Open access


Written By

Petr Ptáček

Published: 02 July 2014

DOI: 10.5772/58615

Chapter metrics overview

2,453 Chapter Downloads

View Full Metrics
  1. Wells LS, Clarke WF, McMurdie HF. Study of the system CaO-Al2O3-H2O at temperatures of 21° and 90° C. Journal of Research of the National Bureau of Standards 1943; 30 367-409.

  2. Zhang R, Zheng Sh, Ma Sh, Zhang Y. Recovery of alumina and alkali in Bayer red mud by the formation of andradite-grossular hydrogarnet in hydrothermal process. Journal of Hazardous Materials 2011;189(3) 827-835.

  3. Massazza F. Pozzolanic cements. Cement and Concrete Composites 1993;15(4) 185-214.

  4. Carlson ET. A study fo some strontium aluminates and calcium-strontium aluminate solid solutions. Journal of Research of the National Bureau of Standards 1955;54 329-334.

  5. Flint EP, McMurdie HF, Wells LS. Hydrothermal and X-ray studies of the garnet-hydrogarnet series and the relationship of the series to hydration products of Portland cement. Journal of Research of the National Bureau of Standards 1941;26 13-33.

  6. Carlson ET. Hydrogarnet Formation in the System Lime-Alumina -Silica -Water. Journal of Research of the National Bureau of Standards 1956; 56: 327-335.

  7. Taylor HFW. Cement chemistry, 2nd edition. Thomas Telford Publishing: London; 1997. ISBN: 0-7277-2592-0.

  8. Prodjosantoso AK, Kennedy BJ, Hunter BA. Phase separation induced by hydration of the mixed Ca/Sr aluminates Ca3−xSrxAl2O6: A crystallographic study. Cement and Concrete Research 2002; 32(4) 647-655.

  9. Brandenberger E. Crystal structure studies on the calcium aluminates. Schweizer Mineralogische und Petrographische Mitteilungen 1933;13 569-570.

  10. Maekawa G. Journal of the Society of Chemical Industry, Japan 1943;45 751.

  11. Douy A, Capron M. Crystallization of spray-dried amorphous precursors in the SrO-Al2O3 system: a DSC study. Journal of the European Ceramics Society 2003;23(12) 2075-2081.

  12. Odler I. Special inorganic cements. 1st ed. London: E & FN. Spon; 2000. ISBN: 0-419-22790-3.

  13. Illyoukha N, Timofeeva V. Development of hydraulic zirconia cements and their applications for production of refractories items. Communication from the Academic Ceramic Centre, The Technical University, Kharkov, Ukraine, Personal Communication, 1998.

  14. Chatterjee AK. Re-examining the prospects of aluminous cements based on alkali-earth and rare-earth oxides. Cement and Concrete Research 2009;39(11) 981-988.

  15. Rezaie MR, Rezaie HR, Naghizadeh R. The effect of SiO2 additions on barium aluminate cement formation and properties. Ceramics International 2009;35(6) 2235-2240.

  16. Mohapatra M, Pattanaik DM, Anand S, Das RP. Effect of barium to aluminium ratio on phases leading to barium aluminates. Ceramics International 2007;33(4) 531-535.

  17. Brito HF, Felinto MCFC, Hölsä J, Laamanen T, Lastusaari M, Malkamäki M, Novák P, Rodrigues LCV, Stefani R. DFT and synchrotron radiation study of Eu2+ doped BaAl2O4. Optical Materials Express 2012;2(4) 420-431.

  18. Franco M. System SrO-Al2O3, pp. 118; in Phase diagram for ceramics, Part 1,Edited by Levine EM, Robbins CR, McMurdie HF. The American Ceramic Society; Ohio; 1959.

  19. Ropp RC. Encyclopedia of the Alkaline Earth Compounds. Amsterdam: Elsevier; 2013. ISBN: 978-0-444-59550-8.

  20. Obukuro Y, Matsushima Sh, Nakamura H, Arai M, Yamada H, Xu Ch.-N. Electronic structure of Eu2+-doped SrAl2O4 using modified Becke-Johnson exchange potential. Solid State Communications 2014;186 46-49.

  21. Stanciu ML, Ciresan MG, Avram NM. Crystal Field Analysis of Cr3+ doped SrAl2O4 spinel. Acta physica polonica A 2009;116(4) 544-546.

  22. Liu B, Barbier J. Structures of the stuffed tridymite derivatives, BaMSiO4 (M = Co, Zn, Mg). Journal of Solid State Chemistry 1993;102(1) 115-125.

  23. Madhavi S, Ferraris C, White T. Synthesis and characterization of three-dimensionally ordered macroporous ternary oxide. Journal of Solid State Chemistry 2006;179(3) 866-872.

  24. Fukuda K, Fukushima K. Crystal structure of hexagonal SrAl2O4 at 1073 K. Journal of Solid State Chemistry 2005;178 2709-2714.

  25. Machida K.-I, Adachi G.-Y, Shiokawa J, Shimada M, Koizumi M. Structure of strontium tetraaluminate β-SrAl4O7. Acta Crystallographica Section B 1982;38(3) 889-891.

  26. Lindop AJ, Goodwin DW. The refined structure of SrO⋅2Al2O3. Acta Crystallographica Section B 1972; 28 2625-2626.

  27. Harindranath K, Viswanath KA, Chandran CV, Bräuniger T, Madhu PK, Ajithkumar TG, Joy PA. Evidence for the co-existence of distorted tetrahedral and trigonal bipyramidal aluminium sites in SrAl12O19 from 27Al NMR studies. Solid State Communications 2010;150(5-6) 262-266.

  28. Venkateshwaran B, Yao M, Guo R, Bhalla A, Balachandran U. Low temperature dielectric properties of magnetoplumbite family of materials. International Journal of Inorganic Materials 1999;1(3-4) 213-217.

  29. Xie L, Cormack AN. Defect solid state chemistry of magnetoplumbite structured ceramic oxides: I. SrAl12O19. Journal of Solid State Chemistry 1989;83(2) 282-291.

  30. Chawla S, Yadav A. Role of valence state of dopant (Eu2+, Eu3+) and growth environment in luminescence and morphology of SrAl12O19 nano- and microcrystals. Materials Chemistry and Physics 2010;122(2-3) 582-587.

  31. Lindop AJ, Matthews C, Goodwin DW. The refined structure of SrO 6Al2O3. Acta Crystallographica Section B 1975; 31 2940-2941.

  32. Verdun HR, Wortman DE, Morrison CA, Bradshaw JL. Optical properties of Nd3+ in single crystal SrAl12O19. Optical Materials 1997;7(3) 117-128.

  33. Iyi N, Göbbels M. Crystal Structure of the New Magnetoplumbite-Related Compound in the System SrO–Al2O3–MgO. Journal of Solid State Chemistry 1996;122(1) 46-52.

  34. Li YJ, Ma YY, Ye S, Hu GP, Zhang QY. Site-related near-infrared luminescence in MAl12O19 (M = Ca, Sr, Ba):Fe3+ phosphors. Materials Research Bulletin 2014;51 1-5.

  35. Chen X, Zhang Y, Zhong X, Xu Z, Zhang J, Cheng Y, Zhao Y, Liu Y, Fan X, Wang Y, Ma H, Cao X. Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure. Journal of the European Ceramic Society 2010;30(7) 1649-1657.

  36. Obradors X, Labarta A, Isalgué A, Tejada J, Rodriguez J, Pernet M, Solid State Communications 1988;65 189–192.

  37. Ishiwata Sh, Terasaki I, Azuma M, Takano M. High pressure synthesis and structure of a new magnetoplumbite-type cobalt oxide SrCo12O19. Journal of Solid State Chemistry 2008;181(5) 1273-1278.

  38. Verstegen JMPJ, Stevels ALN. The relation between crystal structure and luminescence in β-alumina and magnetoplumbite phases. Journal of Luminescence 1974;9(5) 406-414.

  39. Wang Ch.-H, Guo D.-F, Li Z.-F, Wang X.-M, Lin J.-H, Zeng Z.-Z, Jing X.-P. Crystal structure of Sr6Y2Al4O15: XRD refinements and first-principle calculations. Journal of Solid State Chemistry 2012;192195-200.

  40. Kimura K, Ohgaki M, Tanaka K, Morikawa H, Marumo F. Study of the bipyramidal site in magnetoplumbite-like compounds, SrM12O19 (M = Al, Fe, Ga). Journal of Solid State Chemistry 1990;87(1) 186-194.

  41. Yamaguchi O, Narai A, Shimizu K. New compound in system SrO–Al2O3. Journal of the American Ceramic Society 1986;69(2) C36-C37.

  42. Kahlenberg V. Synthesis and crystal structure of Sr10Al6O19: a derivative of the perovskite structure type in the system SrO–Al2O3. Materials Research Bulletin 2002;37(4) 715-726.

  43. Kahlenberg V. The Crystal Structures of the Strontium Gallates Sr10Ga6O19 and Sr3Ga2O6. Journal of Solid State Chemistry 2001;160(2) 421-429.

  44. Nevskii NN, Glasser LD, Iliukhin VV, Belov NV. Determination of the crystal structure of strontium aluminate by means of vector subsystems." Soviet physics, Crystallography (Engl. Transl.) 1979;24(1): 93-95.

  45. Nadezhina TN, Pobedimskaya EA, Belov NV. Crystal structure of strontium aluminate Sr4Al4O2[Al10O23]. Soviet physics, Crystallography (Engl. Transl.) 1976;21(4) 471-473.

  46. Takeda T, Takahashi K, Uheda K, Takizawa H, Endo T. Crystal Structure and Luminescence Properties of Sr2Al6O11:Eu2+. Journal of the Japan Society of Powder and Powder Metallurgy 2002;49(12) 1128-1133.

  47. Gibbs JW. On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences, Volume III, published by the academy 1874 to 1878.

  48. Kim G.-H, Sohn I. Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2. Journal of Non-Crystalline Solids 2012;358(12-13) 1530-1537.

  49. Park JH, Min DJ. Effect of fluorspar and alumina on the viscous flow of calcium silicate melts containing MgO. Journal of Non-Crystalline Solids 2004;337(2) 150-156.

  50. Wiedenroth A, Rüssel Ch. The effect of MgO on the thermodynamics of the Fe2+/Fe3+-redox equilibrium and the incorporation of iron in soda-magnesia-aluminosilicate melts. Journal of Non-Crystalline Solids 2003;320(1-3) 238-245.

  51. Benne D, Rüssel Ch, Menzel M, Becker KD. The effect of alumina on the Sn2+/Sn4+ redox equilibrium and the incorporation of tin in Na2O/Al2O3/SiO2melts. Journal of Non-Crystalline Solids 2004;337(3) 232-240.

  52. Gerlach S, Claußen O, Rüssel Ch. A voltammetric study on the thermodynamics of the Fe3+/Fe2+-equilibrium in alkali–lime–alumosilicate melts. Journal of Non-Crystalline Solids 1999;248(1) 92-98.

  53. Massazza F, Cannas M. System CaO-Al2O3-SrO, subsolidus. Annali di Chimica (Rome, Italy) 1959;49(7–8) 1342–1350.

  54. Massazza F, Sirchia E. Equilibriums at the temperature of fusion in the ternary system SrO-Al2O3-CaO. Annali di Chimica (Rome, Italy) 1959;49 1352–1370.

  55. Tarnopol´skaya RA, Gul´ko NV. The CaO-SrO-Al2O3-ZrO2 system and its importance for refractories technology. Refractories and Industrial Ceramics 1967;8(11-12) 760-763.

  56. Pitak YN, Proskurnya EM. On the subsolidus structure in the CaAl4O7 – Ca7Al6ZrO18 – CaAl2O4 – CaZrO3 – SrZrO3 – SrAl2O4 region of the CaO – SrO – Al2O3 – ZrO2 system. Refractories and Industrial Ceramics 2000;41(9-10) 360-363.

  57. Kellogg HH, in: Applications of Fundamental Thermodynamics to Metallurgical Processes, G.R. Fitterer (Ed.), Gordon and Breach, London; 1967, p. 357.

  58. Latimer WM. Methods of estimating the entropies of solid compounds. Journal of the American Chemical Society 1951;73(4) 1480-1482.

  59. Spencer PJ. Estimation of thermodynamic data for metallurgical applications. Thermochimica Acta 1998;314(1-2) 1-21.

  60. Aronson S. Estimation of the heat of formation of refractory mixed oxides. Journal of Nuclear Materials 1982;107 343-346.

  61. Voňka P, Leitner J. A method for the estimation of the enthalpy of formation of mixed oxides in Al2O3–Ln2O3 systems. Journal of Solid State Chemistry 2009;182(4) 744-748.

  62. Zhuang W, Liang J, Qiao Z, Shen J, Shi Y, Rao G. Estimation of the standard enthalpy of formation of double oxide. Journal of Alloys and Compounds 1998;267(1-2) 6-10.

  63. Moiseev G, Leitner J, Šesták J, Zhukovsky V. Empirical dependences of the standard enthalpy of formation for related inorganic compounds enhancing glass formers. Thermochimica Acta 1996;280-281 511-521.

  64. Šesták J, Moiseev GK, Tzagareishvili DS. Oxide-phase simulated thermodynamics and calculation of thermochemical properties of compounds auxiliary to Y-Ba-Cu-O high Tc superconductors. Japanese Journal of Applied Physics 1994;33 97-102.

  65. Le Van M, Bulletin de la Société Chimique de France 1972;2 579.

  66. Balonis M, Glasser FP. The density of cement phases. Cement and Concrete Research 2009;39(9) 733-739.

  67. Xu Y, Lu P, Huang G, Zeng Ch. Synthesis of SrAl4O7 via citric acid precursor. Materials Chemistry and Physics 2006;95(1) 62-66.

  68. Boyko ER, Wisnyi LG. The optical properties and structures of CaO⋅(Al2O3)2 and SrO⋅ (Al2O3)2. Acta Crystallographica 1958;11 444-445.

  69. Moukhina E. Determination of kinetic mechanisms for reactions measured with thermoanalytical instruments. Journal of Thermal Analysis and Calorimetry 2012;109(3) 1203-1214.

  70. Galwey AK. Theory of solid-state thermal decomposition react Scientific stagnation or chemical catastrophe? An alternative approach appraised and advocatedions. Journal of Thermal Analysis and Calorimetry 2012;109 1625-1635.

  71. Koga N, Málek J, Šesták J, Tanaka H. Data treatment in non-isothermal kinetics and diagnostic limits of phenomenological models. Netsu Sokutei 1993;20(4) 210-223.

  72. Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochimica Acta 1995;267(1) 29-44.

  73. Šesták J. Thermal analysis, Part D: Thermophysical properties of solids, their measurements and theoretical thermal analysis. Amsterdam and New York: Elsevier Science Publishers; 1984. ISBN: 0444996532.

  74. Xu B, Smith P. Dehydration kinetics of boehmite in the temperature range 723–873 K. Thermochimica Acta 2012;531 46-53.

  75. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technology 2010;204 222-227.

  76. Coats AW, Redfern JP. Kinetic Parameters from Thermogravimetric Data. Nature 1964;201 68-69.

  77. Flynn JH, Wall LA. General Treatment of the thermogravimetry of polymers. Journal of research of the National Bureau of Standards, Sect. A, 1966;70 487-523.

  78. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Analytical Chemistry 1957;29(11) 1702-1706.

  79. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochimica Acta 2012;540 1-6.

  80. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia 1964;6 183-185.

  81. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochimica Acta 2003;404 163-176.

  82. Málek J, Criado JM, F.J Gotor, Šesták J. Some comments about a correct estimation of the kinetic exponent for non-isothermal solid-state processes using Augis and Bennett method. Thermochimica Acta 1998;322(1) 77-82.

  83. Augis JA, Bennett JD. Calculation of Avrami parameters for heterogeneous solid-state reactions using a modification of Kissinger method. Journal of Thermal Analysis 13 (1978) 283–292.

  84. Ray CS, Yang Q, Huang W-H, Day DE. Surface and internal crystallization in glasses as determined by differential thermal analysis. Journal of the American Ceramic Society 1996;79(12) 3155-3160.

  85. Málek J. The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochimica acta 1995;267 61-73.

  86. Straszko J, Olszak-Humienik M, Możejko J. Kinetics of thermal decomposition of ZnSO4⋅7H2O. Thermochimica Acta 1997;292(1-2) 145-150.

  87. Vlaev L, Nedelchev N, Gyurova K, Zagorcheva M. A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. Journal of Analytical and Applied Pyrolysis 2008;81253-262.

  88. Pourmortazavi SM, Kohsari I, Teimouri MB, Hajimirsadeghi SS. Thermal behaviour kinetic study of dihydroglyoxime and dichloroglyoxime. Materials Letters 2007;61 4670-4673.

  89. L’vov BV, Polzik LK, Ugolkov VL. Decomposition kinetics of calcite: a new approach to the old problem. Thermochimica Acta 2002;390 5-19.

  90. L’vov BV. Thermal decomposition of solids and melts—new thermochemical approach to the mechanism, kinetics and methodology. Berlin: Springer; 2007.

  91. Patnaik P. Handbook of inorganic chemicals; McGraw-Hill Companies, Inc.; 2002. ISBN 0-07-049439-8.

  92. Garcia-Guinea J, Crespo-Feo E, Correcher V, Cremades A, Rubio J, Tormo L, Townsend PD. Luminescence of Strontianite (SrCO3) from Strontian (Scotland, UK). Radiation Measurements 2009;44(4) 338-343.

  93. Helz GR, Holland HD. The solubility and geologic occurrence of strontianite. Geochimica et Cosmochimica Acta 1965;29(12) 1303-1315.

  94. Casey WH, Chal L, Navrotsky A, Rock PA. Thermochemistry of mixing strontianite [SrCO3(s)] and aragonite [CaCO3(s)] to form CaxSr1-xCO3(s) solid solutions. Geochimica et Cosmochimica Acta 1996;60(6) 933-940.

  95. Massoni N, Rosen J, Chartier M, Cozzika T. Study of barytocalcite as a conditioning matrix for carbon 14: Comparison of several synthesis routes. Journal of Nuclear Materials 2013;441(1–3) 152-158.

  96. Kulik DA, Vinograd VL, Paulsen N, Winkler B. (Ca,Sr)CO3 aqueous-solid solution systems: From atomistic simulations to thermodynamic modelling. Physics and Chemistry of the Earth, Parts A/B/C 2010;35(6–8) 217-232.

  97. Alía JM, Díaz de Mera Y, Edwards HGM, Martín PG, Andres SL. FT-Raman and infrared spectroscopic study of aragonite-strontianite (CaxSr1-xCO3) solid solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 1997;53(13) 2347-2362.

  98. Fubini B, Renzo FD, Stone FS. Strontianite-aragonite solid solutions SrxCa1-xCO3: Effect of composition on the orthorhombic-rhombohedral phase transition and the conversion to oxide solid solutions SrxCa1-xO. Journal of Solid State Chemistry 1988;77(2) 281-292.

  99. Fubini B, Renzo FD, Stone FS. Investigation of the thermal stability of CaCO3-SrCO3 solid solutions. Thermochimica Acta 1987;122(1) 23-28.

  100. Ruiz-Hernandez SE, Grau-Crespo R, Ruiz-Salvador AR, De Leeuw NH. Thermochemistry of strontium incorporation in aragonite from atomistic simulations. Geochimica et Cosmochimica Acta 2010;74(4) 1320-1328.

  101. Rushdi AI, McManus J, Collier RW. Marine barite and celestite saturation in seawater. Marine Chemistry 2000;69 19-31.

  102. Utigard T, Toguri JM, See Through The Hall-Heroult Cell During Electrolysis. Proceedings of the International Symposium on Quality and Process Control in the Reduction and Casting of Aluminum and Other Light Metals. Canada, Winnipeg: August 23-26; 1987, p.37-49.

  103. Tabereaux AT, Peterson RD. Aluminum Production. Treatise on Process Metallurgy. In: Industrial Processes; ed: Seetharaman S, p.839-917; 2014. ISBN: 978-0-08-096988-6.

  104. Chapman V, Welch BJ, Skyllas-Kazacos M. Anodic behaviour of oxidised Ni–Fe alloys in cryolite–alumina melts. Electrochimica Acta 2011;56(3) 1227-1238.

  105. Haupin W. Aluminum. In: Encyclopedia of Physical Science and Technology (Third Edition), p.495-518; 2003.

  106. Amigó JM, Serrano FJ, Kojdecki MA, Bastida J, Esteve V, Reventós MM, Martí F. X-ray diffraction microstructure analysis of mullite, quartz and corundum in porcelain insulators. Journal of the European Ceramic Society 2005;25(9) 1479-1486.

  107. Leriche A, Moortgat G, Cambier F, Homerin P, Thevenot F, Orange G, Fantozzi G. Preparation and characterization of a dispersion toughened ceramic for thermomechanical uses (ZTA). Part I: Material preparation. Characterization of microstructure. Journal of the European Ceramic Society 1992;9(3) 169-176.

  108. Piconi C, Condo SG, Kosmač T. Alumina- and Zirconia-based Ceramics for Load-bearing Applications. In: Advanced Ceramics for Dentistry; ed. Shen J; p219-253; 2014. ISBN: 978-0-12-394619-5.

  109. Djangang CN, Kamseu E, Ndikontar MK, Nana GLL, Soro J, Melo UC, Elimbi A, Blanchart P, Njopwouo D. Sintering behaviour of porous ceramic kaolin–corundum composites: Phase evolution and densification. Materials Science and Engineering: A 2011;528(29–30) 8311-8318.

  110. Katsavou ID, Krokida MK, Ziomas IC. Determination of mechanical properties and thermal treatment behavior of alumina-based refractories. Ceramics International 2012;38(7) 5747-5756.

  111. Gogtas C, Lopez HF, Sobolev K. Role of cement content on the properties of self-flowing Al2O3 refractory castables. Journal of the European Ceramic Society 2014;34(5) 1365-1373.

  112. Marinescu ID, Rowe WB, Dimitrov B, Ohmori H. Abrasives and abrasive tools Tribology of Abrasive Machining Processes (Second Edition). Imprint: William Andrew; p.243-311; 2013. ISBN: 978-1-4377-3467-6.

  113. Mata-Osoro G, Moya JS, Pecharroman C. Transparent alumina by vacuum sintering. Journal of the European Ceramic Society 2012;32(11) 2925-2933.

  114. Sarkar R, Ghosh A, Das SK. Reaction sintered magnesia rich magnesium aluminate spinel: effect of alumina reactivity. Ceramics International 2003;29(4) 407-411.

  115. Klatt M, Bellmann D, Kampmann R, Wagner R, Wolf C, Hübner H. Analysis of creep pore formation in liquid-phase sintered alumina. Materials Science and Engineering: A 1997;234–236 932-935.

  116. Goswami AP, Roy S, Das GC. Effect of powder, chemistry and morphology on the dielectric properties of liquid-phase-sintered alumina. Ceramics International 2002;28(4) 439-445.

  117. Goswami AP, Roy S, Mitra MK, Das GC. Influence of powder, chemistry and intergranular phases on the wear resistance of liquid-phase-sintered Al2O3. Wear 2000;244(1–2) 1-14.

  118. Mohammad-Rahimi R, Rezaie HR, Nemati A. Sintering of Al2O3–SiC composite from sol–gel method with MgO, TiO2 and Y2O3 addition. Ceramics International 2011;37(5) 1681-1688.

  119. Sktani ZDI, Azhar AZA, Ratnam MM, Ahmad ZA. The influence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites. Ceramics International 2014;40(4) 6211-6217.

  120. Vasudevan R, Karthik T, Ganesan S, Jayavel R. Effect of microwave sintering on the structural and densification behavior of sol–gel derived zirconia toughened alumina (ZTA) nanocomposites. Ceramics International 2013;39(3) 3195-3204.

  121. Tomaszewski H, Boniecki M, Weglarz H. Toughness-curve behaviour of alumina-SiC and ZTA-SiC composites. Journal of the European Ceramic Society 2000;20(8) 1215-1224.

  122. Si T, Lou N, Zhang Q, You X. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics. Rare Metals 2008;27(3) 308-314.

  123. Laarz E, Carlsson M, Vivien B, Johnsson M, Nygren M, Bergström L. Colloidal processing of Al2O3-based composites reinforced with TiN and TiC particulates, whiskers and nanoparticles. Journal of the European Ceramic Society 2001;21(8) 1027-1035.

  124. Nassau K. Dr. A. V. L. Verneuil: The man and the method. Journal of Crystal Growth 1972;13–14 12-18.

  125. Ueltzen M. The Verneuil flame fusion process: substances. Journal of Crystal Growth 1993;132(1-2) 315-328.

  126. Arivuoli D. Principles of the Verneuil Growth Technique. Encyclopedia of Materials: Science and Technology (Second Edition); p.7854-7856; 2001. ISBN: 978-0-08-043152-9.

  127. R.R. Neurgaonkar. Single Crystal Processes. Encyclopedia of Materials: Science and Technology (Second Edition); p.8629-8635; 2001. ISBN: 978-0-08-043152-9.

  128. Tchamba AB, Melo UC, Lecomte-Nana GL, Kamseu E, Gault C, Yongue R, Njopwouo D. Use of bauxite from Cameroon for solid state sintering and characterization of calcium dialuminate (CaO 2Al2O3) refractory cement. Ceramics International 2014;40(1) 1961-1970.

  129. Caballero A, Valle F., De Aza S, Castillo S. Constitution of calcined refractory-grade bauxites: An interpretation. Ceramics International 1985;11(2) 45-50.

  130. Caballero A, Requena J, De Aza S. Refractory bauxites. How processing can improve high temperature mechanical properties. Ceramics International 1986;12(3) 155-160.

  131. Abou-Sekkina MM, Abo-El-Enein SA, Khalil NM, Shalma OA. Phase composition of bauxite-based refractory castables. Ceramics International 2011;37(1) 411-418.

