Cell wall composition of alfalfa stems compared to corn stover and corncobs. Other hexoses include the C6 sugars galactose and mannose and other pentoses refers primarily to the C5 sugar arabinose. Data from [13] and [55].
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"841",leadTitle:null,fullTitle:"Hydrodynamics - Natural Water Bodies",title:"Hydrodynamics",subtitle:"Natural Water Bodies",reviewType:"peer-reviewed",abstract:"The knowledge of the characteristics of the fluids and their ability to transport substances and physical properties is relevant for us. However, the quantification of the movements of fluids is a complex task, and when considering natural flows, occurring in large scales (rivers, lakes, oceans), this complexity is evidenced. This book presents conclusions about different aspects of flows in natural water bodies, such as the evolution of plumes, the transport of sediments, air-water mixtures, among others. It contains thirteen chapters, organized in four sections: Tidal and Wave Dynamics: Rivers, Lakes and Reservoirs, Tidal and Wave Dynamics: Seas and Oceans, Tidal and Wave Dynamics: Estuaries and Bays, and Multiphase Phenomena: Air-Water Flows and Sediments. The chapters present conceptual arguments, experimental and numerical results, showing practical applications of the methods and tools of Hydrodynamics.",isbn:null,printIsbn:"978-953-307-893-9",pdfIsbn:"978-953-51-6087-8",doi:"10.5772/1352",price:139,priceEur:155,priceUsd:179,slug:"hydrodynamics-natural-water-bodies",numberOfPages:302,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"d767d412a827d6d3c4912975753c7ec6",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",publishedDate:"January 5th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/841.jpg",numberOfDownloads:42076,numberOfWosCitations:56,numberOfCrossrefCitations:16,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:41,numberOfDimensionsCitationsByBook:1,hasAltmetrics:0,numberOfTotalCitations:113,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 3rd 2011",dateEndSecondStepPublish:"March 3rd 2011",dateEndThirdStepPublish:"July 8th 2011",dateEndFourthStepPublish:"August 7th 2011",dateEndFifthStepPublish:"December 5th 2011",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"20241",title:"Prof.",name:"Harry",middleName:"Edmar",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz",profilePictureURL:"https://mts.intechopen.com/storage/users/20241/images/1853_n.jpg",biography:"Professor Harry Edmar Schulz is a professor in the School of Engineering of the University of São Paulo, Brazil. He is a Civil Engineer (1982) specialist in the Teaching of Transport Phenomena (1985) MSc., and a doctor in Hydraulics and Sanitary Eng. (1985 and 1990). He is also a professor in Transport Phenomena (1997), a full professor in Fluid Mechanics and Transport Phenomena (2002). Professor Schulz served as a visiting researcher in the IfH, Universität Karlsruhe (1992-1993, 1998-1999) and in the SAFL, University of Minnesota (2007-2008). He is an advisor to students working towards their titles as Dr and MSc in Civil Eng. (Hydraulics and Sanitation) and in Mechanical Eng. (Fluid Mechanics). Professor Schulz’s interests are in fluid mechanics, turbulence, and related transport phenomena: applied hydraulics, environmental education related to water resources, and the interaction between philosophical and scientific points of view for the improving of the teaching in engineering and exact sciences.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"74417",title:"MSc.",name:"Raquel",middleName:null,surname:"Lobosco",slug:"raquel-lobosco",fullName:"Raquel Lobosco",profilePictureURL:"https://mts.intechopen.com/storage/users/74417/images/5458_n.jpg",biography:"Msc. Raquel Jahara Lobosco is a Professor MSc. (substitute) in the Department of Chemical Engineering, Federal University of São Carlos. She is a Mechanical Engineer (2004), MSc. in Chemical Engineering (2009), and her activities for the title of Dr. in Hydraulics and Sanitary Engineering are to be concluded in 2012. She has a strong background in software development, airplane turbine repair, mixing, cooling processes, hydraulic structures, and professional engineering experiences in Portugal (cooling equipment, 2001) and Germany (CAE software development, 2006). Her interests are in fluid mechanics, transport phenomena, hydraulics and programming tools.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:{id:"75093",title:"Prof.",name:"André",middleName:"Luiz Andrade",surname:"Simoes",slug:"andre-simoes",fullName:"André Simoes",profilePictureURL:"https://mts.intechopen.com/storage/users/75093/images/system/75093.jpg",biography:"He holds a bachelor\\'s degree in Civil Engineering from the University Salvador (2006), a master\\'s degree in Hydraulic Engineering and Sanitation from the University of São Paulo (2008) and a doctorate in Sciences (Hydraulic Engineering and Sanitation) from the University of São Paulo (2012). He is currently Adjunct Professor at the Federal University of Bahia. Has experience in the areas of Hydraulics, Fluid Mechanics, Transport Phenomena, Computational Fluid Mechanics, Multiphase Flows, Turbulence, Spills in Spillways.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Bahia",institutionURL:null,country:{name:"Brazil"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"787",title:"Hydrodynamics",slug:"engineering-environmental-engineering-hydrodynamics"}],chapters:[{id:"25717",title:"A Hydroinformatic Tool for Sustainable Estuarine Management",doi:"10.5772/26004",slug:"a-hydroinformatic-tool-for-sustainable-estuarine-management",totalDownloads:2408,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"António A.L.S. Duarte",downloadPdfUrl:"/chapter/pdf-download/25717",previewPdfUrl:"/chapter/pdf-preview/25717",authors:[{id:"65240",title:"Prof.",name:"Antonio",surname:"Duarte",slug:"antonio-duarte",fullName:"Antonio Duarte"}],corrections:null},{id:"25718",title:"Hydrodynamic Control of Plankton Spatial and Temporal Heterogeneity in Subtropical Shallow Lakes",doi:"10.5772/30669",slug:"hydrodynamic-control-of-plankton-spatial-and-temporal-heterogeneity-in-subtropical-shallow-lakes",totalDownloads:2990,totalCrossrefCites:2,totalDimensionsCites:12,hasAltmetrics:0,abstract:null,signatures:"Luciana de Souza Cardoso, Carlos Ruberto Fragoso Jr., Rafael Siqueira Souza and David da Motta Marques",downloadPdfUrl:"/chapter/pdf-download/25718",previewPdfUrl:"/chapter/pdf-preview/25718",authors:[{id:"83631",title:"Dr.",name:"Luciana",surname:"Cardoso",slug:"luciana-cardoso",fullName:"Luciana Cardoso"},{id:"88788",title:"MSc.",name:"Rafael",surname:"Siqueira Souza",slug:"rafael-siqueira-souza",fullName:"Rafael Siqueira Souza"},{id:"88791",title:"Prof.",name:"Carlos Ruberto",surname:"Fragoso Jr",slug:"carlos-ruberto-fragoso-jr",fullName:"Carlos Ruberto Fragoso Jr"},{id:"88793",title:"Dr.",name:"David Da",surname:"Motta Marques",slug:"david-da-motta-marques",fullName:"David Da Motta Marques"}],corrections:null},{id:"25719",title:"A Study Case of Hydrodynamics and Water Quality Modelling: Coatzacoalcos River, Mexico",doi:"10.5772/27721",slug:"a-study-case-of-hydrodynamics-and-water-quality-modelling-coatzacoalcos-river-mexico",totalDownloads:3187,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Franklin Torres-Bejarano, Hermilo Ramirez and Clemente Rodríguez",downloadPdfUrl:"/chapter/pdf-download/25719",previewPdfUrl:"/chapter/pdf-preview/25719",authors:[{id:"71255",title:"Dr",name:null,surname:"Torres-Bejarano",slug:"torres-bejarano",fullName:"Torres-Bejarano"}],corrections:null},{id:"25720",title:"Challenges and Solutions for Hydrodynamic and Water Quality in Rivers in the Amazon Basin",doi:"10.5772/27796",slug:"challenges-and-solutions-for-hydrodynamic-and-water-quality-in-rivers-in-the-amazon-basin",totalDownloads:2603,totalCrossrefCites:4,totalDimensionsCites:5,hasAltmetrics:0,abstract:null,signatures:"Alan Cavalcanti da Cunha, Daímio Chaves Brito, Antonio C. Brasil Junior, Luis Aramis dos Reis Pinheiro, Helenilza Ferreira Albuquerque Cunha, Eldo Santos and Alex V. Krusche",downloadPdfUrl:"/chapter/pdf-download/25720",previewPdfUrl:"/chapter/pdf-preview/25720",authors:[{id:"71568",title:"Dr.",name:"Alan",surname:"Cunha",slug:"alan-cunha",fullName:"Alan Cunha"},{id:"73578",title:"Dr.",name:"Daímio",surname:"Brito",slug:"daimio-brito",fullName:"Daímio Brito"},{id:"74153",title:"Dr.",name:"Antonio",surname:"Brasil Júnior",slug:"antonio-brasil-junior",fullName:"Antonio Brasil Júnior"},{id:"74155",title:"Dr.",name:"Helenilza",surname:"Cunha",slug:"helenilza-cunha",fullName:"Helenilza Cunha"},{id:"74157",title:"Mr",name:"Eldo",surname:"Santos",slug:"eldo-santos",fullName:"Eldo Santos"},{id:"74361",title:"Dr.",name:"Alex",surname:"Krusche",slug:"alex-krusche",fullName:"Alex Krusche"},{id:"121065",title:"BSc.",name:"Luis",surname:"Pinheiro",slug:"luis-pinheiro",fullName:"Luis Pinheiro"}],corrections:null},{id:"25721",title:"Hydrodynamic Pressure Evaluation of Reservoir Subjected to Ground Excitation Based on SBFEM",doi:"10.5772/26842",slug:"hydrodynamic-pressure-evaluation-of-reservoir-subjected-to-ground-excitation-based-on-sbfem",totalDownloads:2807,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Shangming Li",downloadPdfUrl:"/chapter/pdf-download/25721",previewPdfUrl:"/chapter/pdf-preview/25721",authors:[{id:"67993",title:"Dr.",name:"Shangming",surname:"Li",slug:"shangming-li",fullName:"Shangming Li"}],corrections:null},{id:"25722",title:"Numerical Modeling of the Ocean Circulation: From Process Studies to Operational Forecasting – The Mediterranean Example",doi:"10.5772/30077",slug:"numerical-modeling-of-the-ocean-circulation-from-process-studies-to-operational-forecasting-the-medi",totalDownloads:3067,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Steve Brenner",downloadPdfUrl:"/chapter/pdf-download/25722",previewPdfUrl:"/chapter/pdf-preview/25722",authors:[{id:"18561",title:"Dr.",name:"Steve",surname:"Brenner",slug:"steve-brenner",fullName:"Steve Brenner"}],corrections:null},{id:"25723",title:"Freshwater Dispersion Plume in the Sea: Dynamic Description and Case Study",doi:"10.5772/28390",slug:"freshwater-dispersion-plume-in-the-sea-dynamic-description-and-case-study",totalDownloads:2551,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Renata Archetti and Maurizio Mancini",downloadPdfUrl:"/chapter/pdf-download/25723",previewPdfUrl:"/chapter/pdf-preview/25723",authors:[{id:"73730",title:"Prof.",name:"Renata",surname:"Archetti",slug:"renata-archetti",fullName:"Renata Archetti"},{id:"87660",title:"Prof.",name:"Maurizio",surname:"Mancini",slug:"maurizio-mancini",fullName:"Maurizio Mancini"}],corrections:null},{id:"25724",title:"The Hydrodynamic Modelling of Reefal Bays – Placing Coral Reefs at the Center of Bay Circulation",doi:"10.5772/28120",slug:"the-hydrodynamic-modelling-of-reefal-bays-placing-coral-reefs-at-the-center-of-bay-circulation",totalDownloads:2388,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ava Maxam and Dale Webber",downloadPdfUrl:"/chapter/pdf-download/25724",previewPdfUrl:"/chapter/pdf-preview/25724",authors:[{id:"72806",title:"Prof.",name:"Dale",surname:"Webber",slug:"dale-webber",fullName:"Dale Webber"}],corrections:null},{id:"25725",title:"Astronomical Tide and Typhoon-Induced Storm Surge in Hangzhou Bay, China",doi:"10.5772/28153",slug:"astronomical-tide-and-typhoon-induced-storm-surge-in-hangzhou-bay-china",totalDownloads:2756,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Jisheng Zhang, Chi Zhang, XiuguangWu and Yakun Guo",downloadPdfUrl:"/chapter/pdf-download/25725",previewPdfUrl:"/chapter/pdf-preview/25725",authors:[{id:"72890",title:"Dr.",name:"Jisheng",surname:"Zhang",slug:"jisheng-zhang",fullName:"Jisheng