated from Mimosa pudica, Aloe vera and Phyllanthus niruri against human breast carcinoma cell line (MCF-7) using MTT assay. Int J Pharmacy Pharmaceut Sci. 2014;6(2):319-22.
  27. 27. Lee KH, Kim JH, Lim DS, Kim CH. Anti-leukaemic and anti-mutagenic effects of di(2-ethylhexyl)phthalate isolated from Aloe vera Linne. J Pharmacy Pharmacol. 2000;52(5):593-8. PMID: 10864149
  28. 28. Pecere T, Gazzola MV, Mucignat C, Parolin C, Vecchia FD, Cavaggioni A, et al. Aloe-emodin is a new type of anticancer agent with selective activity against neuroectodermal tumors. Canc Res. 2000;60(11):2800-4. PMID:10850417
  29. 29. Liu K, Park C, Li S, Lee KW, Liu H, He L, et al. Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2. Carcinogenesis. 2012 Jul;33(7):1406-11. PMID: 22532249. PMCID: 3405653.
  30. 30. Wasserman L, Avigad S, Beery E, Nordenberg J, Fenig E. The effect of aloe emodin on the proliferation of a new Merkel carcinoma cell line. Am J Dermatopathol. 2002;24(1):17-22. PMID: 11803275
  31. 31. Acevedo-Duncan M, Russell C, Patel S, Patel R. Aloe-emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol. 2004;4(14 SPEC.ISS.):1775-84. PMID:15531293
  32. 32. Ismail S, Haris K, Abdul Ghani ARI, Abdullah JM, Johan MF, Amohamed Yusoff AA. Enhanced induction of cell cycle arrest and apoptosis via the mitochondrial membrane potential disruption in human U87 malignant glioma cells by aloe emodin. J Asian Natural Prod Res. 2013;15(9):1003-12.
  33. 33. Lin JG, Chen GW, Li TM, Chouh ST, Tan TW, Chung JG. Aloe-Emodin induces apoptosis in T24 human bladder cancer cells through the p53 dependent apoptotic pathway. J Urol. 2006;175(1):343-7. PMID:16406939
  34. 34. Guo J, Xiao B, Liu Q, Gong Z, Le Y. Suppression of C-myc expression associates with anti-proliferation of aloe-emodin on gastric cancer cells. Canc Invest. 2008;26(4):369-74. doi: 10.1080/07357900701788130.
  35. 35. Hosseini J, Mahmoodi M, Jalili A, Hosseini S, Hosseini-Zijoud SM, Khoshdel A, et al. Aloe-emodin induces apoptosis through the up-regulation of fas in the human breast cancer cell line MCF-7. Life Sci J. 2014;11(SPEC.ISS.2):47-53.
  36. 36. Naveena, Bharath BK, Selvasubramanian. Antitumor activity of Aloe vera against Ehrlich ascitis carcinoma (EAC) in Swiss albino mice. Int J Pharma Bio Sci. 2011;2(2):400-9.
  37. 37. Grabarczyk H, Drozdz B, Hladon B, Wojciechowska J. Sesquiterpene lactones. Part XV. New cytostatic active sesquiterpene lactone from herb of Anthemis nobilis L. Polish J Pharmacol Pharmacy. 1977;29(4):419-23. PMID: 905207
  38. 38. Kapadia GJ, Azuine MA, Rao GS, Arai T, Iida A, Tokuda H. Cytotoxic effect of the red beetroot (Beta vulgaris L.) extract compared to doxorubicin (adriamycin) in the human prostate (PC-3) and breast (MCF-7) cancer cell lines. Anti-Canc Agents Medic Chem. 2011;11(3):280-4. PMID: 21434853
  39. 39. Kapadia GJ, Rao GS, Ramachandran C, Iida A, Suzuki N, Tokuda H. Synergistic cytotoxicity of red beetroot (Beta vulgaris L.) extract with doxorubicin in human pancreatic, breast and prostate cancer cell lines. J Complement Integ Med. 2013;10. doi: 10.1515/jcim-2013-0007
  40. 40. Haroun AA, Taie HAA. Cytotoxicity and antioxidant activity of beta vulgaris extract released from grafted carbon nanotubes based nanocomposites. Macromol Symp. 2014;337(1):25-33. DOI: 10.1002/masy.201450303
  41. 41. Lee EJ, An D, Nguyen CTT, Patil BS, Kim J, Yoo KS. Betalain and betaine composition of greenhouse- or field-produced beetroot (beta vulgaris L.) and inhibition of HepG2 cell proliferation. J Agric Food Chem. 2014;62(6):1324-31. doi: 10.1021/jf404648u.
  42. 42. Zhao W, Entschladen F, Liu H, Niggemann B, Fang Q, Zaenker KS, et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Canc Detect Prevention. 2003;27(1):67-75. PMID: 12600419
  43. 43. Akihisa T, Tabata K, Banno N, Tokuda H, Nishihara R, Nakamura Y, et al. Cancer chemopreventive effects and cytotoxic activities of the triterpene acids from the resin of Boswellia carteri. Biol Pharmaceut Bull. 2006;29(9):1976-9. PMID: 16946522
  44. 44. Frank MB, Yang Q, Osban J, Azzarello JT, Saban MR, Saban R, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. BMC Complement Alt Med. 2009;9. doi: 10.1186/1472-6882-9-6.
