\\n\\n
IntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\\n\\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\\n\\nLaunching 2021
\\n\\nArtificial Intelligence, ISSN 2633-1403
\\n\\nVeterinary Medicine and Science, ISSN 2632-0517
\\n\\nBiochemistry, ISSN 2632-0983
\\n\\nBiomedical Engineering, ISSN 2631-5343
\\n\\nInfectious Diseases, ISSN 2631-6188
\\n\\nPhysiology (Coming Soon)
\\n\\nDentistry (Coming Soon)
\\n\\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\\n\\nNote: Edited in October 2021
\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/132"}},components:[{type:"htmlEditorComponent",content:'With the desire to make book publishing more relevant for the digital age and offer innovative Open Access publishing options, we are thrilled to announce the launch of our new publishing format: IntechOpen Book Series.
\n\nDesigned to cover fast-moving research fields in rapidly expanding areas, our Book Series feature a Topic structure allowing us to present the most relevant sub-disciplines. Book Series are headed by Series Editors, and a team of Topic Editors supported by international Editorial Board members. Topics are always open for submissions, with an Annual Volume published each calendar year.
\n\nAfter a robust peer-review process, accepted works are published quickly, thanks to Online First, ensuring research is made available to the scientific community without delay.
\n\nOur innovative Book Series format brings you:
\n\nIntechOpen Book Series will also publish a program of research-driven Thematic Edited Volumes that focus on specific areas and allow for a more in-depth overview of a particular subject.
\n\nIntechOpen Book Series will be launching regularly to offer our authors and editors exciting opportunities to publish their research Open Access. We will begin by relaunching some of our existing Book Series in this innovative book format, and will expand in 2022 into rapidly growing research fields that are driving and advancing society.
\n\nLaunching 2021
\n\nArtificial Intelligence, ISSN 2633-1403
\n\nVeterinary Medicine and Science, ISSN 2632-0517
\n\nBiochemistry, ISSN 2632-0983
\n\nBiomedical Engineering, ISSN 2631-5343
\n\nInfectious Diseases, ISSN 2631-6188
\n\nPhysiology (Coming Soon)
\n\nDentistry (Coming Soon)
\n\nWe invite you to explore our IntechOpen Book Series, find the right publishing program for you and reach your desired audience in record time.
\n\nNote: Edited in October 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1001",leadTitle:null,fullTitle:"Tumor Microenvironment and Myelomonocytic Cells",title:"Tumor Microenvironment and Myelomonocytic Cells",subtitle:null,reviewType:"peer-reviewed",abstract:"Tumor microenvironment represents an extremely dynamic niche shaped by the interplay of different cell types (e.g. tumor cells, stromal cells), their soluble products (e.g.cytokines, chemokines and growth factors) and varied physico-chemical conditions (e.g low oxygen concentration or hypoxia). Recent studies have identified myelomonocytic cells as key players in regulating the tumor microenvironment and hence, tumor progression in a variety of cancers. In view of these findings, the present book attemps to provide a comprehensive account of the diversity of tumor microenvironment across different cancers and how myelomonocytic cells have taken the center-stage in regulating this niche to direct cancer progression. A better understanding of the myelomonocytic cells and the mechanisms by which they regulate cancer progression will open new vistas in cancer therapeutics.",isbn:null,printIsbn:"978-953-51-0439-1",pdfIsbn:"978-953-51-6946-8",doi:"10.5772/1507",price:139,priceEur:155,priceUsd:179,slug:"tumor-microenvironment-and-myelomonocytic-cells",numberOfPages:312,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"a2392066cd104cd48f3b296bf72b97a6",bookSignature:"Subhra K. Biswas",publishedDate:"March 30th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1001.jpg",numberOfDownloads:36793,numberOfWosCitations:20,numberOfCrossrefCitations:11,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:29,numberOfDimensionsCitationsByBook:2,hasAltmetrics:1,numberOfTotalCitations:60,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 29th 