  132. Maciejewski M, Richarz W. Reduction of iron oxides in bauxite by hydrogen. Thermochimica Acta 1985;85 199-202.

  133. Milne DJ, Wibberley LJ. The removal of iron from bauxite using anhydrous hydrogen chloride. Light Metals 1977;2 125-145.

  134. Hussain SA, Jamal R. Evaluation of an HCl process for leaching of low-grade highly siliceous bauxite ore. Developments in Mineral Processing 2000;13 C6-8-C6-14.

  135. Zhao A.-ch, Liu Y, Zhang T.-a, Lü G.-z, Dou Z.-h. Thermodynamics study on leaching process of gibbsitic bauxite by hydrochloric acid. Transactions of Nonferrous Metals Society of China 2013;23(1) 266-270.

  136. Reddy BR, Mishra SK, Banerjee GN. Kinetics of leaching of a gibbsitic bauxite with hydrochloric acid. Hydrometallurgy 1999;51(1) 131-138.

  137. Zafar ZI. Determination of semi empirical kinetic model for dissolution of bauxite ore with sulfuric acid: Parametric cumulative effect on the Arrhenius parameters. Chemical Engineering Journal 2008;141(1–3) 233-241.

  138. Papassiopi N, Vaxevanidou K, Paspaliaris I. Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Minerals Engineering 2010;23(1) 25-31.

  139. Vasan SS, Modak JM, Natarajan KA. Some recent advances in the bioprocessing of bauxite. International Journal of Mineral Processing 2001;62(1-4) 173-186.

  140. Yeh ChH, Zhang G. Stepwise carbothermal reduction of bauxite ores. International Journal of Mineral Processing 2013;124 1-7.

  141. Yu Ch, Yuan W, Deng Ch, Zhu H, Li J. Synthesis of hexagonal plate-like Al4SiC4 from calcined bauxite, silica and carbon black. Powder Technology 2013;247 76-80.

  142. Pontikes Y, Angelopoulos GN. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling 2013;73 53-63.

  143. Bayer KJ. Verfahren zur darstellung von thonerhydrat und alkalialuminat; 1892.

  144. Klauber C, Gräfe M, Power G. Bauxite residue issues: II. Options for residue utilization. Hydrometallurgy 2011;108(1-2) 11-32.

  145. Gräfe M., Power G, Klauber C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 2011;108(1–2) 60-79.

  146. Piga L, Pochetti F, Stoppa L. Recovering metals from red mud generated during alumina production. JOM Journal of the Minerals, Metals and Materials Society 1993;45(11) 54-59.

  147. Valeton I. Bauxites. Amsterdam: Elsevier Publishing Company; p.226; 1972.

  148. Hao X, Leung K, Wang R, Sun W, Li Y. The geomicrobiology of bauxite deposits. Geoscience Frontiers 2010;1(1) 81-89.

  149. Smith P. The processing of high silica bauxites - Review of existing and potential processes. Hydrometallurgy 2009;98(1-2) 162-176.

  150. Bárdossy G. Classification of Bauxite Deposits; p.16-22. In: Developments in Economic Geology; Volume 14: Karst Bauxites Bauxite Deposits on Carbonate Rocks; 1882. ISBN: 978-0-444-99727-2.

  151. Gu J, Huang Z, Fan H, Jin Z, Yan Z, Zhang J. Mineralogy, geochemistry, and genesis of lateritic bauxite deposits in the Wuchuan–Zheng'an–Daozhen area, Northern Guizhou Province, China. Journal of Geochemical Exploration 2013;130 44-59.

  152. Bogatyrev BA, Zhukov VV, Tsekhovsky YG. Formation conditions and regularities of the distribution of large and superlarge bauxite deposits. Lithology and Mineral Resources 2009;44 135-151.

  153. Selim AQ, El-Midany AA, Abdel-Fattah AS, Ibrahim SS. Rationalization of the up-grading circuit of celestite for advanced applications. Powder Technology 2010;198(2) 233-239.

  154. El-Midany AA, Ibrahim SS. Does calcite content affect its separation from celestite by Falcon concentrator? Powder Technology 2011;213(1-3) 41-47.

  155. López-Valdivieso A, Robledo-Cabrera A, Uribe-Salas A. Flotation of celestite with the anionic collector sodium dodecyl sulfate. Effect of carbonate ions. International Journal of Mineral Processing 2000;60(2) 79-90.

  156. Hernáinz F, Calero M. The effect of the degree of grinding on the flotation of celestite ore. Advanced Powder Technology 2001;12(4) 481-491.

  157. Ṣener S, Bilgen S, Özbayoğlu G. Effect of heat treatment on grindabilities of celestite and gypsum and separation of heated mixture by differential grinding. Minerals Engineering 2004;17 473-475.

  158. Ozkan A, Ucbeyiay H, Aydogan S. Shear flocculation of celestite with anionic surfactants and effects of some inorganic dispersants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006;281(1-3) 92-98.

  159. Ozkan A, Yekeler M. Shear flocculation of celestite with sodium oleate and tallow amine acetate: effects of cations. Journal of Colloid and Interface Science 2004;273(1) 170-174.

  160. Ozkan A, Yekeler M. Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers. Chemical Engineering and Processing: Process Intensification 2004;43(7) 873-879.

  161. Laskowski JS. In: Colloid Chemistry in Mineral Processing; ed.: Laskowski JS, Ralston J., New York: Elsevier; 1992.

  162. Torres J, Mendez J, Sukiennik M. Transformation enthalpy of the alkali-earths sulfates (SrSO4, CaSO4, MgSO4, BaSO4). Thermochimica Acta 1999;334(1-2) 57-66.

  163. Erdemoğlu M. Carbothermic reduction of mechanically activated celestite. International Journal of Mineral Processing 2009;92(3-4) 144-152.

  164. Owusu G, Litz JE. Water leaching of SrS and precipitation of SrCO3 using carbon dioxide as the precipitating agent. Hydrometallurgy 2000;57(1) 23-29.

  165. Erdemoğlu M, Canbazoğlu M. The leaching of SrS with water and the precipitation of SrCO3 from leach solution by different carbonating agents. Hydrometallurgy 1998;49(1-2) 135-150.

  166. Bingöl D, Aydoğan S, Bozbaş SK. Production of SrCO3 and (NH4)2SO4 by the dry mechanochemical processing of celestite. Journal of Industrial and Engineering Chemistry 2012;18(2) 834-838.

  167. Zeppenfeld K. Crystallization kinetics of strontianite from Sr(HCO3)2 solutions. Chemie der Erde – Geochemistry 2006;66(4) 319-323.

  168. Setoudeh N, Welham NJ, Azami SM. Dry mechanochemical conversion of SrSO4 to SrCO3. Journal of Alloys and Compounds 2010;492(1-2) 389-391.

  169. Setoudeh N; Welham NJ. Ball milling induced reduction of SrSO4 by Al. International Journal of Mineral Processing 2011;98(3-4) 214-218.

  170. Bingöl D, Aydogan S, Gultekin SS. Neural model for the leaching of celestite in sodium carbonate solution. Chemical Engineering Journal 2010;165(2) 617-624.

  171. Kocakusak S, Tolun R, Dogan H, Akcay K, Koroglu HJ, Yuzer H, Koral M, Isbilir F, Savascı OT, Ayok T. Patent No: TR2001/0326521.5; 2003.

  172. De Buda F. US Patent 4,666,688; 1987.

  173. Cheng Z, Jiang T. Production of strontium carbonate by ammonium bicarbonate method without removing barium. Huadong Huagong Xueyuan Xueba 1992;18 723-728.

  174. Di H, Wang Y, Zhang Y. Chine HC Patent 1.078.706; 1993.

  175. Liao F, Zhao L, Zhai Ch, Zhang Z, Ma X. Morphology and photoluminescence properties of SrCO3 prepared by a simple solution method. Materials Letters 2014;122 331-333.

  176. Xue Y, Ren X, Zhai X, Yu M. Polyvinylpyrrolidone (PVP)-assisted solvothermal synthesis of flower-like SrCO3:Tb3+ phosphors. Materials Research Bulletin 2012;47(2) 393-399.

  177. Shi L, Du F. Solvothermal synthesis of SrCO3 hexahedral ellipsoids. Materials Letters 2007;61(14-15) 3262-3264.

  178. Shi L, Du F. Solvothermal synthesis of fusiform hexagonal prism SrCO3 microrods via ethylene glycol solution. Materials Research Bulletin 2007;42(8) 1550-1555.

  179. Yang J, Liu X, Li Ch, Quan Z, Kong D, Lin J. Hydrothermal synthesis of SrCO3:Eu3+/Tb3+ microneedles and their luminescence properties. Journal of Crystal Growth 2007;303(2) 480-486.

  180. Li Sh, Zhang H, Xu J, Yang D. Hydrothermal synthesis of flower-like SrCO3 nanostructures. Materials Letters 2005;59(4) 420-422.

  181. Zhu W, Liang Z, Liu X, Zhang H, Zheng Y, Piao X, Zhang Q. Soft-template self-assembly of hierarchical mesoporous SrCO3 by low-temperature hydrothermal route and their application as adsorbents for methylene blue and heavy metal ions. Powder Technology 2012;226165-172.

  182. Ni Sh, Yang X, Li T. Hydrothermal synthesis and photoluminescence properties of SrCO3. Materials Letters 2011;65(4) 766-768.

  183. Alavi MA, Morsali A. Syntheses and characterization of Sr(OH)2 and SrCO3 nanostructures by ultrasonic method. Ultrasonics Sonochemistry 2010;17(1) 132-138.

  184. Thongtem T, Tipcompor N, Phuruangrat A, Thongtem S. Characterization of SrCO3 and BaCO3 nanoparticles synthesized by sonochemical method. Materials Letters 2010;64(4) 510-512.

  185. Ma M.-G., Zhu Y.-J. Microwave synthesis of SrCO3 one-dimensional nanostructures assembled from nanocrystals using ethylenediamine additive. Materials Letters 2008;62(16) 2512-2515.

  186. Tipcompor N, Thongtem T, Phuruangrat A, Thongtem S. Characterization of SrCO3 and BaCO3 nanoparticles synthesized by cyclic microwave radiation. Materials Letters 2012;87 153-156.

  187. Obut A, Baláž P, Girgin İ. Direct mechanochemical conversion of celestite to SrCO3. Minerals Engineering 2006;19(11) 1185-1190.

  188. Li L, Lin R, Tong Z, Feng Q. Crystallization control of SrCO3 nanostructure in imidazolium-based temperature ionic liquids. Materials Research Bulletin 2012;47(11) 3100-3106.

  189. Hind AR, Bhargava SK, Grocott SC. The surface chemistry of Bayer process solids: a review. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1999;146(1-3) 359-374.

  190. Power G, Loh JSC, Vernon Ch. Organic compounds in the processing of lateritic bauxites to alumina Part 2: Effects of organics in the Bayer process. Hydrometallurgy 2012;127-128 125-149.

  191. Whittington BI, Fallows TM, Willing MJ. Tricalcium aluminate hexahydrate (TCA) filter aid in the Bayer industry: factors affecting TCA preparation and morphology. International Journal of Mineral Processing 1997;49(1-2) 1-29.

  192. Whittington BI, Cardile CM. The chemistry of tricalcium aluminate hexahydrate relating to the Bayer industry. International Journal of Mineral Processing 1996;48(1-2) 21-38.

  193. Zhang B, Li J, Chen Q, Chen G. Precipitation of Al(OH)3 crystals from supersaturated sodium aluminate solution irradiated with ultrasonic sound. Minerals Engineering 2009;22(9-10) 853-858.

  194. Zhang Y, Zheng Sh, Du H, Xu H, Wang Sh, Zhang Y. Improved precipitation of gibbsite from sodium aluminate solution by adding methanol. Hydrometallurgy 2009;98(1-2) 38-44.

  195. Zeng J, Yin Z, Chen Q. Intensification of precipitation of gibbsite from seeded caustic sodium aluminate liquor by seed activation and addition of crown ether. Hydrometallurgy 2007;89(1-2) 107-116.

  196. Smith PG, Watling HR, Crew P. The effects of model organic compounds on gibbsite crystallization from alkaline aluminate solutions: polyols. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996;111(1-2) 119-130.

  197. Yin Z, Zeng J, Chen Q. Effect of oleic acid on gibbsite precipitation from seeded sodium aluminate liquors. International Journal of Mineral Processing 2009;92(3-4) 184-189.

  198. Watling H. Gibbsite crystallization inhibition: 2. Comparative effects of selected alditols and hydroxycarboxylic acids. Hydrometallurgy 2000;55(3) 289-309.

  199. Samal S, Ray AK, Bandopadhyay A. Proposal for resources, utilization and processes of red mud in India - A review. International Journal of Mineral Processing 2013;118 43-55.

  200. Liu W, Yang J, Xiao B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. Journal of Hazardous Materials 2009;161(1) 474-478.

  201. Abhilash, Sinha Sh, Sinha MK, Pandey BD. Extraction of lanthanum and cerium from Indian red mud. International Journal of Mineral Processing 2014;12770-73.

  202. Couillard D. Use of red mud, a residue of alumina production by the Bayer process, in water treatment. Science of the Total Environment 1982;25(2) 181-191.

  203. He H, Yue Q, Qi Y, Gao B, Zhao Y, Yu H, Li J, Li Q, Wang Y. The effect of incorporation of red mud on the properties of clay ceramic bodies. Applied Clay Science 2012;70 67-73.

  204. Kumar A, Kumar S. Development of paving blocks from synergistic use of red mud and fly ash using geopolymerization. Construction and Building Materials 2013;38 865-871.

  205. Nishida T, Nakano H, Urabe K. Preparation and characterization of polycrystalline alumina with small grain size. Journal of the European Ceramic Society 1993;12(3) 197-203.

  206. Gu H, Tian P, Li Y, Hao X. Low-temperature electrolytic coloration and spectral property of ammonium alum crystals. Journal of Luminescence 2012;132(7) 1623-1626.

  207. Park HC, Park YJ, Stevens R. Synthesis of alumina from high purity alum derived from coal fly ash. Materials Science and Engineering: A 2004;367(1-2) 166-170.

  208. Lim AR, Moon H.-G, Chang J.-H. Nuclear magnetic resonance study of the phase transitions and local environments of α-alum NH4Al(SO4)2⋅12H2O single crystals. Chemical Physics 2010;371(1-3) 91-95.

  209. Petruševski VM, Ivanovski V, Šoptrajanov B, Zugik M. Vibrational spectra of hexaaqua complexes. X. Raman and IR studies of the sulfate group disorder in α-alums. Journal of Molecular Structure 2001;563-564 329-333.

  210. Wang LK, Yang JY. Total waste recycle system for water purification plant using alum as primary coagulant. Resource Recovery and Conservation 1975;1(1) 67-84.

  211. Gao S, Wang Ch, Pei Y. Comparison of different phosphate species adsorption by ferric and alum water treatment residuals. Journal of Environmental Sciences, Volume 25, Issue 5, 1 May 2013, Pages 986-992.

  212. Korchak YM, Kapustyanyk VB, Partyka MV, Rudyk VP. Temperature variation of the optical absorption edge for ammonium aluminum alum. Journal of Applied Spectroscopy 2007;74(2) 289-294.

  213. Lazarev VV, Blinov LM, Palto SP, Yudin SG. Electro-optical and ferroelectric switching of Langmuir–Blodgett films made of a chiral smectic-C*liquid crystalline compound. Thin Solid Films 2008;516(24) 8905-8908.

  214. Jotshi CK. Thermal storage in ammonium alum/ammonium nitrate eutectic for solars pace heating applications. Solar Energy Engineering 1998;120 20-24.

  215. Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews 2013;18 246-258.

  216. Aderemi BO, Hameed BH. Alum as a heterogeneous catalyst for the transesterification of palm oil. Applied Catalysis A: General 2009;370(1-2) 54-58.

  217. Sonar SS, Shelke KF, Kakade GK, Shingate BB, Shingare MS. Alum: An efficient catalyst for one-pot synthesis of α-aminophosphonates. Chinese Chemical Letters 2009;20(9) 1042-1046.

  218. Jandová J, Dvořák P, Formánek J, Vu HN. Recovery of rubidium and potassium alums from lithium-bearing minerals. Hydrometallurgy 2012;119-120 73-76.

  219. Wojciechowska R, Wojciechowski W, Kamiński J. Thermal decompositions of ammonium and potassium alums. Journal of thermal analysis 1988;33(2) 503-509.

  220. Toniolo JC, Lima MD, Takimi AS, Bergmann CP. Synthesis of alumina powders by the glycine–nitrate combustion proces. Materials Research Bulletin 2005;40(3) 561-571.

  221. Su X, Chen Sh, Zhou Z. Synthesis and characterization of monodisperse porous α-Al2O3 nanoparticles. Applied Surface Science 2012;258(15) 5712-5715.

  222. Kingsley JJ, Patil KC. A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials. Materials Letters 1988;6(11-12) 427-432.

  223. Minnermann M, Grossmann HK, Pokhrel S, Thiel K, Hagelin-Weaver H, Bäumer M, Mädler L. Double flame spray pyrolysis as a novel technique to synthesize alumina-supported cobalt Fischer–Tropsch catalysts. Catalysis Today 2013;214 90-99.

  224. Kathirvel P, Chandrasekaran J, Manoharan D, Kumar S. Preparation and characterization of alpha alumina nanoparticles by in-flight oxidation of flame synthesis. Journal of Alloys and Compounds 2014;590 341-345.

  225. Aman Y, Rossignol C, Garnier V, Djurado E. Low temperature synthesis of ultrafine non vermicular α-alumina from aerosol decomposition of aluminum nitrates salts. Journal of the European Ceramic Society 2013;33(10) 1917-1928.

  226. Vallet-Regí M, Rodríguez-Lorenzo LM, Ragel CV, Salinas AJ, González-Calbet JM. Control of structural type and particle size in alumina synthesized by the spray pyrolysis method. Solid State Ionics 1997;101-103 197-203.

  227. Hu Y, Ding H, Li Ch. Preparation of hollow alumina nanospheres via surfactant-assisted flame spray pyrolysis. Particuology 2011;9(5) 528-532.

  228. Sharifi L, Beyhaghi M, Ebadzadeh T, Ghasemi E. Microwave-assisted sol–gel synthesis of alpha alumina nanopowder and study of the rheological behavior. Ceramics International 2013;39(2) 1227-1232.

  229. Cheng L.-T, Tsai M.-Y, Tseng WJ, Hsiang H.-I, Yen F.-S. Boehmite coating on θ-Al2O3 particles via a sol–gel route. Ceramics International 2008;34(2) 337-343.

  230. Liu H, Ning G, Gan Z, Lin Y. Emulsion-based synthesis of unaggregated, spherical alpha alumina. Materials Letters 2008;62(10-11) 1685-1688.

  231. Ponthieu E, Payen E, Grimblot J. Ultrafine alumina powders via a sol-emulsion-gel method. Journal of Non-Crystalline Solids 1992;147-148 598-605.

  232. Russell DS, Campbell JH, Bermaban SS. The spectrophotometric determination of strontium with murexide (ammonium purpurate). Analytica Chimica Acta 1961;25(1) 81-84.

  233. Fornaseri M, Grandi L. Flame photometric determination of strontium in silicates. Strontium content of the granite G-1 and the diabase W-1. Geochimica et Cosmochimica Acta 1960;19(3) 218-221.

  234. Andersen NR, Hume DN. Determination of barium and strontium in sea water. Analytica Chimica Acta 1968;40 207-220.

  235. Webb MSW, Wordingham ML. The direct flame photometric determination of Strontium: Calcium ratios in the ash of human bones and teeth. Analytica Chimica Acta 1963;28 450-456.

  236. Arslan Z, Tyson JF. Determination of calcium, magnesium and strontium in soils by flow injection flame atomic absorption spektrometry. Talanta 1999;50(5) 929-937.

  237. Höglund G. Determination of strontium in bone by X-ray fluorescence spectroscopy. Experimental Cell Research 1959;17(3) 565-569.

  238. Macka M, Paull B, Andersson P, Haddad PR. Determination of barium and strontium by capillary zone electrophoresis using an electrolyte containing sulfonazo III. Journal of Chromatography A 1997;767(1-2) 303-310.

  239. Gautier EA, Gettar RT, Servant RE. Simultaneous determination of lanthanum, strontium and copper in superconductor materials by ion chromatography. Analytica Chimica Acta 1993;283(1) 350-353.

  240. Loveridge BA, Webster RK, Morgan JW, Thomas AM, Smales AA. The determination of strontium in rocks and biological materials. Analytica Chimica Acta 1960;23 154-171.

  241. American Society for Testing and Materials (ASTM), Annual Book of ASTMStandards, vol. 04.01, C-114, Philadelphia, PA, USA, 2004.

  242. Vanhoyland G, Bourée F, Van Bael MK, Mullens J, Van Poucke LC. Structure Determination and Refinement of Acid Strontium Oxalate from X-Ray and Neutron Powder Diffraction. Journal of Solid State Chemistry 2001;157(2) 283-288.

  243. Brandenburg K. (Crystal Impact GbR.), &&DIAMOND: Visual Crystal Structure Information System,'' version 2.1c.

  244. Idriss KA, Sedaira H, Ahmed SS. Determination of strontium and simultaneous determination of strontium oxide, magnesium oxide and calcium oxide content of Portland cement by derivative ratio spectrophotometry. Talanta 2009;78(1) 81-87.

  245. Knaepen E, Mullens J, Yperman J, Van Poucke LC. Preparation and thermal decomposition of various forms of strontium oxalate. Thermochimica Acta 1996;284(1) 213-227.

  246. Yu J, Tang H, Cheng B. Morphological control of strontium oxalate particles by PSMA-mediated precipitation reaction. Materials Chemistry and Physics 2005;91(1) 134-139.

  247. Grahek Z, Macefat MR. Determination of radioactive strontium in seawater. Analytica Chimica Acta 2005;534 271-279.

  248. Jones P, Foulkes M, Paull B. Determination of barium and strontium in calcium-containing matrices using high-performance chelation ion chromatography.Journal of Chromatography A 1994;673(2) 173-179.

  249. Robinson P. Determination of calcium, magnesium, manganese, strontium, sodium and iron in the carbonate fraction of limestones and dolomites. Chemical Geology 1980;28 135-147.

  250. Patti F, Hernandez JA. Nouvelle methode de separation calcium-strontium appliquee a la preparation d'un sel de calcium de tres faible teneur en strontium. Analytica Chimica Acta 1971;55(2) 325-332.

  251. Sedaira H. Simultaneous determination of manganese and zinc in mixtures using first- and second-derivative spectrophotometry. Talanta 2000;51(1) 39-48.

  252. Agnihotri NK, Ratnani S, Singh VK, Singh HB. Simultaneous determination of gallium and indium with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in cationic micellar medium using derivative spectrophotometry. Analytical Sciences 2003;9 1297-1301.

  253. Eskandari H, Saghseloo AG: Second and first-derivative spectrophotometry for efficient simultaneous and individual determination of palladium and cobalt using 1-(2-pyridylazo)-2-naphthol in sodium dodecylsulfate micellar media. Analytical Sciences 2003;19(11) 1513-1518.

  254. Bhalotra A, Puri BK. Simultaneous first derivative spectrophotometric determination of palladium and nickel using 2-(2-Thiazolylazo)-5-dimethylamino-benzoic acid as an analytical reagent. Microchimica Acta 2000;134(3-4) 139-143.

  255. Benamor M, Aguerssif N. Simultaneous determination of calcium and magnesium by derivative spectrophotometry in pharmaceutical products. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2008;69(2) 676-681.

  256. O’Haver TC, Fell AF, Smith G, Gans P, Sneddon J, Bezur L, Michel RG, Ottaway JM, Miller JN, Ahmad TA, Fell AF, Chadburn BP, Cottrell CT. Derivative spectroscopy and its applications in analysis. Analytical Proceedings 1982;19(1) 22-46.

  257. Ishii H, Satoh KZ. Determination of micro amounts of samarium and europium by analogue derivative spectrophotometryAnalytical Chemistry 1982;312(2) 114-120.

  258. Leviillain P, Fompeydie D. Spectrophotométrie dérivée: intérêt, limites et applications,” Analysis, Analysis 1986;14 1-20.

  259. O’Haver TC. Derivative Spectroscopy: Theoretical Aspects.Analytical Proceedings 1982;19 22-28.

  260. Medinilla J, Ales F, Sanchez FG, Spectrophotometric and second-derivative spectrophotometric determination of mercury in organomercurials by means of benzyl 2-pyridyl ketone 2-quinolylhydrazone. Talanta 1986;33(4) 329-334.

  261. Sanchez FG, Lopez MH, Gomez and JCM. A graphical derivative approach to the photometric determination of lutetium and praseodymium in mixtures. Talanta 1987;34(7) 639-644.

  262. Salinas F, Nevado JJ, Espinosa-Mansilla A. A new spectrophotometric method for quantitative multicomponent analysis resolution of mixtures of salicylic and salicyluric acids. Talanta 1990;37(3) 347-351.

  263. Nevado JJB, Cabanillas CG, Salinas F. Spectrophotometric resolution of ternary mixtures of salicylaldehyde, 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde by the derivative ratio spectrum-zero crossing method. Talanta 1992;39(5) 547-533.

  264. Aggarwal J, Habicht-Mauche J, Juarez Ch. Application of heavy stable isotopes in forensic isotope geochemistry: A review. Applied Geochemistry 2008;23(9) 2658-2666.

  265. Goguel RL, St. John DA. Chemical identification of Portland cements in New Zealand concretes: I. Characteristics differences among New Zealand cements in minor and trace element chemistry. Cement and Concrete Research 1993;23(1) 59-68.

  266. I.J Graham, R.L Goguel, D.A St John. Use of strontium isotopes to determine the origin of cement in concretes: Case examples from New Zealand. Cement and Concrete Research 2000;30(7) 1105-1111.