Zhang"},{id:"74579",title:"Dr.",name:"Yakun",surname:"Guo",slug:"yakun-guo",fullName:"Yakun Guo"},{id:"74585",title:"Dr.",name:"Xiuguang",surname:"Wu",slug:"xiuguang-wu",fullName:"Xiuguang Wu"},{id:"86753",title:"Dr.",name:"Chi",surname:"Zhang",slug:"chi-zhang",fullName:"Chi Zhang"}],corrections:null},{id:"25726",title:"Experimental Investigation on Motions of Immersing Tunnel Element under Irregular Wave Actions",doi:"10.5772/27468",slug:"experimental-investigation-on-motions-of-immersing-tunnel-element-under-irregular-wave-actions",totalDownloads:2127,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Zhijie Chen, Yongxue Wang, Weiguang Zuo, Binxin Zheng and Zhi Zeng, Jia He",downloadPdfUrl:"/chapter/pdf-download/25726",previewPdfUrl:"/chapter/pdf-preview/25726",authors:[{id:"70273",title:"Dr.",name:"Zhijie",surname:"Chen",slug:"zhijie-chen",fullName:"Zhijie Chen"},{id:"77334",title:"Prof.",name:"Yongxue",surname:"Wang",slug:"yongxue-wang",fullName:"Yongxue Wang"},{id:"77335",title:"Dr.",name:"Weiguang",surname:"Zuo",slug:"weiguang-zuo",fullName:"Weiguang Zuo"},{id:"96790",title:"BSc.",name:"Zhi",surname:"Zeng",slug:"zhi-zeng",fullName:"Zhi Zeng"},{id:"96794",title:"BSc.",name:"Jia",surname:"He",slug:"jia-he",fullName:"Jia He"},{id:"121154",title:"MSc.",name:"Binxin",surname:"Zheng",slug:"binxin-zheng",fullName:"Binxin Zheng"}],corrections:null},{id:"25727",title:"Formation and Evolution of Wetland and Landform in the Yangtze River Estuary Over the Past 50 Years Based on Digitized Sea Maps and Multi-Temporal Satellite Images",doi:"10.5772/30079",slug:"formation-and-evolution-of-wetland-and-landform-in-the-yangtze-river-estuary-over-the-past-50-years-",totalDownloads:2839,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Xie Xiaoping",downloadPdfUrl:"/chapter/pdf-download/25727",previewPdfUrl:"/chapter/pdf-preview/25727",authors:[{id:"80725",title:"Prof.",name:"Xie",surname:"Xiaoping",slug:"xie-xiaoping",fullName:"Xie Xiaoping"}],corrections:null},{id:"25728",title:"Stepped Spillways: Theoretical, Experimental and Numerical Studies",doi:"10.5772/28714",slug:"stepped-spillways-theoretical-experimental-and-numerical-studies",totalDownloads:6829,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"André Luiz Andrade Simões, Harry Edmar Schulz, Raquel Jahara Lobosco and Rodrigo de Melo Porto",downloadPdfUrl:"/chapter/pdf-download/25728",previewPdfUrl:"/chapter/pdf-preview/25728",authors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"},{id:"74417",title:"MSc.",name:"Raquel",surname:"Lobosco",slug:"raquel-lobosco",fullName:"Raquel Lobosco"},{id:"75093",title:"Prof.",name:"André",surname:"Simoes",slug:"andre-simoes",fullName:"André Simoes"},{id:"82915",title:"Dr.",name:"Rodrigo De Melo",surname:"Porto",slug:"rodrigo-de-melo-porto",fullName:"Rodrigo De Melo Porto"}],corrections:null},{id:"25729",title:"Sediment Gravity Flows: Study Based on Experimental Simulations",doi:"10.5772/28794",slug:"sediment-gravity-flows-study-based-on-experimental-simulations",totalDownloads:5524,totalCrossrefCites:6,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Rafael Manica",downloadPdfUrl:"/chapter/pdf-download/25729",previewPdfUrl:"/chapter/pdf-preview/25729",authors:[{id:"75377",title:"Prof.",name:"Rafael",surname:"Manica",slug:"rafael-manica",fullName:"Rafael Manica"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1955",title:"Hydrodynamics",subtitle:"Advanced Topics",isOpenForSubmission:!1,hash:"a2f5fb60944543c693da3c7aa4f07dae",slug:"hydrodynamics-advanced-topics",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1955.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1954",title:"Hydrodynamics",subtitle:"Optimizing Methods and Tools",isOpenForSubmission:!1,hash:"502818cd3f53e68a788a01c693a29e5d",slug:"hydrodynamics-optimizing-methods-and-tools",bookSignature:"Harry Edmar Schulz, André Luiz Andrade Simões and Raquel Jahara Lobosco",coverURL:"https://cdn.intechopen.com/books/images_new/1954.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4498",title:"Hydrodynamics",subtitle:"Concepts and Experiments",isOpenForSubmission:!1,hash:"be2502a6232df857f023dd35dfd97271",slug:"hydrodynamics-concepts-and-experiments",bookSignature:"Harry Edmar Schulz",coverURL:"https://cdn.intechopen.com/books/images_new/4498.jpg",editedByType:"Edited by",editors:[{id:"20241",title:"Prof.",name:"Harry",surname:"Schulz",slug:"harry-schulz",fullName:"Harry Schulz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"71364",slug:"erratum-the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",title:"Erratum - The Mechanism of Misalignment of Saw Cutting Crack of Concrete Pavement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/71364.pdf",downloadPdfUrl:"/chapter/pdf-download/71364",previewPdfUrl:"/chapter/pdf-preview/71364",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/71364",risUrl:"/chapter/ris/71364",chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]}},chapter:{id:"71109",slug:"the-mechanism-of-misalignment-of-saw-cutting-crack-of-concrete-pavement",signatures:"Chatarina Niken",dateSubmitted:"October 18th 2019",dateReviewed:"January 11th 2020",datePrePublished:"February 14th 2020",datePublished:"September 23rd 2020",book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"313776",title:"Dr.",name:"Chatarina",middleName:null,surname:"Niken",fullName:"Chatarina Niken",slug:"chatarina-niken",email:"chatarinaniken@yahoo.com",position:null,institution:null}]},book:{id:"7615",title:"Fracture Mechanics Applications",subtitle:null,fullTitle:"Fracture Mechanics Applications",slug:"fracture-mechanics-applications",publishedDate:"September 23rd 2020",bookSignature:"Hayri Baytan Ozmen and H. Ersen Balcioglu",coverURL:"https://cdn.intechopen.com/books/images_new/7615.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",middleName:null,surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12062",leadTitle:null,title:"Public Transportation",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"c045089da37d46be1ee7e5e74f93cc93",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"48108",title:"Enhancing Biomass Utilization for Bioenergy — Crop Rotation Systems and Alternative Conversion Processes",doi:"10.5772/59883",slug:"enhancing-biomass-utilization-for-bioenergy-crop-rotation-systems-and-alternative-conversion-process",body:'
With ever increasing global populations there is a rising demand for energy to support even modest changes in lifestyle. It has been recognized for some time now that with decreasing oil reserves on a global scale there is a need for alternative energy sources. Many of our needs for energy utilizing electricity can be met by alternatives to petroleum and coal-based power generation. Of particularly high potential is the efficient utilization of solar energy. According to Lewis and Nocera [1], the earth receives approximately 7000 times more energy from the sun than is utilized by all of mankind. There are several technologies that are being utilized, ranging from photovoltaic to focusing mirrors to super heat fluids for steam generation in the production of electricity. The continued development of these technologies, along with other types such as wind-driven turbines, geothermal, hydroelectric, and ocean wave motion for electricity production, will greatly lessen the demand on petroleum-based energy. However, a critical need is liquid fuels for transportation. The movement of people and goods over great distances is a vital part of the world economy.
Part of the answer may still lie in the utilization of solar energy; not in a direct manner to power vehicles (cars, trucks, trains, and airplanes), but what it has been doing for billions of years in providing energy to growing plants. Conversion of plant biomass to energy or the production of bio-based liquid fuels (biofuels) has received greater attention in the last couple of decades. Although there is a tremendous amount of potential energy stored in the total plant biomass as it goes through its normal life cycle, much of the current technology has focused on the utilization of grains (corn, cereals, and soybeans) or sugars from storage organs of specialty plants (sugar cane, sugar beets). This has allowed a rapid ramping up of liquid fuel production in the form of ethanol. The technology needed for this production was not something that required a lot of development, but was basically a matter of scale. After all the brewing industry has been utilizing this process for centuries. For corn grain and cereals, it is a matter of converting starch to glucose, a simple enzymatic process followed by the fermentation of glucose by yeast to ethanol. In the case of sugar cane or sugar beets, the same technology was already being utilized to efficiently remove the sugar (sucrose) from plant biomass and easily convert to sugars fermentable with yeast [2]. Even for the production of plant-derived biodiesel, the grains from oil-producing crops are pressed to release oils in which the fatty acids can be methyl- or ethyl–esterified, producing a suitable diesel alternative. Biodiesel lags well behind other types of biofuel production systems and seems to be focused primarily on the utilization of waste products from the food industry[3].
With current scenarios, the ethanol industry will have to compete with increasing demands on grains for feed and food [2]. A concern has been the diversion of land from food production to energy production and rightly so with increasing world populations. With this in mind, much attention has been directed to the conversion of cellulosic biomass to liquid fuels. This subject has been highly reviewed in the past few years, addressing a wide range of concerns and potential advantages. It is clear that crop residues will play a key role in meeting the projected total biomass needed to provide the amount of liquid fuel to meet the goal of replacing 30% of U.S petroleum consumption by 2030 [2]. Dedicated biofuel crops such as switchgrass and fast-growing poplar also figure prominently into meeting this goal. It is envisioned that the dedicated energy crops could be grown on marginal lands poorly suited for the high capacity needs of feed and food [4]. Recently Schmer et.al.,2008 [5]demonstrated that switchgrass grown in areas considered to be margin cropland could be an effective source of biomass for biofuels. It has been proposed that establishment of low input man made prairies could be an economical way of producing biomass for biofuels [6]. Although this could be a way to supply some of the required biomass it may fall well short of the amount needed per acre to make it a practical enterprise for harvest and transportation. Well-managed switchgrass plots on marginal croplands supplied higher estimated ethanol yields per acre (93% greater than poor management) [5]. Genetic improvement is a critical component to establish switchgrass as a major biomass source that can meet the demands for more biofuels [7]. It should be kept in mind that biofuel programs must fit into an agricultural system that maximizes the production potential of each acre of farmland while protecting the environment. In this respect switchgrass on marginal croplands could also provide a nutrient sink for nitrogen waste from animal production. Switchgrass needs little nitrogen input but as with any crop production increases with the application of nitrogen [5]. Well-managed switchgrass plots could extend the useful life of croplands no longer fit for typical row crop production. Perennial grasses such as switchgrass can provide runoff protection as buffer strips along streams and rivers to keep nutrients out of waterways and lakes, thus providing dual benefits.