2011",dateEndSecondStepPublish:"April 26th 2011",dateEndThirdStepPublish:"August 31st 2011",dateEndFourthStepPublish:"September 30th 2011",dateEndFifthStepPublish:"January 28th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"69842",title:"Dr.",name:"Subhra",middleName:"K.",surname:"Biswas",slug:"subhra-biswas",fullName:"Subhra Biswas",profilePictureURL:"https://mts.intechopen.com/storage/users/69842/images/3633_n.jpg",biography:"Dr. Biswas’s research interests focus on investigating the role of monocytes and macrophages in different human diseases, in particular, cancer. Dr. Biswas completed his Ph.D in Biotechnology at Banaras Hindu University, India, following which he did his post-doctoral study at the Istituto di Ricerche Farmacologiche \\Mario Negri\\ in Milan, Italy. He is a principal investigator at the Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A*STAR), Singapore. Dr. Biswas’s major contribution in this field was the first molecular characterization of tumor associated macrophages. Dr. Biswas is a member of the American Association of Immunologists and European Macrophage and Dendritic Cell Society and an editorial board member of Scientific Reports, Cancer Microenvironment and Frontiers in Tumor Immunity.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"A*STAR-NUS Clinical Imaging Research Centre",institutionURL:null,country:{name:"Singapore"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1083",title:"Medical Oncology",slug:"medical-oncology"}],chapters:[{id:"34378",title:"Cell Lineage Commitment and Tumor Microenvironment as Determinants for Tumor-Associated Myelomonocytic Cells Plasticity",doi:"10.5772/34377",slug:"cell-lineage-commitment-and-tumor-microenvironment-as-determinants-for-tumor-associated-myelomonocyt",totalDownloads:2022,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Raffaella Bonecchi1, Benedetta Savino1,\r\nMatthieu Pesant1 and Massimo Locati1",downloadPdfUrl:"/chapter/pdf-download/34378",previewPdfUrl:"/chapter/pdf-preview/34378",authors:[{id:"99884",title:"Prof.",name:"Massmo",surname:"Locati",slug:"massmo-locati",fullName:"Massmo Locati"}],corrections:null},{id:"34379",title:"Functions of Diverse Myeloid Cells in the Tumor Micro-Environment",doi:"10.5772/35123",slug:"functions-of-diverse-myeloid-cells-in-the-tumor-micro-environment",totalDownloads:2438,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Paola Allavena and Antonio Sica",downloadPdfUrl:"/chapter/pdf-download/34379",previewPdfUrl:"/chapter/pdf-preview/34379",authors:[{id:"103051",title:"Dr.",name:"Paola",surname:"Allavena",slug:"paola-allavena",fullName:"Paola Allavena"},{id:"104290",title:"Dr.",name:"Antonio",surname:"Sica",slug:"antonio-sica",fullName:"Antonio Sica"}],corrections:null},{id:"34380",title:"Monocyte Subsets and Their Role in Tumor Progression",doi:"10.5772/32615",slug:"monocyte-subsets-and-their-role-in-tumor-progression",totalDownloads:3765,totalCrossrefCites:3,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Andrea Doseff and Arti Parihar",downloadPdfUrl:"/chapter/pdf-download/34380",previewPdfUrl:"/chapter/pdf-preview/34380",authors:[{id:"92127",title:"Dr",name:"Andrea",surname:"Doseff",slug:"andrea-doseff",fullName:"Andrea Doseff"},{id:"127683",title:"Dr.",name:"Arti",surname:"Parihar",slug:"arti-parihar",fullName:"Arti Parihar"}],corrections:null},{id:"34381",title:"Myeloid Derived Suppressor Cells: Subsets, Expansion, and Role in Cancer Progression",doi:"10.5772/36409",slug:"myeloid-derived-suppressor-cells-subsets-expansion-and-role-in-cancer-progression",totalDownloads:8062,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Jean-Pierre Abastado and Liang Zhi",downloadPdfUrl:"/chapter/pdf-download/34381",previewPdfUrl:"/chapter/pdf-preview/34381",authors:[{id:"34324",title:"Dr.",name:"Jean-Pierre",surname:"Abastado",slug:"jean-pierre-abastado",fullName:"Jean-Pierre Abastado"},{id:"102924",title:"Dr.",name:"Liang",surname:"Zhi",slug:"liang-zhi",fullName:"Liang Zhi"}],corrections:null},{id:"34382",title:"The Role of Hypoxia in Re-educating Macrophages in the Tumour Environment",doi:"10.5772/48976",slug:"the-role-of-hypoxia-in-re-educating-macrophages-in-the-tumour-environment",totalDownloads:2647,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Reuben