  267. Redler L. Quantitative X- ray diffraction analysis of high alumina cements. Cement and Concrete Research 1991;21(5) 873-884.

  268. Midgley HG. Quantitative determination of phases in high alumina cement clinkers by X-ray diffraction. Cement and Concrete Research 1976;6(2) 217-223.

  269. Guirado F, Galı́ S, Chinchón S . Quantitative Rietveld analysis of aluminous cement clinker phases. Cement and Concrete Research 2000;30(7) 1023-1029.

  270. Wilson W, Krakowiak KJ, Ulm F.-J. Simultaneous assessment of phase chemistry, phase abundance and bulk chemistry with statistical electron probe micro-analyses: Application to cement clinkers. Cement and Concrete Research 2014;55 35-48.

  271. Haach VG, Vasconcelos G, Lourenço PB. Influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. nstruction and Building Materials 2011;25(6) 2980-2987.

  272. Neville AM. Properties of Concrete, Fourth Edition. Addison Wesley Longman Ltd.; 1995.

  273. Wong HS, Buenfeld NR. Determining the water–cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples. Cement and Concrete Research 2009;39(10) 957-965.

  274. Philippidis TP, Aggelis DG. An acousto-ultrasonic approach for the determination of water-to-cement ratio in concrete. Cement and Concrete Research 2003;33(4) 525-538.

  275. Sahu S, Badger S, Thaulow N, Lee RJ. Determination of water–cement ratio of hardened concrete by scanning electron microscopy. Cement and Concrete Composites 2004;26(8) 987-992.

  276. Beygi MHA, Kazemi MT, Nikbin IM, Amiri JV. The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Materials & Design 2013;50 267-276.

  277. Bescher E, Sambol M, Rice EK, Mackenzie JD. Determination of water-to-cement ratio in freshly mixed rapid-setting calcium sulfoaluminate concrete using 2.45 GHz microwave radiation. Cement and Concrete Research 2004;34(5) 807-812.

  278. Yodsudjai W, Wang K. Chemical shrinkage behavior of pastes made with different types of cements. Construction and Building Materials 2013;40 854-862.

  279. Jankovic A, Valery W, Davis E. Cement grinding optimisation. Minerals Engineering 2004;17(11-12) 1075-1081.

  280. Austin LG, Bagga R, Celik M. Breakage properties of some materials in a laboratory ball mill. Powder Technology 1981;28 235-241.

  281. Bond FC. Crushing and Grinding Calculations Parts I and II. British Chemical Engineering 6 (6&8); 1961.

  282. Morrell S, Shi F, Tondo. Modelling and Scale-up of High Pressure Grinding Rolls. In: Proceedings of the XX International Mineral Processing Congress (IMPC). Aachen: Germany; September 1997.

  283. Magdalinovic N. Mathematical Model for Determination of an Optimal Crusher Product size. Aufbereitungs-Technik 1990;31(5) 277-279.

  284. Lynch AJ. Mineral Crushing and Grinding Circuits, Their Simulation, Optimization, Design and Control. Amsterdam: Elsevier Scientific Publishing Co.; 1977.

  285. Benzer H, Ergün L, Öner M, Lynch AJ. Simulation of open circuit clinker grinding. Minerals Engineering 2001;14(7) 701-710.

  286. Aldrich Ch. Consumption of steel grinding media in mills - A review. Minerals Engineering 2013;49 77-91.

  287. Katsioti M, Tsakiridis PE, Giannatos P, Tsibouki Z, Marinos J. Characterization of various cement grinding aids and their impact on grindability and cement performance. Construction and Building Materials 2009;23(5) 1954-1959.

  288. Reid KJ. A solution to the batch grinding equation. Chemical Engineering Science 1965;20 953-963.

  289. Deniz V. A study on the specific rate of breakage of cement materials in a laboratory ball mill. Cement and Concrete Research 2003;33 439-445.

  290. Austin LG, Luckie PT. Methods for determination of breakage distribution parameters. Powder Technology 1971;5 215-222.

  291. Kapur PC. Balling and Granulation. Advances in Chemical Engineering 1978;10 55-123.

  292. Adetayo AA, Litster JD, Cameron IT. Steady state modelling and simulation of a fertilizer granulation circuit. Computers & Chemical Engineering 1995;19 383-393.

  293. Cotabarren I, Schulz PG, Bucalá V, Piña J. Modelling of an industrial double-roll crusher of a urea granulation circuit. Powder Technology 2008;183(2) 224-230.

  294. Horio M. Binderless granulation - its potential, achievements and future issues. Powder Technology 2003;130(1-3) 1-7.

  295. Saidur R, Hossain MS, Islam MR, Fayaz H, Mohammed HA. A review on kiln system modeling. Renewable and Sustainable Energy Reviews 2011;15(5) 2487-2500.

  296. Mujumdar KS, Ranade VV. Simulation of Rotary Cement Kilns Using a One-Dimensional Model. Chemical Engineering Research and Design 2006;84(3) 165-177.

  297. Mujumdar KS, Ganesh KV, Kulkarni SB, Ranade VV. Rotary Cement Kiln Simulator (RoCKS): Integrated modeling of pre-heater, calciner, kiln and clinker cooler. Chemical Engineering Science 2007;62(9) 2590-2607.

  298. Rademaker O, Goessens LH, Voskamp JH, Debie ACP. Dynamics and control of a clinker cooler. Automatica 1970;6(2) 231-244.

  299. Ahamed JU, Madlool NA, Saidur R, Shahinuddin MI, Kamyar A, Masjuki HH. Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters. Energy 2012;46(1) 664-674.

  300. Stadler KS, Poland J, Gallestey E. Model predictive control of a rotary cement kiln. Control Engineering Practice 2011;19(1) 1-9.

  301. Yuko T, Ikabata T, Akiyama T, Yamamoto T, Kurumada N. New clinker formation process by the fluidized bed kiln system. Cement and Concrete Research 2000;301113-1120.

  302. Van Puyvelde DR. Modelling the hold up of lifters in rotary dryers. Chemical Engineering Research and Design 2009;87(2) 226-232.

  303. Barin I. Thermodynamic data of pure substances. Part I Ag – Kr; 1992. ISBN 3-527-28531-8.

  304. Barin I. Thermodynamic data of pure substances. Part II La – Zr; 1992. ISBN 3-527-28531-8.

  305. Rodríguez NH, Martínez-Ramírez S, Blanco-Varela MT, Donatello S, Guillem M, Puig J, Fos C, Larrotcha E, Flores J. The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production 2013;52 94-102.

  306. Tsiliyannis ChA. Alternative fuels in cement manufacturing: Modeling for process optimization under direct and compound operation. Fuel 2012;99 20-39.

  307. Pipilikaki P, Katsioti M, Papageorgiou D, Fragoulis D, Chaniotakis E. Use of tire derived fuel in clinker burning. Cement and Concrete Composites 2005;27(7-8) 843-847.

  308. Valderrama C, Granados R, Cortina JL, Gasol CM, Guillem M, Josa A. Comparative LCA of sewage sludge valorisation as both fuel and raw material substitute in clinker production. Journal of Cleaner Production 2013;51 205-213.

  309. Nakano T, Ichitsubo K, Kurokawa D, Ichikawa M. The effect of cooling rate on the fluidity of mortar made from kiln clinker. Cement and Concrete Research 2008;38(5) 643-648.

  310. Ichikawa M, Ikeda S, Komukai Y. Effect of cooling rate and Na2O content on the character of the interstitial materials in portland cement clinker. Cement and Concrete Research 1994;24(6) 1092-1096.

  311. Woodson RD. Concrete Materials Concrete Portable Handbook; 2012.

  312. Sverak TS, Baker CGJ, Kozdas O. Efficiency of grinding stabilizers in cement clinker processing. Minerals Engineering 2013;43-44 52-57.

  313. Touil D, Belaadi S, Frances C. The specific selection function effect on clinker grinding efficiency in a dry batch ball mill. International Journal of Mineral Processing 2008;87 141-145.

  314. Bensted J. Effects of the clinker - gypsum grinding temperature upon early hydration of Portland cement. Cement and Concrete Research 1982;12(3) 341-348.

  315. Marzouki A, Lecomte A, Beddey A, Diliberto C, Ouezdou MB. The effects of grinding on the properties of Portland-limestone cement. Construction and Building Materials 2013;481145-1155.

  316. Spitas V, Spitas C. Stochastic simulation of the power requirements of dry clinker pulverisation. International Journal of Mineral Processing 2012;106-10942-49.

  317. Shi F. Comparison of grinding media- cylpebs and balls, Minerals Engineering 2004;17 1259-1268.

  318. Ipek H. The effects of grinding media shape on breakage rate. Minerals Engineering 2006;19 91-93.

  319. Qian HY, Kong QG, Zhang BL. The effects of grinding media shapes on the grinding kinetics of cement clinker in ball mill. Powder Technology 2013;235422-425.

  320. Deniz V . The effect of mill speed on kinetic breakage parameters of clinker and limestone. Cement and Concrete Research 2004;34(8) 1365-1371.

  321. Wang J.-h, Chen Q.-r, Kuang Y.-l, Lynch AJ, Zhuo J.-w. Grinding process within vertical roller mills: experiment and simulation. Mining Science and Technology (China) 2009;19(1) 97-101.

  322. Sohoni S, Sridhar R, Mandal G. The effect of grinding aids on the fine grinding of limestone, quartz and Portland cement clinker. Powder Technology 1991;67(3) 277-286.

  323. Tsivilis S, Voglis N. Photou J. A study of the intergrinding of clinker and limestone. Minerals Engineering 1999;12(7) 837-840.

  324. Irassar EF, Violini D, Rahhal VF, Milanesi C, Trezza MA, Bonavetti VL. Influence of limestone content, gypsum content and fineness on early age properties of Portland limestone cement produced by inter-grinding. Cement and Concrete Composites 2011;33(2) 192-200.

  325. Karamalidis AK, Dzombak DA. Surface Complexation Modeling: Gibbsite. Wiley; 2011.

  326. Gallardo AR, Vegas A. Zeitschrift für Kristallographie. The cation array in aluminum oxides, hydroxides and oxihydroxides. 1996;211(5) 299-303.

  327. Megaw HD. Zeitschrift für Kristallographie, Mineralogie und Petrographie 1934;87 185-204.

  328. Kloprogge JT, Duong LV, Wood BJ, Frost RL. XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite.Journal of Colloid and Interface Science 2006;296(2) 572-576.

  329. Milligan WO, McAtee JL. Crystal Structure of γ-AlOOH and γ-ScOOH.Journal of Physical Chemisty 1956;60(3) 273-277.

  330. Christoph GG, Corbato CE, Hofmann A, Tettenhorst RT. The crystal structure of boehmite. Clays and Clay Minerals 1979;27(2) 81-86.

  331. Bosmans HJ. Unit cell and crystal structure of nordstrandite, Al(OH)3. Acta Crystallographica, Section B 1970;26(5) 649-652.

  332. Hathaway JC, Schlanger SO. Nordsrandite (Al2O3∙3H2O) from Guam. The American Mineralogis 1965;50 1029-1037.

  333. El-Katatny EA, Halawy SA, Mohamed MA, Zaki MI. A novel synthesis of high-area alumina via H2O2-precipitated boehmite from sodium aluminate solutions.Journal of Chemical Technology and Biotechnology1998;72(4) 320-328.

  334. Demichelis R, Civalleri B, Noel Y, Meyer A, Dovesi R. Structure and stability of aluminium trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the crystal 06 code. Chemical Physics Letters 2008;465(4-6) 220-225.

  335. Sposito G. The Environmental Chemistry of Aluminum. Lewis Publishers is an imprint of CRC Press; 1996. ISBN: l-56670-030-2.

  336. Dewey C. Geological section from Williamstown, Mass. to Troy, N. Y. on the Hudson. American Journal of Science 1820;2(2) 249.

  337. Freij SJ, Parkinson GM. Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors. Hydrometallurgy 2005;78(3-4) 246-255.

  338. Bhöm J. Über Aluminium- und Eisenoxide I. Zeitschrift für anorganische und allgemeine Chemie 1925;149 203-210.

  339. Cai W, Li H, Zhang G. An innovative approach for pseudoboehmite precipitation from seeded sodium aluminate solutions. Journal of Physics and Chemistry of Solids 2010;71(4) 515-518.

  340. Chao GY, Baker J. Sabina AP, Roberts AC. Doyleite, a new polymorph of Al(OH)r, and its relationship to bayerite, gibbsite, and nordstrandite. Canadian Mineralogist 1985;23 21-28.

  341. Van Nordstrad RA, Hettinger WP, Keith CD. A new alumina trihydrate. Nature 1956;177 713-714.

  342. Jodin M.-C, Gaboriaud F, Humbert B. Limitations of potenciometric studies to determine the surface charge of gibbsite γ-Al(OH)3 particles. Journal of Collid and Interface Science 2005;287 581-591.

  343. Kosmulski M. pH-dependent surface charging and points of zero charge. IV. Update and new approach. Journal of Collid and interface Science 2009;337 439-448.

  344. Huang PM, Li Y, Sumner ME. Handbook of Soil Sciences: Properties and Processes, Second Edition. CRC Press; 2011. ISBN 978-1-4398-0305-9.

  345. Kosmulski M. Surface Charging and Points of Zero Charge, CRC, Taylor & Francis; Boca Raton; FL; London; 2009.

  346. Alwitt RS. The point of zero charge of pseudoboehmite. Journal of Colloids and Interface Science 1972;40 195-198.

  347. Liu Y, Naidu R, Ming H. Surface electrochemical properties of red mud (bauxite residue): Zeta potential and surface charge density. Journal of Colloid and Interface Science 2013;394 451-457.

  348. Kabengi NJ, Daroub SH, Rhue RD. Energetics of arsenate sorption on amorphous aluminum hydroxides studied using flow adsorption calorimetry.Journal of Colloid and Interface Science 2006;297(1) 86-94.

  349. Carre S, Gnep NS, Revel R, Magnoux P. Characterization of the acid-base properties of transition aluminas by model reaction. Applied Catalysis A: General 2008;348 71-78.

  350. Richardson JT. Principles of Catalyst Development; Plenum Press; London; 1989.

  351. Du X, Wang Y, Su X, Li J. Influences of pH value on the microstructure and phase transformation of aluminum hydroxide. Powder Technology 2009;192(1) 40-46.

  352. Sudworth JL, Tilley AR. The Sodium Sulphur Battery. London: Chapman & Hall; 1985.

  353. Mali A, Petric A. Synthesis of sodium β´´-alumina powder by sol-gel combustion. Journal of the European Ceramic Society 2012;32 1229-1234.

  354. Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives. Journal of Power Sources 2010;195 2431-2442.

  355. Bragg WL, Gottfried C, West J. The structure of β alumina. Zeitschrift für Kristallographie- Crystalline Materials 1931;77(1) 255-274.

  356. Beevers CA, Ross MAS. The crystal structure of “beta alumina” Na2O⋅11Al2O3. Zeitschrift für Kristallographie 1937;97 59-66.

  357. Yamaguchi G, Suzuki K.Bulletin of the Chemical Society of Japan 1968;4193-99.

  358. Bettman M, Peters CR. The crystal structure of Na2O⋅MgO⋅5Al2O3 with reference to Na2O⋅5Al2O3 and other isotypal compounds. Journal of Physical Chemistry 1969;73 1774-1780.

  359. Bourke MAM, Hooper A, Moseley PT, Taylor RG. Sodium-rich beta-alumina. Solid State Ionics 1980;1(5-6) 367-372.

  360. Koh J.-H, Weber N, Virkar AV. Synthesis of lithium-beta-alumina by various ion-exchange and conversion processes. Solid State Ionics 2012;220 32-38.

  361. Kalaignan GP, Seo DJ, Park SB. Characterization of Srβ-alumina prepared by sol–gel and spray pyrolysis methods. Materials Chemistry and Physics 2004;85(2-3)286-293.

  362. Yuji Masubuchi, Tomoyuki Hata, Teruki Motohashi, Shinichi Kikkawa. Crystal structure of Eu-doped magnetoplumbite-type lanthanum aluminum oxynitride with emission site splitting. Journal of Solid State Chemistry 2011;184(9) 2533-2537.

  363. Carrillo-Cabrera W, Thomas JO, Farrington GC. The structure of the lanthanide Gd3+, Eu3+ and Nd3+ β″-aluminas. Solid State Ionics 1988;28–30 317-323.

  364. MacKenzie KJD, Temuujin J, Okada K. Thermal decomposition of mechanically activated gibbsite. Thermochimica Acta 1999;327(1-2) 103-108.

  365. Zhu B, Fang B, Li X. Dehydration reactions and kinetic parameters of gibbsite. Ceramics International 2010;36(8) 2493-2498.

  366. Li H, Shao T, Li D, Chen D. Nonisothermal reaction kinetics of diasporic bauxite. Thermochimica Acta 2005;427(1-2) 9-12.

  367. Whittington B, Ilievski D. Determination of the gibbsite dehydration reaction pathway at conditions relevant to Bayer refineries. Chemical Engineering Journal 2004;98(1-2) 89-97.

  368. Alphonse P, Courty M. Structure and thermal behavior of nanocrystalline boehmite. Thermochimica Acta 2005;425(1-2) 75-89.

  369. L'vov BV. Mechanism of thermal decomposition of alkaline-earth carbonates. Thermochimica Acta 1997;303 161-170.

  370. An L, Chan HM, Soni KK. Control of Calcium hexaluminate grain morphology in in-situ toughened ceramic composites. Journal of Materials Science 1996;31(12) 3223–3229.

  371. Vishista K, Gnanam FD. Microstructural development of SrAl12O19 in alumina–strontia composites. Journal of the European Ceramic Society 2009;29(1) 77-83.

  372. Davar F, Salavati-Niasari M, Baskoutas S. Temperature controlled synthesis of SrCO3 nanorods via a facile solid-state decomposition rout starting from a novel inorganic precursor. Applied Surface Science 2011;257(9) 3872-3877.

  373. Miller F, Wilkins ChH. Infrared spectra and characteristic frequencies of inorganic ions. Their use in quantitative analysis. Analytical Chemistry 1952;24 1253-1274.

  374. Huang CK, Kerr PF. Infrared study of the carbonate minerals. The American Mineralogist 1960;45 311-324.

  375. Boumaza A, Favaro L, Lédion J, Sattonnay G, Brubach JB, Berthet P, Huntz AM, Roy P, Tétot R. Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry 2009;182(5) 1171-1176.

  376. Boumaza A, Djelloul A, Guerrab F. Specific signatures of α-alumina powders prepared by calcination of boehmite or gibbsite. Powder Technology 2010;201(2) 177-180.

  377. Nag A, Kutty TRN. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy. Journal of Alloys and Compounds 2003;354(1-2) 221-231.

  378. Zhou T, Song Z, Bian L, Ren Q, Liu Q. Synthesis and luminescence properties of europium activated Ca3Al2O6-Sr3Al2O6 system. Journal of Rare Earths 2012;30(7) 632-636.

  379. Ptáček P, Šoukal F, Opravil T, Bartoníčková E, Zmrzlý M, Novotný R. Synthesis, hydration and thermal stability of hydrates in strontium-aluminate cement. Ceramics International 2014;40(7) 9971-9979.

  380. Hörkner W, Müller-Buschbaum HK. Zur kristallstruktur von CaAl2O4. Journal of Inorganic and Nuclear Chemistry 1976;38(5) 983-984.

  381. E. Ghiasvand, A.A. Ramezanianpour, A.M. Ramezanianpour. Effect of grinding method and particle size distribution on the properties of Portland-pozzolan cement. Construction and Building Materials 2014; 53 547-554.

  382. Bentz DP, Garboczi EJ, Haecker CJ, Jensen OM. Effects of cement particle size distribution on performance properties of Portland cement-based materials. Cement and Concrete Research 1999;29(10) 1663-1671.

  383. Zhang T, Yu Q, Wei J, Zhang P. Effects of size fraction on composition and fundamental properties of Portland cement. Construction and Building Materials 2011;25(7) 3038-3043.

  384. Frigione G, Marra S. Relationship between particle size distribution and compressive strength in portland cement. Cement and Concrete Research 1976;6(1) 113-127.

  385. Celik IB. The effects of particle size distribution and surface area upon cement strength development. Powder Technology 2009;188(3) 272-276.

  386. Vedalakshmi R, Raj AS, Srinivasan S, Babu KG. Quantification of hydrated cement products of blended cements in low and medium strength concrete using TG and DTA technique. Thermochimica Acta 2003;407(1-2) 49-60.

  387. Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and Concrete Research 2005;35(6) 1155-1164.

  388. Lilkov V, Petrov O, Tzvetanova Y, Savov P. Mössbauer, DTA and XRD study of Portland cement blended with fly ash and silica fume. Construction and Building Materials 2012;29 33-41.

  389. Hesse Ch, Goetz-Neunhoeffer F, Neubauer J. A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cement and Concrete Research 2011;41(1) 123-128.

  390. Pang X, Bentz DP, Meyer Ch, Funkhouser GP, Darbe R. A comparison study of Portland cement hydration kinetics as measured by chemical shrinkage and isothermal calorimetry. Cement and Concrete Composites 2013;3923-32.

  391. Xu Q, Hu J, Ruiz JM, Wang K, Ge Z. Isothermal calorimetry tests and modeling of cement hydration parameters. Thermochimica Acta 2010;499(1-2) 91-99.

  392. Gerstig M, Wadsö L. A method based on isothermal calorimetry to quantify the influence of moisture on the hydration rate of young cement pastes. Cement and Concrete Research 2010;40(6) 867-874.

  393. Mostafa NY, Brown PW. Heat of hydration of high reactive pozzolans in blended cements: Isothermal conduction calorimetry. Thermochimica Acta 2005;435(2) 162-167.

  394. Esteves LP. On the hydration of water-entrained cement–silica systems: Combined SEM, XRD and thermal analysis in cement pastes. Thermochimica Acta 2011;518(1-2) 27-35.

  395. Ylmén R, Jäglid U, Steenari B.-M, Panas I. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques. Cement and Concrete Research 2009;39(5) 433-439.

  396. Torréns-Martín D, Fernández-Carrasco L, Martínez-Ramírez S. Hydration of calcium aluminates and calcium sulfoaluminate studied by Raman spectroscopy. Cement and Concrete Research 2013;47 43-50.

  397. Corr DJ, Juenger MCG, Monteiro PJM, Bastacky J. Investigating entrained air voids and Portland cement hydration with low-temperature scanning electron microscopy. Cement and Concrete Composites 2004;26(8) 1007-1012.

  398. Gallucci E, Mathur P, Scrivener K. Microstructural development of early age hydration shells around cement grains. Cement and Concrete Research 2010;40(1) 4-13.

  399. Double DD. Some studies of the hydration of Portland cement using high voltage (1 MV) electron microscopy. Materials Science and Engineering 1973;12(1) 29-34.

  400. Goldschmidt A. About the hydration theory and the composition of the liquid phase of portland cement. Cement and Concrete Research 1982;12(6) 743-746.

  401. Michaux M, Fletcher P, Vidick B. Evolution at early hydration times of the chemical composition of liquid phase of oil-well cement pastes with and without additives. Part I. Additive free cement pastes. Cement and Concrete Research 1989;19(3) 443-456.

  402. Delmi MMY, A.-Mokhtar A, Amiri O. Modelling the coupled evolution of hydration and porosity of cement-based materials. Construction and Building Materials 2006;20(7) 504-514.

  403. Dongyu X, Shifeng H, Lei Q, Lingchao L, Xin C. Monitoring of cement hydration reaction process based on ultrasonic technique of piezoelectric composite transducer. Construction and Building Materials 2012;35 220-226.

  404. Smith A, Chotard T, Gimet-Breart N, Fargeot D. Correlation between hydration mechanism and ultrasonic measurements in an aluminous cement: effect of setting time and temperature on the early hydration. Journal of the European Ceramic Society 2002;22(12) 1947-1958.

  405. Cheng X, Qin L, Zhong QQ, Huang SF, Li ZJ. Temperature and boundary influence on cement hydration monitoring using embedded piezoelectric transducers. Ultrasonics 2013;53(2) 412-416.

  406. Chotard T, Gimet-Breart N, Smith A, Fargeot D, Bonnet JP, Gault C. Application of ultrasonic testing to describe the hydration of calcium aluminate cement at the early age. Cement and Concrete Research 2001;31(3) 405-412.

  407. McCarter WJ. A parametric study of the impedance characteristics of cement-aggregate systems during early hydration. Cement and Concrete Research 1994;24(6) 1097-1110.

  408. Dotelli G, Mari CM. The evolution of cement paste hydration process by impedance spectroscopy. Materials Science and Engineering: A 2001;303(1-2) 54-59.

  409. Zuo Y, Zi J, Wei X. Hydration of cement with retarder characterized via electrical resistivity measurements and computer simulation. Construction and Building Materials 2014;53411-418.

  410. Liao Y, Wei X, Li G. Early hydration of calcium sulfoaluminate cement through electrical resistivity measurement and microstructure investigations. Construction and Building Materials 2011;25(4) 1572-1579.

  411. Brooks JJ, Johari MAM, Mazloom M. Effect of admixtures on the setting times of high-strength concrete. Cement and Concrete Composites 2000;22(4) 293-301.

  412. Ramachandran VS, Malhotra VM. Superplasticizers: Properties and application in concrete; 1988. ISBN 0-660-17393-X.

  413. Janowska-Renkas E. The effect of superplasticizers’ chemical structure on their efficiency in cement pastes. Construction and Building Materials 2013;38 1204-1210.

  414. Valcuende M, Marco E, Parra C, Serna P. Influence of limestone filler and viscosity-modifying admixture on the shrinkage of self-compacting concrete. Cement and Concrete Research 2012;42(4) 583-592.