  45. 45. Ali SI, Zhang CR, Mohamed AA, El-Baz FK, Hegazy AK, Kord MA, et al. Major constituents of Bosweilla carteri resin exhibit cyclooxygenase enzyme inhibition and antiproliferative activity. Natural Prod Commun. 2013;8(10):1365-6. PMID: 24354175
  46. 46. Bryant CS, Kumar S, Chamala S, Shah J, Pal J, Haider M, et al. Sulforaphane induces cell cycle arrest by protecting RB-E2F-1 complex in epithelial ovarian cancer cells. Mol Canc. 2010;9. doi: 10.1186/1476-4598-9-47
  47. 47. Melchini A, Traka MH. Biological profile of erucin: A new promising anticancer agent from cruciferous vegetables. Toxins. 2010;2(4):593-612. doi: 10.3390/toxins2040593.
  48. 48. Hafidh RR, Abdulamir AS, Abu Bakar F, Jalilian FA, Jahanshiri F, Abas F, et al. Novel anticancer activity and anticancer mechanisms of Brassica oleracea L. var. capitata f. rubra. Eur J Integ Med. 2013;5(5):450-64.
  49. 49. Thangam R, Suresh V, Rajkumar M, Vincent JD, Gunasekaran P, Anbazhagan C, et al. Antioxidant and in vitro anticancer effect of 2-pyrrolidinone rich fraction of Brassica oleracea var. capitata through induction of apoptosis in human cancer cells. Phytother Res. 2013;27(11):1664-70. doi: 10.1002/ptr.4908.
  50. 50. Kim SM, Park JH, Kim KD, Nam D, Shim BS, Kim SH, et al. Brassinin induces apoptosis in PC-3 human prostate cancer cells through the suppression of PI3K/Akt/mTOR/S6K1 signaling cascades. Phytother Res. 2014;28(3):423-31. doi: 10.1002/ptr.5010.
  51. 51. Ji YB, Dong F, Ma DB, Miao J, Jin LN, Liu ZF, et al. Optimizing the extraction of anti-tumor polysaccharides from the fruit of Capparis spionosa L. by response surface methodology. Molecules. 2012;17(6):7323-35. PMID: 22699566.
  52. 52. Yu L, Mo K, Wang W, Cui RT, Zou X, Ji YB. Relationship between apoptosis and [Ca2+]i in HepG2 induced by Capparis spinosa alkaloid. Chin Tradition Herbal Drugs. 2009;40(2):255-8.
  53. 53. Loo WTY, Cheung MNB, Chow LWC. The inhibitory effect of a herbal formula comprising ginseng and Carthamus tinctorius on breast cancer. Life Sci. 2004;76(2):191-200. PMID: 15519364
  54. 54. Shi X, Ruan D, Wang Y, Ma L, Li M. Anti-tumor activity of safflower polysaccharide (SPS) and effect on cytotoxicity of CTL cells,NK cells of T739 lung cancer in mice. Zhongguo Zhongyao Zazhi. 2010;35(2):215-8. PMID: 20394298
  55. 55. Son ES, Lee JM, Choi JU, Park HR. Selective cytotoxicity of Carthamus tinctorius against glucose-deprived HT-29 human colon carcinoma cells. J Medic Plant Res. 2011;5(19):4931-7.
  56. 56. Sutton KM, Greenshields AL, Hoskin DW. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutri Canc. 2014;66(3):408-18. doi: 10.1080/01635581.2013.878739.
  57. 57. Duraipandiyan V, Baskar AA, Ignacimuthu S, Muthukumar C, Al-Harbi NA. Anticancer activity of Rhein isolated from Cassia fistula L. flower. Asian Pac J Trop Dis. 2012;2(SUPPL.1):S517-S23. doi:10.1016/S2222-1808(12)60213-8
  58. 58. Linu M, Shankar S. In vitro cytotoxic activity of methanolic extract of stem bark of Cassia fistula L. Res J Biotechnol. 2012;7(4):141-8.
  59. 59. Gao XM, Shen YQ, Huang XZ, Yang LY, Shu LD, Hu QF, et al. 2"-ethyl-furanoflavone derivatives from the stems of Cassia fistula and their cytotoxicity. J Brazil Chem Soc. 2013;24(4):685-9.
  60. 60. Yang J, Wang H, Liu G, Lou J, Li L, Hu Q, et al. A new anthraquinone from the fruit of Cassia fistula and its cytotoxicity. Asian J Chem. 2014;26(14):4519-20.
  61. 61. Kumar S, Kapoor V, Gill K, Singh K, Xess I, Das SN, et al. Antifungal and antiproliferative protein from Cicer arietinum: A bioactive compound against emerging pathogens. BioMed Res Int. 2014;2014. doi: 10.1155/2014/387203. In Press.
  62. 62. Csupor-Löffler B, Hajdú Z, Réthy B, Zupkó I, Máthé I, Rédei T, et al. Antiproliferative activity of Hungarian asteraceae species against human cancer cell lines. Part II. Phytother Res. 2009;23(8):1109-15. doi: 10.1002/ptr.2755.
  63. 63. Zhou CX, Zou L, Zhao ZZ, Zhu H, He QJ, Yang B, et al. Terpenoids from Cichorium intybus. Natural Prod Commun. 2012;7(8):971-2. PMID: 22978206
  64. 64. Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, et al. Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Canc Lett. 2003;196(2):143-52. PMID: 12860272
  65. 65. Lee HS, Kim SY, Lee CH, Ahn YJ. Cytotoxic and mutagenic effects of Cinnamomum cassia bark-derived materials. J Microbiol Biotechnol. 2004;14(6):1176-81. doi: 10.1186/1471-2407-10-210.