Although there have been a wide range of crop residues proposed to contribute to the total biomass needed for biofuel production, corn stover would be the largest contributor. It has been estimated that corn stover would contribute as much as 20% of the total biomass requirement [2]. One of the concerns of removing crop residues is the long-term impact upon soils. Removing large portions of the residues leaves the soil surface vulnerable to wind and water erosion. Guidelines have been proposed for leaving sufficient biomass on the fields to keep this from becoming too much of a problem [8]. In addition, removing large portions of the biomass leads to a depletion of the soil organic carbon levels [9]. If sufficient amounts were left in place to meet these demands, this in turn would limit the amount of biomass for biofuel production [10]. With anticipated small profit margins, especially in the early going, there will be a temptation to remove more of the biomass, leaving the soils vulnerable to erosion and risking soil organic carbon depletion. Once these soils have reached high depletion levels, productivity will be severely restricted and returning them to better productivity will be a monumental task. Switching these lands to crops such as switchgrass that can do well in marginal soils would help the biofuels industry, but some of the most productive farmland for food and feed would be lost. This would most certainly sharpen the debate over land use for biofuels vs. food. No matter the approach it is clear multiple scenarios will need to be investigated to meet biomass for biofuel needs in a sustainable manner. The driving force behind future directions should be one of maintaining our existing high production lands while capturing increased value from lands that are should not be in continuous crop production. The challenge moving forward is to develop farming systems that are both economic and environmentally sustainable while meeting the increasing demands of food, feed, fiber, and now bioenergy. There is no doubt that crop residues, especially corn stocks, play a major part in making this vision a reality but as already pointed out it is walking a fine line between productivity and maintaining soil health.
At one time crop rotations utilizing nitrogen fixing legumes were much more prevalent on the landscape due to the cost and availability of commercial fertilizers. With the availability of commercial fertilizers there was no longer a need for utilizing legume forages that are particularly good at fixing nitrogen to be used for subsequent crop production. In the most productive regions in the United States particularly the Midwest Breadbasket there is economic pressure to produce monocultures of crops such as corn. This is made possible due to the relatively cheap source of commercial nitrogen-based fertilizer [11] and to the development of pesticides and herbicides. The Haber-Bosch process to produce ammonia requires large amounts of energy and appropriate catalysts to complete the transformation of hydrogen and nitrogen into ammonia. The commercialization of this process has been referred to as the detonator for the world population explosion because lands could now produce much higher levels of food to support increased populations [12]. Although this has allowed increased grain production the cost of nitrogen fertilizers has increased nearly 8 to 14 fold from a low in early 1970s to 2013 (USDA-REE statistics, http://www.ers.usda.gov/dataproducts/ferti izer-use-and-price.aspx#.VDwPcOe9i-Q). Much of the increased cost of nitrogen based commercial fertilizers has been driven by rising energy costs not only for production of anhydrous ammonia but also for transportation. As fossil based fuels continue to become in greater demand and at some point become limiting the price of fertilizers will continue to go up (See fertilizer price trends USDA-REE statistics) putting greater pressure on the value of crops produced on each acre of land. An alternative is to find other methods of increasing soil fertility. In farming regions where animal production is an integral part of the farming system, animal waste provides a valuable nutrient source (e.g., dairy production). Although a good source of nitrogen based nutrients for crops, good management is critical to maintaining nutrient availability for crop production and preventing excessive soil erosion.
Diagram of alfalfa production with environmental and economic impacts. Alfalfa as a rich source of protein in its leaves can have multiple uses in terms uses as animal feedstuff. The high fiber stem fraction could be used for bioenergy production. There are also many benefits to the environment by including alfalfa into crop rotations to allow sustainable production systems.
Production of forage legumes in rotation with row crops provides opportunities for increasing nitrogen for crop production while stabilizing and improving the environment (Figure 1). In 2010, a workshop (organized by National Alfalfa & Forage Alliance, Pioneer, USDA-Agricultural Research Service, and the National Corn Growers Association) was held to discuss the feasibility and benefits of establishing alfalfa-corn rotations to meet food and feed demands, as well as providing biomass for biofuel production (proceedings available online: www.alfalfa-forage.org). Workshop attendees evaluated the feasibility of using crop rotations to maintain soil fertility while providing sufficient biomass for biofuel production. Jung reported [13] alfalfa (
Accumulation of fixed nitrogen in alfalfa is substantial (152 kg N ha-1 over a range of environments and soil types) [16]. This decreases the need for application of commercial fertilizer that is dependent upon fossil fuels in the form of methane for production. As a perennial legume, alfalfa’s early spring growth as well as late fall growth provides cover for soils when row crops would be planted and after harvest when soils are most vulnerable to erosion. This does not remove the need for good management practices during the corn production part of the cycle; the severity is greatly reduced over a continual corn or corn-soybean rotation. According to Vadas et.al., [17] alfalfa-corn rotations for bioenergy production can have significant advantages mostly in terms of efficiency of energy production and decreased soil erosion and less nitrogen leaching compared to continuous corn. The bottom line was continuous corn had the greatest production costs but also had the greatest profit potential. This is not assigning a cost to the soil erosion. Scientists at the U.S. Dairy Forage Research Center in conjunction with University of Wisconsin-Madison researchers Grabber, Renz, and Lauer have shown that inter-seeding alfalfa with corn can double the first-year yields from the alfalfa [18]. Such a practice would insure cover-crop availability once the corn is harvested and would provide a jumpstart on the production of alfalfa the following spring [19]. The use of alfalfa as a cover crop would appear to have some drag on total corn production during the establishment year but alfalfa production would to significantly increased during the first full year of production. Most importantly the soil would be better protected during the last year of corn production and during the alfalfa establishment decreasing soil erosion potential during alfalfa establishment. Additionally since alfalfa is a deep-rooted perennial it can recover nitrogen that has leached beyond the limited root zone of corn, helping prevent further leaching and contamination of ground water.
In the early 90s (1993 to 2000) a pilot program was initiated to test the feasibility of alfalfa-corn rotation for energy production [13]. The alliance involved the University of Minnesota, USDA-Agricultural Research Service, Minnesota Valley Alfalfa Producers, and the DOE. The proposed system utilized dry baled alfalfa from which stems were mechanically separated from the leaves creating two feedstock components; one being the high fiber stems for energy production and the other leaf meal as a high protein fraction. Feeding trials with the alfalfa leaf meal found that it could successfully replace other protein sources such as soybean meal in diets of calves, dairy cows, and feedlot steers [13]. Although the early work indicated feasibility and advantages of alfalfa-corn rotations in a bioenergy production system the project fell apart before it could move to the next stages of testing and the project abandoned. However, these initial results indicated an existing infrastructure for handling alfalfa that could be easily adapted to a biofuel production program.
There is no doubt that rotation of corn and alfalfa would have significant environmental benefits over continuous corn. What is the economic and environmental impact upon available biomass for biofuels and the need for feed and food? Alfalfa leaves can contain as much as 30% or more protein as a fraction of the total dry matter. Typically during plant development, the stem becomes an increasing proportion of the total biomass; being lower in protein, the total plant protein decreases [20]. Harvesting schemes currently in place requires cutting the alfalfa at early-bud stage of development to keep the fiber content as low as possible and the protein content as high as possible. The down side to this harvesting practice is the need for frequent trips over the field to catch plant development at the early-bud stage. This may be reasonable for feed production for ruminant animals, but does not lend itself to practices that would be widely adopted in corn-alfalfa rotations. However, due to the high protein content of the leaves, separation of leaves from stems results in a rich source of protein for a potentially wide range of uses (Figure 2).
Earlier work using a dry fractionation system to separate leaves from stems resulted in an alfalfa leaf meal (pellets) with an estimated value of $200/ton [21]. However, there are few, if any, existing processing plants in North America today to determine if the value would be more or less than this predicted value [22]. A newly proposed system for harvesting alfalfa separates the leaves from the stems as they are harvested in the field, producing two components.
A comparison of the conventional harvest system for alfalfa compared to the proposed system of harvest and fractionation of leaves and stems into two component streams. This harvest system creates a high protein fraction and a high fiber fraction that allows better utilization of materials grown to fit specific needs whether it is animal feed or high fiber material for biofuels production. It is envisioned that the high protein leaf fraction could be utilized for a wide range of different animal production systems from dairy cows to poultry to enriched protein for aquaculture. The stems would be used for meeting fiber needs of ruminants (less than what would actually be produced per acre) to providing a feedstock for biofuels.
One fraction is rich in protein (leaves) and the other is rich in fiber (stems) [23]. The leaf fraction could be used in a wide range of applications including direct ensiling for high-protein feed, or dehydrated as alfalfa meal or other value-added products requiring high-protein materials [22]. The stems could be used as a source of biomass for biofuel production or for feed depending upon the needs of fiber in the ruminants diet. Because the alfalfa leaf does not change appreciably in protein content over the development of the plant, harvest can be delayed to allow greater amounts of total biomass accumulation [24]. According to Shinners, the advantages of field harvesting and fractionation include 1) production of a high-value protein fraction that avoids losses due to weather, 2) fractionation occurs at harvest so no further processing steps or equipment are needed, 3) capital costs of fractionation equipment are low, 4) fractionation occurs on the farm so only the desired fractions need leave the farm, and 5) ruminant feeds can be recombined to produce high-quality rations[22]. This system would provide an alternative to the harvesting/marketing system that is available today for alfalfa and may provide the farmer with a cash crop incentive to produce more alfalfa in conjunction with corn (See Figure 3).
It is envisioned harvesting alfalfa using in field fractionation creates two product streams to enhance the total value of the alfalfa crop. Prototype machines have been built to effectively remove the leaves from stems creating two alfalfa components at harvest [23]. One of the real advantages of this type of harvest system is the ability to open the harvest window to avoid bad weather and to decrease the total number of harvests. A prototype leaf stripper was used to harvest alfalfa leaves and stems during the summer of 2013 to test the feasibility of creating high quality diets for dairy cows when harvesting late in plant development (full bloom stage). The idea is to decrease the number of harvests per season to limit production costs, but be able to recombine the two fractions in appropriate amounts of stems and leaves to meet the needs of a high producing dairy cow. Results of feeding trial indicated total milk production and quality of the milk remained the same and excess stems could be used for other applications such as biofuel production [25]. Although this was centered around a feeding trial it demonstrated the feasibility of having a viable harvest system that creates two value components from the alfalfa plant. Energy inputs into such a harvest system are less than what is required under the normal production scenarios [22]. Separation of leaves from the stems also allows additional in field processing to render the stems more digestible. Maceration breaks the stem material open allowing easier access of enzymes or microbes to enhance degradability/digestibility [26]. Processing the stems separately from the leaves does not risk the loss of protein from the leaf due to juicing this material during the maceration process. Hence the high protein fraction is preserved and the high fiber fraction is processed in the field requiring less post harvest processing at the biofuel production sites.