  415. Lothenbach B, Le Saout G, Gallucci E, Scrivener K. Influence of limestone on the hydration of Portland cements. Cement and Concrete Research 2008;38(6) 848-860.

  416. Chakoumakos BC, Lager GA, Fernandez-Baca JA. Refinement of the structures of Sr3Al2O6 and the hydrogarnet Sr3Al2(OD)12 by Rietveld analysis of neutron powder diffraction data. Acta Crystallographica Section C 1992;48 414–419.

  417. Mondal P, Jeffery JW. The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallographica Section B 31 (1975) 689–697.

  418. Handy NC, Carter S, Yamaguchi Y, Li S, Turney JM, Schaefer HF. Rovibrational energy levels for the electronic ground state of AlOH. Chemical Physics Letters 2006;427(1-3) 14-17.

  419. Hirota F, Tanimoto M, Tokiwa H. Ab initio study on the AlOH/HAlO system. Chemical Physics Letters 1993;208(1-2) 115-119.

  420. Tarte P. Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochimica Acta Part A: Molecular Spectroscopy 1967;23(7) 2127-2143.

  421. Preudhomme J, Tarte P. Infrared studied of spinel-III: the normal II–III spinel. Spectrochimica Acta Part A 1971;27(9) 1817–1835.

  422. Li X, Wang D, Zhou Q, Liu G, Peng Z. Concentration variation of aluminate ions during the seeded precipitation process of gibbsite from sodium aluminate solution. Hydrometallurgy 2011;106(1-2) 93-98.

  423. Andrews A, Nsiah-Baafi E, Gawu SKY, Olubambi PA. Synthesis of high alumina refractories from lithomargic clay. Ceramics International 2014;40(4) 6071-6075.

  424. Galusek D, Ghillányová K. Ceramic oxides. In: Ceramics Science and Technology, Volume 2, Materials and Properties. Ed.: Riedel R and Chen I-Wei; Wiley-VCH; 2010. ISBN: 978-3-527-31156-9.

  425. Amrane B, Ouedraogo E, Mamen B, Djaknoun S, Mesrati N. Experimental study of the thermo-mechanical behaviour of alumina-silicate refractory materials based on a mixture of Algerian kaolinitic clays. Ceramics International 2011;37(8) 3217-3227.

  426. Lavat AE, Grasselli MC, Lovecchio EG. Effect of α and γ polymorphs of alumina on the preparation of MgAl2O4-spinel-containing refractory cements. Ceramics International 2010;36(1) 15-21.

  427. Reddy NK. Reaction-bonded silicon carbide refractories. Materials Chemistry and Physics 2002;76(1) 78-81.

  428. Pierson HO. Applications of Refractory Carbides and Nitrides. Handbook of Refractory Carbides and Nitrides; 1996.

  429. Schmalzried C, Schwetz K. Silicon Carbide- and Boron Carbide-Based Hard materials. In: Ceramics Science and Technology, Volume 2, Materials and Properties. Ed.: Riedel R and Chen I.-W; Wiley-VCH; 2010. ISBN: 978-3-527-31156-9.

  430. Rao MPLN, Gupta GS, Manjunath ., Kumar S, Suri AK, Krishnamurthy N, Subramanian C. Temperature measurements in the boron carbide manufacturing process – A hot model study. International Journal of Refractory Metals and Hard Materials 2009;27(3) 621-628.

  431. Liu G, Li J, Chen K. Combustion synthesis of refractory and hard materials: A review. International Journal of Refractory Metals and Hard Materials 2013;39 90-102.

  432. Lihrmann J.-M. Thermodynamics of the Al2O3–Al4C3 system: I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K. Journal of the European Ceramic Society 2008;28(3) 633-642.

  433. Chen K, Huang Z, Liu Y.-g, Fang M, Huang J, Xu Y. Synthesis of β-Si3N4 powder from quartz via carbothermal reduction nitridation. Powder Technology 2013;235 728-734.

  434. Jones MI, Valecillos M.-C, Hirao K, Yamauchi Y. Grain growth in microwave sintered Si3N4 ceramics sintered from different starting powders. Journal of the European Ceramic Society 2002;22(16) 2981-2988.

  435. Yu J, Yang J, Li H, Xi X, Huang Y. Study on particle-stabilized Si3N4 ceramic foams. Materials Letters 2011;65(12) 1801-1804.

  436. Eichler J, Lesniak Ch. Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society 2008;28(5) 1105-1109.

  437. Wang Q, He D, Peng F, Xiong , Wang J, Wang P, Xu Ch, Liu J. Compression behavior of nanocrystalline TiN. Solid State Communications 2014;182 26-29.

  438. Kartavykh AV, Tcherdyntsev VV, Zollinger J. TiAl–Nb melt interaction with AlN refractory crucibles. Materials Chemistry and Physics 2009;116(1) 300-304.

  439. Šajgalík P, Lenčéš Z, Hnatko M. Nitrides. In: Ceramics Science and Technology, Volume 2, Materials and Properties. Ed.: Riedel R and Chen I.-W; Wiley-VCH, 2010. ISBN: 978-3-527-31156-9.

  440. Taleghani PR, Bakhshi SR, Erfanmanesh M, Borhani GH, Vafaei R. Improvement of MoSi2 oxidation resistance via boron addition: Fabrication of MoB/MoSi2 composite by mechanical alloying and subsequent reactive sintering. Powder Technology 2014;254241-247.

  441. Raju GB, Basu B, Suri AK. Thermal and electrical properties of TiB2–MoSi2. International Journal of Refractory Metals and Hard Materials 2010;28(2) 174-179.

  442. Luo M, Li Y, Jin S, Sang S, Zhao L, Wang Q, Li Y. Microstructure and mechanical properties of multi-walled carbon nanotubes containing Al2O3–C refractories with addition of polycarbosilane. Ceramics International 2013;39(5) 4831-4838.

  443. Fan H, Li Y, Sang S. Microstructures and mechanical properties of Al2O3–C refractories with silicon additive using different carbon sources. Materials Science and Engineering: A 2011;528(7-8) 3177-3185.

  444. Musante L, Martorello LF, Galliano PG, Cavalieri AL, Martinez AGT. Mechanical behaviour of MgO–C refractory bricks evaluated by stress–strain curves. Ceramics International 2012;38(5) 4035-4047.

  445. Musante L, Muñoz V, Labadie MH, Martinez AGT. High temperature mechanical behavior of Al2O3–MgO–C refractories for steelmaking use. Ceramics International 2011;37(5) 1473-1483.

  446. Muñoz V, Martinez AGT. Thermal Evolution of Al2O3-MgO-C Refractories. Procedia Materials Science 2012;1 410-417.

  447. Sadeghbeigi R. Refractory Lining Systems. Fluid Catalytic Cracking Handbook (Third Edition); 2012.

  448. Stamenković I, Simičić V, Sigulinski F, Martinović P, Stefanović R. Properties of Al2O3-SiO2 heat insulating refractories. Ceramurgia International 1977;3(4) 168.

  449. Schmitt N, Hernandez J.-F, Lamour V, Berthaud Y, Meunier P, Poirier J. Coupling between kinetics of dehydration, physical and mechanical behaviour for high alumina castable. Cement and Concrete Research 2000;30(10) 1597-1607.

  450. Nouri-Khezrabad M, Braulio MAL, Pandolfelli VC, Golestani-Fard F, Rezaie HR. Nano-bonded refractory castables. Ceramics International 2013;39(4) 3479-3497.

  451. Zhou N, Hu S, Zhang S. Advances in modern refractory castables, CN-Refractories 2004;13(2) 3-12.

  452. Zhou N. New castables and their role in advancements in monolithic refractories. Interceram 2006;55(1) 24-26.

  453. Deville HS.-C. On the compositions of different alloys. Annales des Chimie et des Physique 1856;46(3) 418-420.

  454. Soc J, de Lafarge PA. French patent applications 320290; 39454; 1908.

  455. Parr Ch, Bier TA, Bunt NE, Spreafico E. Calcium aluminate cement (CAC) based castables for demanding applications. Technical Paper (Ref.TP-GB-RE-LAF-007) presented at the 1st Monolithics Conference; Teheran; Iran; 1997.

  456. Guirado F, Galı́ S, Chinchón JS. Thermal Decomposition of Hydrated Alumina Cement (CAH10). Cement and Concrete Research 1998;28(3) 381-390.°

  457. Mostafa NY, Zaki ZI, Elkader OHA. Chemical activation of calcium aluminate cement composites cured at elevated temperature. Cement and Concrete Composites 2012;34(10) 1187-1193.

  458. Luz AP, Pandolfelli VC. CaCO3 addition effect on the hydration and mechanical strength evolution of calcium aluminate cement for endodontic applications. Ceramics International 2012;38(2) 1417-1425.

  459. Antonovič V, Kerienė J, Boris R, Aleknevičius M. The Effect of Temperature on the Formation of the Hydrated Calcium Aluminate Cement Structure. Procedia Engineering 2013;57 99-106.

  460. Kopanda JE, Maczura G. Production Processes, Properties, and Applications for Calcium Aluminate Cements. Aluminum Company of America; Pittsburg 1987;15212 171-183.

  461. Cardoso FA, Innocentini MDM, Akiyoshi MM, Pandolfelli VC. Effect of curing time on the properties of CAC bonded refractory castables. Journal of the European Ceramic Society 2004;24(7) 2073-2078.

  462. Gungor A, Celikcioglu O, Sahin S. The physical and mechanical properties of alumina-based ultralow cement castable refractories. Ceramics International 2012;38(5) 4189-4194.

  463. Karadeniz E, Gurcan C, Ozgen S, Aydin S. Properties of alumina based low-cement self flowing castable refractories. Journal of the European Ceramic Society 2007;27(2-3) 1849-1853.

  464. Karamian E, Monshi A. Influence of additives on nano-SiC whisker formation in alumina silicate–SiC–C monolithic refractories. Ceramics International 2010;36(2) 811-816.

  465. Auvray JM, Gault C, Huger M. Microstructural changes and evolutions of elastic properties versus temperature of alumina and alumina–magnesia refractory castables. Journal of the European Ceramic Society 2008;28(10) 1953-1960.

  466. Braulio MAL, Morbioli GG, Milanez DH, Pandolfelli VC. Calcium aluminate cement source evaluation for Al2O3–MgO refractory castables. Ceramics International 2011;37(1) 215-221.

  467. Braulio MAL,Tontrup C,Medeiros J,Pandolfelli VC. Colloidal alumina as anovel castable bonding system, Refractories World-forum 2011;3(3)136-141.

  468. Hongo Y.ρ-alumina bonded castable refractories. Taikabutsu Overseas 1988;40(4)226–229.

  469. Ma W, Brown PW. Mechanisms of reaction of hydratable aluminas. Journal of the American Ceramic Society 1999;82(2) 453-456.

  470. Cardoso FA, Innocentini MDM, Miranda MFS, Valenzuela FAO, Pandolfelli VC. Drying behavior of hydratable alumina-bonded refractory castables. Journal of the European Ceramic Society 2004;24(5) 797-802.

  471. Miśta W, Wrzyszcz J. Rehydration of transition aluminas obtained by flash calcination of gibbsite. Thermochimica Acta 1999;331(1) 67-72.

  472. Violante A, Huang PM. Formation Mechanism of Aluminum Hydroxide Polymorphs. Clays and Clay Minerals 1993;41 590-597.

  473. S. Mukhopadhyay, S. Ghosh, M.K. Mahapatra, R. Mazumder, P. Barick, S. Gupta, S. Chakraborty. Easy-to-use mullite and spinel sols as bonding agents in a high-alumina based ultra low cement castable. Ceramics International 2002;28(7) 719-729.

  474. Mukhopadhyay S, Sen S, Maiti T, Mukherjee M, Nandy RN, Sinhamahapatra BK. In situ spinel bonded refractory castable in relation to co-precipitation and sol-gel derived spinel forming agents. Ceramics International 2003;29(8) 857-868.

  475. Risbud SH, Pask JA. SiO2-Al2O3 metastable phase equilibrium diagram without mullite. Journal of Materials Science 1978;132449–2454.

  476. Abo-El-Enein SA, Abou-Sekkina MM, Khalil Nagy M, Osama A. Shalma. Microstructure and refractory properties of spinel containing castables. Ceramics International 2010;36(5) 1711-1717.

  477. Ahari KG, Sharp JH, Lee WE. Hydration of refractory oxides in castable bond systems-II: alumina–silica and magnesia–silica mixtures. Journal of the European Ceramic Society 2003;23(16) 3071-3077.

  478. Braulio MAL, Bittencourt LRM, Pandolfelli VC. Selection of binders for in situ spinel refractory castables. Journal of the European Ceramic Society 2009;29(13) 2727-2735.

  479. Salomão R, Pandolfelli VC. The role of hydraulic binders on magnesia containing refractory castables: Calcium aluminate cement and hydratable alumina. Ceramics International 2009;35(8) 3117-3124.

  480. Otroj S, Bahrevar MA, Mostarzadeh F, Nilforoshan MR. The effect of deflocculants on the self-flow characteristics of ultra low-cement castables in Al2O3–SiC–C systém. Ceramics International 2005;31(5) 647-653.

  481. Evangelista PC, Parr C. Control of formulation and optimization of self-flow castables based on pure calcium aluminates. Refractories Applications and News 2002;7 14–18.

  482. Pinto DG, Silva AP, Segadães AM, Devezas TC. Thermomechanical evaluation of self-flowing refractory castables with and without the addition of aluminate cement. Ceramics International 2012;38(4) 3483-3488.

  483. Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide-C2AH8. Thermochim Acta 2007;464(1-2) 7-15.

  484. Luz AP, Neto ABS, Santos Jr. T, Medeiros J, Pandolfelli VC. Mullite-based refractory castable engineering for the petrochemical industry. Ceramics International 2013;39(8) 9063-9070.

  485. Dinger DR, Funk JE. Particle packing II: review of packing of polydisperse particle systems. Interceramic 1992;41 95-97.

  486. Silva AP, Segadães AM, Pinto DG, Oliveira LA, Devezas TC. Effect of particle size distribution and calcium aluminate cement on the rheological behaviour of all-alumina refractory castables. Powder Technology 2012;226 107-113.

  487. Lange F, Mörtel H, Rudert V. Dense packing of cement pastes and resulting consequences on mortar properties. Cement and Concrete Research 1997;27(10) 1481-1488.

  488. Oliveira IR, Ortega FS, Pandolfelli VC. Hydration of CAC cement in a castable refractory matrix containing processing additives. Ceramics International 2009;35(4) 1545-1552.

  489. Zhou X, Sankaranarayanane K, Rigaud M. Design of bauxite-based low-cement pumpable castables: a rheological approach. Ceramics International 2004;30(1) 47-55.

  490. Andrews A, Adam J, Gawu SKY. Development of fireclay aluminosilicate refractory from lithomargic clay deposits. Ceramics International 2013;39(1) 779-783.

  491. Tseng T.-T, Wu H.-M, Chen Ch.-N, Cheng Ch.-Ch, Uan J.-Y, Wu W, Tseng W.J. Refractory filler sands with core–shell composite structure for the taphole nozzle in slide-gate system of steel ladles. Ceramics International 2012;38(2) 967-971.

  492. Merzouki T, Blond E, Schmitt N, Bouchetou M-L, Cutard T, Gasser A. Modelling of the swelling induced by oxidation in SiC-based refractory castables. Mechanics of Materials 2014;68253-266.

  493. Luz AP, Miglioli MM, Souza TM, Hashimoto S, Zhang S, Pandolfelli VC. Effect of Al4SiC4 on the Al2O3 single bond SiC single bond SiO2 single bond C refractory castables performance. Ceramics International 2012;38(5) 3791-3800.

  494. Aksel C. The influence of zircon on the mechanical properties and thermal shock behaviour of slip-cast alumina–mullite refractories. Materials Letters 2002;57(4) 992-997.

  495. Aksel C, Dexet M, Logen N, Porte F, Riley FL, Konieczny F. The influence of zircon in a model aluminosilicate glass tank forehearth refraktory. Journal of the European Ceramic Society 2003;23(12) 2083-2088.

  496. Zargar HR, Oprea C, Oprea G, Troczynski T. The effect of nano-Cr2O3 on solid-solution assisted sintering of MgO refractories. Ceramics International 2012;38(8) 6235-6241.

  497. Kim T, Kim D, Kang S. Effect of additives on the sintering of MgAl2O4. Journal of Alloys and Compounds 2014;587 594-599.

  498. Sutcu M, Akkurt S, Bayram A, Uluca U. Production of anorthite refractory insulating firebrick from mixtures of clay and recycled paper waste with sawdust addition. Ceramics International 2012;38(2) 1033-1041.

  499. Demir I, Baspınar MS, Orhan M. Utilization of kraft pulp production residues in clay brick production. Building and Environment 2005;40(11) 1533–1537.

  500. Sutcu M, Akkurt S. The use of recycled paper processing residues in making porous brick with reduced thermal conductivity. Ceramics International 2009;35(7) 2625–2631.

  501. Sutcu M, Akkurt S. Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. Journal of the European Ceramic Society 2010;30(8) 1785-1793.

  502. ASTM C155-97; Standard Classification of Insulating Firebrick. ASTM International, West Conshohocken, PA; 2002.

  503. ASTM Standard C134-95; Standard Test Methods for Size, Dimensional Measurements, and Bulk Density of Refractory Brick and Insulating Firebrick. ASTM International, West Conshohocken, PA; 2005.

  504. ASTM Standard C20; Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. ASTM International, West Conshohocken, PA; 2005.

  505. ASTM C133-97; Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories. ASTM International, West Conshohocken, PA; 2003.

  506. ASTM C1171-96; Standard Test Method for Quantitatively Measuring the Effect of Thermal Shock and Thermal Cycling on Refractories. ASTM International, West Conshohocken, PA; 2003.

  507. Chudzik S. Measurement of thermal parameters of a heat insulating material using infrared thermography. Infrared Physics & Technology 2012;55(1) 73-83.

  508. Gong L, Wang Y, Cheng X, Zhang R, Zhang H. A novel effective medium theory for modelling the thermal conductivity of porous materials. International Journal of Heat and Mass Transfer 2014;68 295-298.

  509. Hirao K, Yhou Y. Thermal conductivity. In: Ceramics Science and Technology, Volume 2, Materials and Properties. Ed.: Riedel R, Chen I.-W; Wiley-VCH; 2010. ISBN: 978-3-527-31156-9.

  510. Bart GCJ, Hoogendoorn CJ, Schaareman PBJ. Stationary and transient heat conduction in a non homogeneous material. Wärme - und Stoffübertragung 1986;20(4) 269-272.

  511. Tritt TM. Thermal Conductivity, Theory, Properties, and Applications. Springer; 2004. ISBN 978-0-306-48327-1.

  512. Carson JK, Lovatt SJ, Tanner DJ, Cleland AC. Thermal conductivity bounds for isotropic, porous materials. International Journal of Heat and Mass Transfer 2005;48(11) 2150-2158.

  513. Carson JK. Review of effective thermal conductivity models for foods.International Journal of Refrigeration 2006;296)958-967.

  514. Wang J, Carson JK, North MF, Cleland DJ. A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. International Journal of Heat and Mass Transfer 2008;51(9-10) 2389-2397.

  515. Francl J, Kingery WD. Thermal conductivity: IX, Experimental investigation of effect of porosity on thermal conductivity. Journal of the American Ceramic Society 1954;37 99-107.

  516. Han Y, Li C, Bian Ch, Li S, Wang Ch.-A. Porous anorthite ceramics with ultra-low thermal conductivity. Journal of the European Ceramic Society 2013;33(13-14) 2573-2578.

  517. Barea R, Osendi MI, Ferreira JMF, Miranzo P. Thermal conductivity of highly porous mullite material.Acta Materialia 2005;53(11) 3313-3318.

  518. Progelhof RC, Throne JL, Ruetsch RR. Methods for predicting the thermal conductivity of composite systems: a review. Polymer Engineering & Science 1976;16(9) 615-625.

  519. Cheng P, Hsu CT. The effective stagnant thermal conductivity of porous media with periodic structures. Journal of Porous Media 1999;2(1) 19-38.

  520. Brailsford AD, Major KG. The thermal conductivity of aggregates of several phases including porous materials.British Journal of Applied Physics 1964;15 313-319.

  521. Dondero M, Cisilino AP, Carella JM, Pablo TJ. Effective thermal conductivity of functionally graded random micro-heterogeneous materials using representative volume element and BEM. International Journal of Heat and Mass Transfer 2011;54(17-18) 3874-3881.

  522. Wang J, Carson JK, North MF, Cleland DJ. A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer 2006;49(17-18) 3075-3083.

  523. Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics 1973;45 574-588.

  524. Fricke H. A mathematical treatment of the electric conductivity and capacity of disperse systems I. The electric conductivity of a suspension of homogeneous spheroids. Physical Review 1924;24(5) 575-587.

  525. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering Chemistry Fundamentals 1962;1 187-191.

  526. Levy FL. A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. International Journal of Refrigeration 1981;4(4) 223-225.

  527. Gong L, Wang Y, Cheng X, Zhang R, Zhang H. Thermal conductivity of highly porous mullite materials. International Journal of Heat and Mass Transfer 2013;67253-259.

  528. Smith BH, Szyniszewski S, Hajjar JF, Schafer BW, Arwade SR. Steel foam for structures: A review of applications, manufacturing and material properties. Journal of Constructional Steel Research 2012;71 1-10.

  529. Friberg SE. Foams from non-aqueous systems. Current Opinion in Colloid & Interface Science 2010;15 359-364.

  530. Jang W.-Y, Kraynik AM, Kyriakides S. On the microstructure of open-cell foams and its effect on elastic properties. International Journal of Solids and Structures 2008;45 1845-1875.

  531. Luyten J, Mullens S, Cooymans J, De Wilde AM, Thijs I, Kemps R. Different methods to synthesize ceramic foams. Journal of the European Ceramic Society 2009;29 829-832.

  532. Carey E, Stubenrauch C. Free drainage of aqueous foams stabilized by mixtures of a non-ionic (C12DMPO) and an ionic (C12TAB) surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;419 7-14.

  533. Malysa K, Lunkenheimer K. Foams under dynamic conditions. Current Opinion in Colloid & Interface Science 2008;13 150-162.

  534. Grassia P, Neethling SJ, Cervantes C, Lee HT. The growth, drainage and bursting of foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2006;274110-124.

  535. Kim H, Lee S, Han Y, Park JK. Control of pore size in ceramic foams: Influence of surfactant concentration. Materials Chemistry and Physics 2009;113 441-444.

  536. Wang M, Du H, Guo A, Hao R, Hou Z. Microstructure control in ceramic foams via mixed cationic/anionic surfactant. Materials Letters 2012;88(1) 97-100.

  537. Twigg MV, Richardson JT. Theory and Applications of Ceramic Foam Catalysts. Chemical Engineering Research and Design 2002;80 183-189.

  538. Juettner T, Moertel H, Svinka V, Svinka R. Structure of kaoline–alumina based foam ceramics for high temperature applications. Journal of the European Ceramic Society 2007;27(2-3) 1435-1441.

  539. Lee HT, Neethling SJ, Cilliers JJ. Particle and liquid dispersion in foams. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005;263 320-329.

  540. Drenckhan W, Langevin D. Monodisperse foams in one to three dimensions. Current Opinion in Colloid & Interface Science 2010;15 341-358.

  541. Kruglyakov PM, Karakashev SI, Nguyen AV, Vilkova NG. Foam drainage. Current Opinion in Colloid & Interface Science 2008;13 163-170.

  542. Britan A, Liverts M, Ben-Dor G, Koehler SA, Bennani N. The effect of fine particles on the drainage and coarsening of foam. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2009;344 15-23.

  543. Kaptay G. Interfacial criteria for stabilization of liquid foams by solid particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003;230 67-80.

  544. Hunter TN, Pugh RJ, Franks GV, Jameson GJ. The role of particles in stabilising foams and emulsions. Advances in Colloid and Interface Science 2008;137 57-81.

  545. Zhang S, Sun D, Dong X, Li C, Xu J. Aqueous foams stabilized with particles and nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008;324 1-8.

  546. Horozov TS. Foams and foam films stabilised by solid particles. Current Opinion in Colloid & Interface Science 2008;13 134-140.

  547. Peng HX, Fan Z, Evans JRG. Factors affecting the microstructure of a fine ceramic foam. Ceramics International 2000;26 887-895.

  548. Yu J, Sun X, Li Q, Li X. Preparation of Al2O3 and Al2O3–ZrO2 ceramic foams with adjustable cell structure by centrifugal slip casting. Materials Science and Engineering: A 2008;476 274-280.

  549. Montanaro L, Jorand Y, Fantozzi G, Negro A. Ceramic foams by powder processing. Journal of the European Ceramic Society 1998;18 1339-1350.

  550. Nor MAAM, Hong LCh, Ahmad ZA, Akil HM. Preparation and characterization of ceramic foam produced via polymeric foam replication method. Journal of Materials Processing Technology 2008;207 235-239.

  551. Dressler M, Reinsch S, Schadrack R, Benemann S. Burnout behavior of ceramic coated open cell polyurethane (PU) sponges. Journal of the European Ceramic Society 2009;29 3333-3339.

  552. Akpinar S, Kusoglu IM, Ertugrul O, Onel K. Silicon carbide particle reinforced mullite composite foams. Ceramics International 2012;38 6163-6169.

  553. de Sousa E, Rambo CR, Hotza D, de Oliveira APN, Fey T, Greil P. Microstructure and properties of LZSA glass-ceramic foams. Materials Science and Engineering: A 2008;476 89-97.

  554. Guo X, Zhou Z, Ma G, Wang S, Zhao S, Zhang Q. Effect of forming process on the integrity of pore-gradient Al2O3 ceramic foams by gelcasting. Ceramics International 2012;38 713-719.