J. Harwood1, Claire E. Lewis and Subhra K. Biswas",downloadPdfUrl:"/chapter/pdf-download/34382",previewPdfUrl:"/chapter/pdf-preview/34382",authors:[{id:"69842",title:"Dr.",name:"Subhra",surname:"Biswas",slug:"subhra-biswas",fullName:"Subhra Biswas"}],corrections:null},{id:"34383",title:"Tumor Inflammatory Microenvironment in EMT and Metastasis",doi:"10.5772/32219",slug:"tumor-inflammatory-microenvironment-in-emt-and-metastasis",totalDownloads:3150,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Tingting Yuan, Yadi Wu and Peter Zhou",downloadPdfUrl:"/chapter/pdf-download/34383",previewPdfUrl:"/chapter/pdf-preview/34383",authors:[{id:"90624",title:"Prof.",name:"Peter",surname:"Zhou",slug:"peter-zhou",fullName:"Peter Zhou"},{id:"121036",title:"Dr.",name:"Tingting",surname:"Yuan",slug:"tingting-yuan",fullName:"Tingting Yuan"},{id:"121037",title:"Dr.",name:"Yadi",surname:"Wu",slug:"yadi-wu",fullName:"Yadi Wu"}],corrections:null},{id:"34384",title:"Lung Tumor Microenvironment and Myelomonocytic Cells",doi:"10.5772/33119",slug:"lung-tumor-microenvironment-and-myelomonocytic-cells",totalDownloads:1910,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Minu Srivastava, Asa Andersson, Li Zhu, Marni Harris-White, Jay M Lee, Steven Dubinett and Sherven Sharma",downloadPdfUrl:"/chapter/pdf-download/34384",previewPdfUrl:"/chapter/pdf-preview/34384",authors:[{id:"94113",title:"Prof.",name:"Sherven",surname:"Sharma",slug:"sherven-sharma",fullName:"Sherven Sharma"},{id:"94875",title:"Dr.",name:"Minu",surname:"Srivastava",slug:"minu-srivastava",fullName:"Minu Srivastava"},{id:"94876",title:"Dr.",name:"Asa",surname:"Andersson",slug:"asa-andersson",fullName:"Asa Andersson"},{id:"94879",title:"Dr.",name:"Marni",surname:"Harris-White",slug:"marni-harris-white",fullName:"Marni Harris-White"},{id:"94880",title:"Dr.",name:"Steven",surname:"Dubinett",slug:"steven-dubinett",fullName:"Steven Dubinett"},{id:"127063",title:"Dr.",name:"Li",surname:"Zhu",slug:"li-zhu",fullName:"Li Zhu"},{id:"127704",title:"Dr.",name:"Jay",surname:"M Lee",slug:"jay-m-lee",fullName:"Jay M Lee"}],corrections:null},{id:"34385",title:"Immunobiology of Monocytes/Macrophages in Hepatocellular Carcinoma",doi:"10.5772/36443",slug:"immunobiology-of-monocytes-macrophages-in-hepatocellular-carcinoma",totalDownloads:1715,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Dong-Ming Kuang and Limin Zheng",downloadPdfUrl:"/chapter/pdf-download/34385",previewPdfUrl:"/chapter/pdf-preview/34385",authors:[{id:"108355",title:"Dr.",name:"Dong-Ming",surname:"Kuang",slug:"dong-ming-kuang",fullName:"Dong-Ming Kuang"},{id:"127626",title:"Prof.",name:"Limin",surname:"Zheng",slug:"limin-zheng",fullName:"Limin Zheng"}],corrections:null},{id:"34386",title:"Macrophages and Microglia in Brain Malignancies",doi:"10.5772/35163",slug:"macrophages-and-microglia-in-brain-malignancies",totalDownloads:2988,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Cristina Riccadonna and Paul R Walker",downloadPdfUrl:"/chapter/pdf-download/34386",previewPdfUrl:"/chapter/pdf-preview/34386",authors:[{id:"103229",title:"Dr.",name:"Paul R",surname:"Walker",slug:"paul-r-walker",fullName:"Paul R Walker"},{id:"103256",title:"MSc.",name:"Cristina",surname:"Riccadonna",slug:"cristina-riccadonna",fullName:"Cristina Riccadonna"}],corrections:null},{id:"34387",title:"The Role of Tumor Microenvironment in Oral Cancer",doi:"10.5772/33020",slug:"the-role-of-tumor-microenvironment-in-oral-cancer",totalDownloads:2369,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Masakatsu Fukuda, Yoshihiro Ohmori and Hideaki Sakashita",downloadPdfUrl:"/chapter/pdf-download/34387",previewPdfUrl:"/chapter/pdf-preview/34387",authors:[{id:"93675",title:"Dr.",name:"Masakatsu",surname:"Fukuda",slug:"masakatsu-fukuda",fullName:"Masakatsu Fukuda"},{id:"94455",title:"Prof.",name:"Hideaki",surname:"Sakashita",slug:"hideaki-sakashita",fullName:"Hideaki Sakashita"},{id:"97622",title:"Prof.",name:"Yoshihiro",surname:"Ohmori",slug:"yoshihiro-ohmori",fullName:"Yoshihiro Ohmori"}],corrections:null},{id:"34388",title:"Modulation of Cancer Progression by Tumor Microenvironmental Leukocyte-Expressed microRNAs",doi:"10.5772/32026",slug:"modulation-of-cancer-progression-by-tumor-microenvironmental-leukocyte-expressed-micrornas",totalDownloads:1785,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Lorenzo