  66. 66. Koppikar SJ, Choudhari AS, Suryavanshi SA, Kumari S, Chattopadhyay S, Kaul-Ghanekar R. Aqueous Cinnamon Extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer. 2010;10.
  67. 67. Kang HS, Ock J, Lee HJ, Lee YJ, Kwon BM, Hong SH. Early growth response protein 1 upregulation and nuclear translocation by 2'-benzoyloxycinnamaldehyde induces prostate cancer cell death. Canc Lett. 2013;329(2):217-27. doi: 10.1016/j.canlet.2012.11.006.
  68. 68. Ngoc TM, Nhiem NX, Khoi NM, Son DC, Hung TV, Kiem PV. A new coumarin and cytotoxic activities of constituents from Cinnamomum cassia. Natural Prod Commun. 2014;9(4):487-8. PMID: 24868863
  69. 69. Chinou I, Demetzos C, Harvala C, Roussakis C, Verbist JF. Cytotoxic and antibacterial labdane-type diterpenes from the aerial parts of Cistus incanus subsp. creticus. Planta Medica. 1994;60(1):34-6. PMID: 8134413
  70. 70. Dimas K, Demetzos C, Marsellos M, Sotiriadou R, Malamas M, Kokkinopoulos D. Cytotoxic activity of labdane type diterpenes against human leukemic cell lines in vitro. Planta Medica. 1998;64(3):208-11. PMID: 9581515
  71. 71. Dimas K, Demetzos C, Mitaku S, Vaos B, Marselos M, Tzavaras T, et al. Cytotoxic activity and antiproliferative effects of a new semi-synthetic derivative of Ent-3β-hydroxy-13-epi-manoyl oxide on human leukemic cell lines. Anticanc Res. 1999;19(5 B):4065-72. PMID: 11582537
  72. 72. Demetzos C, Dimas K, Hatziantoniou S, Anastasaki T, Angelopoulou D. Cytotoxic and anti-inflammatory activity of labdane and cis-clerodane type diterpenes. Planta Medica. 2001;67(7):614-8. PMID: 11582537
  73. 73. Skorić M, Todorović S, Gligorijević N, Janković R, Živković S, Ristić M, et al. Cytotoxic activity of ethanol extracts of in vitro grown Cistus creticus subsp. creticus L. on human cancer cell lines. Indus Crops Prod. 2012;38(1):153-9. doi:10.1016/j.indcrop.2012.01.017
  74. 74. Shah R, Gulati V, Palombo EA. Pharmacological properties of guggulsterones, the major active components of gum guggul. Phytother Res. 2012;26(11):1594-605. doi: 10.1002/ptr.4647.
  75. 75. Jana S, Patra K, Sarkar S, Jana J, Mukherjee G, Bhattacharjee S, et al. Antitumorigenic potential of linalool is accompanied by modulation of oxidative stress: An in vivo study in sarcoma-180 solid tumor model. Nutri Canc. 2014;66(5):835-48. doi: 10.1080/01635581.2014.904906.
  76. 76. Nithya TG, Sumalatha D. Evaluation of invitro anti-oxidant and anticancer activity of Coriandrum Sativum against human colon cancer HT- 29 cell lines. Int J Pharmacy Pharmaceut Sci. 2014;6(2):421-4.
  77. 77. Nair SC, Pannikar B, Panikkar KR. Antitumour activity of saffron (Crocus sativus). Canc Lett. 1991;57(2):109-14. PMID: 2025883
  78. 78. Tavakkol-Afshari J, Brook A, Mousavi SH. Study of cytotoxic and apoptogenic properties of saffron extract in human cancer cell lines. Food Chem Toxicol. 2008;46(11):3443-7. doi: 10.1016/j.fct.2008.08.018.
  79. 79. Samarghandian S, Boskabady MH, Davoodi S. Use of in vitro assays to assess the potential antiproliferative and cytotoxic effects of saffron (Crocus sativus L.) in human lung cancer cell line. Pharmacognosy Mag. 2010;6(24):309-14. doi: 10.4103/0973-1296.71799.
  80. 80. Escribano J, Alonso GL, Coca-Prados M, Fernández JA. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Canc Lett. 1996;100(1-2):23-30. PMID: 8620447
  81. 81. Noureini SK, Wink M. Antiproliferative effects of crocin in HepG2 cells by telomerase inhibition and hTERT down-regulation. Asian Pac J Canc Prevention. 2012;13(5):2305-9. PMID: 22901211
  82. 82. Malaekeh-Nikouei B, Mousavi SH, Shahsavand S, Mehri S, Nassirli H, Moallem SA. Assessment of cytotoxic properties of safranal and nanoliposomal safranal in various cancer cell lines. Phytother Res. 2013;27(12):1868-73. doi: 10.1002/ptr.4945.
  83. 83. Samarghandian S, Shabestari MM. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line. Ind J Urol. 2013;29(3):177-83. doi: 10.4103/0970-1591.117278.
  84. 84. Geromichalos GD, Papadopoulos T, Sahpazidou D, Sinakos Z. Safranal, a Crocus sativus L constituent suppresses the growth of K-562 cells of chronic myelogenous leukemia. In silico and in vitro study. Food Chem Toxicol. 2014;74:45-50. doi: 10.1016/j.fct.2014.09.001.