  555. Bartuli C, Bemporad E, Tulliani JM, Tirillò J, Pulci G, Sebastiani M. Mechanical properties of cellular ceramics obtained by gel casting: Characterization and modeling. Journal of the European Ceramic Society 2009;29 2979-2989.

  556. Potoczek M, Zima A, Paszkiewicz Z, Ślósarczyk A. Manufacturing of highly porous calcium phosphate bioceramics via gel-casting using agarose. Ceramics International 2009;35 2249-2254.

  557. Prabhakaran K, Ananthakumar S, Pavithran C. Gel Casting of Alumina using Boehmite as a Binder. Journal of the European Ceramic Society 1999;19 2875-2881.

  558. Sundermann E, Viedt J. Method of manufacturing ceramic foam bodies. US Pat no. 3 745 201; 1973.

  559. Xu Ch, Wang S, Flodström K, Mao X, Guo J. Cellular silica-based ceramics prepared by direct foaming at high temperature. Ceramics International 2010;6(3) 923-927.

  560. Nambiar EKK, Ramamurthy K. Air void characterisation of foam concrete. Cement and Concrete Research2007;37(2) 221-230.

  561. Ranjani GIS, Ramamurthy K. Behaviour of foam concrete under sulphate environments. Cement and Concrete Composites 2012;34(7) 825-834.

  562. Huang J.-S, Cheng Ch.-K. Fracture toughness variability of foamed alumina cements. Cement and Concrete Research 2004;34(5) 883-888.

  563. Huang J.-S, Lin J.-Y, Jang M-J. Stress relaxation of foamed high-alumina cement paste. Cement and Concrete Research 2005;35(8) 1503-1509.

  564. Jitchaiyaphum K, Sinsiri T, Chindaprasirt P. Cellular Lightweight Concrete Containing Pozzolan Materials. Procedia Engineering 2011;14 1157-1164.

  565. Chen X, Yan Y, Liu Y, Hu Z. Utilization of circulating fluidized bed fly ash for the preparation of foam concret. Construction and Building Materials 2014;54137-146.

  566. Li G, Muthyala VD. Acement based syntactic foam. Materials Science and Engineering: A 2008;478(1-2) 77-86.

  567. Akthar FK, Evans JRG. High porosity (> 90%) cementitious foams. Cement and Concrete Research 2010;40(2) 352-358.

  568. Just A, Middendorf B. Microstructure of high-strength foam concrete. Materials Characterization 2009;60(7) 741-748.

  569. Panesar DK. Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials 2013;44 575-584.

  570. Valore RC. Cellular concrete part 1, Composition and methods of production. published in American Concrete Institute Jornal 1954;50 773-796.

  571. Ramamurthy K, Nambiar EKK, Ranjani GIS. A classification of studies on properties of foam concrete. Cement and Concrete Composites 2009;31(6) 388-396.

  572. Nora KH, Natascha S, Regine VK. Effects of oppositely charged surfactants on the stability of foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;382 165-173.

  573. Simjoo M, Rezaei T, Andrianov A, Zitha PLJ. Foam stability in the presence of oil: Effect of surfactant concentration and oil type. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;438 148-158.

  574. Stevenson P. Inter-bubble gas diffusion in liquid foam. Current Opinion in Colloid & Interface Science 2010;15(5) 374-381.

  575. Vivaldini DO, Salvini VR, Luz AP, Pandolfelli VC. Road maps for processing foams containing particles. Ceramics International 2013;39(6) 6153-6163.

  576. Haw M. Colloidal suspensions, Brownian motion, molecular reality: a short history, Journal of Physics: Condensed Matter 2002;14 7769-7779.

  577. Ptáček P, Lang K, Šoukal F, Opravil T, Bartoníčková E, Tvrdík L. Preparation and properties of enstatite ceramic foam from talc. Journal of the European Ceramic Society 2014;34(2) 515-522.

  578. Ptáček P, Lang K, Šoukal F, Opravil T, Tvrdík L, Novotný R. Preparation and properties of nanostructured ceramic foam from kaolinite. Powder Technology 2014;253 29-34.

  579. Vaou V, Panias D. Thermal insulating foamy geopolymers from perlite. Minerals Engineering 2010;23(14) 1146-1151.

  580. Manu KM, Joseph T, Sebastian MT. Temperature compensated Sr2Al2SiO7 ceramic for microwave applications. Materials Chemistry and Physics 2012;133(1) 21-23.

  581. Dear PS. Isomorphism of åkermanite and strontio-gehlenite. Lithos 1970;3(1) 13-16.

  582. De Aza AH, Turrillas X, Rodriguez MA, Duran T, Pena P. Time-resolved powder neutron diffraction study of the phase transformation sequence of kaolinite to mullite. Journal of the European Ceramic Society 2014;34(5) 1409-1421.

  583. Zhou HM, Qiao XC, Yu JG. Influences of quartz and muscovite on the formation of mullite from kaolinite. Applied Clay Science 2013;80-81 176-181.

  584. Kobayashi Y, Inagaki M. Preparation of reactive Sr-celsian powders by solid-state reaction and their sintering. Journal of the European Ceramic Society 2004;24(2) 399-404.

  585. Ptáček P, Šoukal F, Opravil T, Havlica J, Brandštetr J. Crystallization of spinel phase from metakaoline: The nonisothermal thermodilatometric CRH study. Powder Technology 243;2013 40-45.

  586. Ptáček P, Křečková M, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technology 2012;232 24-30.

  587. Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. Mid-infrared spectroscopic study of crystallization of cubic spinel phase from metakaolin. Journal of Solid State Chemistry 2011;184(10) 2661-2667.

  588. Jin X.-H, Gao L, Guo J.-K. The structural change of diphasic mullite gel studied by XRD and IR spectrum analysis. Journal of the European Ceramic Society 2002;22(8) 1307-1311.

  589. Voll D, Angerer P, Beran A, Schneider H. A new assignment of IR vibrational modes in mullite. Vibrational Spectroscopy 2002;30(2) 237-243.

  590. Birchall JD, Howard AJ, Kendall K. Flexural strength and porosity of cements. Nature 1981;289 388-389.

  591. Drabik M, Mojumdar SC, Slade RCT. Prospects of novel macro-defect-free cements for the new millenium. Ceramics – Silikaty 2001;46(2) 68-73.

  592. Donatello S, Tyrer M, Cheeseman CR. Recent developments in macro-defect-free (MDF) cements. Construction and Building Materials 2009;23(5) 1761-1767.

  593. Šoukal F, Másilko J, Havlica J, Ptáček P, Opravil T. Temperature and moisture effect of macrodefect-free composite structure and properties. Chemické Listy 2008;102 s265–s1309.

  594. Alfani R, Colombet P, D´amore A, Rizzo N, Nicolais L. Effect of temperature on thermo-mechanical properties of macro-defect-free cement–polymer composite. Journal of Materials Science1999;34 5683-5687.

  595. Pushpalal GKD, Kobayashi T, Hasegawa M. High alumina cement-phenol resin composite: water resistivity and effect of post hydration of unreacted cement on durability. Cement and Concrete Research 1997;27(9) 1393-1405.

  596. Pushpalal GKD, Kobayashi T, Kawano T, Maeda N. The processing, properties, and applications of calcium aluminate–phenol resin composite. Cement and Concrete Research 1999;29(1) 121-132.

  597. McHugh AJ, Walberer JA. Rheology and structuring in organo-ceramic composites. Composites Part A: Applied Science and Manufacturing 2001;32(8) 1085-1093.

  598. Pushpalal GKD, Kawano T, Kobayashi T, Hasegawa M. Chemical Characterization of Calcium Aluminate-Phenol Resin Composite. Advanced Cement Based Materials 1997;6(2) 45-52.

  599. Hewlett PC, Lea´s Chemistry of Cement and Concrete. Fourth edition; Elsevier Ltd.; 1988. ISBN: 978-0-7506-6256-7.

  600. Wu Z, Naik TR. Properties of concrete produced from multicomponent blended cements. Cement and Concrete Research 2002;32(12) 1937-1942.

  601. Antiohos SK, Papadakis VG, Chaniotakis E, Tsimas S. Improving the performance of ternary blended cements by mixing different types of fly ashes. Cement and Concrete Research 2007;37(6) 877-885.

  602. Pal SC, Mukherjee A, Pathak SR. Investigation of hydraulic activity of ground granulated blast furnace slag in concrete. Cement and Concrete Research 2003;33(9) 1481-1486.

  603. Mostafa NY, El-Hemaly SAS, Al-Wakeel EI, El-Korashy SA, Brown PW. Characterization and evaluation of the hydraulic activity of water-cooled slag and air-cooled slag. Cement and Concrete Research 2001;31(6) 899-904.

  604. Mostafa NY, El-Hemaly SAS, Al-Wakeel EI, El-Korashy SA, Brown PW. Hydraulic activity of water-cooled slag and air-cooled slag at different temperatures. Cement and Concrete Research 2001;31(3) 475-484.

  605. Singh NB, Bhattacharjee KN, Shukla AK. Effect of alkali bypass dust on the hydration of granulated blast furnace slag blended cement. Cement and Concrete Research 1995;25(4) 883-892.

  606. Bijen J. Benefits of slag and fly ash. Construction and Building Materials 1996;10(5) 309-314.

  607. Erdem TK, Meral Ç, Tokyay M, Erdoğan TY. Use of perlite as a pozzolanic addition in producing blended cements. Cement and Concrete Composites 2007;29(1) 13-21.

  608. Uzal B, Turanli L. Studies on blended cements containing a high volume of natural pozzolans. Cement and Concrete Research 2003;33(11) 1777-1781.

  609. Hossain KMA. Blended cement using volcanic ash and pumice. Cement and Concrete Research 2003;33(10) 1601-1605.

  610. Rasheeduzzafar, Hussain ES, Al-Gahtani AS. Pore solution composition and reinforcement corrosion characteristics of microsilica blended cement concrete. Cement and Concrete Research 1991;21(6) 1035-1048.

  611. Malhotra VM, Hammings RT. Blended cements in North America - A review. Cement and Concrete Composites 1995;17(1) 23-35.

  612. Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH. Handbook of Thermal Analysis of Construction Materials. William Andrew; 2002. ISBN: 0-8155-1487-5

  613. Rivas-Mercury JM, Pena P, de Aza AH, Turrillas X. Dehydration of Ca3Al2(SiO4)y(OH)4(3-y) (0 <y< 0.176) studied by neutron thermodiffractometry. Journal of the European Ceramic Society 2008;28(9) 1737-1748.

  614. Maitra S, Bose S, Bandyopadhyay N, Roychoudhury A. Dehydration kinetics of calcium aluminate cement hydrate under non-isothermal conditions. Ceramics International 2005;31(3) 371-374.

  615. Carlson ET. A study of some strontium aluminate and calcium - strontium aluminate solid solutions, Journal of research of the National Bureau of Standards 1955;54 2334-2595.

  616. Desmoulins H, Malo S, Boudin S, Caignaert V, Hervieu M. Polymorphism of the iron doped strontium aluminate SrAl1.5Fe0.5O4. Journal of Solid State Chemistry 2009;182(7) 1806-1820.

  617. Macphee DE, Lachowski EE. Cement Components and Their Phase Relations. In Lea´s Chemistry of Cement and Concrete; ed. Hewltett PC; 1998. ISBN: 978-0-7506-6256-7.

  618. Stöber S, Redhammer G, Schorr S, Prokhnenko O, Pöllmann H. Structure refinements of members in the brownmillerite solid solution series Ca2Alx(Fe0.5Mn0.5)2-xO5+δ with 1/2≤x≤4/3. Journal of Solid State Chemistry 2013;197420-428.

  619. Sullivan E, Greaves C. Fluorine insertion reactions of the brownmillerite materials Sr2Fe2O5, Sr2CoFeO5, and Sr2Co2O5. Materials Research Bulletin 2012;47(9) 2541-2546.

  620. Yang Y, Cao Z, Jiang Y, Liu L, Sun Y. Photoinduced structural transformation of SrFeO3 and Ca2Fe2O5 during photodegradation of methyl orange. Materials Science and Engineering: B 2006;132(3) 311-314.

  621. Mizusaki J, Okayasu M, Yamauchi S, Fueki K. Nonstoichiometry and phase relationship of the SrFeO2.5SrFeO3 system at high temperature. Journal of Solid State Chemistry 1992;99(1) 166-172.

  622. Auckett JE, Studer AJ, Sharma N, Ling ChD. Floating-zone growth of brownmillerite Sr2Fe2O5 and the observation of a chain-ordered superstructure by single-crystal neutron diffraction. Solid State Ionics 2012;225(4) 432-436.

  623. Kendall KR, Navas C, Thomas JK, zurLoye HC. Structural and Magnetic Studies of Bi2Fe4-xAlxO9. Solid State Ionics 1995;82 215-223.

  624. Casey PS, Barker D, Hayward MA. Charge and structural ordering in the brownmillerite phases: La1-xSrxMnO2.5 (0.2<x<0.4). Journal of Solid State Chemistry 2006;179(5) 1375-1382.

  625. Greaves C, Jacobson AJ, Tofield BC, Fender BEF. A powder neutron diffraction investigation of the nuclear and magnetic structure of Sr2Fe2O5. Acta Crystallographica B 1975;31 641-646.

  626. Schmidt M, Campbell SJ. Crystal and Magnetic Structures of Sr2Fe2O5 at Elevated Temperature. Journal of Solid State Chemistry 156 (2001) 292-304.

  627. D'Hondt H, Abakumov AM, Hadermann J, Kalyuzhnaya AS, Rozova MG, Antipov EV, Van Tendeloo G. Tetrahedral Chain Order in the Sr2Fe2O5 Brownmillerite. Chemistry of Materials 2008;20 7188-7194.

  628. Mahboub MS, Zeroual S, Boudjada A. Synthesis of homogeneous Ca0.5Sr0.5FeO2.5+δ compound using a mirror furnace method. Materials Research Bulletin 2012;47(2) 370-374.

  629. Prado F, Grunbaum N, Caneiro A, Manthiram A. Effect of La3+ doping on the perovskite-to-brownmillerite transformation in Sr1-xLaxCo0.8Fe0.2O3-δ (0≤x≤0.4). Solid State Ionics 167(2004) 147-154.

  630. Andreas Heyden, Shuguo Ma, Fanglin Chen. Synthesis and characterization of Mo-doped SrFeO3−δ as cathode materials for solid oxide fuel cells. Journal of Power Sources 2012;202 63-69.

  631. Roth G, Adelmann P, Knitter R, Massing S, Wolf Th. The crystal structure of RESrGaCuO5 (RE: La, Pr, Nd), a gallate-cuprate with strong structural similarities to superconducting cuprates. Journal of Solid State Chemistry 1992;99 376-387.

  632. Hadermann J, van Tendeloo G, Abakumov AM, Pavlyuk BPh, Rozova M, Antipov EV. Structural transformation in fluorinated LaACuGaO5 (A = Ca, Sr) brownmilleritesInternational Journal of Inorganic Materials2000;2493-502.

  633. Luo K, Hayward MA. The synthesis and characterisation of LaCa2Fe2GaO8. Journal of Solid State Chemistry 2013;198203-209.

  634. Wright AJ, Palmer HM, Anderson PA, Greaves C. Synthesis and structure of Sr2MnGaO5, a new layered manganese oxide. Journal Of Materials Chemistry 2001;11(5) 1324-1326.

  635. Abakumov AM, Rozova MG, Ph Pavlyuk B, Lobanov MV, Antipov EV, Lebedev OI, van Tendeloo G, Ignatchik OL, Ovtchenkov EA, Koksharov YA, Vasil’ev AN. Synthesis, Crystal Structure, and Magnetic Properties of a Novel Layered Manganese Oxide Sr2MnGaO5+δ. Journal of Solid State Chemistry 2001;160 353-361.

  636. Abakumov AM, Alekseeva AM, Rozova MG, Antipov EV, Lebedev OI, Van Tendeloo G. Ordering of tetrahedral chains in the Sr2MnGaO5 brownmillerite. Journal of Solid State Chemistry 2003;174(2) 319-328.

  637. Antipov EV, Lebedev OI, Van Tendeloo G. Synthesis and structure of Sr2MnGaO5+δ brownmillerites with variable oxygen content. Solid State Sciences 2003;5(6) 871-882.

  638. D’Hondt H, Hadermann J, Abakumov AM, Kalyuzhnaya AS, Rozova MG, Tsirlin AA, Nath R, Tan H, Verbeeck J, Antipov EV, Tendeloo GV. Synthesis, crystal structure and magnetic properties of the Sr2Al0.78Mn1.22O5.2 anion-deficient layered perovskite. Journal of Solid State Chemistry 2009;182(2) 356-363.

  639. Zhao YM, Zhou PF. Metal–insulator transition in helical SrFeO3-δ antiferromagnet. Journal of Magnetism and Magnetic Materials 2004;281(2-3)214-220.

  640. Augustin CO, Berchmans LJ, Selvan RK. Structural, electrical and electrochemical properties of co-precipitated SrFeO3-δ. Materials Letters 2004;58(7-8) 1260-1266.

  641. Leonidov IA, Patrakeev MV, Bahteeva JA, Mitberg EB, Kozhevnikov VL, Colomban P, Poeppelmeier KR. High-temperature phase equilibria in the oxide systems SrFe1-xGaxO2.5-SrFe1-xGaxO3 (x = 0, 0.1, 0.2). Journal of Solid State Chemistry 2006;179(4) 1093-1099.

  642. Shaula AL, Pivak YV, Waerenborgh JC, Gaczyñski P, Yaremchenko AA, Kharton VV.Ionic conductivity of brownmillerite-type calcium ferrite under oxidizing conditions. Solid State Ionics 2006;177(33-34) 2923-2930.

  643. Zhang GB, Smyth DM. Protonic conduction in Ba2In2O5. Solid State Ionics 1995;82(3-4)153-160.

  644. Schober T, Friedrich J, Krug F. Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C.Solid State Ionics 1997;999-13.

  645. Schober T, Friedrich J. The oxygen and proton conductor Ba2In2O5: Thermogravimetry of proton uptake. Solid State Ionics 1998;113-115 369-375.

  646. Fischer W, Reckand G, Schober T. Structural transformation of the oxygen and proton conductor Ba2In2O5 in humid air: an in-situ X-ray powder diffraction study. Solid State Ionics 1999;116(3-4) 211-215.

  647. Omata T, Kita M, Goto Y, Okura T, Otsuka-Yao-Matsuo S. Formation and Thermal Stability of Hydrate-Like Compounds ofBa2(In1-xMIIIx)2O5 nH2O (MIII = Ga, Sc, Lu, and Y).Journal of The Electrochemical Society 2005;152(6) A1068-1072.

  648. Omata T, Fuke T, Otsuka-Yao-Matsuo S. Hydration behavior of Ba2Sc2O5 with an oxygen-deficient perovskite structure. Solid State Ionics 2006;177(26-32) 2447-2451.

  649. Muñoz R, Masó N, Julián B, Márquez F, Beltrán H, Escribano P, Cordoncillo E. Environmental study of Cr2O3-Al2O3 green ceramic pigment synthesis. Journal of the European Ceramic Society 2004;24(7) 2087-2094.

  650. Shibata K, Yoshinaka M, Hirota K, Yamaguchi O. Fabrication and mechanical properties of Cr2O3 solid solution ceramics in the system Cr2O3-Al2O3. Materials Research Bulletin 1997;32(5) 627-632.

  651. Cho S.-A, Arenas FJ, Ochoa J. Densification and hardness of Al2O3-Cr2O3 system with and without Ti addition. Ceramics International 1990;16(5) 301-309.

  652. Riu D.-H, Kong Y.-M, Kim H.-E. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3. Journal of the European Ceramic Society 2000;20(10) 1475-1481.

  653. Hirata T, Akiyama K, Yamamoto H. Sintering behavior of Cr2O3-Al2O3 ceramics. Journal of the European Ceramic Society 2000;20(2) 195-199.

  654. Kitaoka Y, Nakamura K, Akiyama T, Ito T. Structural stability and electronic properties in Al2O3-Cr2O3 mixed crystal. Journal of Crystal Growth 2013;362(1) 42-44.

  655. Mitra NK, Maitra S, Gnanabharathi D, Parya TK, Dey R. Effect of Cr2O3 on the sintering of aluminosilicate precursor leading to mullite formation. Ceramics International 2001;27(3) 277-282.

  656. Sarkar R, Das SK, Banerjee G. Effect of addition of Cr2O3 on the properties of reaction sintered MgO-Al2O3 spinels. Journal of the European Ceramic Society 2002;22(8) 1243-1250.

  657. Pakhomov NA, Kashkin VN, Nemykina EI. Molchanov VV, Nadtochiy VI, Noskov AS. Dehydrogenation of C3–C4 paraffins on Cr2O3/Al2O3 catalysts in fluidized and fixed bed reactors. Chemical Engineering Journal 2009;154(1-3) 185-188.

  658. Gascón J, Téllez C, Herguido J, Menéndez M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation. Applied Catalysis A: General 2003;248(1-2) 105-116.

  659. Shee D, Sayari A. Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Applied Catalysis A: General 2010;389(1-2) 155-164.

  660. Tang Y, Elzinga EJ, Lee YJ, Reeder RJ. Coprecipitation of chromate with calcite: Batch experiments and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta 2007;71(6) 1480-1493.

  661. Areán CO, Carbonell CM, Platero EE, Macía EM, Zecchina A, Geobaldo F. Thermolysis of mixed alums: a route to mesoporous chromia-alumina. Materials Chemistry and Physics 1993;34(3-4) 214-218.

  662. Peters D, Hummel FA. Phase studies in the systems CaO Al2O3 CaCrO4 and SrO Al2O3 SrCrO4. Cement and Concrete Research 1979;9(2) 259-268.

  663. Chang Y.-L, Hsiang H.-I, Liang M.-T. Characterizations of Eu, Dy co-doped SrAl2O4 phosphors prepared by the solid-state reaction with B2O3 addition. Journal of Alloys and Compounds 2008;461(1-2) 598-603.

  664. Neumair SC, Kaindl R, Huppertz H. The new high-pressure borate Co7B24O42(OH)2⋅2 H2O - Formation of edge-sharing BO4 tetrahedra in a hydrated borate. Journal of Solid State Chemistry 2012;185 1-9.

  665. Goh K.-H, Lim T.-T, Dong Z. Application of layered double hydroxides for removal of oxyanions: A review. Water Research 2008;42(6-7) 1343-1368.

  666. Liang X, Zang Y, Xu Y, Tan X, Hou W, Wang L, Sun Y. Sorption of metal cations on layered double hydroxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013;433 122-131.

  667. Yang K, Yan L.-g, Yang Y.-m, Yu Sh.-j, Shan R.-r, Yu H.-q, Zhu B.-c, Du B. Adsorptive removal of phosphate by Mg–Al and Zn–Al layered double hydroxides: Kinetics, isotherms and mechanisms. Separation and Purification Technology 2014;12436-42.

  668. Heredia AC, Oliva MI, Agú U, Zandalazini CI, Marchetti SG, Herrero ER, Crivello ME. Synthesis, characterization and magnetic behavior of Mg–Fe–Al mixed oxides based on layered double hydroxide. Journal of Magnetism and Magnetic Materials 2013;342 38-46.

  669. Cui G, Evans DG, Li D. Synthesis and UV absorption properties of 5, 5´-thiodisalicylic acid intercalated Zn-Al layered double hydroxides. Polymer Degradation and Stability 2010;95(10) 2082-2087.

  670. Pérez MR, Barriga C, Fernández JM, Rives V, Ulibarri MA. Synthesis of Cd/(Al+Fe) layered double hydroxides and characterization of the calcination products. Journal of Solid State Chemistry 2007;180(12) 3434-3442.

  671. Mishra G, Dash B, Pandey S, Mohanty PP. Antibacterial actions of silver nanoparticles incorporated Zn-Al layered double hydroxide and its spinel. Journal of Environmental Chemical Engineering 2013;1(4) 1124-1130.

  672. Zhang X, Li Sh. Mechanochemical approach for synthesis of layered double hydroxides. Applied Surface Science 2013;274 158-163.

  673. Wittmann FH. Creep and shrinkage mechanisms. Part II in creep and shrinkage. In: Concrete structures; Ed. Bazant ZP, Wittmann FH. John Wiley & Sons; 1982.

  674. Zhang T, Gao P, Luo R, Guo Y, Wei J, Yu Q. Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method. Construction and Building Materials 2013;48 662-669.

  675. Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A. Chemical shrinkage of cement pastes and mortars at very early age: Effect of limestone filler and granular inclusions. Cement and Concrete Composites 2008;30(1) 13-22.

  676. Barcelo L, Moranville M, Clavaud B. Autogenous shrinkage of concrete: a balance between autogenous swelling and self-desiccation. Cement and Concrete Research 2005;35(1) 177-183.

  677. Tazawa E.-i, Miyazawa Sh. Influence of cement and admixture on autogenous shrinkage of cement paste. Cement and Concrete Research 1995;25(2) 281-287.

  678. ASTM C 1608. Standard test method for chemical shrinkage of hydraulic cement paste. American society for testing and materials. West Conshohocken (PA): ASTM International; 2007.

  679. Li Y, Bao J, Guo Y. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures. Construction and Building Materials 2010;24(10) 1855-1860.

  680. Geiker M, Knudsen T. Chemical shrinkage of portland cement pastes. Cement and Concrete Research 1982;12(5) 603-610.

  681. Tongaroonsri S, Tangtermsirikul S. Effect of mineral admixtures and curing periods on shrinkage and cracking age under restrained condition. Construction and Building Materials 2009;23(2) 1050-1056.

  682. Bissonnette B, Pierre P, Pigeon M. Influence of key parameters on drying shrinkage of cementitious materials. Cement and Concrete Research 1999;29(10) 1655–1662.

  683. Mo L, Deng M, Tang M. Effects of calcination condition on expansion property of MgO-type expansive agent used in cement-based materials. Cement and Concrete Research 2010;40(3) 437-446.