Prototype alfalfa leaf stripper. A. Process of stripping the leaf fraction from alfalfa plants. In this prototype machine, harvesting stems was a separate activity from harvesting of the leaf fraction. The stem fraction was left standing in the field until leaves had been removed and then stems were cut and chopped for ensiling. Next generation harvesters would combine these two operations into a single pass over the field. B. Alfalfa stems with 80-90% of the leaves removed.
The genetic make up of alfalfa has been studied over the past 20 years to maximize quality and digestibility. A key component of this research in the past has been genetic selection for alfalfa germplasm that can withstand frequent cuttings as opposed to the accumulation of large amounts of biomass. Now there is interest to exploit the genetic potential to increase more biomass then is currently available for alfalfa. Efforts to genetically select for a biomass-type alfalfa that produces larger stems and more branching with greater total yields has been successful[13, 24, 27]. According to Lamb et.al.,[24, 27] alfalfa genetically selected for increased biomass production and managed to maximize yields resulted in a 40% increase in tons per acre. Revised management techniques amounted to decreased stand density providing more space for individual plant growth and development coupled with a delayed harvest i.e., switching from early bud stage to plants at 50% bloom or later. This provides the biomass alfalfa plant to accumulate higher amounts of total plant material, both leaves and stems. With the larger more robust stems lodging is minimized compared to the typical hay type alfalfa [13]. Coupled with a new harvesting technique of in-field fractionation, this could improve the amount of biomass for biofuels while still producing a high-protein fraction for value-added products. The theoretical ethanol yield for alfalfa stems would be 137 gal/acre compared to 174 gal/acre for corn stover assuming only half of the stover is removed to maintain soil health and long term productivity[13]. Including the grain for ethanol production (473 gal/acre), corn far outpaces the amount of ethanol potential from alfalfa. However, the estimated protein yield per acre would be 0.49 tons/acre for alfalfa leaves, zero for the corn stover and 0.34 tons/acre for corn grain [13]. In the face of growing world populations protein production will be of increasing concern. In terms of outright biomass production, the system of crop rotations between corn and alfalfa lags behind year after year of corn production. From an economic perspective alfalfa-corn rotations provide several advantages in the corn production following alflalfa; 1) yield benefit of $30 to 60/acre, 2) lower fertilizer nitrogen inputs required (2 year time frame) $75 to 150/acre, and 3) no insecticide required the first of corn production $15/acre [13]. This results in an accumulative savings potential of $120 to 225/acre. The rotation system does provide for a more sustainable system, both from an environmental and economic standpoint, primarily from decreasing the application of commercial fertilizers by 75% over two years of production. These economic values do not take in to account the impact of carbon sequestration that would help offset aggressive removal of corn stover during that phase of the rotation cycle.
Current technologies rely primarily on the yeast-ethanol platform to create liquid fuels. The process has been well studied and continues to undergo development to utilize more of the cell wall sugars in addition to the cellulosic glucose. Much of the current biofuel industry is based on yeast fermentation of glucose that is derived from starch primarily from corn grain, although any cereal grain could be used. Brazil has adopted a slightly different approach and has based much of its ethanol production on sugarcane using yeast fermentation. These systems are not sustainable in the long run due to ever increasing populations with increasing demands for food. Capturing biomass for conversion to biofuels is a big part of the vision for decreasing dependence upon fossil fuels. Biomass to biofuels does not directly compete with production needs for food and feed and provides opportunities to maximize utilization of our landscape in ways that are sustainable and improves productivity. However, converting biomass to biofuels efficiently is a critical part of the story.
Cell wall model showing formation of lignin in grass wall matrix. Lignin in grasses is attached to ferulates that are shuttled out into the wall attached to arabinosyl side chains of arabinoxylans. This creates a tightly integrated wall matrix of lignin with wall structural polysaccharides. Similar cross-linking most likely occurs in dicot walls except the ferulates are not likely to be the most prominent anchor points to the wall carbohydrates. Treatment of walls with hot dilute acid solutions removes most of the non-cellulosic polysaccharides opening up the matrix to be more easily degraded by the addition of cellulosic enzyme cocktails.
\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t|
\n\t\t\t\t \n\t\t\t\t | \n\t\t\t\n\t\t\t\t \n\t\t\t\t | \n\t\t||
\n\t\t\t | \n\t\t\t | % Dry Matter | \n\t\t\t\n\t\t |
Glucose | \n\t\t\t18-37 | \n\t\t\t23-34 | \n\t\t\t20-33 | \n\t\t
Other Hexoses | \n\t\t\t21-41 | \n\t\t\t26-36 | \n\t\t\t23-34 | \n\t\t
Xylose | \n\t\t\t5-13 | \n\t\t\t15-23 | \n\t\t\t18-33 | \n\t\t
Other Pentoses | \n\t\t\t6-15 | \n\t\t\t18-27 | \n\t\t\t22-35 | \n\t\t
Lignin | \n\t\t\t7-22 | \n\t\t\t6-12 | \n\t\t\t3-15 | \n\t\t
At this time ethanol production is the main form of biofuel product proposed for biomass[1-2]. This system utilizes yeast-based fermentation using primarily glucose as the substrate for ethanol production. The challenge in using corn stover or any other source of biomass in this process is the complexity of the plant cell wall. Cell walls are complex matrices composed of largely of cellulose microfibrils embedded in a matrix of structural polysaccharides. Once cell walls have reach their maximum size lignification occurs producing a hydrophobic polymer that drives the water from free spaces within the wall as it fills in these open areas (Figure 4) imparting additional strengthen to the wall. This process creates regions within the cell wall that are difficult to hydrolyze especially once the wall has been dried. A comparison of alfalfa stem cell wall composition with that of corn stover provides similar proportions of glucose on a kilogram of dry matter basis (Table 1). To render the glucose available for fermentation current technologies for ethanol production rely heavily on pretreatments to release sufficient amounts of the cellulosic portion of the wall for enzymatic conversion to glucose [28]. Pretreatments are designed to disrupt the cell wall matrix allowing cellulytic enzymes access to the cellulosic components while minimizing the formation of degradation products. Typically dilute acids combined with high temperatures are the most common form of biomass pretreatment [28]. In the case of grasses pretreatments effectively disrupt cross-linking of cell wall arabinoxylans via ferulate dimers and to lignin via ferulate bridges (Figure 4) [29]. Acid treatments easily hydrolyzed arabinofuranose side chains of arabinoxylans, including those with attached ferulates allowing the wall to relax and expand for easier access by wall hydrolyzing enzymes. Treatment of alfalfa stems with low levels of acid during ensiling increased the amount of ethanol that could be produced [30]. However, best ethanol production was obtained after washing stem material after the acid treatment to remove degradation products that would interfere with yeast fermentation. A problem with acid hydrolysis of cell walls especially at high temperatures is the production of furfurals that inhibit yeast. The advantage of coupling dilute acid with ensiling is avoiding the need for high temperatures. Instead utilizing the longer-term storage of the biomass to allow limited degradation of the polysaccharides while minimizing the formation furfurals and other degradation products[30]. There may be highly effective means of solubilizing the cell wall (e.g., complete acid hydrolysis of all cell wall polysaccharides to monomeric sugars), but such methods are prohibitively expensive or make it difficult to remove byproducts. To prevent unwanted microbial fermentation of the released sugar, yeast-based fermentation must be maintained in a sterile environment. Providing and maintaining a sterile environment must be factored into the sequence of events from pretreatment to fermentation; it can be achieved, but at an additional cost to the overall process. From a utilization of the total biomass standpoint yeast fermentation leaves a 20 to 40% of potentially fermentable carbohydrates behind (Table 1) simply because yeast cannot deal effectively with them. This leaves a good deal of potential energy forming material off the table.
Ethanol is not the only biofuel under consideration as a product for biomass. Alternative systems for the conversion of biomass to biofuel are the syngas platform (details of this system can be found on the National Renewable Energy Laboratory website: www.nrel.gov/biomass/biorefinery.html) and the carboxylate platform. The syngas platform requires large inputs of energy to produce effective amounts of a useful biofuel. The carboxylate platform requires undefined mixed bacterial cultures under anaerobic conditions [31] (Figure 5). One of the big advantages of this system is the flexibility of the undefined mixed bacterial cultures to handle a wide range of substrates going into the system. More importantly they do not require a sterile environment in which to function. Popular sources of mixed anaerobic cultures are sewage sludge digesters and marine sediments[31-32]. The carboxylate platform works by the process of anaerobic degradation of carbohydrates to produce volatile fatty acids primarily acetic (C2), propionic (C3), and butyric (C4) acids although other VFAs can be produced.
Schematic of biofuel production systems. Ethanol platform is the typical process proposed for conversion of plant biomass to liquid fuels. The carboxylate platform is an alternative method of producing liquid fuels using mixed anaerobic bacteria (ruminal microbes have advantages over typical systems utilizing sewage sludge or marine sediments) to produce VFAs for conversion to volatile fuel components. Cultures can be manipulated to produce higher ratios of C5, C6 and C7 VFAs for more energy dense molecules.
An advantage of the carboxylate platform is the general low inputs needed to obtain materials that can be modified to produce biofuels or bio-refinery products. Pre-treatments are minimized and may be confined to particle size reduction or mild chemical treatments providing the greatest advantages[31]. Most importantly the carboxylate platform does not require an antiseptic environment in which to operate, greatly simplifying handling of raw materials going into digesters. Significant work has been done on carboxylate platforms utilizing mixed cultures from sewage sludge treatments [31, 33]. Such systems have a great deal of flexibility when it comes to handling a wide range and complexity of crop residues or other carbon based materials from agricultural practices. These organic materials may be relatively abundant and of relative low value in their present form before fermentation to VFAs. A disadvantage of the sewage sludge inoculum is the general slow conversion rate and methanogens producing large amounts of methane[31]. In the case of manure or other organic waste digesters where time is not a limiting factor this is quite acceptable and the methane can be easily captured and used as an energy source. With the right type of microbial mix, it is possible to produce longer-chain carboxylates caproate (C6) and caprylate (C8) from acetate in addition to the typical acetate, propionate, and butyrate through a process referred to as reverse β-oxidation[34]. The potential down side of this approach is the process tends to be slow and requires inhibition of methanogens to force the system to produce larger quantities of the longer-chain VFAs, e.g., n-caproate (C6) and n-caprylate (C8). Inhibition of methanogens can be efficiently achieved with compounds like bromoethane sulfonic acid, but this is relatively expensive and would be prohibitive on a large scale[31].