  85. 85. Kim SH, Lee JM, Kim SC, Park CB, Lee PC. Proposed cytotoxic mechanisms of the saffron carotenoids crocin and crocetin on cancer cell lines. Biochem Cell Biol. 2014;92(2):105-11. doi: 10.1139/bcb-2013-0091.
  86. 86. Rezaee R, Jamialahmadi K, Zanjani BR, Mahmoudi M, Abnous K, Rabe SZT, et al. Crocin effects on human myeloma cells regarding intracellular redox state, DNA fragmentation, and apoptosis or necrosis profile. Jundishapur J Natural Pharmaceut Prod. 2014;9(4). PMID: 25625054
  87. 87. Rastgoo M, Hosseinzadeh H, Alavizadeh H, Abbasi A, Ayati Z, Jaafari MR. Antitumor activity of PEGylated nanoliposomes containing crocin in mice bearing C26 colon carcinoma. Planta Medica. 2013;79(6):447-51. doi: 10.1055/s-0032-1328363.
  88. 88. Begum Y, Hossen F, Rahman MM. In vitro cytotoxic properties of methanol extracts of the seeds of benincasa hispida and cucurbita maxima. Eur J Sci Res. 2011;54(2):193-7.
  89. 89. Saha P, Mazumder UK, Haldar PK, Naskar S, Kundu S, Bala A, et al. Anticancer activity of methanol extract of Cucurbita maxima against Ehrlich as-cites carcinoma. Int J Res Pharmaceut Sci. 2011;2(1):52-9.
  90. 90. Kikuchi T, Takebayashi M, Shinto M, Yamada T, Tanaka R. Three new multiflorane-type triterpenes from pumpkin (Cucurbita maxima) seeds. Molecules. 2013;18(5):5568-79. doi: 10.3390/molecules18055568.
  91. 91. Shokrzadeh M, Azadbakht M, Ahangar N, Hashemi A, Saeedi Saravi SS. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacognosy Mag. 2010;6(23):176-9. doi: 10.4103/0973-1296.66931
  92. 92. Jafarian A, Ghannadi A, Mohebi B. Cytotoxic effects of chloroform and hydroalcoholic extracts of aerial parts of Cuscuta chinensis and Cuscuta epithymum on Hela, HT29 and MDA-MB-468 tumor cells. Res Pharmaceut Sci. 2014;9(2):115-22.
  93. 93. Attard E, Cuschieri A. Cytotoxicity of Cucurbitacin E extracted from Ecballium elaterium in vitro. J Natural Remedies. 2004;4(2):137-44.
  94. 94. Attard E, Cuschieri A, Brincat MP. Morphological effects induced by Cucurbitacin E on ovarian cancer cells in vitro. J Natural Remedies. 2005;5(1):70-4.
  95. 95. Bohlooli S, Jafari N, Jahed S. Cytotoxic effect of freeze-dried extract of Ecballium elaterium fruit on gastric adenocarcinoma (AGS) and esophageal squamous cell carcinoma (KYSE30) cell lines. J Gastrointest Canc. 2012;43(4):579-83. doi: 10.1007/s12029-012-9383-4.
  96. 96. Jacquot C, Rousseau B, Carbonnelle D, Chinou I, Malleter M, Tomasoni C, et al. Cucurbitacin-D-induced CDK1 mRNA up-regulation causes proliferation arrest of a non-small cell lung carcinoma cell line (NSCLC-N6). Anticanc Res. 2014;34(9):4797-806. PMID: 25202060
  97. 97. Khodarahmi GA, Ghasemi N, Hassanzadeh F, Safaie M. Cytotoxic effects of different extracts and latex of ficus carica L. on HeLa cell line. Iranian J Pharmaceut Res. 2011;10(2):273-7. PMID: 24250354
  98. 98. Hamta A, Shariatzadeh SMA, Soleimani Mehranjani M, Fallah Huseini H, Hosseinabadi F. The cytotoxic effects of Glycyrrhiza glabra L. root extract on 4T1 cell line derived from BALB/c mice mammary tumors. J Medic Plants. 2014;13(50):92-103.
  99. 99. Dorn DC, Alexenizer M, Hengstler JG, Dorn A. Tumor cell specific toxicity of Inula helenium extracts. Phytother Res. 2006;20(11):970-80. PMID: 16912983
  100. 100. Mazzio E, Badisa R, Mack N, Deiab S, Soliman KFA. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells. Phytother Res. 2014;28(6):856-67. doi: 10.1002/ptr.5065.
  101. 101. Rahman MA, Hasan MS, Hossain MA, Biswas NN. Analgesic and cytotoxic activities of Jasminum sambac (L.) Aiton. Pharmacologyonline. 2011;1:124-31.
  102. 102. Liu JX, Di DL, Wei XN, Han Y. Cytotoxic diarylheptanoids from the pericarps of walnuts (Juglans regia). Planta Medica. 2008;74(7):754-9. doi: 10.1055/s-2008-1074536.
  103. 103. Salimi M, Majd A, Sepahdar Z, Azadmanesh K, Irian S, Ardestaniyan MH, et al. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharmaceut Biol. 2012;50(11):1416-22. doi: 10.3109/13880209.2012.682118.