  684. Mo L, Deng M, Wang A. Effects of MgO-based expansive additive on compensating the shrinkage of cement paste under non-wet curing conditions. Cement and Concrete Composites 2012;34(3) 377-383.

  685. Zheng L, Xuehua C, Mingshu T. Hydration and setting time of MgO-type expansive cement Original. Cement and Concrete Research 1992;22(1) 1-5.

  686. Zheng L, Xuehua C, Mingshu T. MgO-type delayed expansive cement. Cement and Concrete Research 1991;21(6) 1049-1057.

  687. Gao P, Lu X, Geng F, Li X, Hou J, Lin H, Shi N. Production of MgO-type expansive agent in dam concrete by use of industrial by-products. Building and Environment 2008;43(4) 453-457.

  688. Appah D, Reichetseder P. Practical improvements in CaO-swelling cements. Journal of Petroleum Science and Engineering 2002;36(1-2) 61-70.

  689. Opravil T, Ptáček P, Šoukal F, Havlica J, Brandštetr J. The synthesis and characterization of an expansive admixture for M-type cements I. The influence of free CaO to the formation of ettringite. Journal of Thermal Analysis and Calorimetry 2013;111(1) 517-526.

  690. Mo L, Deng M, Tang M, Al-Tabbaa A. MgO expansive cement and concrete in China: Past, present and future. Cement and Concrete Research 2014;57 1-12.

  691. Pavoine A, Brunetaud X, Divet L. The impact of cement parameters on Delayed Ettringite Formation. Cement and Concrete Composites 2012;34(4) 521-528.

  692. ACI Committee 223: Expansive cement concretes - Present state of knowledge. ACI Journal (1970) 583-610.

  693. Cohen MD. Theories of expansion in sulfoaluminate-type expansive cements: schools of thought. Cements and Concrete Research 1983;13 809-818.

  694. Kasselouri V, Tsakiridis P, Malami Ch, Georgali B, Alexandridou C. A study on the hydration products of a non-expansive sulfoaluminate cement. Cement and Concrete Research 1995;25 1726-1736.

  695. Lu Y, Su M, Wang Y. Microstructural study of the interfacial zone between expansive sulphoaluminate cement pastes and limestone aggregates. Cement and Concrete Research 1996;26805-812.

  696. Havlica J, Sahu S. Formation and expansion of ettringite crystals. Cement and Concrete Research 1992;22(4) 671-677.

  697. Nagataki S, Gomi H. Expansive admixtures (mainly ettringite). Cement and Concrete Composites 1998;20(2-3) 163-170.

  698. Brown PW, LaCroix P. The kinetics of ettringite formation. Cement and Concrete Research 1989;19 879-884.

  699. Evju C, Hansen S. The kinetics of ettringite formation and dilatation in a blended cement with β-hemihydrate and anhydrite as calcium sulfate. Cement and Concrete Research 2005;35 2310-2321.

  700. Palou M, Majling J, Doválʼ M, Kozanková J, Mojmudar SCh. Formation and stability of crystallohydrates in the non-equilibrium system during hydration of SAB cements. Ceramics − Silikáty 2005;49 230-236.

  701. Gabrišová A, Havlica J, Sahu S. Stability of calcium sulphoaluminate hydrates in water solutions with various pH values Cement and Concrete Research 1991;21(1) 1023-1027.

  702. Palou MT, Majling J. Effect of sulphate, calcium and aluminium ions upon the hydration of sulphoaluminate belite cement. Journal of Thermal Analysis 1996;46 549-556.

  703. Palou MT, Majling J. Hydration in the system C4A3

  704. -CSH2-CH-H. Journal of Thermal Analysis 1996;46557-563.

  705. Gaines RV, Skinner HCW, Foord EF, Mason B, Rosenzweig A. Dana’s New Mineralogy; 8th ed.; John Wiley; New York; 1998.

  706. Zhou Q, Lachowski EE, Glasser FP. Metaettringite, a decomposition product of ettringite. Cement and Concrete Research 2004;34(4) 703-710.

  707. Gougar MLD, Scheetz BE, Roy DM. Ettringite and C-S-H Portland cement phases for waste ion immobilization: A review. Waste Management 1996;16(4) 295-303.

  708. Frost RL, López A, Xi Y, Scholz R, da Costa GM, Lima RMF, Granja A. The spectroscopic characterization of the sulphate mineral ettringite from Kuruman manganese deposits, South Africa. Vibrational Spectroscopy 2013;68 266-271.

  709. Möschner G, Lothenbach B, Winnefeld F, Ulrich A, Figi R, Kretzschmar R. Solid solution between Al-ettringite and Fe-ettringite (Ca6[Al1-xFex(OH)6]2(SO4)3⋅26H2O). Cement and Concrete Research 2009;39(6) 482-489.

  710. Clark SM, Colas B, Kunz M, Speziale S. Monteiro PJM. Effect of pressure on the crystal structure of ettringite. Cement and Concrete Research 2008;38(1) 19-26.

  711. Kumarathasan P, McCarthy GJ, Hassett DJ, Pflughoeft-Hasset DF. Oxyanion substituted ettringites: synthesis and characterization; and their potential role in immobilization of As, B, Cr, Se and V. Materials Research Society Symposium Proceedings 1990;178 83-104.

  712. Poellmann H, St. Auer H-J, Wenda KR. Solid solution of ettringites: Part II: Incorporation of B(OH)4− and CrO42− in 3CaO⋅Al2O3⋅3CaSO4⋅32H2O. Cement and Concrete Research 1993;23(2) 422-430.

  713. Baur I, Johnson CA. The solubility of selenate-AFt (3CaO⋅Al2O3⋅3CaSeO4⋅37.5H2O) and selenate-AFm (3CaO⋅Al2O3⋅CaSeO4xH2O). Cement and Concrete Research 2003;33(11) 1741-1748.

  714. Kadiyski M, Armbruster T, Günther D, Reusser E, Peretti A. Johachidolite, CaAl[B3O7], a mineralogical and structural peculiarity. European Journal of Mineralogy 2008, 20, 965-973.

  715. Champenois J.-B, Mesbah A, Coumes CCD, Renaudin G, Leroux F, Mercier C, Revel B, Damidot D. Crystal structures of Boro-AFm and sBoro-AFt phases. Cement and Concrete Research 2012;42(10) 1362-1370.

  716. Perkins RB, Palmer CD. Solubility of Ca6[Al(OH)6]2(CrO4)3⋅26H2O, the chromate analog of ettringite at 5–75 °C.Applied Geochemistry 2000;15 1203-1218.

  717. Sharp JH, Milestone NB, Hill J, Miller EW. Cementitious systems for encapsulation of intermediate level waste; in: The 9th International Conference on Radioactive Waste Management and Environmental Remediation; Oxford; UK; 2003.

  718. Hassett DJ, McCarthy GJ, Kumarathasan P, Pflughoeft-Hassett D. Synthesis and characterization of selenate and sulfate-selenate ettringite structure phases. Materials Research Bulletin 1990;25(11) 1347-1354.

  719. OECD, Nuclear Energy Agency. Chemical Thermodynamics Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management. Chemical Thermodynamics. OECD Publishing; 2007. ISBN: 9789264033191.

  720. Barnett SJ, Adam CD, Jackson ARW. An XRPD profile fitting investigation of the solid solution between ettringite, Ca6Al2(SO4)3(OH)12⋅26H2O, and carbonate ettringite, Ca6Al2(CO3)3(OH)12⋅26H2O. Cement and Concrete Research 2001;31(1) 13-17.

  721. Hampson CJ, Bailey JE. On the structure of some precipitated calcium alumino-sulfate hydrates Journal of Materials Science 1982;17 3341-3346.

  722. Damidot D, Glasser FP. Thermodynamic investigation of the CaO-Al2O3-CaSO4-H2O system at 25°C and the influence of Na2O. Cement and Concrete Research 1993;23(1) 221-238.

  723. Damidot D, Glasser FP. Thermodynamic investigation of the CaO-Al2O3-CaSO4H2O system at 50°C and 85°C. Cement and Concrete Research 1992;22(6) 1179-1191.

  724. Damidot D, Glasser FP. Thermodynamic investigation of the CaO-Al2O3-CaSO4-K2O-H2O system at 25°C. Cement and Concrete Research 1993;23(5) 1195-1204.

  725. Pajares I, Martı́nez-Ramı́rez S, Blanco-Varela MT. Evolution of ettringite in presence of carbonate, and silicate ions. Cement and Concrete Composites 2003;25(8) 861-865.

  726. Lachowski EE, Barnett SJ, Macphee DE. Transmission electron optical study of ettringite and thaumasite. Cement and Concrete Composites 2003;25(8) 819-822.

  727. Ramezanianpour AM, Hooton RD. Thaumasite sulfate attack in Portland and Portland-limestone cement mortars exposed to sulfate solution. Construction and Building Materials 2013;40 162-173.

  728. Skaropoulou A, Kakali G, Tsivilis S. Thaumasite form of sulfate attack in limestone cement concrete: The effect of cement composition, sand type and exposure temperature. Construction and Building Materials 2012;36 527-533.

  729. Schmidt T, Lothenbach B, Romer M, Scrivener K, Rentsch D, Figi R. A thermodynamic and experimental study of the conditions of thaumasite formation. Cement and Concrete Research 2008;38(3) 337-349.

  730. Thomas MDA, Rogers CA, Bleszynski RF. Occurrences of thaumasite in laboratory and field concrete. Cement and Concrete Composites 2003;25(8) 1045-1050.

  731. Brown PW. Thaumasite formation and other forms of sulfate attack. Cement and Concrete Composites 2002;24(3-4) 301-303.

  732. Carlson ET, Berman HA. Some observation on the calcium aluminate carbonate hydrates. Journal of Research, National Bureau of Standards 1960;64A(4) 333-341.

  733. Chrysochoou M, Dermatas D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. Journal of Hazardous Materials 2006;136(1) 20-33.

  734. Hall C, Barnes P, Billimore AD, Jupe AC, Turrillas X. Thermal decomposition of ettringite Ca6[Al(OH)6]2(SO4)3⋅26H2O. Journal of the Chemical Society, Faraday Transactions 1996;92 2125-2129.

  735. Vladu CM, Hall Ch, Maitland GC. Flow properties of freshly prepared ettringite suspensions in water at 25 °C. Journal of Colloid and Interface Science 2006;294(2) 466-472.

  736. Álvarez-Ayuso E, Nugteren HW. Synthesis of ettringite: a way to deal with the acid wastewaters of aluminium anodising industry. Water Research 2005;39(1) 65-72.

  737. Perkins RB, Palmer CD. Solubility of chromate hydrocalumite (3CaO⋅Al2O3⋅CaCrO4nH2O) 5-75°C. Cement and Concrete Research 2001;31(7) 983-992.

  738. Bothe JV Jr, Brown PW. Phase formation in the system CaO-Al2O3-B2O3-H2O at 23±1°C. Journal of Hazardous Materials 1998;63(2-3) 199-210.

  739. Taylor HFW, Famy C, Scrivener KL. Delayed ettringite formation. Cement and Concrete Research 2001;31(5) 683-693.

  740. Collepardi M. A state-of-the-art review on delayed ettringite attack on concrete. Cement and Concrete Composites 2003;25(4-5) 401-407.

  741. Diamond S. Delayed ettringite formation - Processes and problems. Cement and Concrete Composites 1996;18(3) 205-215.

  742. Odler I. Ettringite nomenclature. Cement and Concrete Research 1997;27(3) 473-474.

  743. Ouhadi VR, Yong RN. Ettringite formation and behaviour in clayey soils. Applied Clay Science 2008;42(1-2) 258-265.

  744. Aldaood A, Bouasker M, Al-Mukhtar M. Geotechnical properties of lime-treated gypseous soils. Applied Clay Science 2014;88-8939-48.

  745. Vlachou P.-V, Piau J.-M. Physicochemical study of the hydration process of an oil well cement slurry before setting. Cement and Concrete Research 1999;29(1) 27-36.

  746. García-Maté M, De la Torre AG, León-Reina L, Aranda MAG, Santacruz I. Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cement and Concrete Research 2013;54 12-20.

  747. Narayanan PS, Lakshmanan BR. Infrared and raman spectra fo witherite (BaCO3) and strontianite (SrCO3). Journal of the Indian Institute of Science 1957;40(1) 1-12.

  748. Pasierb P, Komornicki S, Rokita M, Rekas M. Structural properties of Li2CO3-BaCO3 system derived from IR and Raman spectroscopy. Journal of Molecular Structure 2001;596 151-156.

  749. Turianicová E, Obut A, Zorkovská A, Baláž P, Matik M, Briančin J. The effects of LiOH and NaOH on the carbonation of SrSO4 by dry high-energy milling. Minerals Engineering 2013;49 98-102.

  750. Tang T.-P, Lee Ch.-M, Yen F.-Ch. The photoluminescence of SrAl2O4:Sm phosphors. Ceramics International 2006;32(6) 665-671.

  751. Derjaguin B, Landau L. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physico Chemica URSS 1941;14 633-662.

  752. Pechini MP. US Patent No. 3330697; 1967.

  753. Zaki T, Kabel KI, Hassan H. Preparation of high pure α-Al2O3 nanoparticles at low temperatures using Pechini method. Ceramics International 2012;38(3) 2021-2026.

  754. Escribano P, Marchal M, Sanjuán ML, Alonso-Gutiérrez P, Julián B, Cordoncillo E. Low-temperature synthesis of SrAl2O4 by a modified sol-gel route: XRD and Raman characterization. Journal of Solid State Chemistry 2005;178(6) 1978-1987.

  755. Xu Y, Peng W, Wang Sh, Xiang X, Lu P. Synthesis of SrAl2O4 and SrAl12O19 via ethylenediaminetetraacetic acid precursor. Materials Chemistry and Physics 2006;98(1) 51-54.

  756. Peng T, Huajun L, Yang H, Yan Ch. Synthesis of SrAl2O4:Eu, Dy phosphor nanometer powders by sol-gel processes and its optical properties. Materials Chemistry and Physics 2004;85 68-72.

  757. Xiang Ying Chen, Zhao Li, Shi Ping Bao, Ping Ting Ji. Porous MAl2O4:Eu2+ (Eu3+), Dy3+ (M=Sr, Ca, Ba) phosphors prepared by Pechini-type sol-gel method: The effects of solvents. Optical Materials 34 (2011) 48-55.

  758. Qiu X, Xu Y, Qiao X. Synthesis of SrAl2O4 from a mixed-metal citrate precursors. Materials Letters 2007;61 2731-2734.

  759. Misevicius M, Scit O, Grigoraviciute-Puroniene I, Degutis G, Bogdanoviciene I, Kareiva A. Sol-gel synthesis and investigation of un-doped and Ce-doped strontium aluminates. Ceramics International 2012;385915-5924.

  760. Lu Y, Li Y, Xiong Y, Wang D, Yin Q. SrAl2O4: Eu2+, Dy3+ phosphors derived from a new sol-gel route. Microelectronics Journal 2004;35 379-382.

  761. Chen I.-Ch, Chen K.-K, Chen H.-S, Du J.-k, Lin T.-J, Lin S.-Sh, Chen T.-M, Shieh T.-Y. Investigation into thermoluminescence and afterglow characterization of strontium aluminates with boron-modification and reductions via sol-gel route. Journal of Rare Earths 2012;30 972-978.

  762. Tang Z, Zhang F, Zhang Z, Huang Ch, Lin Y. Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method. Journal of the European Ceramics Society 2000;20 2129-2132.

  763. Luo X, Cao W, Xiao Z. Investigation on the distribution of rare earth ions in strontium aluminate phosphors. Journal of Alloys and Compounds 2006;416(1-2) 250-255.

  764. Yang P, Lü MK, Song ChF, Xu D, Yuan DR, Cao DX, Gu F. Effect of Cu2+ ions on the photoluminescence characteristics of Ce4+-doped SrAl2O4. Optical Materials 2002;20(2) 135-140.

  765. Kovalevsky AV, Kharton VV, Snijkers FMM, Cooymans JFC, Luyten JJ, Marques FMB. Oxygen transport and stability of asymmetric SrFe(Al)O3-δ-SrAl2O4 composite membranes. Journal of Membrane Science 2007;301(1-2) 238-244.

  766. Cheng Y, Zhao Y, Zhang Y, Cao X. Preparation of SrAl2O4: Eu2+, Dy3+ fibers by electrospinning combined with sol-gel process. Journal of Colloid and Interface Science 2010;344 321-326.

  767. Chang Ch, Yuan Z, Mao D. Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method. Journal of Alloys and Compounds 2006;415(1-2) 220-224.

  768. Azorin J. Preparation methods of thermoluminescent materials for dosimetric applications: An overview. Applied Radiation and Isotopes 2014;83(Part C) 187-191.

  769. Xue Z, Deng S, Liu Y, Lei B, Xiao Y, Zheng M. Synthesis and luminescence properties of SrAl2O4:Eu2+,Dy3+ hollow microspheres via a solvothermal co-precipitation method. Journal of Rare Earths 2013;31(3) 241-246.

  770. Xiao Q, Xiao L, Liu Y, Chen X, Li Y. Synthesis and luminescence properties of needle-like SrAl2O4:Eu, Dy phosphor via a hydrothermal co-precipitation method. Journal of Physics and Chemistry of Solids 2010;71(7) 1026-1030.

  771. Yu X, Zhou Ch, He X, Peng Z, Yang S.-P. The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method. Materials Letters 2004;581087-1091.

  772. Peng T, Yang H, Pu X, Hu B, Jiang Z, Yan Ch. Combustion synthesis and photoluminescence of SrAl2O4: Eu, Dy phosphor nanoparticles. Materials Letters 2004;58 359-356.

  773. Shafia E, Bodaghi M, Esposite S, Aghaei A. A critical role of pH in the combustion synthesis of nano-sized SrAl2O4: Eu2+, Dy3+ phosphor. Ceramics International 2014;40(3) 4697-4706.

  774. Patil KC, Aruna ST, Mimani T. Combustion synthesis: an update. Current Opinion in Solid State and Materials Science 2002;6(6) 507-512.

  775. Li X, Qu Y, Xie X, Wang Z, Li R. Preparation of SrAl2O4: Eu2+, Dy3+ nanometer phosphors by detonation method. Materials Letters 2006;60(29-30) 3673-3677.

  776. Li X, Qu Y, Sun G, Jiang D, Ouyang X. Study on the lattice distortion of the As-prepared nanosized TiO2 particles via detonation method. Journal of Physics and Chemistry of Solids 2007;68(12) 2405-2410.

  777. Aruna ST, Mukasyan AS. Combustion synthesis of nanomaterials. Current Opinion in Solid State and Materials Science 2008;12 44-50.

  778. Xu R, Su Q. Chapter 2 - High-temperature Synthesis. Modern Inorganic Synthetic Chemistry; 2011.

  779. Yeh CL, Chuang HC, Liu EW, Chang YC. Effects of dilution and preheating on SHS of vanadium nitride. Ceramics International 2005;31(1) 95-104.

  780. Merzhanov AG. History and recent developments in SHS. Ceramics International 1995;21(5) 371-379.

  781. Esharghawi A, Penot C, Nardou F. Elaboration of porous mullite-based materials via SHS reaction. Ceramics International 2010;36(1) 231-239.

  782. Russias J, Cardinal S, Fontaine J, Fantozzi G, Esnouf C, Bienvenu K. Bulk titanium nitride material obtained from SHS starting powder: Densification, mechanical characterization and tribological approach. International Journal of Refractory Metals and Hard Materials 2005;23(4-6) 344-349.

  783. Qian Q, Wang J, Gu Y, Li J, Zhao G, Zhang L, Pan X. Convenient synthesis of Fe-filled boron nitride nanotubes by SHS method. Materials Letters 2011;65(5) 866-868.

  784. Cano IG, Rodrı́guez MA. Synthesis of β-Silicon nitride by SHS: fibber growth. Scripta Materialia 2004;50(3) 383-386.

  785. Bermudo J, Osendi MI. Study of AlN and Si3N4 powders synthesized by SHS reactions. Ceramics International 1999;25(7) 607-612.

  786. Pradeilles N, Record MC, Granier D, Marin-Ayral RM. Synthesis of β-SiAlON: A combined method using sol–gel and SHS processes. Ceramics International 2008;34(5) 1189-1194.

  787. Lotfi B, Shipway PH, McCartney DG, Edris H. Abrasive wear behaviour of Ni(Cr)–TiB2 coatings deposited by HVOF spraying of SHS-derived cermet powders. Wear 2003;254(3-4) 340-349.

  788. Contreras L, Turrillas X, Mas-Guindal MJ, Vaughan GBM, Kvick Å, Rodríguez MA. Synchrotron diffraction studies of TiC/FeTi cermets obtained by SHS. Journal of Solid State Chemistry 2005;178(5) 1595-1600.

  789. Mas-Guindal MJ, Benko E, Rodríguez MA. Nanostructured metastable cermets of Ti–Al2O3 through activated SHS reaction. Journal of Alloys and Compounds 2008;454(1-2) 352-358.

  790. Córdoba JM, Alcalá MD, Avilés MA, Sayagués MJ, Gotor FJ. New production of TiCxN1−x-based cermets by one step mechanically induced self-sustaining reaction: Powder synthesis and pressureless sintering. Journal of the European Ceramic Society 2008;28(10) 2085-2098.

  791. Sathaporn T, Niyomwas S. Synthesis and Characterization of MAl2O4 (M = Ba, Ca, Sr) Phosphor by Self-propagating Hingh Temperature Synthesis. Energy Procedia 2011;9 410-417.

  792. Zhang Q, Saito F. A review on mechanochemical syntheses of functional materials. Advanced Powder Technology 2012;23(5) 523-531.

  793. Chen G, Niu D, Liu X. Preparation of SrAl2O4 from an oxide mixture via a high-energy ball milling. Journal of Alloys and Compounds 2005;399(1-2) 280-283.

  794. Garcés RS, Torres JT, Valdés AF. Synthesis of SrAl2O4 and Sr3Al2O6 at high temperature, starting from mechanically activated SrCO3 and Al2O3 in blends of 3:1 molar ratio. Ceramics International 2012;38(2) 889-894.

  795. Zollfrank C, Gruber S, Batentschuk M, Osvet A, Goetz-Neunhoeffer F, Dittrich S, Grabow J, Kurland H.-D, Müller FA. Synthesis of Eu-doped SrAl2O4 nanophosphors by CO2 laser vaporization. Acta Materialia 2013;61(19) 7133-7141.

  796. Aroz R, Lennikov V, Cases R, Sanjuán ML, de la Fuente GF, Muñoz E. Laser synthesis and luminescence properties of SrAl2O4:Eu2+, Dy3+ phosphors. Journal of the European Ceramic Society 2012;32(16) 4363-4369.

  797. Katsumata T, Nabae T, Sasajima K, Matsuzawa T. Growth and characteristics of long persistent SrAl2O4- and CaAl2O4-based phosphor crystals by a floating zone technique. Journal of Crystal Growth 1998;183(3) 361-365.

  798. Jia W, Yuan H, Holmstrom S, Liu H, Yen WM. Photo-stimulated luminescence in SrAl2O4: Eu2+,Dy3+ single crystal fibers. Journal of Luminescence 1999;83-84 465-469.

  799. Yen WM. Synthesis, Characterization and Applications of Shaped Single Crystals. Physics of the Solid State 1999;41(5) 693-696.

  800. Nsimama PD, Ntwaeaborwa OM, Swart HC. The effect of different gas atmospheres on luminescent properties of pulsed lase ablated SrAl2O4: Eu2+, Dy3+ thin films. Journal of Luminescence 2011;131 119-125.

  801. Swart HC, Ntwaeaborva OM, Nsimama PD, Terblans JJ. Surface characterization and luminescent properties of SrAl2O4: Eu2+, Dy3+ nano thin films. Physica B 2012;4071660-1663.

  802. Nsimama PD, Ntwaeaborwa OM, Coetsee E, Svart HC. The influence of the number of pulses on the morphological and photoluminescence properties of SrAl2O4: Eu2+, Dy3+ thin films prepared by pulsed laser deposition. Physica B 2009;404 4489-4492.

  803. Nsimama PD, Ntwaeaborwa OM, Coetsee E, Svart HC. The effect of substrate temperature on the structure, morphology and photoluminescence properties of pulsed laser deposited SrAl2O4: Eu2+, Dy3+ thin film. Physica B 2009;404 4436-4439.

  804. Sato K, Komuro S, Morikawa T, Aizawa H, Katsumata T, Harako S, Zhao X. Long afterglow characteristics of thin film phosphor fabricate by laser ablation. Journal of Crystal Growth 2005;275 e1137-e1141.

  805. Lee JS, Kim YJ. The deposition and the photoluminescence of SrAl2O4: Eu2+ thin films. Thin Solid Films 2010;518 e149-e151.

  806. Marla D, Bhandarkar UV, Joshi SS. Modeling nanosecond pulsed laser ablation: A focus on temperature dependence of material properties. Manufacturing Letters 2014;2(2) 13-16.

  807. Suematsu H, Sengiku M, Kato K, Mitome M, Kimuto K, Matsui Y, Jiang W, Yatsui K. Photoluminescence properties of crystallized strontium aluminate thin films prepared by ion-beam evaporation. Thin solid films 2002;407(1-2) 136-138.

  808. Ji Z, Tian S, Chen W, Kong Z, Wu J. Enhanced long lasting persistent luminescent SrAl2O4: Eu, Dy ceramics prepared by electron beam bombardment. Radiation Measurements 2013;59 210-213.

  809. Chang Ch, Mao D. Long lasting phosphorescence of Sr4Al14O25: Eu2+,Dy3+ thin films by magnetron sputtering. Thin Solid Films 2004;46048-52.

  810. Kato K, Tsutai I, Kamimura T, Kaneko F, Shinbo K, Ohta M, Kawakami T. Thermoluminescence properties of SrAl2O4: Eu sputtered films with long phosphorescence. Journal of Luminescence 1999;82(3) 213-220.