An alternative source of anaerobic microbes for the carboxylate platform for the conversion of plant biomass would be the cow’s rumen. In comparison to waste stream anaerobic microbes, the rumen is a more specialized system having evolved to extract nutrient value out of a wide range of plant materials [35]. Although cell wall degradation and total feed utilization by dairy and beef cows can be improved, the microbial community in these ruminants has evolved to degrade fibrous plant material relatively quickly to supply needed nutrients to the animal [36]. The rumen is a mixed culture of anaerobic organisms effectively degrades carbohydrates, proteins, and fats present in feed mixtures to produce short-chain VFAs. The efficiency of this ruminal system appears to be much greater than what is in the typical waste stream systems[37]. The advantage of a ruminant-based carboxylate platform is the ability to degrade all the organic materials (polysaccharides, proteins, fats, and oils) with the exception of the lignin within short time periods of 24-72 hours. High producing ruminants like the dairy cow must be able to extract sufficient energy from feed materials within 48 hours to support her maintenance and milk production. Cow ruminant microbial communities have evolved over time to handle a diversity of substrates (i.e., easily degraded starch to more recalcitrant fiber materials). Ruminal microbial communities are quite complex with redundancy in the types of hydrolytic abilities that may come into play as substrates change coming into the cow [36]. Due to the relatively short incubation times slower growing acetogens (convert C3-C6 VFAs to acetate) and the methanogens (convert acetate to methane) do not have a chance to become well established. This in turn restricts methane production (8-15% of total energy) in this type of carboxylate platform avoiding the need to add specific methane inhibitors [36]. The small amount of methane that is produced could be captured and utilized as an energy input to maintain incubation temperatures.
Recently Weimer et.al., 2014 [38] demonstrated the ability of rumen microbial cultures to produce large amounts of valeric and caproic in short time periods of 48-72 hour incubations. It has been demonstrated that the addition of dilute amounts of ethanol to mixed culture fermentations in the carboxylate platform results in the extension of the short chain VFAs to medium length molecules thus capturing the fuel value of ethanol in a form that could be more easily recovered [34, 39]. What is unique and promising about the work of Weimer et.al., is the ability to speed up this process using ruminal mixed culture fermentations as opposed to the typical source of sewage digesters [38]. In addition they found that supplementing the mixture with ruminal derived
Multiple pathways for converting VFAs to volatile compounds that can serve as biofuels or as intermediates for the formation of additional organic compounds.
Volatile fatty acids must be converted to a form that increases their volatility to be good energy molecules. The medium length VFAs can be recovered by extraction [42] to allow additional modifications. Conversion of VFAs can be accomplished in different ways depending upon the tis desirable end product and its potential use. Possible conversion practices could utilize pure cultures of specific bacteria, electrochemical and thermochemical process. Useful end products that could be used for energy, solvents, or other biorefinery intermediates include ketones, aldehydes, alcohols, and alkanes (Figure 6). Due to the flexibility in the type of end product there are several avenues available to reach the desired outcome. Conversion process can be accomplished in a multitude of different ways using a single or multiple steps to reach desired products. Products such as ketones from VFAs using catalytic coupling [43] or ketones and secondary alcohols as produced in the MixAlco process [33]. The formation of volatile esters can be formed as demonstrated by Lange et.al., [44],Levy et.al., [45] or using microbial systems [46]. Production of alkanes can be achieved by decarboxylation of using pure cultures of microbes [47] or the use of electrochemical process using the Kolbe and/or the Hoefer-Moest processes [48]. The conversion of VFAs especially the medium length (C4-C6) increases volatility and at the same time decreases miscibility with water improving extraction process to isolate the biofuel molecules. The added advantage of VFA production (C2-C6 or longer) coupled with conversion technologies is the flexibility to produce a wide range of molecules that can be used for higher energy density fuel molecules or as starting molecules for other organic materials.
Typically biomass to biofuel systems are envisioned with a centrally located processing plant to handle large amounts of biomass. Unlike the grain ethanol production systems in which the grain is of relatively high density in terms of potential energy per volume, biomass tends to be much bulkier unless it is pelletized to increase bulk density [49]. When one is considering the utilization of corn stover and/or alfalfa stems these materials can be field processed into relatively high-density bales to improve the efficiency of shipping [50]. This is just one step in the complete process of collecting and moving biomass to centralized points for conversion to biofuels [51]. The challenge is keeping the collection, improving bulk density, and transportation costs to minimal levels to help final economic returns and the minimizing the carbon footprint associated with biomass to biofuels[50]. Perhaps it would be feasible to consider on farm conversion at least for the initial steps of the conversion process. In this scenario the harvested plant material (corn stover, alfalfa stems, switchgrass, etc) would be stored on the farm more with an ensiling process compared to dry storage. This provides an opportunity to add enzymes or dilute chemicals to enhance the subsequent digestion of the materials. Size reduction could also be incorporated into the process and storing materials wet eliminates the need for rehydration for fermentation. It could be envisioned that small on farm digesters could be used to process the biomass materials to produce VFAs (select additions of pure cultures and ethanol to create products for special uses) that would be recovered and transported to conversion sites. Processing on farm eliminates the need for consolidating biomass for shipment to centralized processing plants and open opportunities for other types of storage that could enhance conversion efficiency. Recovery of the VFAs or conversion on site to intermediates followed by extraction results in a improvements in energy density and allows materials to be shipped greater distances for further processing into molecules that provide the greatest benefit either as biofuels or as precursors for other organic based materials.
One of the challenges of any biomass conversion platform is dealing with the fermentation residual materials. Lignin is a primary component of the fermentation waste and in many schemes it is recovered and burned to supply energy for other steps in the complete process. With the carboxylate platform based upon mixed ruminal microbes, one of the by products could be the microbial protein as a value-added material. In the normal rumination process, formation of microbial protein is an important component to supply needed protein to the animal. In dairy production, microbial protein helps supply critical amino acids required for milk production, especially methionine and lysine that are often low or lacking in many forage-based diets [52]. Harvesting the microbial protein after biomass conversion to biofuels could provide an important protein supplement for dairy cow diets that is enriched in methionine and lysine. The microbial proteins would be insoluble along with the typical insoluble materials, i.e., lignin and other cell wall components. Recovery of these insoluble materials would be relatively straightforward. As an alternative the lignin-microbial-carbohydrate residue from the fermentation process could be used to replace phenolic-formaldehyde based adhesives[53]. Many of the ruminal microbes contain glycocalyx materials surrounding the individual cells that help them adhere to plant materials during digestion. The glycocalyx is a glycoprotein-polysaccharide complex that surrounds the cell membrane of some bacteria[54]. It has also been demonstrated that the lignin-microbial residues from ruminal fermentations, as proposed for the carboxylate platform, could be used to replace phenol-formaldehyde compounds as adhesives in the production of plywood composites[53]. Up to 70% of the typical phenol-formaldehyde formulation could be replaced by the more environmentally friendly residues that are byproducts of ruminal-based fermentations. Even if it would not be possible to replace all of the phenol-formaldehyde adhesive, decreasing significant amounts of this material would provide for healthier composites by decreasing the amount of formaldehyde outgassing that are a human health concern[53]. Key to the effectiveness of fermentation residues is creating the correct balance of lignin, the blend of rumen microbes and the types of glycocalyx material, and other minor phenolic materials in the plant materials.
This chapter is not meant to be a comprehensive assessment of biomass to biofuels, but rather a look at unconventional approaches that would enhance the sustainability of the entire process. To meet the goals of biofuel production by 2030 will require optimizing land use for food, feed, and bioenergy production. It should be approached from a standpoint of developing a viable biofuel production system that increases the amount of energy stored in the molecules making up the biofuels, i.e., longer-chain molecules, more energy per unit of fuel. To be sustainable into the future we must be willing to develop alternative systems that supply a range of biomaterials. Although the producing energy alternatives is of major concern at the present time we should be evaluating and developing bioenergy systems that allow flexibility not only in terms of feedstock going in, but the products coming out. Development of biomass to biofuels systems should look at how we can maximize the value of the total process, that is, optimize land use, embrace farming systems that decrease or eliminate soil/nutrient losses, improve economics of production, utilization of value-added products, and total energy production versus inputs. The entire process must also be sustainable from an environmental standpoint and provide economic advantages to the producer. Our vision into the future should be one of maximizing the productivity of each acre of farmland while meeting the needs for feed, food, and energy along with improving the soil for future generations. Decisions made today should not be overly influenced solely by short term economic gains.
Majority of the global population in present time is relying heavily on few major cereal crops such as wheat, rice, and maize for nutrition. These handful of crops are sustaining more than 50% of world population. Though they are rich in starch and are consumed for energy needs, they lack some essential micronutrients which has led to hidden hunger among the people. This micronutrient deficiency has affected nearly 2 billion people worldwide and has aroused serious health concerns [1]. This is not only affecting the human health but it also has adverse consequences on other plants such as pseudo-cereals whose biodiversity is declining due to the dominance of conventional cereal crops and for the same reason, they have remained underutilized till date. However, scientists have now turned their attention to the underutilized crops and they are showing considerable interest in pseudo-cereals because of their high resiliency towards the abiotic stress, nutritional, and phytochemical potential and their usage in gluten-free products. In near future, as the human population is predicted to rise, we will need to adopt an interdisciplinary approach to combat food crisis by not only improving the quality of available food by enrichment or biofortification but also by exploring other potential plants which are already enriched with required micronutrients which is an important aspect of food security [2].
Pseudo-cereals that we are going to consider in this review are dicotyledonous plants belonging to families Amaranthceae and Chenopodiaceae for example:
There are nearly 70
The grains of underutilized crops resemble to that of true cereals in functional aspect. However, they differ in nutritional and phytochemical aspects. Pseudo-cereal grains are composed of less of starch and more of proteins and lipids as opposed to cereals. The reason is, anatomically, pseudo-cereal grain contains lesser amount of endosperm (starch storing organ) and greater amount of embryo (that store proteins and lipids). Pseudo-cereals possess a considerable amount of essential amino acids such as lysine, cysteine, and methionine. Other than lysine,
In the extracts of
The determination of vitamin-C and β-carotene from the young as well as mature shoots of
This section deals with the nutritional aspect of chosen
Nutrients | Concentration (g/100 g) |
---|---|
Protein | 14.95 ± 0.19c |
Fat | 6.30 ± 0.05a |
Total sugars | 0.27 ± 0.01b |
Soluble fiber | 0.68 ± 0.01c |
Insoluble fiber | 29.92 ± 0.01d |
Carbohydrates | 28.55 ± 0.76a |
Essential minerals | (mg/g) |
Calcium (Ca) | 5.97 ± 0.27d |
Potassium (K) | 6.66 ± 0.19c |
Magnesium (Mg) | 4.27 ± 0.02d |
Sodium (Na) | 0.77 ± 0.01d |
Phosphorous (P) | 8.73 ± 0.02a |
Trace elements | |
Iron (Fe) (mg/g) | 0.33 ± 0.23a |
Chromium (Cr) (μg/g) | 5.36 ± 0.01b |
Copper (Cu) (μg/g) | 6.14 ± 0.01b |
Zinc (Zn) (μg/g) | 24.95 ± 0.01b |
Chemical composition of
Average followed by different letters on the same line indicate statistical difference according to the Duncan test (
Nutrients | Concentration (g/100 g) |
---|---|
Crude protein | 36.71 |
Crude fat | 8.31 |
Carbohydrates | 37.52 |
Crude fiber | 0.44 |
Proximate chemical composition of
Minerals | Concentration |
---|---|
Macro-minerals | (mg/g) |
Sodium (Na) | 0.06 ± 0.01b |
Potassium (K) | 6.35 ± 0.04b |
Calcium (Ca) | 0.17 ± 0.01b |
Magnesium (Mg) | 2.18 ± 0.01b |
Trace minerals | (μg/g) |
Molybdenum (Mo) | 0.28 ± 0.02b |
Manganese (Mn) | 30.20 ± 0.63b |
Aluminum (Al) | 41.07 ± 4.16b |
Iron (Fe) | 76.82 ± 4.15b |
Zinc (Zn) | 41.77 ± 0.18a |
Copper (Cu) | 7.67 ± 0.19b |
Strontium (Sr) | 3.39 ± 0.26b |
Cadmium (Cd) | 0.10 ± 0.04b |
Lead (Pb) | 0.21 ± 0.02b |
Ultra-trace minerals | (μg/g) |
Chromium (Cr) | 2.18 ± 0.38b |
Cobalt (Co) | 0.09 ± 0.01b |
Nickel (Ni) | 1.35 ± 0.44b |
Tin (Sn) | 0.18 ± 0.04b |
Mineral composition of
Means (±SEM) sharing different letters in the same row are significantly (
Nutrients | Concentration (g/100 g) |
---|---|
Protein | 13.12b ± 0.07 |
Fat | 6.50a ± 0.30 |
Crude fiber | 13.09b ± 0.04 |
Carbohydrate | 54.61a ± 0.09 |
Total starch | 41.44a ± 0.29 |
Proximate composition of
Mean values in the same row which is not followed by the same letter are significantly different (
Minerals | Concentration (mg/kg) |
---|---|
Calcium (Ca) | 177.89a ± 4.04 |
Sodium (Na) | 82.45b ± 0.42 |
Iron (Fe) | 112.07a ± 1.26 |
Magnesium (Mg) | 1600.34a ± 15.01 |
Copper (Cu) | 5.90b ± 0.36 |
Zinc (Zn) | 24.20b ± 0.23 |
Potassium (K) | 10113.31a ± 21.50 |
Mineral composition of
Mean values in the same row which is not followed by the same letter are significantly different (
Cereals | Protein | Fat | Fiber | Carbohydrate |
---|---|---|---|---|
Wheat | 12.39 ± 0.010 | 2.50 ± 0.010 | 1.14 ± 0.070 | 75.65 ± 0.240 |
Maize | 8.58 ± 0.000 | 2.85 ± 0.020 | 2.83 ± 0.020 | 75.39 ± 0.030 |
Rice | 10.49 ± 0.010 | 3.94 ± 0.030 | 1.09 ± 0.000 | 75.61 ± 0.450 |
Proximate composition (%) of cereals [20].