  104. 104. Li CY, Du HJ, Su XH, Zhong YJ, Yuan ZP, Li YF, et al. Juglanones A and B: Two novel tetralone dimers from walnut pericarp (Juglans regia). Helvetica Chim Acta. 2013;96(6):1031-5. DOI: 10.1002/hlca.201200525
  105. 105. Salimi M, Ardestaniyan MH, Mostafapour Kandelous H, Saeidnia S, Gohari AR, Amanzadeh A, et al. Anti-proliferative and apoptotic activities of constituents of chloroform extract of Juglans regia leaves. Cell Prolifer. 2014;47(2):172-9.
  106. 106. Han YF, Cao GX, Gao XJ, Xia M. Isolation and characterisation of the sesquiterpene lactones from Lactuca sativa L var. anagustata. Food Chemistry. 2010;120(4):1083-8. doi:10.1016/j.foodchem.2009.11.056
  107. 107. Kivçak B, Mert T. Preliminary evaluation of cytotoxic properties of Laurus nobilis leaf extracts. Fitoterapia. 2002;73(3):242-3. PMID: 12048018
  108. 108. Dall’Acqua S, Viola G, Giorgetti M, Loi MC, Innocenti G. Two new sesquiterpene lactones from the leaves of Laurus nobilis. Chem Pharmaceut Bull. 2006;54(8):1187-9. PMID:16880666
  109. 109. Barla A, Topçu G, Öksüz S, Tümen G, Kingston DGI. Identification of cytotoxic sesquiterpenes from Laurus nobilis L. Food Chem. 2007;104(4):1478-84. doi:10.1016/j.foodchem.2007.02.019
  110. 110. Loizzo MR, Tundis R, Menichini F, Saab AM, Statti GA. Cytotoxic activity of essential oils from Labiatae and Lauraceae families against in vitro human tumor models. Anticanc Res. 2007;27(5 A):3293-9. PMID: 17970073
  111. 111. Li Q, Gao W, Cao J, Bi X, Chen G, Zhang X, et al. New cytotoxic compounds from flowers of Lawsonia inermis L. Fitoterapia. 2014;94:148-54.
  112. 112. Lehraiki A, Attoumbré J, Bienaimé C, Matifat F, Bensaddek L, Nava-Saucedo E, et al. Extraction of lignans from flaxseed and evaluation of their biological effects on breast cancer MCF-7 and MDA-MB-231 cell lines. J Medic Food. 2010;13(4):834-41. doi: 10.1089/jmf.2009.0172.
  113. 113. de Sousa AC, Alviano DS, Blank AF, Barreto Alves P, Alviano CS, Gattass CR. Melissa officinalis L. essential oil: Antitumoral and antioxidant activities. J Pharmacy Pharmacol. 2004;56(5):677-81. PMID:15142347
  114. 114. Encalada MA, Hoyos KM, Rehecho S, Berasategi I, de Ciriano MGI, Ansorena D, et al. Anti-proliferative Effect of Melissa officinalis on Human Colon Cancer Cell Line. Plant Foods Human Nutri. 2011;66(4):328-34. doi: 10.1007/s11130-011-0256-y.
  115. 115. Saraydin SU, Tuncer E, Tepe B, Karadayi S, Özer H, Şen M, et al. Antitumoral effects of Melissa officinalis on breast cancer in vitro and in vivo. Asian Pac J Canc Prevention. 2012;13(6):2765-70. PMID: 22938456
  116. 116. De Queiroz RM, Takiya CM, Guimarães LPTP, Rocha GDG, Alviano DS, Blank AF, et al. Apoptosis-inducing effects of Melissa officinalis L. essential oil in glioblastoma multiforme cells. Canc Invest. 2014;32(6):226-35. doi: 10.3109/07357907.2014.905587
  117. 117. Cottiglia F, Casu L, Leonti M, Caboni P, Floris C, Busonera B, et al. Cytotoxic phloroglucinols from the leaves of Myrtus communis. J Natural Prod. 2012;75(2):225-9. doi: 10.1021/np2009219.
  118. 118. Youssef DTA, Khalifa AA. Cytotoxic quaternary alkaloids from the flowers of Narcissus tazetta. Pharmazie. 2001;56(10):818-22. PMID: 11683132
  119. 119. Liu J, Li Y, Ren W, Hu WX. Apoptosis of HL-60 cells induced by extracts from Narcissus tazetta var. chinensis. Canc Lett. 2006;242(1):133-40. PMID: 16427186
  120. 120. Juan ME, Wenzel U, Daniel H, Planas JM. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol Nutri Food Res. 2008;52(5):595-9. doi: 10.1002/mnfr.200700300.
  121. 121. Bouallagui Z, Han J, Isoda H, Sayadi S. Hydroxytyrosol rich extract from olive leaves modulates cell cycle progression in MCF-7 human breast cancer cells. Food Chem Toxicol. 2011;49(1):179-84. doi: 10.1016/j.fct.2010.10.014.
  122. 122. Reyes-Zurita FJ, Pachón-Peña G, Lizárraga D, Rufino-Palomares EE, Cascante M, Lupiáñez JA. The natural triterpene maslinic acid induces apoptosis in HT29 colon cancer cells by a JNK-p53-dependent mechanism. BMC Cancer. 2011;11. doi: 10.1186/1471-2407-11-154.
  123. 123. Busnena BA, Foudah AI, Melancon T, El Sayed KA. Olive secoiridoids and semisynthetic bioisostere analogues for the control of metastatic breast cancer. Bioorg Medic Chem. 2013;21(7):2117-27. doi: 10.1016/j.bmc.2012.12.050.