  811. Haranath D, Sharma P, Chander H, Ali A, Bhalla N, Halder SK. Role of boric acid in synthesis and tailoring the properties of calcium aluminate phosphor. Materials Chemistry and Physics 2007;101(1) 163-169.

  812. Mothudi BM, Ntwaeaborwa OM, Botha JR, Swart HC. Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500°C. Physica B: Condensed Matter 2009;404(22) 4440-4444.

  813. Singh V, Natarajan V, Zhu J.-J. Luminescence and EPR investigations of Mn activated calcium aluminate prepared via combustion method. Optical Materials 2007;30(3) 468-472.

  814. Zhao Ch, Chen D. Synthesis of CaAl2O4: Eu,Nd long persistent phosphor by combustion processes and its optical properties. Materials Letters 2007;61(17) 3673-3675.

  815. Sharma SK, Pitale SS, Malik MM, Qureshi MS, Dubey RN. Spectral and kinetic characterization of orange-red emitting Sr3Al2O6:Eu3+/Sm3+ phosphor. Journal of Alloys and Compounds 2009;482(1-2) 468-475.

  816. Kim SJ, Won HI, Hayk N, Won ChW, Jeon DY, Kirakosyan AG. Preparation and characterization of Sr4Al2O7:Eu3+, Eu2+ phosphors. Materials Science and Engineering: B 2011;176(18) 1521-1525.

  817. Yerpude AN, Dhoble SJ. Luminescence in trivalent rare earth activated Sr4Al2O7 phosphor. Optik - International Journal for Light and Electron Optics 2013;124(18) 3567-3570.

  818. Huang P, Zhang Q, Cui C.-e, Li J. Influence of excitation wavelengths on luminescent properties of Sr3Al2O6:Eu2+, Dy3+ phosphors prepared by sol-gel-combustion processing. Optical Materials 2011;33(8) 1252-1257.

  819. Chen XY, Bao SP, Wu YCh. Controlled synthesis and luminescent properties of Eu2+(Eu3+), Dy3+-doped Sr3Al2O6 phosphors by hydrothermal treatment and postannealing approach. Journal of Solid State Chemistry 2010;183(9) 2004-2011.

  820. Zhang P, Xu M.-x, Zheng Z.-t, Sun B, Zhang Y.-h. Microwave synthesis and characterization of new red long afterglow phosphor Sr3Al2O6:Eu. Transactions of Nonferrous Metals Society of China 2006;16(s1) s423-s425.

  821. Li G, Lai Y, Cui T, Yu H, Liu D, Gan S. Luminescence properties and charge compensation of Sr3Al2O6 doped with Ce3+ and alkali metal ions. Materials Chemistry and Physics 2010;124(2-3) 1094-1099.

  822. Feng W.-L. Preparation and luminescent properties of green SrAl2O4: Eu2+ and blue SrAl2O4: Eu2+, Gd3+ phosphors. Materials Letters 2013;110 91-93.

  823. Wu ZC, Shi JX, Wang J, Wu H, SuQ, Gong ML. Synthesis and luminescent properties of SrAl2O4:Eu2+ green-emitting phosphor for white LEDs. Materials Letters 2006;60(29-30) 3499-3501.

  824. Ayvacıklı M, Ege A, Can N. Radioluminescence of SrAl2O4:Ln3+ (Ln = Eu, Sm, Dy) phosphor ceramic. Optical Materials 2011;34(1) 138-142.

  825. Shafia E, Bodaghi M, Tahriri M. The influence of some processing conditions on host crystal structure and phosphorescence properties of SrAl2O4:Eu2+, Dy3+ nanoparticle pigments synthesized by combustion technique. Current Applied Physics 2010;10(2) 596-600.

  826. Sharma SK, Pitale SS, Malik MM, Rao TKG, Chawla S, Qureshi MS, Dubey RN. Spectral and defect analysis of Cu-doped combustion synthesized new SrAl4O7 phosphor. Journal of Luminescence 2010;130(2) 240-248.

  827. Singh V, Rao TKG, Zhu J.-J. Preparation, luminescence and defect studies of Eu2+-activated strontium hexa-aluminate phosphor prepared via combustion method. Journal of Solid State Chemistry 2006;179(8) 2589-2594.

  828. Blasse G. Energy transfer between inequivalent Eu2+ ions. Journal of Solid State Chemistry 1986;62(2) 207-211.

  829. Lu Z, Weng L, Song S, Zhang P, Luo X. Hydrothermal synthesis, morphology and photoluminescence of hexagonal SrSiO3:Eu2+ micro-octahedrons and prism-like hollow microstructures. Materials Chemistry and Physics 2012;132(2-3) 800-807.

  830. Cui Z, Ye R, Deng D, Hua Y, Zhao S, Jia G, Li Ch, Xu S. Eu2+/Sm3+ ions co-doped white light luminescence SrSiO3 glass-ceramics phosphor for White LED. Journal of Alloys and Compounds 2011;509(8) 3553-3558.

  831. Kuang J, Liu Y, Zhang J. White-light-emitting long-lasting phosphorescence in Dy3+-doped SrSiO3. Journal of Solid State Chemistry 2006;179(1) 266-269.

  832. Liu H, Wang Y, Yang J, Li L, Su W, Guan Z, Yu B. The structure and luminescence characteristics of SrSiO3:Eu3+:Bi3+ synthesized at a high pressure and high temperature. Journal of Alloys and Compounds 1993;191(1) 1-4.

  833. Tshabalala MA, Dejene FB, Pitale SS, Swart HC, Ntwaeaborwa OM. Generation of white-light from Dy3+ doped Sr2SiO4 phosphor. Physica B: Condensed Matter 2014;439 126-129.

  834. Saradhi MP, Lakshminarasimhan N, Boudin S, Gupta KVK, Varadaraju UV, Raveau B. Enhanced luminescence of Sr2SiO4:Dy3+ by sensitization (Ce3+/Eu2+) and fabrication of white light-emitting-diodes. Materials Letters 2014;117 302-304.

  835. Gupta SK, Kumar M, Natarajan V, Godbole SV. Optical properties of sol-gel derived Sr2SiO4:Dy3+ - Photo and thermally stimulated luminescence. Optical Materials 2013;35(12) 2320-2328.

  836. Yang R.-Y, Chen H.-Y, Chang S.-J, Yang Y.-K. Effect of Eu3+ concentration on microstructure and photoluminescence of Sr2SiO4:Eu3+ phosphors prepared by microwave assisted sintering. Journal of Luminescence 2012;132(3) 780-783.

  837. Zhang L, Han P, Wang K, Lu Z, Wang L, Zhu Y, Zhang Q. Enhanced luminescence of Sr2SiO4:Dy3+ by sensitization (Ce3+/Bi3+) and its composition-induced phase transition. Journal of Alloys and Compounds 2012;541 54-59.

  838. Qiao Y, Zhang X, Ye X, Chen Y, Guo H. Photoluminescent properties of Sr2SiO4:Eu3+ and Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method. Journal of Rare Earths 2009;27(2) 323-326.

  839. Dutczak D, Milbrat A, Katelnikovas A, Meijerink A, Ronda C, Jüstel T. Yellow persistent luminescence of Sr2SiO4:Eu2+,Dy3+. Journal of Luminescence 2012;132(9) 2398-2403.

  840. Qiua J, Kawasaki M, Tanaka K, Shimizugawa Y, Hirao K . Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses. Journal of Physics and Chemistry of Solids 1998;59(9) 1521-1525.

  841. Guan Y, Wei Z, Huang Y, Maalej R, Seo HJ. 1.55 μm emission and upconversion luminescence of Er3+-doped strontium borate glasses. Ceramics International 2013;39(6) 7023-7027.

  842. Rajesh D, Ratnakaram YC, Seshadri M, Balakrishna A, Krishna TS. Structural and luminescence properties of Dy3+ ion in strontium lithium bismuth borate glasses. Journal of Luminescence 2012;132(3) 841-849.

  843. Li Y, Niu P, Tang Ch, Hu L. Blue-excited luminescence of Eu-doped strontium boroaluminate glasses. Journal of Luminescence 2008;128(2) 273-276.

  844. Rajesh D, Balakrishna A, Ratnakaram YC. Luminescence, structural and dielectric properties of Sm3+ impurities in strontium lithium bismuth borate glasses. Optical Materials 2012;35(2) 108-116.

  845. Jiang Ch, Huang Y, Park S, Jang K, Seo HJ. Luminescence and spectral hole burning of Sm2+ doped in Li2O-SrO-B2O3 glass-ceramics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009;72(2) 412-416.

  846. Aleksandrovsky AS, Krylov AS, Malakhovskii AV, Potseluyko AM, Zaitsev AI, Zamkov AV. Europium doped strontium borate glasses and their optical properties. Journal of Physics and Chemistry of Solids 2005;66(1) 75-79.

  847. Wu B, Qiu J, Wu E, Zeng H. Broadband near-infrared luminescence from transparent glass–ceramics containing Ni2+-doped SrTiO3 nanocrystals. Optical Materials 2013;35(5) 983-987.

  848. Martín LL, Martín IR, Haro-González P. Transfer and backtransfer processes in Yb3+-Er3+ codoped Strontium Barium Niobate glass-ceramics. Journal of Luminescence 2011;131(12) 2446-2450.

  849. Jarý V, Boháček P, Mihóková E, Havlák L, Trunda B, Nikl M. Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor. Optical Materials 2013;35(5) 1019-1022.

  850. Wang Zh, Zhang J, Zheng G, Peng X, Dai H. Violet-blue afterglow luminescence properties of non-doped SrZrO3 material. Journal of Luminescence 2013;144 30-33.

  851. Zhang A, Lü M, Zhou G, Zhou Y, Qiu Z, Ma Q. Synthesis, characterization and luminescence of Eu3+-doped SrZrO3 nanocrystals. Journal of Alloys and Compounds 2009;468(1-2) L17-L20.

  852. Rétot H, Bessière A, Kahn-Harari A, Viana B. Synthesis and optical characterization of SrHfO3:Ce and SrZrO3:Ce nanoparticles. Optical Materials 2008;30(7) 1109-1114.

  853. Nikl M, Bohacek P, Trunda B, Jary V, Fabeni P, Studnicka V, Kucerkova R, Beitlerova A. SrHfO3-based phosphors and scintillators. Optical Materials 2011;34(2) 433-438.

  854. Yamamoto H, Mikami M, Shimomura Y, Oguri Y. Host-to-activator energy transfer in a new blue-emitting phosphor SrHfO3: Tm3+. Journal of Luminescence 2000;87-89 1079-1082.

  855. Höllriegl V, München HZ. Strontium in the Environment and Possible Human Health Effects. Reference Module in Earth Systems and Environmental Sciences, from Encyclopedia of Environmental Health; 2011.

  856. Wohl GR, Chettle DR, Pejović-Milić A, Druchok Ch, Webber CE, Adachi JD, Beattie KA. Accumulation of bone strontium measured by in vivo XRF in rats supplemented with strontium citrate and strontium ranelate. Bone 2013;52(1) 63-69.

  857. Harrigan TP, Kareh JA, O'Connor DO, Burke DW, Harris WH. A finite element study of the initiation of failure of fixation in cemented femoral total hip components. Journal of Orthopaedic Research 1992;10 134-144.

  858. Wang JS, Franzen H, Toksvig-Larsen S, Lidgren L. Does vacuum mixing of bone cement affect heat generation? Analysis of four cement brands. Journal of Applied Biomaterials 1995;6 105-108.

  859. Sudarsanan K, Young RA. Structure of strontium hydroxide phosphate, Sr5(PO4)3OH. Acta Crystallographica Section B 1972;B28(12) 3668-3670.

  860. Cox SC, Jamshidi P, Grover LM, Mallick KK. Preparation and characterisation of nanophase Sr, Mg, and Zn substituted hydroxyapatite by aqueous precipitation. Materials Science and Engineering: C 2014;35106-114.

  861. Elliott JC. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates; Amsterdam: Elsevier; 1994.

  862. Bigi A, Boanini E, Capuccini Ch, Gazzano M. Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chimica Acta 2007;360(3) 1009-1016.

  863. Meunier PJ, Roux C, Seeman E, Ortolani S, Badurski J, Spector TD, Cannata J, Balogh A, Lemmel EM, Pors-Nielsen S, Rizzoli R, Genant HK, Reqinster JY. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. The New England Journal of Medicine 2004;350(5) 459-468.

  864. Zhaoyang Li, Ning Yuan, Raymond Wing Moon Lam, Zhenduo Cui, Xianjin Yang, Lu WW. Preclinical evaluation of strontium-containing bioactive bone cement. Materials Science and Engineering: C 2013;33(8) 5100-5104.

  865. Li YW, Leong JCY, Lu WW, Luk KDK, Cheung KMC, Chiu KY, Chow SP.A novel injectable bioactive bone cement for spinal surgery: a developmental and preclinical study. Journal of Biomedical Materials Research 2000;52(1) 164-170.

  866. Lu WW, Cheung KM, Li YW, Luk KDK, Holmes AD, Zhu QA, Leong JC. Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 2001;26 2684-2690.

  867. Ni GX, Chiu KY, Lu WW, Wang Y, Zhang YG, Hao LB, Li ZY, Lam WM, Lu SB, Luk KDK. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty. Biomaterials 2006;27(24) 4348-4355.

  868. Ni GX, Lu WW, Xu B, Chiu KY, Yang C, Li ZY, Lam WM, Luk KDK. Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials 2006;27(29) 5127-5133.

  869. Aina V, Bergandi L, Lusvardi G, Malavasi G, Imrie FE, Gibson IR, Cerrato G, Ghigo D. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells. Materials Science and Engineering: C 2013;33(3) 1132-1142.

  870. Zhu K, Yanagisawa K, Shimanouchi R, Onda A, Kajiyoshi K, Qiu J. Synthesis and crystallographic study of Pb–Sr hydroxyapatite solid solutions by high temperature mixing method under hydrothermal conditions. Materials Research Bulletin 2009;44(6) 1392-1396.

  871. Tan S.-H, Chen X.-G, Ye Y, Sun J, Dai L.-Q, Ding Q. Hydrothermal removal of Sr2+ in aqueous solution via formation of Sr-substituted hydroxyapatite. Journal of Hazardous Materials 2010;179(1-3) 559-563.

  872. Ning Z, Chang Z, Li W, Sun Ch, Zhang J, Liu Y. Solvothermal synthesis and optical performance of one-dimensional Strontium Hydroxyapatite nanorod. Chinese Journal of Chemical Engineering 2012;20(1) 89-94.

  873. Grover LM, Gbureck U, Wright AJ, Barralet JE. Cement formulations in the calcium phosphate H2O-H3PO4-H4P2O7 system. Journal of the American Ceramic Society 2005;88 3096-3103.

  874. Hofmann MP, Mohammed AR, Perrie Y, Gbureck U, Barralet JE. High-strength resorbable brushite bone cement with controlled drug-releasing capabilities. Acta Biomaterialia 2009;5 43-49.

  875. Alkhraisat MH, Rueda C, Cabrejos-Azama J, Lucas-Aparicio J, Mariño FT, García-Denche JT, Jerez LB, Gbureck U, Cabarcos EL. Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Acta Biomaterialia 2010;6(4) 1522-1528.

  876. Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. Journal of Biomedical Materials Research 1996;30(2) 193-200.

  877. Frost RL, Palmer SJ. Thermal stability of the ‘cave’ mineral brushite CaHPO4⋅2H2O-Mechanism of formation and decomposition. Thermochimica Acta 2011;521(1-2) 14-17.

  878. Francis MD, Webb NC. Hydroxyapatite formation for a hydrated calcium monohydrogen phospahte precursor.Calcified Tissue International 1971;6 335-342.

  879. Abbona F, Christensson F, Angela MF, Madsen HEL. Crystal habit and growth conditions of brushite, CaHPO4⋅2H2O. Journal of Crystal Growth 1993;131(3-4) 331-346.

  880. Vereeche G, Lemaitre J. Calculation of the solubility diagrams in the system Ca(OH)2-H3PO4-KOH-HNO3-CO2-H2O. Journal of Crystal Growth 1990;104 820-832.

  881. Grover LM, Gbureck U, Young AM, Wright AJ, Barralet JE. Temperature dependent setting kinetics and mechanical properties of β-TCP-pyrophosphoric acid bone cement. Journal of Materials Chemistry 2005;15(46) 4955-4962.

  882. Alkhraisat MH, Mariño FT, Rodríguez CR, Jerez LB, Cabarcos EL. Combined effect of strontium and pyrophosphate on the properties of brushite cements. Acta Biomaterialia 2008;4(3) 664-670.

  883. Kondo N, Ogose A, Tokunaga K, Umezu H, Arai K, Kudo N, Hoshino M, Inoue H, Irie H, Kuroda K, Mera H. Osteoinduction with highly purified beta-tricalcium phosphate in dogdorsal muscles and the proliferation of osteoclasts before heterotopic bone formation. Biomaterials 2006;27(25) 4419-4427.

  884. Hench LL. Bioceramics: from concept to clinic. Journal of the American Ceramic Society 1991;74(7) 1487-1510.

  885. Yatongchai Ch, Wren AW, Curran DJ, Hornez J.-Ch, Towler MR. Comparison of the Weibull characteristics of hydroxyapatite and strontium doped hydroxyapatite. Journal of the Mechanical Behavior of Biomedical Materials 2013;21 95-108.

  886. Tamimi F, Le Nihouannen D, Eimar H, Sheikh Z, Komarova S, Barralet J. The effect of autoclaving on the physical and biological properties of dicalcium phosphate dihydrate bioceramics: Brushite vs. Monetite. Acta Biomaterialia 2012;8(8) 3161-3169.

  887. Njema H, Debbichi M, Boughzala K, Said M, Bouzouita K. Structural, electronic and thermodynamic properties of britholites Ca10-xLax(PO4)6-x(SiO4)xF2 (0 ≤ x ≤ 6): Experiment and theory. Materials Research Bulletin 2014;51 210-216.

  888. Njema H, Boughzala K, Boughzala H, Bouzouita K. Structural analysis by Rietveld refinement of calcium and lanthanum phosphosilicate apatites. Journal of Rare Earths 2013;31(9) 897-904.

  889. Wang X, Gan J, Huang Y, Seo HJ. The doping concentration dependent tunable yellow luminescence of Sr5(PO4)2(SiO4):Eu2+. Ceramics International 2012;38(1) 701-706.

  890. Ouenzerfi RE, Cohen-Adad M.-T, Goutaudier Ch, Panczer G. Uranium-doped britholites CaxLay(SiO4)6-u(PO4)uOt:U synthesis, characterization and preliminary study of uranium diffusion. Solid State Ionics 2005;176(1-2) 225-231.

  891. Gmati N, Boughzala K, Abdellaoui M, Bouzouita K. Mechanochemical synthesis of strontium britholites: Reaction mechanism. Comptes Rendus Chimie 2011;14(10) 896-903.

  892. Gmati N, Boughzala K, Chaabène A, Fattah N, Bouzouita K. Préparation par mécanosynthèse d’apatites strontiques dopées au lanthane et au césium. Comptes Rendus Chimie 2013;16(8) 712-720.

  893. Krzmanc MM, Valant M, Suvorov D. The synthesis and microwave dielectric properties of SrxBa1-xAl2Si2O8 and CayBa1-yAl2Si2O8 ceramics. Journal of the European Ceramic Society 2007;27(2-3) 1181-1185.

  894. Ferone C, Liguori B, Marocco A, Anaclerio S, Pansini M, Colella C. Monoclinic (Ba, Sr)-celsian by thermal treatment of (Ba, Sr)-exchanged zeolite A. Microporous and Mesoporous Materials 2010;134(1-3) 65-71.

  895. Sung YM, Kim S. Sintering and crystallization of off-stoichiometric SrO.Al2O3.2SiO2 glasses. Journal of Materials Science 2000;35 4293-4299.

  896. Fu Y.-P, Chang Ch.-Ch, Lin Ch.-H, Chin T-S. Solid-state synthesis of ceramics in the BaO-SrO-Al2O3-SiO2 system. Ceramics International 2004;30(1) 41-45.

  897. Guillem MC, Guillem C. Kinetics and mechanism of formation of celsian from barium cabonate and kaolin. Transactions and Journal of the British Ceramic Society 1984;83 150-154.

  898. Bansal NP, Setlock JA. Fabrication of fiber-reinforced celsian matrix composites. Composites Part A: Applied Science and Manufacturing 2001;32(8) 1021-1029.

  899. BP. Mechanical properties of Hi-Nicalon fiber-reinforced celsian composites after high-temperature exposures in air. Journal of the European Ceramic Society 2009;29(3) 525-535.

  900. Limeng L, Feng Y, Haijiao Z, Jie Y, Zhiguo Z. Celsian formation in Si3N4-Ba0.75Sr0.25Si2Al2O8 composites. Scripta Materialia 2009;60(6) 463-466.

  901. Strnad Z. Glass-Ceramic Materials, Glass Science and Technology; Volume 8; Amsterdam: Elsevier; 1986.

  902. Barbeeri L, Corradi AB, Leonelli C, Manfredini T, Romagnoli M, Siligardi C. The microstructure and mechanical properties of sintered celsian and strontium-celsian glass-ceramics. Materials Research Bulletin 1995;30(1) 27-41.

  903. Beall GH. Refractory glass-ceramics based on alkaline earth aluminosilicates. Journal of the European Ceramic Society 2009;29(7) 1211-1219.

  904. Salman SM, Salama S.N, Abo-Mosallam HA. The role of strontium and potassium on crystallization and bioactivity of Na2O-CaO-P2O5-SiO2. Ceramics International 2012;38(1) 55-63.

  905. Fredholm YC, Karpukhina N, Law RV, Hill RG. Strontium containing bioactive glasses: Glass structure and physical properties. Journal of Non-Crystalline Solids 2010;356(44-49) 2546-2551.

  906. O’Donnell MD, Hill RG. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomaterialia 2010;6(7) 2382-2385.

  907. Xiao Li, Xiao Q, Liu Y, Ai P, Li Y, Wang H. A transparent surface-crystallized Eu2+, Dy3+ co-doped strontium aluminate long-lasting phosphorescent glass-ceramic. Journal of Alloys and Compounds 2010;495(1) 72-75.

  908. Qiua J, Shimizugawa Y, Kojima K, Tanaka K, Hirao K. Relaxation of ultraviolet-radiation-induced structure and long-lasting phosphorescence in Eu2+-doped strontium aluminosilicate glasses. Journal of Materials Research 2001;16(1) 88-92.

  909. Lan Z, Chengyu L, Qiang S. Long lasting phosphorescence in Eu2+ and Ce3+ co-coped strontium borate glasses. Journal of Rare Earths 2006;24(1) 196-198.

  910. Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. Synthesis of highly hydrophobic and permselective metal-organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation. Journal of Membrane Science 2014;454 126-132.

  911. Chen X, Tong Y, Han M.-M, Cao K.-L, Feng Y.-L. Two luminescent metal - organic frameworks constructed by unsymmetric tricarboxylate. Inorganic Chemistry Communications 2014;40 62-65.

  912. Lo S.-H, Liu H.-K, Zhan J.-X, Lin W.-Ch, Kao Ch.-Ch, Lin Ch.-H, Zima V. Assembly of a water-insoluble strontium metal–organic framework with luminescent properties. Inorganic Chemistry Communications 2011;14(10) 1602-1605.

  913. Shen H, Song Y, Gu H, Wang P, Xi Y. A high-permittivity SrTiO3-based grain boundary barrier layer capacitor material single-fired under low temperature. Materials Letters 2002;56(5) 802-805.

  914. Liu CY, Tseng TY. Correlation between deep depletion and current-voltage saturation of SrTiO3 gate dielectric capacitor. Ceramics International 2004;30(7) 1101-1106.

  915. Hu Y, Tan OK, Pan JS, Huang H, Cao W. The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor. Sensors and Actuators B: Chemical 2005;108(1-2) 244-249.

  916. Hu Y, Tan OK, Cao W, Zhu W. A low temperature nano-structured SrTiO3 thick film oxygen gas sensor. Ceramics International 2004;30(7) 1819-1822.

  917. Schultz AM, Zhu Y, Bojarski SA, Rohrer GS, Salvador PA. Eutaxial growth of hematite Fe2O3 films on perovskite SrTiO3 polycrystalline substrates. Thin Solid Films 2013;548 220-224.

  918. Nishio K, Ohnishi T, Akatsuka K, Takada K. Crystal orientation of epitaxial LiCoO2 films grown on SrTiO3 substrates. Journal of Power Sources 2014;247 687-691.

  919. Chen L, Zhang S, Wang L, Xue D, Yin S. Preparation and photocatalytic properties of strontium titanate powders via sol–gel proces. Journal of Crystal Growth 2009;311(3) 746-748.

  920. Huang X, Zhao H, Qiu W, Wu W, Li X. Performances of planar solid oxide fuel cells with doped strontium titanate as anode materials. Energy Conversion and Management 2007;48(5) 1678-1682.

  921. Park B.-K, Lee J.-W, Lee S.-B, Lim T.-H, Park S.-J, Song R.-H, Im WB, Shin D.-R. La-doped SrTiO3 interconnect materials for anode-supported flat-tubular solid oxide fuel cells. International Journal of Hydrogen Energy 2012;37(5) 4319-4327.

  922. McCarthy GJ, White WB, Roy R. Phase Equilibria in the 1375°C Isotherm of the System Sr-Ti-O. Journal of the American Ceramic Society 1969;52(9) 463-467.

  923. Jacob KT, Rajitha G. Thermodynamic properties of strontium titanates: Sr2TiO4, Sr3Ti2O7, Sr4Ti3O10, and SrTiO3. The Journal of Chemical Thermodynamics 2011;43(1) 51-57.