Values reported were average of duplicate analysis.
Cereals | Wheat | Maize | Rice |
---|---|---|---|
Sodium (Na) | 383.33 ± 0.001 | 333.33 ± 0.0011 | 126.67 ± 0.001 |
Potassium (K) | 416.67 ± 0.001 | 300.00 ± 0.001 | 183.33 ± 0.001 |
Calcium (Ca) | 60.02 ± 0.0027 | 12.95 ± 0.7770 | 3.35 ± 0.0019 |
Magnesium (Mg) | 140.73 ± 0.0053 | 77.62 ± 0.0037 | 23.67 ± 0.0052 |
Iron (Fe) | 67.22 ± 0.0011 | 58.35 ± 0.0006 | 59.33 ± 0.0005 |
Zinc (Zn) | 11.73 ± 0.0011 | 9.45 ± 0.0009 | 9.27 ± 0.0006 |
Their extraordinary nutritional profile is the result of the presence of countless bioactive components that includes essential amino acids, proteins, phenolic compounds, and a wide range of anti-oxidants, thus rendering them with a high nutraceutical potential. But along with favorable substances, they also contain anti-nutrients such as phytate, tannins, and saponins which reduces the bioavailability of beneficial supplements. To resolve this, pseudo-cereals are subjected to several processing treatments like soaking, fermentation, popping, germination, and cooking. Such treatments improve bioavailability of nutrients by decreasing the amount of anti-nutrients and consequently enhances the nutritional value of pseudo-cereals. For example, seeds of
Processing increases the digestibility and palatability of respective food product. It extends the self-life and reduces the anti-nutritional compounds. Following are few traditional methods for processing pseudo-cereals to make them more consumable.
Fermentation is a metabolic process carried out by anaerobic microorganisms in which carbohydrates are broken down to release energy. It is an age-old technique for food preservation. Pseudo-cereals are an adequate source of carbohydrates, minerals, vitamins, sterols, and other growth factors that sustains the microbe populations. These grains are composed of an indigenous microbiota comprising of molds, lactic acid bacteria (LAB), enterobacteria, etc. LAB are gram positive, strictly fermentative bacteria which carries out lactic acid fermentation and produces lactic acid as the major metabolic end product of carbohydrate fermentation and the most frequently used strain for this purpose is
Lactic acid fermentation is a commonly used food processing technique which can be employed in many different ways to improve nutritional and functional quality of pseudo-cereals such as production of bioactive peptides to stimulate immune system, increasing total phenolic content and antioxidant capacity, decreasing of anti-nutritional factors like phytic acid, tannins, and enzyme inhibitors. The formation of lactic acid during fermentation leads to a decrease in pH that results in enhanced activity of endogenous phytase. Phytases constitutes particular subgroup of phosphatases which are responsible for lowering or eliminating the anti-nutritional effect of phytic acid. Some LAB strains and other vitamin producing microorganisms can elevate the concentrations of natural form of vitamins that leads to the decrease in side effects of chemically synthesized vitamins. Hence, they can be utilized as an alternative source of biofortification which is also a cost-effective strategy and eliminates the need to add synthetic vitamins. Food products consumed after fermentation with LAB improves the overall nutritional quality by increasing vitamin B9 concentrations. There is a need to explore more beneficial effects of lactic acid fermentation to design novel and healthier edibles especially for patients with celiac disease [22, 23].
Also known as heat induced puffing, is a low-cost technology in which heating at atmospheric pressure gives rise to high internal pressure due to evaporation of moisture, causing the pericarp to break, leading to the expansion of endosperm. Puffed grains undergo dehydration as well as structural and textural changes. Puffing increases digestibility and functionality of the grains. Because of such modifications,
Germination is a process in which a new plant arises from the seed if the seed is under favorable conditions. Imbibition is the first step in germination process in which the dry seed absorbs water which leads to the increased metabolic rates and subsequent growth. The interesting part is the rise of hydrolytic enzyme activities followed by breakdown of stored macromolecules in the seed. Such changes alter the technological properties and functionality of grains which is a desirable asset. During germination, the action of hydrolytic enzymes on starch increases its digestibility. It also increases the content of free amino acids which are readily absorbed compared to the intact proteins, influencing the postprandial protein metabolism. The breakdown of cell wall changes the solubility of fiber components and increases the amounts of bioactive compounds and antioxidant activities [25].
Grains of pseudo-cereals are generally eaten after boiling. However, excessive boiling decreases the phenolic contents of the grains. Highest retention of phenolic contents was observed by pressure cooking. From anti-nutritional aspect, no significant reduction was seen in anti-nutritional compounds, especially of phytic acid through boiling. Evaluation of minerals in
Pseudo-cereals are a powerhouse of nutrients. There is a need to explore them further and bring them in our daily diet. Even though pseudo-cereals seem more superior than cereals in context of their chemical composition, the anti-nutrients present in them reduces the bioavailability of the nutritional components. Phytate and lower inositol phosphates binds to the minerals like calcium, zinc, magnesium, and iron, making them unavailable for absorption [26]. As nutritional deficiency is becoming more prevalent among the human population throughout the globe, food producers are expected to develop novel strategies for their improved processing. Moreover, there is a requirement of making people aware about the benefits of pseudo-cereals so that they consider them in their diet along with the cereals which will also elevate the nutritional quality of their diet. Prerequisite for this is to design new range of food products prepared using pseudo-cereals as their key ingredients and introduce them into the market. Pseudo-cereals are also in demand for the manufacture of gluten-free edibles. Therefore, it is very important to have a detailed understanding of the properties of pseudo-cereals and their benefits and drawbacks. This will aid in boosting the quality of life of the people with celiac and other gluten-induced diseases. Pseudo-cereals have an immeasurable potential, the only task is to give an eye to them.
Thanks to the head of the Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda for providing laboratory facilities at the department.
If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links.
",metaTitle:"List of Institutions by Country",metaDescription:"If you are associated with any of the institutions in our list below, you can apply to receive OA publication funds by following the instructions provided in the links. However, if your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"open-access-funding-institutions-list",contentRaw:'[{"type":"htmlEditorComponent","content":"Book Chapters and Monographs
\\n\\nBook Chapters
\\n\\nMonographs Only
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\nMonographs Only
\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nBook Chapters and Monographs
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\n\\n\\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nBook Chapters and Monographs
\\n\\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\\n\\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\\n\\nMonographs Only
\\n\\n\\n\\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Book Chapters and Monographs
\n\n\n\nBook Chapters
\n\nMonographs Only
\n\n\n\nBook Chapters and Monographs
\n\nMonographs Only
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCSIC affiliated authors can also take advantage of a central Open Access fund (amounting to 10,000 EUR) to cover up to 50% of the rest of the OAPF until it expires. Effective for chapters accepted from January 1, 2020.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\n\n\nCorresponding authors will receive a 25% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters. A 20% discount for publishing a long-form monographs, 25% for compacts and 23% for short-form monographs.
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\nBook Chapters and Monographs
\n\n\n\nBook Chapters and Monographs
\n\nThe Claremont Colleges are pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 15% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Massachusetts, Amherst is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nThe University of Surrey is pledging funds via the Knowledge Unlatched program to ensure academics can publish Open Access content more easily.
\n\nCorresponding authors will receive a 10% discount on their Open Access Publication Fees (OAPF) for Open Access book chapters or monograph publications. To use the discount you will need to verify your institutional email address. These discounts are valid from 2020 to 2022.