  124. 124. University of Southern California. Study of Noscapine for Patients With Low Grade Non Hodgkin’s Lymphoma or Chronic Lymphocytic Leukemia Refractory to Chemotherapy. In: [Internet]. Bethesda (MD): National Library of Medicine (US). 2015 Jan 25. Available from:
  125. 125. Zhang CH, Wang ZT, Yang YP, Sun QS. A novel cytotoxic neophysalin from Physalis alkekengi var. francheti. Chin Chem Lett. 2009;20(11):1327-30.
  126. 126. He H, Zang LH, Feng YS, Chen LX, Kang N, Tashiro SI, et al. Physalin A induces apoptosis via p53-Noxa-mediated ROS generation, and autophagy plays a protective role against apoptosis through p38-NF-κB survival pathway in A375-S2 cells. J Ethnopharmacol. 2013;148(2):544-55. doi: 10.1016/j.jep.2013.04.051.
  127. 127. He H, Zang LH, Feng YS, Wang J, Liu WW, Chen LX, et al. Physalin a induces apoptotic cell death and protective autophagy in HT1080 human fibrosarcoma cells. J Natural Prod. 2013;76(5):880-8. doi: 10.1021/np400017k.
  128. 128. Rezaei PF, Fouladdel S, Hassani S, Yousefbeyk F, Ghaffari SM, Amin G, et al. Induction of apoptosis and cell cycle arrest by pericarp polyphenol-rich extract of Baneh in human colon carcinoma HT29 cells. Food Chem Toxicol. 2012;50(3-4):1054-9. doi: 10.1016/j.fct.2011.11.012.
  129. 129. Balan KV, Demetzos C, Prince J, Dimas K, Cladaras M, Han Z, et al. Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product, chios mastic gum. In Vivo. 2005;19(1):93-102. PMID: 15796160
  130. 130. Chiang LC, Chiang W, Chang MY, Lin CC. In vitro cytotoxic, antiviral and immunomodulatory effects of Plantago major and Plantago asiatica. Am J Chin Med. 2003;31(2):225-34. PMID: 12856861
  131. 131. Gálvez M, Martín-Cordero C, López-Lázaro M, Cortés F, Ayuso MJ. Cytotoxic effect of Plantago spp. on cancer cell lines. J Ethnopharmacol. 2003;88(2-3):125-30. PMID: 12963131
  132. 132. Mitrocotsa D, Bosch S, Mitaku S, Dimas C, Skaltsounis AL, Harvala C, et al. Cytotoxicity against human leukemic cell lines, and the activity on the expression of resistance genes of flavonoids from Platanus orientalis. Anticanc Res. 1999;19(3 A):2085-8. PMID:10470152
  133. 133. Mitrokotsa D, Mitaku S, Demetzos C, Harvala C, Mentis A, Perez S, et al. Bioactive compounds from the buds of Platanus orientalis and isolation of a new kaempferol glycoside. Planta Medica. 1993;59(6):517-20. PMID: 8302950
  134. 134. Dimas K, Demetzos C, Mitaku S, Marselos M, Tzavaras T, Kokkinopoulos D. Cytotoxic activity of kaempferol glycosides against human leukaemic cell lines in vitro. Pharmacol Res. 2000;41(1):85-8. PMID: 10600274
  135. 135. Afifi-Yazar FU, Kasabri V, Abu-Dahab R. Medicinal plants from jordan in the treatment of cancer: Traditional uses vs in vitro and in vivo evaluations part 1. Planta Medica. 2011;77(11):1203-9. doi: 10.1055/s-0030-1270832.
  136. 136. Khan I, Sangwan PL, Dar AA, Rafiq RA, Farrukh MR, Dhar JK, et al. A validated high-performance thin-layer chromatography method for the identification and simultaneous quantification of six markers from Platanus orientalis and their cytotoxic profiles against skin cancer cell lines. J Separ Sci. 2013;36(16):2602-10. doi: 10.1002/jssc.201300380.
  137. 137. Habibi Roudkenar M, Mohammadi Roushandeh A, Delazar A, Halabian R, Soleimani Rad J, Mehdipour A, et al. Effects of polygonum aviculare herbal extract on proliferation and apoptotic gene expression of MCF-7. DARU, J Pharmaceut Sci. 2011;19(5):326-31. PMID:
  138. 138. Xin HL, Xu YF, Hou YH, Zhang YN, Yue XQ, Lu JC, et al. Two novel triterpenoids from Portulaca oleracea L. Helvetica Chim Acta. 2008;91(11):2075-80.
  139. 139. Tan GCS, Wong KM, Pearle-Wong GQ, Yeo SL, Yeap SK, Yiap BC, et al. In vitro cytotoxic and antiproliferative effects of portulaca oleracea methanol extract on breast, cervical, colon and nasopharyngeal cancerous cell lines. Sains Malaysiana. 2013;42(7):927-35.
  140. 140. Farshori NN, Al-Sheddi ES, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Cytotoxicity assessments of Portulaca oleracea and Petroselinum sativum seed extracts on human hepatocellular carcinoma cells (HepG2). Asian Pac J Canc Prevention. 2014;15(16):6633-8. PMID: 25169500
  141. 141. Tian JL, Liang X, Gao PY, Li DQ, Sun Q, Li LZ, et al. Two new alkaloids from Portulaca oleracea and their cytotoxic activities. J Asian Natural Prod Res. 2014;16(3):259-64. doi: 10.1080/10286020.2013.866948.