  924. Selmi F, Guerin F, Yu XD, Varadan VK, Varadan VV, Komarneni S. Microwave calcination and sintering of barium strontium titanate. Materials Letters 1992;12(6) 424-428.

  925. Mohammadi MR, Fray DJ. Sol-gel derived nanocrystalline and mesoporous barium strontium titanate prepared at room temperature. Particuology 2011;9(3) 235-242.

  926. Lahiry S, Mansingh A. Dielectric properties of sol-gel derived barium strontium titanate thin films. Thin Solid Films 2008;516(8) 1656-1662.

  927. Makarova M, Dejneka A, Franc J, Drahokoupil J, Jastrabik L, Trepakov V. Soft chemistry preparation methods and properties of strontium titanate nanoparticles. Optical Materials 2010;32(8) 803-806.

  928. Fujishiro F, Arakawa T, Hashimoto T. Substitution site and photoluminescence spectra of Eu3+-substituted SrTiO3 prepared by Pechini method. Materials Letters 2011;65(12) 1819-1821.

  929. Choi K.-M, Kil H.-S, Lee Y.-S, Lim D.-Y, Cho S.-B, Lee BW. Preparation and luminescence properties of SrTiO3:Pr3+,Al3+ phosphor from the glycolate method. Journal of Luminescence 2011;131(5) 894-899.

  930. Lu X, Pine TS, Mumm DR, Brouwer J. Modified Pechini synthesis and characterization of Y-doped strontium titanate perovskite. Solid State Ionics 2007;178(19-20) 1195-1199.

  931. Burnat D, Heel A, Holzer L, Kata D, Lis J, Graule T. Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources 2012;201 26-36.

  932. Monteiro JF, Ferreira AAL, Antunes I, Fagg DP, Frade JR. Thermodynamic restrictions on mechanosynthesis of strontium titanate. Journal of Solid State Chemistry 2012;185 143-149.

  933. Sekhar KC, Hong KP, Key SH, Han ChS, Kim JCh, Kim DS, Park JCh, Cho YS. Enhanced dielectric and tunable characteristics of K-doped Ba0.5Sr0.5TiO3 thin films prepared by pulsed laser deposition. Current Applied Physics 2012;12(3) 654-658.

  934. Ioachim A, Toacsan MI, Banciu MG, Nedelcu L, Dutu A, Antohe S, Berbecaru C, Georgescu L, Stoica G, Alexandru HV. Transitions of barium strontium titanate ferroelectric ceramics for different strontium content. Thin Solid Films 2007;515(16) 6289-6293.

  935. Hu T, Jantunen H, Uusimäki A, Leppävuori S. Ba0.7Sr0.3TiO3 powders with B2O3 additive prepared by the sol–gel method for use as microwave material. Materials Science in Semiconductor Processing 2002;5(2-3) 215-221.

  936. Jain M, Majumder SB, Guo R, Bhalla AS, Katiyar RS. Synthesis and characterization of lead strontium titanate thin films by sol–gel technique. Materials Letters 2002;56(5) 692-697.

  937. Balasubramaniam KR, Cao Y, Patel N, Havelia S, Cox PJ, Devlin EC, Yu EP, Close BJ, Woodward PM, Salvador PA. Phase and structural characterization of Sr2Nb2O7 and SrNbO3 thin films grown via pulsed laser ablation in O2 or N2 atmospheres. Journal of Solid State Chemistry 2008;181(4) 705-714.

  938. Liu D, Yao X, Smyth DM. Structure intergrowth in ceramic SrNbO3.5-x. Materials Research Bulletin 1992;27(3) 387-392.

  939. Lichtenberg F, Herrnberger A, Wiedenmann K, Mannhart J. Synthesis of perovskite-related layered AnBnO3n+2 = ABOX type niobates and titanates and study of their structural, electric and magnetic properties. Progress in Solid State Chemistry 2001;29(1-2) 1-70.

  940. Dahl PI, Haugsrud R, Lein HL, Grande T, Norby T, Einarsrud M.-A. Synthesis, densification and electrical properties of strontium cerate ceramics. Journal of the European Ceramic Society 2007;27(16) 4461-4471.

  941. Aksenova TI, Khromushin IV, Zhotabaev ZR, Bukenov KD, Berdauletov AK, Medvedeva ZV. Thermodesorption study of barium and strontium cerates. Solid State Ionics 2003;162-16331-36.

  942. Liu S, Tan X, Li K, Hughes R. Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes. Ceramics International 2002;28(3) 327-335.

  943. Wei X, Lin YS. Protonic and electronic conductivities of terbium doped strontium cerates. Solid State Ionics 2008;178(35-36) 1804-1810.

  944. Matsuka M, Sakai T, Matsumoto H, Braddock RD, Agranovski IE, Ishihara T. Effects of hydrogen on phase stability of ytterbium doped strontium cerates. Materials Letters 2010;64(7) 833-835.

  945. Zhu Z.-L, Gu J.-H, Jia Y, Hu X. A comparative study of electronic structure and magnetic properties of SrCrO3 and SrMoO3. Physica B: Condensed Matter 2012;407(12) 1990-1994.

  946. Chamberland BL. Preparation and properties of SrCrO3. Solid State Communications 1967;5(8) 663-666.

  947. Agarwal R, Singh Z, Venugopal V. Calorimetric investigations of SrMoO3 and BaMoO3 compounds. Journal of Alloys and Compounds 1999;282(1-2) 231-235.

  948. Macquart RB, Kennedy BJ, Avdeev M. Neutron diffraction study of phase transitions in perovskite-type strontium molybdate SrMoO3. Journal of Solid State Chemistry 2010;183(1) 250-255.

  949. Yoo Y.-Z, Chmaissem O, Song J.-H. RHEED study on continuously repeated step flow and layer-by-layer growth modes in SrRuO3/SrMnO3 superlattice. Current Applied Physics 2014;14(3) 378-382.

  950. Doroftei C, Popa PD, Rezlescu E, Rezlescu N. Nanocrystalline SrMnO3 powder as catalyst for hydrocarbon combustion. Journal of Alloys and Compounds 2014;584 195-198.

  951. Yaremchenko AA, Kharton VV, Valente AA, Shaula AL, Marques FMB, Rocha J. Mixed conductivity and electrocatalytic performance of SrFeO3-δ–SrAl2O4 composite membranes. Solid State Ionics 2006;177(26-32) 2285-2289.

  952. Hancock CA, Slade RCT, Varcoe JR, Slater PR. Synthesis, structure and conductivity of sulfate and phosphate doped SrCoO3. Journal of Solid State Chemistry 2011;184(11) 2972-2977.

  953. Pyatnitsky YI, Ilchenko NI, Raevskaya LN, Dolgikh LY, Pavlenko NV. Methane coupling over SrCoO3-based perovskites in the absence of gas-phase oxygen. Studies in Surface Science and Catalysis 2000;130 707-712.

  954. Rafferty A, Prescott T, Brabazon D. Sintering behaviour of cobalt ferrite ceramic. Ceramics International 2008;34 15-21.

  955. Onreabroy W, Papato K, Rujijanagul G, Pengpat K, Tunkasiri T. Study of strontium ferrites substituted by lanthanum on the structural and magnetic properties. Ceramics International 2012;38(Supplement 1) S415-S419.

  956. Stanica N, Cimpoesu F, Dobrescu G, Munteanu G, Suh S.-H. Monte Carlo simulation of magnetic ordering in the Gd3Fe5O12 Ising ferrite with garnet structure. Journal of Magnetism and Magnetic Materials 2008;320(17) 2149-2154.

  957. Liu X, Zhong W, Yang S, Yu Z, Gu B, Du Y. Influences of La3+ substitution on the structure and magnetic properties of M-type strontium ferrites. Journal of Magnetism and Magnetic Materials 2002;238(2-3) 207-214.

  958. Ketov SV, Yagodkin YD, Menushenkov VP. Structure and magnetic properties of strontium ferrite anisotropic powder with nanocrystalline structure. Journal of Alloys and Compounds 2011;509(3) 1065-1068.

  959. Liu X, Hernández-Gómez P, Huang K, Zhou S, Wang Y, Cai X, Sun H, Ma B. Research on La3+-Co2+-substituted strontium ferrite magnets for high intrinsic coercive force. Journal of Magnetism and Magnetic Materials 2006;305(2) 524-528.

  960. Veverka P, Knížek K, Pollert E, Boháček J, Vasseur S, Duguet E, Portier J. Strontium ferrite nanoparticles synthesized in presence of polyvinylalcohol: Phase composition, microstructural and magnetic properties. Journal of Magnetism and Magnetic Materials 2007;309(1) 106-112.

  961. Ghasemi A, Morisako A, Liu X. Magnetic properties of hexagonal strontium ferrite thick film synthesized by sol-gel processing using SrM nanoparticles.Journal of Magnetism and Magnetic Materials 2008;320(18) 2300-2304.

  962. Teh GB, Wong YCh, Tilley RD. Effect of annealing temperature on the structural, photoluminescence and magnetic properties of sol–gel derived Magnetoplumbite-type (M-type) hexagonal strontium ferrite. Journal of Magnetism and Magnetic Materials 2011;323(17) 2318-2322.

  963. Lu HF, Hong RY, Li HZ. Influence of surfactants on co-precipitation synthesis of strontium ferrite. Journal of Alloys and Compounds 2011;509(41) 10127-10131.

  964. Anis-ur-Rehman M, Asghar G. Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH. Journal of Alloys and Compounds 2011;509(2) 435-439.

  965. Shirtcliffe NJ, Thompson S, O’Keefe ES, Appleton S, Perry CC. Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis. Materials Research Bulletin 2007;42(2) 281-287.

  966. Burtfoot JC. Ferroelectrics: An Introduction to the Physical Principles. London: Van Nostrand-Reinbold; 1967.

  967. Molla J, Gonzalez M, Villa R, Ibara A. Effect of humidity on microwave dielectric losses of porous alumina. Journal of Applied Physics 1999;85 1727-1730.

  968. Bednorz JG, Müller KA. Possible high Tc superconductivity in the Ba-La-Cu-O system Zeitschrift für Physik B 1986;64 189-193.

  969. Kamimura H, Ushio H, Matsuno S. Theory of lanthanum copper oxide (LSCO) superconductors. Physica C: Superconductivity 2007;460-462 991-992.

  970. Anis-ur-Rehman M, Mubeen M. Synthesis and enhancement of current density in cerium doped Bi(Pb)Sr(Ba)-2223 high Tc superconductor. Synthetic Metals 2012;162(19-20) 1769-1774.

  971. Li S, Hu QY, Liu HK, Dou SX, Gao W. The grain alignment of Bi2223, Bi2212 and Bi2223 + Bi2212 phases in mechanical deformation and annealing processes. Physica C: Superconductivity 1997;279(3-4) 265-276.

  972. On DT, Sato O, Fujishima A, Hashimoto K. Change of the critical temperature of high-Tc single (2223) phase Bi–Pb–Sr–Ca–Cu–O superconductors by intercalation process Journal of Physics and Chemistry of Solids 1999;60(7) 883-890.

  973. Anis-ur-Rehman M, Maqsood A. Study of the thermal behaviour of Bi(Pb)Sr(Ba)-2223 high-Tc granular superconductors. Physica C: Superconductivity 2005;418(3-4) 121-130.

  974. Tampieri A, Calestani G, Celotti G, Masini R, Lesca S. Multi-step process to prepare bulk BSCCO (2223) superconductor with improved transport properties. Physica C: Superconductivity 1998;306(1-2) 21-33.

  975. Kandyel E, Wu X.-J, Adachi S, Tajima S. New Tl–Sr–Ca–Cu–O superconductor with 2223-type structure stabilized by mercury under high-pressure. Physica C: Superconductivity 1999;328(1-2) 44-52.

  976. Sundaresan A, Asada H, Crisan A, Nie JC, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S. Preparation of Tl-2212 and -1223 superconductor thin films and their microwave properties. Physica C: Superconductivity 2003;388-389 473-474.

  977. Liu RS, Hu SH, Jefferson DA, Edwards PP.Superconductivity at 124 K in (Tl0.5Pb0.5)Sr2Ca2Cu3O9. Physica C 1992;198 318-322.

  978. Marcos MD, Attfield JP. Crystal structure of Tl0.5Pb0.5Sr2Ca2Cu3O9 at 300 K and around Tc (118 K). Physica C: Superconductivity 1996;270(3-4) 267-273.

  979. Hayri EA, Greenblatt M. Superconductivity in Tl2Ba2-xSrxCaCu2O8 solid solutions: Tc≈44 K for a composition with x=2.0. Physica C 1988;156(5) 775-780.

  980. Singh B, Gupta S, Sharma N, Goyal SC. Higher order elastic constants of La1.85Sr0.15CuO4 high temperature superconductor. Physica C: Superconductivity 2005;419(1-2) 1-6.

  981. Akhter S, Paul DP. Estimation of nucleation thermodynamical parameters of La2Sr2CuO4 (LSCO) crystallizing from high temperature solution. Materials Chemistry and Physics 2004;88(1) 41-45.

  982. Jayachandran KP, Menon CS. Mode Grüneisen parameters and the low temperature thermal expansion of high-Tc superconductor La1.8Sr0.2CuO4. Physica C: Superconductivity 2002;383(1-2) 159-168.

  983. Hardy V, Martin C, Damay F, André G. Magnetic couplings in the quasi-2D triangular Heisenberg antiferromagnets α-ACr2O4 (A=Ca, Sr, Ba). Journal of Magnetism and Magnetic Materials 2013;330 111-118.

  984. Zhao L, Wang K.-J, Wen M.-H, Wu M.-K. Floating-zone growth and characterization of triangular lattice antiferromagnetic α-SrCr2O4 crystals. Journal of Crystal Growth 2014;392 81-86.

  985. Müller-Buschbaum H. The crystal chemistry of AM2O4 oxometallates. Alloys and Compounds 2003;349(1-2) 49-104.

  986. Moissan H. Nouvelles expériences sur la reproduction du diamant. Comptes rendus de l'Académie des sciences 1894;118 320-326.

  987. Moissan H.Bulletin de la Societe Chimique de France 1894;11 1002.

  988. Moissan H.Annales de Chimie et de Physique 1896;9 247.

  989. Ruschewitz U. Binary and ternary carbides of alkali and alkaline-earth metals. Coordination Chemistry Reviews 2003;244(1-2) 115-136.

  990. Vohn V, Knapp M, Ruschewitz U. Synthesis and Crystal Structure of SrC2. Journal of Solid State Chemistry 2000;151(1) 111-116.

  991. Xiao B, Feng J, Chen JC, Yu L. Crystal structures and electronic properties of MC2 (M = Mg, Ca, Sr, Ba) by comparative studies based on ab-initio calculations. Chemical Physics Letters 2007;448(1-3) 35-40.

  992. Inumaru K, Kuroda Y, Sakamoto K, Murashima M, Yamanaka S. Synthesis and high metallic conductivity of layer-structured Sr2N thin film deposited onto MgO(001) substrate. Journal of Alloys and Compounds 2004;372(1-2) L1-L3.

  993. Reckeweg O, DiSalvo FJ. Alkaline earth metal nitride compounds with the composition M2NX (M=Ca, Sr, Ba; X=□, H, Cl or Br). Solid State Sciences 2002;4(5) 575-584.

  994. Bowman A, Smith RI, Gregory DH. Synthesis and structure of the ternary and quaternary strontium nitride halides, Sr2N(X, X′) (X, X′=Cl, Br, I). Journal of Solid State Chemistry 2006;179(1) 130-139.

  995. Alahmed ZA, Reshak AH. DFT calculation of the electronic structure and optical properties of two strontium germanium nitrides: α-Sr2GeN2 and β-Sr2GeN2. Journal of Alloys and Compounds 2013;559 181-187.

  996. Bowman A, Gregory DH. Synthesis and characterisation of the ternary nitride, Sr2TaN3. Journal of Alloys and Compounds 2003;348(1-2) 80-87.

  997. Balducci G, Brutti S, Ciccioli A, Gigli G, Trionfetti G, Palenzona A, Pani M. Vapor pressures and thermodynamic properties of strontium silicides. Intermetallics 2006;14(5) 578-583.

  998. Shein IR, Ivanovskii AL. Electronic band structure of pseudo-binary AlB2-like hexagonal silicides SrNixSi2-x as novel low-TC superconductors. Physica B: Condensed Matter 2012;407(23) 4592-4594.

  999. Garay-Tapia AM, Romero AH, Trapaga G, Arróyave R. First-principles investigation of the Al–Si–Sr ternary system: Ground state determination and mechanical properties. Intermetallics 2012;21(1) 31-44.

  1000. Kauzlarich SM, Condron CL, Wassei JK, Ikeda T, Snyder GJ. Structure and high-temperature thermoelectric properties of SrAl2Si2. Journal of Solid State Chemistry 2009;182(2) 240-245. D.Moser,D.

  1001. Lee MH, Sankey OF, Björling T, Noréus D,Parker SF, Häussermann U. Vibrational Properties of Polyanionic Hydrides SrAl2H2 and SrAlSiH:  New Insights into Al-H Bonding Interactions Inorganic Chemistry200;74669876991.

  1002. Kranak VF, Evans MJ, Daemen LL, Proffen T, Lee MH, Sankey OF, Häussermann U. Structural and dynamic properties of the polyanionic hydrides SrAlGeH and BaAlGeH. Solid State Sciences 2009;11(11) 1847-1853.

  1003. Evans NDM. Binding mechanisms of radionuclides to cement. Cement and Concrete Research 2008;38(4) 543-553.

  1004. Omotoso OE, Ivey G, Mikula R. Containment mechanism of trivalent chromium in tricalcium silicate. Journal of Hazardous Materials 1998;60 1-28.

  1005. Atkins M, Glasser FP. Application of Portland cement-based materials to radioactive waste immobilization. Waste Management 1992;12 105-131.

  1006. Rahman ROA, El Abidin DHAZ, Abou-Shady H. Assessment of strontium immobilization in cement–bentonite matrices. Chemical Engineering Journal 2013;228 772-780.

  1007. El-Kamash AM, El-Naggar MR, El-Dessouky MI. Immobilization of cesium and strontium radionuclides in zeolite-cement blends. Journal of Hazardous Materials 2006;136(2) 310-316.

  1008. Bensted J, Varma SP. Ettringite and its derivatives. Cement Technology 1971;2 73-76.

  1009. Heimann RB. Interaction of cement and radioactive waste forms in multicomponent systems tests at 200°C Part 1: Leaching and Sorption of cesium, strontium and actinides. Cement and Concrete Research 1988;18(3) 389-400.

  1010. Ayvacıklı M, Ege A, Yerci S, Can N. Synthesis and optical properties of Er3+ and Eu3+ doped SrAl2O4 phosphor ceramic. Journal of Luminescence2011;1312432-2439.

  1011. Kacimi L, Simon-Masseron A, Salem S, Ghomari A, Derriche Z. Synthesis of belite cement clinker of high hydraulic reactivity. Cement and Concrete Research 2009;39(7) 559-565.

  1012. Ptáček P, Opravil T, Šoukal F, Havlica J, Holešinský R. Kinetics and mechanism of formation of gehlenite, Al–Si spinel and anorthite from the mixture of kaolinite and calcite. Solid State Sciences2013;2653-58.

  1013. Marocco A, Liguori B, Dell’Agli G, Pansini M.Sintering behaviour of celsian based ceramics obtained from the thermal conversion of (Ba, Sr)-exchanged zeolite A. Journal of the European Ceramic Society2011;31(11) 1965-1973.

  1014. Abe T, Sukamoto K, Sunagawa I. Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Physics and Chemistry of Minerals 1991;17(6) 473-484.

  1015. Arifov PA, Bulatova MM. Triangulation and Specific Features of the Phase Formation in Strontium Aluminosilicate Glass-Forming Systems.Glass Physics and Chemistry 2004;30(2) 198-201.

  1016. NielsenSP.The biological role of strontium. Bone 2004;35(3) 583-588.

  1017. Jensen J.-EB, Stang H, Kringsholm B. Relationship between trace element content and mechanical bone strength. Bone 1997;20(Suppl 4) 104.

  1018. Morohashi T, Sano T, Yamada S. Effects of strontium on calcium metabolism in rats: I. A distinction between pharmacologic and toxic doses. Japanese Journal of Pharmacology 1994;64(3) 155-162.

  1019. TippleBJ, ChauT, ChessonLA, FernandezDP, EhleringerJR. Isolation of strontium pools and isotope ratios in modern human hair. Analytica Chimica Acta 2013;798 64-73.

  1020. FennerJN, WrightLE. Revisiting the strontium contribution of sea salt in the human diet. Journal of Archaeological Science 2014;44 99-103.

  1021. WrightLE. Immigration to Tikal, Guatemala: Evidence from stable strontium and oxygen isotopes. Journal of Anthropological Archaeology 2012;31(3) 334-352.

  1022. BatailleCP, BowenGJ. Mapping 87Sr/86Sr variations in bedrock and water for large scale provenance studies. Chemical Geology 2012;304-305 39-52.

  1023. KremenovićA, ColombanPh, PiriouB, MassiotD, FlorianP. Structural and spectroscopic characterization of the quenched hexacelsian. Journal of Physics and Chemistry of Solids 2003;64(11) 2253-2268.

  1024. Romero-Serrano A, Cruz-Ramirez A, Zeifert B, Hallen-Lopez M, Hernandez-Ramirez A. Thermodynamic Modeling of the BaO–SiO2 and SrO–SiO2 Binary Melts. Glass Physics and Chemistry 2010;36(2) 171-178.

  1025. Zhou L, Guo J, Yang N, Li L. KiSolid-state magnetic resonance and infrared spectroscopy of alkali feldspars. Science in Cguba (Series D) 1997;40(2) 159-165.

  1026. Le Parc R, Champagnon B, Dianoux J, Jarry P, Martinez V. Anorthite and CaAl2Si2O8 glass: low frequency Raman spectroscopy and neutron scattering. Journal of Non-Crystalline Solids 2003;323 155-161.

  1027. Velde B, Syono Y, Couty R, Kikuchi M. High pressure infrared spectra of diapletic anorthite glass. Physics and Chemistry of minerals 1987;14 345-349.

  1028. Dowty E. Vibrational interactions of tetrahedra in silicate glasses and crystals: II. Calculations on melilites, pyroxnes, silica polymorphs and feldspars. Physics and Chemistry of minerals 1987;14 122-138.

  1029. Yang Y, Min Y, Lococo J, Jun Y.-Sh. Effects of Al/Si ordering on feldspar dissolution: Part I. Crystallographic control on the stoichiometry. Geochimica et Cosmochimica Acta 2014;126 574-594.

  1030. Anbalagan G, Sankari G, Ponnusamy S, Thilak kumar R, Gunasekaran S.Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2009;74(2) 404-409.

  1031. Orlova LA, Popovich NV, Uvarova NE, Paleari A, Sarkisov PD.High-temperature resistant glass-ceramics based on Sr-anorthite and tialite phases. Ceramics International2012;38(8) 6629-6634.

  1032. Ibrahim DM, Mostafa AA, Khalil T. Preparation of tialite (aluminium titanate) via the urea formaldehyde polymeric route. Ceramics International 1999;25(8) 697-704.

  1033. Zabicky J, Kimmel G, Yaaran J, Zevin L.Thermal anisotropy of tialite (Al2TiO5) by powder XRD. Nanostructured Materials1995;6(5-8) 675-678.

  1034. WangS.-F, HsuY.-F, LuH.-Ch, LoS.-Ch, ChengCh.-S. B2O3-free SiO2–Al2O3–SrO–La2O3–ZnO–TiO2 glass sealants for intermediate temperature solid oxide fuel cell applications. International Journal of Hydrogen Energy 2012;37(7) 5901-5913.

  1035. OjhaPK, ChongdarTK, GokhaleNM, KulkarniAR. Investigation of crystallization kinetic of SrO–La2O3–Al2O3–B2O3–SiO2 glass and its suitability for SOFC sealant. International Journal of Hydrogen Energy 2011;36(22) 14996-15001.

  1036. MahapatraMK, LuK, Reynolds Jr WT. Thermophysical properties and devitrification of SrO-La2O3-Al2O3-B2O3-SiO2-based glass sealant for solid oxide fuel/electrolyzer cells. Journal of Power Sources 2008;179(1) 106-112.

  1037. Mallik A, Kundu P, Basumajumdar A. Nucleation, crystallization behavior and microstructure of mica glass-ceramics in the system SrO⋅4MgO⋅xAl2O3⋅6SiO2⋅2MgF2 (x=1, 1.5 and 2). Ceramics International 2013;39(6) 6963-6969.

  1038. Duan F. The role of PbO on crystallization in PbO-SrO-TiO2-SiO2 glass. Journal of Non-Crystalline Solids2010;356(43) 2286-2288.

  1039. Hazeli K, Sadeghi A, Pekguleryuz MO, Kontsos A. The effect fo strontium in plasitity of magnesium alloys. Materials Science & Engineering A 2013;578 383-393.

  1040. Niu J.-x, Chen Q.-r, Xu N.-x, Wei Z.-l. Effect of combinative addition of strontium and rare earth elements oncorrosion resistance of AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China 2008;18 1058-1064.

  1041. SadeghiA, PekguleryuzM. Microstructure, mechanical properties and texture evolution of AZ31 alloy containing trace levels of strontium. Materials Characterization 2011;62(8) 742-750.

  1042. TimpelM, WanderkaN, SchlesigerR, YamamotoT, LazarevN, IsheimD, SchmitzG, MatsumuraS, BanhartJ. The role of strontium in modifying aluminium-silicon alloys. Acta Materialia 2012;60(9) 3920-3928.

  1043. ShabestariSG, KeshavarzM, HejaziMM. Effect of strontium on the kinetics of formation and segregation of intermetallic compounds in A380 aluminum alloy. Journal of Alloys and Compounds 2009;477(1-2) 892-899.

Written By

Petr Ptáček

Published: 02 July 2014