\n\nMonographs Only
\n\n\n\nImportant: You must be a member or grantee of the above listed institutions in order to apply for their Open Access publication funds.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"ECM",topicId:"8,9,10,11,14,15,17,20,22,24"},books:[{type:"book",id:"11837",title:"Ecology and Geography of the Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11938",title:"Ballistics",subtitle:null,isOpenForSubmission:!0,hash:"9c64ef67aac55216f08c65a2a179835c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11938.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11942",title:"Updates on Spatial Audio",subtitle:null,isOpenForSubmission:!0,hash:"f4ac095defb765e0e9bfebc06dac719e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11942.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11915",title:"Ontology in Information Science",subtitle:null,isOpenForSubmission:!0,hash:"b52397215f6b5e05a22368f629695704",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11915.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12071",title:"Massive Open Online Courses",subtitle:null,isOpenForSubmission:!0,hash:"f4918898cbe91bb691a397bbde7138b1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12071.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12062",title:"Public Transportation",subtitle:null,isOpenForSubmission:!0,hash:"c045089da37d46be1ee7e5e74f93cc93",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12062.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12017",title:"Polynomials",subtitle:null,isOpenForSubmission:!0,hash:"1912acc4811b724cc0a15dba11f5af79",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12017.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12024",title:"UWB Technology",subtitle:null,isOpenForSubmission:!0,hash:"6158349f714de7cee2337adf57b2617d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12024.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12025",title:"Cognitive Radio Systems",subtitle:null,isOpenForSubmission:!0,hash:"75b14778d5efbcfe9c1f51d2e31f6aeb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12025.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12022",title:"Statistical Sampling",subtitle:null,isOpenForSubmission:!0,hash:"d95646776d1cb0b10161dc68c9c07781",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12022.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12026",title:"Induction Motor",subtitle:null,isOpenForSubmission:!0,hash:"0273a4ffd6bc66faed9db00380771240",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12026.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:77},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"150",title:"Pure Immunology",slug:"pure-immunology",parent:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:21,numberOfSeries:0,numberOfAuthorsAndEditors:432,numberOfWosCitations:456,numberOfCrossrefCitations:337,numberOfDimensionsCitations:699,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"150",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9481",title:"Celiac Disease",subtitle:null,isOpenForSubmission:!1,hash:"e6e11ac5ac7485c2653e734fafdc7b64",slug:"celiac-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/9481.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8590",title:"Macrophage Activation",subtitle:"Biology and Disease",isOpenForSubmission:!1,hash:"e15abd1b0e08f1b67d33592999c52c32",slug:"macrophage-activation-biology-and-disease",bookSignature:"Khalid Hussain Bhat",coverURL:"https://cdn.intechopen.com/books/images_new/8590.jpg",editedByType:"Edited by",editors:[{id:"162478",title:"Dr.",name:"Khalid Hussain",middleName:null,surname:"Bhat",slug:"khalid-hussain-bhat",fullName:"Khalid Hussain Bhat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6963",title:"Immune Response Activation and Immunomodulation",subtitle:null,isOpenForSubmission:!1,hash:"ac7ce04a130a57849a8d3adb55d688ed",slug:"immune-response-activation-and-immunomodulation",bookSignature:"Rajeev K. Tyagi and Prakash S. Bisen",coverURL:"https://cdn.intechopen.com/books/images_new/6963.jpg",editedByType:"Edited by",editors:[{id:"201069",title:"Dr.",name:"Rajeev",middleName:"K.",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7129",title:"Neutrophils",subtitle:null,isOpenForSubmission:!1,hash:"4f71e75cb45249658d48e765d179ce9f",slug:"neutrophils",bookSignature:"Maitham Khajah",coverURL:"https://cdn.intechopen.com/books/images_new/7129.jpg",editedByType:"Edited by",editors:[{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7077",title:"Celiac Disease",subtitle:"From the Bench to the Clinic",isOpenForSubmission:!1,hash:"9effb55d4ab18dca9bcb8d40e34930f8",slug:"celiac-disease-from-the-bench-to-the-clinic",bookSignature:"Luis Rodrigo and Carlos Hernández-Lahoz",coverURL:"https://cdn.intechopen.com/books/images_new/7077.jpg",editedByType:"Edited by",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6470",title:"Rapid Test",subtitle:"Advances in Design, Format and Diagnostic Applications",isOpenForSubmission:!1,hash:"4511f4aaf7e54a38e8519d210290e032",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",bookSignature:"Laura Anfossi",coverURL:"https://cdn.intechopen.com/books/images_new/6470.jpg",editedByType:"Edited by",editors:[{id:"48947",title:"Dr.",name:"Laura",middleName:null,surname:"Anfossi",slug:"laura-anfossi",fullName:"Laura Anfossi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6617",title:"Immunoregulatory Aspects of Immunotherapy",subtitle:null,isOpenForSubmission:!1,hash:"a2f42aa78dd846d4a1679066e72a7285",slug:"immunoregulatory-aspects-of-immunotherapy",bookSignature:"Seyyed Shamsadin Athari",coverURL:"https://cdn.intechopen.com/books/images_new/6617.jpg",editedByType:"Edited by",editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",middleName:null,surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5854",title:"Germ Cell",subtitle:null,isOpenForSubmission:!1,hash:"e63c03c8b93ebc004eef632ab84d62ea",slug:"germ-cell",bookSignature:"Ahmed RG",coverURL:"https://cdn.intechopen.com/books/images_new/5854.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",middleName:null,surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5975",title:"Physiology and Pathology of Immunology",subtitle:null,isOpenForSubmission:!1,hash:"b31eea21dfa90b753604f34bf1c0b8a5",slug:"physiology-and-pathology-of-immunology",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/5975.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5991",title:"Natural Killer Cells",subtitle:null,isOpenForSubmission:!1,hash:"ea5a1d2f5030a6af3f29cc75fdb9f559",slug:"natural-killer-cells",bookSignature:"Mourad Aribi",coverURL:"https://cdn.intechopen.com/books/images_new/5991.jpg",editedByType:"Edited by",editors:[{id:"40046",title:"Prof.",name:"Mourad",middleName:null,surname:"Aribi",slug:"mourad-aribi",fullName:"Mourad Aribi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6004",title:"Lymphocyte Updates",subtitle:"Cancer, Autoimmunity and Infection",isOpenForSubmission:!1,hash:"2a9634b93e9b1d409b3b47d472960c55",slug:"lymphocyte-updates-cancer-autoimmunity-and-infection",bookSignature:"Gheorghita Isvoranu",coverURL:"https://cdn.intechopen.com/books/images_new/6004.jpg",editedByType:"Edited by",editors:[{id:"193129",title:"Ph.D.",name:"Gheorghita",middleName:null,surname:"Isvoranu",slug:"gheorghita-isvoranu",fullName:"Gheorghita Isvoranu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"33740",doi:"10.5772/35797",title:"Interferences in Immunoassays",slug:"interference-in-immunoassays",totalDownloads:17513,totalCrossrefCites:14,totalDimensionsCites:53,abstract:null,book:{id:"1499",slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Johan Schiettecatte, Ellen Anckaert and Johan Smitz",authors:[{id:"105883",title:"Mr.",name:"Johan",middleName:null,surname:"Schiettecatte",slug:"johan-schiettecatte",fullName:"Johan Schiettecatte"},{id:"113099",title:"Dr.",name:"Ellen",middleName:null,surname:"Anckaert",slug:"ellen-anckaert",fullName:"Ellen Anckaert"},{id:"113100",title:"Prof.",name:"Johan",middleName:null,surname:"Smitz",slug:"johan-smitz",fullName:"Johan Smitz"}]},{id:"63913",doi:"10.5772/intechopen.80843",title:"Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens",slug:"cytokine-profiling-plays-a-crucial-role-in-activating-immune-system-to-clear-infectious-pathogens",totalDownloads:3515,totalCrossrefCites:17,totalDimensionsCites:44,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response that recognizes pathogen-associated molecular patterns (PAMPs) and an antigen-specific adaptive immune response. In both responses, there are several activated cells of the immune system, which play a key role in establishing the environment of cytokines, thus directing their differentiation either suppressing or promoting the immune response. This immune response is crucial against pathogen infections. In this chapter, we will describe the crucial role played by different families of cytokines during activation of the immune system to eliminate infectious pathogens.",book:{id:"6963",slug:"immune-response-activation-and-immunomodulation",title:"Immune Response Activation and Immunomodulation",fullTitle:"Immune Response Activation and Immunomodulation"},signatures:"José Luis Muñoz-Carrillo, Juan Francisco Contreras-Cordero,\nOscar Gutiérrez-Coronado, Paola Trinidad Villalobos-Gutiérrez,\nLuis Guillermo Ramos-Gracia and Viridiana Elizabeth Hernández-Reyes",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"},{id:"233193",title:"Dr.",name:"Paola Trinidad",middleName:null,surname:"Villalobos-Gutiérrez",slug:"paola-trinidad-villalobos-gutierrez",fullName:"Paola Trinidad Villalobos-Gutiérrez"},{id:"254015",title:"Dr.",name:"Viridiana Elizabeth",middleName:null,surname:"Hernández-Reyes",slug:"viridiana-elizabeth-hernandez-reyes",fullName:"Viridiana Elizabeth Hernández-Reyes"},{id:"257472",title:"Dr.",name:"Luis Guillermo",middleName:null,surname:"Ramos-Gracia",slug:"luis-guillermo-ramos-gracia",fullName:"Luis Guillermo Ramos-Gracia"}]},{id:"33741",doi:"10.5772/36947",title:"Fundamentals and Applications of Immunosensors",slug:"fundamentals-and-applications-of-immunosensors",totalDownloads:5037,totalCrossrefCites:15,totalDimensionsCites:34,abstract:null,book:{id:"1499",slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Carlos Moina and Gabriel Ybarra",authors:[{id:"110541",title:"Dr.",name:"Carlos",middleName:null,surname:"Moina",slug:"carlos-moina",fullName:"Carlos Moina"},{id:"110556",title:"Dr.",name:"Gabriel",middleName:null,surname:"Ybarra",slug:"gabriel-ybarra",fullName:"Gabriel Ybarra"}]},{id:"53240",doi:"10.5772/66380",title:"Staphylococcus aureus Biofilms and their Impact on the Medical Field",slug:"staphylococcus-aureus-biofilms-and-their-impact-on-the-medical-field",totalDownloads:3807,totalCrossrefCites:18,totalDimensionsCites:34,abstract:"Despite the discovery of antibiotics, the battle against bacteria is so far in their favor, specifically because bugs are able to develop a superstructure named biofilm, to resist and to survive in the environment. Nosocomial infections, a major health problem, are due at 80% to biofilm‐associated infection, and Staphylococcus aureus is the leading bacteria species in this domain. Moreover, the antimicrobial resistance of this bacterial community is accentuated when it is formed by superbugs such as methicillin‐resistant S. aureus (MRSA). In this chapter, the mechanism and the physiology of S. aureus biofilm as well as their consequences in the clinical domains are described. To complete the vision on S. aureus biofilms, some “anti‐biofilm” strategies will be highlighted.",book:{id:"6045",slug:"the-rise-of-virulence-and-antibiotic-resistance-in-staphylococcus-aureus",title:"The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus",fullTitle:"The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus"},signatures:"Fany Reffuveille, Jérôme Josse, Quentin Vallé, Céline Mongaret and\nSophie C. Gangloff",authors:[{id:"54351",title:"Prof.",name:"Sophie C.",middleName:null,surname:"Gangloff",slug:"sophie-c.