  142. 142. Jeune MAL, Kumi-Diaka J, Brown J. Anticancer activities of pomegranate extracts and genistein in human breast cancer cells. J Medic Food. 2005;8(4):469-75. PMID: 16379557
  143. 143. Banerjee N, Talcott S, Safe S, Mertens-Talcott SU. Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: Potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Canc Res Treat. 2012;136(1):21-34. doi: 10.1007/s10549-012-2224-0.
  144. 144. Jayakumar S, Haridass S, Krishnamurthy V. Anticancer activity of Punica Granatum rind extracts against human lung cancer cell line. Asian J Pharmaceut Clin Res. 2012;5(SUPPL 2):204-10.
  145. 145. Joseph MM, Aravind SR, Varghese S, Mini S, Sreelekha TT. Evaluation of antioxidant, antitumor and immunomodulatory properties of polysaccharide isolated from fruit rind of Punica granatum. Mol Med Rep. 2012;5(2):489-96. doi: 10.3892/mmr.2011.638.
  146. 146. Bekir J, Mars M, Vicendo P, Fterrich A, Bouajila J. Chemical composition and antioxidant, anti-inflammatory, and antiproliferation activities of pomegranate (Punica granatum) flowers. J Medic Food. 2013;16(6):544-50. doi: 10.1089/jmf.2012.0275.
  147. 147. Joseph MM, Aravind SR, George SK, Varghese S, Sreelekha TT. A galactomannan polysaccharide from Punica granatum imparts in vitro and in vivo anticancer activity. Carbohyd Polymers. 2013;98(2):1466-75. doi: 10.1016/j.carbpol.2013.07.023.
  148. 148. Salah-Abbes JB, Abbès S, Abdel-Wahhab MA, Oueslati R. In-vitro free radical scavenging, antiproliferative and anti-zearalenone cytotoxic effects of 4-(methylthio)-3-butenyl isothiocyanate from Tunisian Raphanus sativus. J Pharmacy Pharmacol. 2010;62(2):231-9. PMID: 20487203
  149. 149. Kim KH, Moon E, Kim SY, Choi SU, Lee JH, Lee KR. 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities. J Ethnopharmacol. 2014;151(1):503-8. doi: 10.1016/j.jep.2013.11.003.
  150. 150. Zarai Z, Chobba IB, Mansour RB, Békir A, Gharsallah N, Kadri A. Essential oil of the leaves of Ricinus communis L.: In vitro cytotoxicity and antimicrobial properties. Lipids Health Dis. 2012;11. doi: 10.1186/1476-511X-11-102.
  151. 151. Rezaie-Tavirani M, Fayazfar S, Heydari-Keshel S, Rezaee MB, Zamanian-Azodi M, Rezaei-Tavirani M, et al. Effect of essential oil of Rosa damascena on human colon cancer cell line SW742. Gastroenterol Hepatol Bed to Bench. 2013;6(1):25-31. PMID: 24834241
  152. 152. Kuo YH, Hsu YW, Liaw CC, Lee JK, Huang HC, Kuo LMY. Cytotoxic phenylpropanoids glycosides from the stems of Smilax china. J Natural Prod. 2005;68(10):1475-8. PMID: 16252910
  153. 153. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, et al. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol. 2007;113(1):115-24. PMID: 17606345
  154. 154. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. Cytotoxic polyphenols against breast tumor cell in Smilax china L. J Ethnopharmacol. 2010;130(3):460-4. PMID: 20669365
  155. 155. Hu K, Kobayashi H, Dong A, Jing Y, Iwasaki S, Yao X. Antineoplastic agents III: Steroidal glycosides from solanum nigrum. Planta Medica. 1999;65(1):35-8. PMID: 10083842
  156. 156. Zhou X, He X, Wang G, Gao H, Zhou G, Ye W, et al. Steroidal saponins from Solanum nigrum. J NaturProd. 2006;69(8):1158-63. PMID: 16933867:
  157. 157. Heo KS, Lee SJ, Ko JH, Lim K, Lim KT. Glycoprotein isolated from Solanum nigrum L. inhibits the DNA-binding activities of NF-κB and AP-1, and increases the production of nitric oxide in TPA-stimulated MCF-7 cells. Toxicol In Vitro. 2004;18(6):755-63. PMID: 15465640
  158. 158. Heo KS, Lee SJ, Lim KT. Cytotoxic effect of glycoprotein isolated from Solanum nigrum L. through the inhibition of hydroxyl radical-induced DNA-binding activities of NF-kappa B in HT-29 cells. Environ Toxicol Pharmacol. 2004;17(1):45-54. doi: 10.1016/j.etap.2004.02.003.
  159. 159. Lee SJ, Oh PS, Ko JH, Lim K, Lim KT. A 150-kDa glycoprotein isolated from Solanum nigrum L. has cytotoxic and apoptotic effects by inhibiting the effects of protein kinase C alpha, nuclear factor-kappa B and inducible nitric oxide in HCT-116 cells. Canc Chemother Pharmacol. 2004;54(6):562-72. PMID: 15349752
  160. 160. Lim KT. Glycoprotein isolated from Solanum nigrum L. kills HT-29 cells through apoptosis. J Medic Food. 2005;8(2):215-26. PMID: 16117614
  161. 161. Patel S, Gheewala N, Suthar A, Shah A. In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int J Pharmacy Pharmaceut Sci. 2009;1(SUPPL. 1):38-46.
  162. 162. Huang HC, Syu KY, Lin JK. Chemical composition of Solanum nigrum linn extract and induction of autophagy by leaf water extract and its major flavonoids in AU565 breast cancer cells. J Agric Food Chem. 2010;58(15):8699-708. doi: 10.1021/jf101003v.
  163. 163. Sun L, Zhao Y, Li X, Yuan H, Cheng A, Lou H. A lysosomal-mitochondrial death pathway is induced by solamargine in human K562 leukemia cells. Toxicol In Vitro. 2010;24(6):1504-11. doi: 10.1016/j.tiv.2010.07.013. Epub 2010 Jul 18.
  164. 164. Akbar N, Thakur VS, Yunus M, Mahdi AA, Gupta S. Selective cell cycle arrest and induction of apoptosis in human prostate cancer cells by a polyphenol-rich extract of Solanum nigrum. Int J Mol Med. 2012;29(2):277-84. PMID: 22076244
  165. 165. Gabrani R, Jain R, Sharma A, Sarethy IP, Dang S, Gupta S. Antiproliferative effect of Solanum nigrum on human leukemic cell lines. Ind J Pharmaceut Sci. 2012;74(5):451-3. PMID: 23716874
  166. 166. Mathema VB, Koh YS, Thakuri BC, Sillanpää M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. 2012;35(2):560-5. PMID: 21603970
  167. 167. Lee SH, Ryu SY, Choi SU, Lee CO, No Z, Kim SK, et al. Hydrolysable tannins and related compound having cytotoxic activity from the fruits of Terminalia chebula. Arch Pharmacal Res. 1995;18(2):118-20.
  168. 168. Saleem A, Husheem M, Härkönen P, Pihlaja K. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit. J Ethnopharmacol. 2002;81(3):327-36. PMID: 12127233
  169. 169. Alsemari A, Alkhodairy F, Aldakan A, Al-Mohanna M, Bahoush E, Shinwari Z, et al. The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella Foenum-Graecum. BMC Complement Alt Med. 2014;14. PMID: 24679057
  170. 170. Gerlach SL, Rathinakumar R, Chakravarty G, Göransson U, Wimley WC, Darwin SP, et al. Anticancer and chemosensitizing abilities of cycloviolacin 02 from Viola odorata and psyle cyclotides from Psychotria leptothyrsa. Biopolymers. 2010;94(5):617-25. PMID: 20564026
  171. 171. Berardi V, Ricci F, Castelli M, Galati G, Risuleo G. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: Potential clinical use. J Exper Clin Canc Res. 2009;28(1). PMID:19570215
  172. 172. Aghbali A, Hosseini SV, Delazar A, Gharavi NK, Shahneh FZ, Orangi M, et al. Induction of apoptosis by grape seed extract (Vitis vinifera) in oral squamous cell carcinoma. Bosnian J Basic Med Sci. 2013;13(3):186-91. PMID: 23988171
  173. 173. Giovannelli L, Innocenti M, Santamaria AR, Bigagli E, Pasqua G, Mulinacci N. Antitumoural activity of viniferin-enriched extracts from Vitis vinifera L. cell cultures. Natur Prod Res. 2014;28(22):2006-16. PMID: 24949881
  174. 174. Hamadani SF, Pourseyedi S, Esmaeili-Mahani S. Cytotoxic effect of Rishbaba grape (Vitis vinifera) seed extract on human breast cancer cell line (MCF-7) and its interaction with the anticancer drug doxorubicin. Physiol Pharmacol. 2014;18(2):170-8.
  175. 175. Keum YS, Kim J, Lee KH, Park KK, Surh YJ, Lee JM, et al. Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells. Canc Lett. 2002;177(1):41-7. PMID: 11809529
  176. 176. Wang CC, Chen LG, Lee LT, Yang LL. Effects of 6-Gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo. 2003;17(6):641-5. PMID:14758732
  177. 177. Wei QY, Ma JP, Cai YJ, Yang L, Liu ZL. Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger. J Ethnopharmacol. 2005;102(2):177-84. PMID: 16024193
  178. 178. Nigam N, Bhui K, Prasad S, George J, Shukla Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chemico-Biol Interact. 2009;181(1):77-84. PMID: 19481070
  179. 179. Yang L, Zhou C, Huang K, Song L, Zheng Q, Yu R, et al. Antioxidative and cytotoxic properties of diarylheptanoids isolated from Zingiber officinale. Zhongguo Zhongyao Zazhi. 2009;34(3):319-23. PMID: 19445158
  180. 180. Liu Q, Peng YB, Qi LW, Cheng XL, Xu XJ, Liu LL, et al. The cytotoxicity mechanism of 6-shogaol-treated HeLa human cervical cancer cells revealed by label-free shotgun proteomics and bioinformatics analysis. Evidence-based Complementary and Alternative Medicine. 2012;2012. PMID: 23243437
  181. 181. Lv L, Chen H, Soroka D, Chen X, Leung T, Sang S. 6-gingerdiols as the major metabolites of 6-gingerol in cancer cells and in mice and their cytotoxic effects on human cancer cells. J Agric Food Chem. 2012;60(45):11372-7. PMID: 23066935

Written By

Behjat Javadi, Milad Iranshahy and Seyed Ahmad Emami

Submitted: May 29th, 2014 Reviewed: June 23rd, 2015 Published: September 2nd, 2015