-gangloff",fullName:"Sophie C. Gangloff"},{id:"190356",title:"Ph.D.",name:"Fany",middleName:null,surname:"Reffuveille",slug:"fany-reffuveille",fullName:"Fany Reffuveille"},{id:"191408",title:"Dr.",name:"Jérome",middleName:null,surname:"Josse",slug:"jerome-josse",fullName:"Jérome Josse"},{id:"203850",title:"Dr.",name:"Quentin",middleName:null,surname:"Vallé",slug:"quentin-valle",fullName:"Quentin Vallé"},{id:"203852",title:"Dr.",name:"Céline",middleName:null,surname:"Mongaret",slug:"celine-mongaret",fullName:"Céline Mongaret"}]},{id:"68185",doi:"10.5772/intechopen.88013",title:"Macrophages: The Potent Immunoregulatory Innate Immune Cells",slug:"macrophages-the-potent-immunoregulatory-innate-immune-cells",totalDownloads:2203,totalCrossrefCites:17,totalDimensionsCites:30,abstract:"Macrophages are ubiquitously present innate immune cells in humans and animals belonging to both invertebrates and vertebrates. These cells were first recognized by Elia Metchnikoff in 1882 in the larvae of starfish upon insertion of thorns of tangerine tree and later in Daphnia magna or common water flea infected with fungal spores as cells responsible for the process of phagocytosis of foreign particles. Elia Metchnikoff received the Noble prize (Physiology and Medicine) for his discovery and describing the process of phagocytosis in 1908. More than 130 years have passed and different subtypes and roles of macrophages as innate immune cells have been established by the researchers. In addition to their immunoregulatory role in immune homeostasis and pathogenic infection, they also play a crucial role in the pathogenesis of sterile inflammatory conditions including autoimmunity, obesity, and cancer. The present chapter describes the immunoregulatory role of macrophages in the homeostasis and inflammatory diseases varying from autoimmunity to metabolic diseases including obesity.",book:{id:"8590",slug:"macrophage-activation-biology-and-disease",title:"Macrophage Activation",fullTitle:"Macrophage Activation - Biology and Disease"},signatures:"Vijay Kumar",authors:[{id:"63844",title:"Dr.",name:"Vijay",middleName:null,surname:"Kumar",slug:"vijay-kumar",fullName:"Vijay Kumar"}]}],mostDownloadedChaptersLast30Days:[{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:6143,totalCrossrefCites:21,totalDimensionsCites:28,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response and an antigen-specific adaptive immune response. The innate response is characterized by being the first line of defense that occurs rapidly in which leukocytes such as neutrophils, monocytes, macrophages, eosinophils, mast cells, dendritic cells, etc., are involved. These cells recognize the pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved by the diversity of microorganisms that infect humans. Recognition of these pathogen-associated molecular patterns occurs through pattern recognition receptors such as Toll-like receptors and some other intracellular receptors such as nucleotide oligomerization domain (NOD), with the aim of amplifying the inflammation and activating the adaptive cellular immune response, through the antigenic presentation. In the present chapter, we will review the importance of the main components involved in the innate immune response, such as different cell types, inflammatory response, soluble immune mediators and effector mechanisms exerted by the immune response against bacteria, viruses, fungi, and parasites; all with the purpose of eliminating them and eradicating the infection of the host.",book:{id:"5975",slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]},{id:"53922",title:"Phenotypic Markers and Functional Regulators of Myelomonocytic Cells",slug:"phenotypic-markers-and-functional-regulators-of-myelomonocytic-cells",totalDownloads:2277,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"In this chapter, there is a description of hematopoietic stem cells, maturation curve and their differentiation into myeloid cells, including phenotypes and transcription factors involved in this process. Further, we discuss myeloid maturation curve from myeloid precursor, monoblast, premonocyte to monocytes, and also monocytes subsets regarding their CD14 and CD16 expressions and related functions in health and disease. In addition, we reason about the differentiation from monocytes either in dendritic cells or in macrophages in vitro using differential growth factors; these cells are differentiated from those found in vivo being named as monocyte-derived cells. Furthermore, we explore distinguished phenotype of monocytes, macrophages, and dendritic cells monocyte-derived in vitro, using confocal microscopy and flow cytometry, in order to display morphological and phenotypic differences among them.",book:{id:"5484",slug:"biology-of-myelomonocytic-cells",title:"Biology of Myelomonocytic Cells",fullTitle:"Biology of Myelomonocytic Cells"},signatures:"Luciana Cavalheiro Marti, Nydia Strachman Bacal, Laiz Camerão\nBento and Fernanda Agostini Rocha",authors:[{id:"190705",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Marti",slug:"luciana-marti",fullName:"Luciana Marti"},{id:"196049",title:"Dr.",name:"Nydia",middleName:null,surname:"Bacal",slug:"nydia-bacal",fullName:"Nydia Bacal"},{id:"196050",title:"MSc.",name:"Laiz",middleName:null,surname:"Cameirão",slug:"laiz-cameirao",fullName:"Laiz Cameirão"},{id:"196051",title:"Ph.D.",name:"Fernanda",middleName:"Agostini",surname:"Rocha",slug:"fernanda-rocha",fullName:"Fernanda Rocha"}]},{id:"54824",title:"Dendritic Cells: Location, Function, and Clinical Implications",slug:"dendritic-cells-location-function-and-clinical-implications",totalDownloads:4436,totalCrossrefCites:13,totalDimensionsCites:19,abstract:"Dendritic cells (DCs) are antigen-presenting cells derived from bone marrow precursors and form a widely distributed cellular system throughout the body. DCs exert immune-surveillance for exogenous and endogenous antigens and the later activation of naive T lymphocytes giving rise to various immunological responses. Different growth factors and cytokines can modulate the differentiation and function of DCs, GM-CSF, M-CSF, Flt3, and TGF-β, resulting in a large variety of DCs with different functional abilities. Thus, DCs are classified as plasmacytoid DCs (pDCs), conventional DCs (cDCs), and DCs derived from monocytes (mDCs). Functionally, the cDCs may be divided into two states: immature and mature. Immature DCs are specialist in uptaking and processing antigens; in contrast, mature DCs are professional in antigen presentation. It has been observed that immature cDCs can induce immune tolerance while mature cDCs may induce Th2 or Th1 immune responses. It is worth noting that different subpopulations of DCs have the ability to secrete different cytokine patterns, resulting in the induction of different immunological responses. Furthermore DCs are involved in the pathophysiology of several diseases such as contact hypersensitivity, autoimmune diseases, or cancer, but they can also be used as therapeutic tools in these conditions.",book:{id:"5484",slug:"biology-of-myelomonocytic-cells",title:"Biology of Myelomonocytic Cells",fullTitle:"Biology of Myelomonocytic Cells"},signatures:"Andrés Castell-Rodríguez, Gabriela Piñón-Zárate, Miguel Herrera-\nEnríquez, Katia Jarquín-Yáñez and Iliana Medina-Solares",authors:[{id:"190753",title:"Dr.",name:"Andrés",middleName:"Eliú",surname:"Castell-Rodríguez",slug:"andres-castell-rodriguez",fullName:"Andrés Castell-Rodríguez"},{id:"191880",title:"Dr.",name:"Gabriela",middleName:null,surname:"Piñón-Zárate",slug:"gabriela-pinon-zarate",fullName:"Gabriela Piñón-Zárate"},{id:"191881",title:"Dr.",name:"Miguel",middleName:null,surname:"Herrera-Enríquez",slug:"miguel-herrera-enriquez",fullName:"Miguel Herrera-Enríquez"},{id:"191882",title:"Dr.",name:"Katia",middleName:null,surname:"Jarquín-Yáñez",slug:"katia-jarquin-yanez",fullName:"Katia Jarquín-Yáñez"},{id:"204502",title:"BSc.",name:"Iliana",middleName:null,surname:"Medina-Solares",slug:"iliana-medina-solares",fullName:"Iliana Medina-Solares"}]},{id:"63913",title:"Cytokine Profiling Plays a Crucial Role in Activating Immune System to Clear Infectious Pathogens",slug:"cytokine-profiling-plays-a-crucial-role-in-activating-immune-system-to-clear-infectious-pathogens",totalDownloads:3517,totalCrossrefCites:17,totalDimensionsCites:44,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response that recognizes pathogen-associated molecular patterns (PAMPs) and an antigen-specific adaptive immune response. In both responses, there are several activated cells of the immune system, which play a key role in establishing the environment of cytokines, thus directing their differentiation either suppressing or promoting the immune response. This immune response is crucial against pathogen infections. In this chapter, we will describe the crucial role played by different families of cytokines during activation of the immune system to eliminate infectious pathogens.",book:{id:"6963",slug:"immune-response-activation-and-immunomodulation",title:"Immune Response Activation and Immunomodulation",fullTitle:"Immune Response Activation and Immunomodulation"},signatures:"José Luis Muñoz-Carrillo, Juan Francisco Contreras-Cordero,\nOscar Gutiérrez-Coronado, Paola Trinidad Villalobos-Gutiérrez,\nLuis Guillermo Ramos-Gracia and Viridiana Elizabeth Hernández-Reyes",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"},{id:"233193",title:"Dr.",name:"Paola Trinidad",middleName:null,surname:"Villalobos-Gutiérrez",slug:"paola-trinidad-villalobos-gutierrez",fullName:"Paola Trinidad Villalobos-Gutiérrez"},{id:"254015",title:"Dr.",name:"Viridiana Elizabeth",middleName:null,surname:"Hernández-Reyes",slug:"viridiana-elizabeth-hernandez-reyes",fullName:"Viridiana Elizabeth Hernández-Reyes"},{id:"257472",title:"Dr.",name:"Luis Guillermo",middleName:null,surname:"Ramos-Gracia",slug:"luis-guillermo-ramos-gracia",fullName:"Luis Guillermo Ramos-Gracia"}]},{id:"53240",title:"Staphylococcus aureus Biofilms and their Impact on the Medical Field",slug:"staphylococcus-aureus-biofilms-and-their-impact-on-the-medical-field",totalDownloads:3807,totalCrossrefCites:18,totalDimensionsCites:34,abstract:"Despite the discovery of antibiotics, the battle against bacteria is so far in their favor, specifically because bugs are able to develop a superstructure named biofilm, to resist and to survive in the environment. Nosocomial infections, a major health problem, are due at 80% to biofilm‐associated infection, and Staphylococcus aureus is the leading bacteria species in this domain. Moreover, the antimicrobial resistance of this bacterial community is accentuated when it is formed by superbugs such as methicillin‐resistant S. aureus (MRSA). In this chapter, the mechanism and the physiology of S. aureus biofilm as well as their consequences in the clinical domains are described. To complete the vision on S. aureus biofilms, some “anti‐biofilm” strategies will be highlighted.",book:{id:"6045",slug:"the-rise-of-virulence-and-antibiotic-resistance-in-staphylococcus-aureus",title:"The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus",fullTitle:"The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus"},signatures:"Fany Reffuveille, Jérôme Josse, Quentin Vallé, Céline Mongaret and\nSophie C. Gangloff",authors:[{id:"54351",title:"Prof.",name:"Sophie C.",middleName:null,surname:"Gangloff",slug:"sophie-c.-gangloff",fullName:"Sophie C. Gangloff"},{id:"190356",title:"Ph.D.",name:"Fany",middleName:null,surname:"Reffuveille",slug:"fany-reffuveille",fullName:"Fany Reffuveille"},{id:"191408",title:"Dr.",name:"Jérome",middleName:null,surname:"Josse",slug:"jerome-josse",fullName:"Jérome Josse"},{id:"203850",title:"Dr.",name:"Quentin",middleName:null,surname:"Vallé",slug:"quentin-valle",fullName:"Quentin Vallé"},{id:"203852",title:"Dr.",name:"Céline",middleName:null,surname:"Mongaret",slug:"celine-mongaret",fullName:"Céline Mongaret"}]}],onlineFirstChaptersFilter:{topicId:"150",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tSustainable development focuses on linking economic development with environmental protection and social development to ensure future prosperity for people and the planet. To tackle global challenges of development and environment, the United Nations General Assembly in 2015 adopted the 17 Sustainable Development Goals. SDGs emphasize that environmental sustainability should be strongly linked to socio-economic development, which should be decoupled from escalating resource use and environmental degradation for the purpose of reducing environmental stress, enhancing human welfare, and improving regional equity. Moreover, sustainable development seeks a balance between human development and decrease in ecological/environmental marginal benefits. Under the increasing stress of climate change, many environmental problems have emerged causing severe impacts at both global and local scales, driving ecosystem service reduction and biodiversity loss. Humanity’s relationship with resource exploitation and environment protection is a major global concern, as new threats to human and environmental security emerge in the Anthropocene. Currently, the world is facing significant challenges in environmental sustainability to protect global environments and to restore degraded ecosystems, while maintaining human development with regional equality. Thus, environmental sustainability with healthy natural ecosystems is critical to maintaining human prosperity in our warming planet.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11978,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:null},onlineFirstChapters:{paginationCount:12,paginationItems:[{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:345,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:210,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:394,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"40",title:"Ecosystems and Biodiversity",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"