Sempere and Jose Conejo-Garcia",downloadPdfUrl:"/chapter/pdf-download/34388",previewPdfUrl:"/chapter/pdf-preview/34388",authors:[{id:"89843",title:"Dr",name:"Lorenzo",surname:"Sempere",slug:"lorenzo-sempere",fullName:"Lorenzo Sempere"},{id:"92950",title:"Dr.",name:"Jose",surname:"Conejo-Garcia",slug:"jose-conejo-garcia",fullName:"Jose Conejo-Garcia"}],corrections:null},{id:"34389",title:"The Role of Mesenchymal Stem Cells in the Tumor Microenvironment",doi:"10.5772/31933",slug:"the-role-of-mesenchymal-stem-cells-in-the-tumor-microenvironment",totalDownloads:2155,totalCrossrefCites:0,totalDimensionsCites:6,hasAltmetrics:1,abstract:null,signatures:"Aline M. Betancourt and Ruth S. Waterman",downloadPdfUrl:"/chapter/pdf-download/34389",previewPdfUrl:"/chapter/pdf-preview/34389",authors:[{id:"89396",title:"Dr.",name:"Aline",surname:"Betancourt",slug:"aline-betancourt",fullName:"Aline Betancourt"}],corrections:null},{id:"34390",title:"Visualization of Myelomonocytic Cells in Tumours",doi:"10.5772/38972",slug:"visualization-of-myelomonocytic-cells-in-tumours",totalDownloads:1789,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Tatyana Chtanova and Lai Guan Ng",downloadPdfUrl:"/chapter/pdf-download/34390",previewPdfUrl:"/chapter/pdf-preview/34390",authors:[{id:"126091",title:"Dr.",name:"Lai Guan",surname:"Ng",slug:"lai-guan-ng",fullName:"Lai Guan Ng"},{id:"138570",title:"Dr.",name:"Tatyana",surname:"Chtanova",slug:"tatyana-chtanova",fullName:"Tatyana Chtanova"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:[{id:"65",label:"highly cited contributor"}]},relatedBooks:[{type:"book",id:"374",title:"Current Cancer Treatment",subtitle:"Novel Beyond Conventional Approaches",isOpenForSubmission:!1,hash:"d752cf5b05d575243ec2c2144073f579",slug:"current-cancer-treatment-novel-beyond-conventional-approaches",bookSignature:"Öner Özdemir",coverURL:"https://cdn.intechopen.com/books/images_new/374.jpg",editedByType:"Edited by",editors:[{id:"52298",title:"Prof.",name:"Oner",surname:"Ozdemir",slug:"oner-ozdemir",fullName:"Oner Ozdemir"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3273",title:"Cancer Treatment",subtitle:"Conventional and Innovative Approaches",isOpenForSubmission:!1,hash:"cdd9872a05001212b3583bff95bae979",slug:"cancer-treatment-conventional-and-innovative-approaches",bookSignature:"Letícia Rangel",coverURL:"https://cdn.intechopen.com/books/images_new/3273.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1311",title:"Advances in Cancer Therapy",subtitle:null,isOpenForSubmission:!1,hash:"24db071212f134f4a7dc3dc0cc786fec",slug:"advances-in-cancer-therapy",bookSignature:"Hala Gali-Muhtasib",coverURL:"https://cdn.intechopen.com/books/images_new/1311.jpg",editedByType:"Edited by",editors:[{id:"57145",title:"Prof.",name:"Hala",surname:"Gali-Muhtasib",slug:"hala-gali-muhtasib",fullName:"Hala Gali-Muhtasib"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3002",title:"Oncogenomics and Cancer Proteomics",subtitle:"Novel Approaches in Biomarkers Discovery and Therapeutic Targets in Cancer",isOpenForSubmission:!1,hash:"bc8990331803d9e6084b367163dcf218",slug:"oncogenomics-and-cancer-proteomics-novel-approaches-in-biomarkers-discovery-and-therapeutic-targets-in-cancer",bookSignature:"César López-Camarillo and Elena Aréchaga-Ocampo",coverURL:"https://cdn.intechopen.com/books/images_new/3002.jpg",editedByType:"Edited by",editors:[{id:"40928",title:"Dr.",name:"Cesar",surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2610",title:"Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"61e4a760de592236762035553ff855e9",slug:"carcinogenesis",bookSignature:"Kathryn Tonissen",coverURL:"https://cdn.intechopen.com/books/images_new/2610.jpg",editedByType:"Edited by",editors:[{id:"145170",title:"Dr.",name:"Kathryn",surname:"Tonissen",slug:"kathryn-tonissen",fullName:"Kathryn Tonissen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1756",title:"Carcinogen",subtitle:null,isOpenForSubmission:!1,hash:"4ec4fd67f39ca00211fc40e7b563d684",slug:"carcinogen",bookSignature:"Margarita Pesheva, Martin Dimitrov and Teodora Stefkova Stoycheva",coverURL:"https://cdn.intechopen.com/books/images_new/1756.jpg",editedByType:"Edited by",editors:[{id:"115544",title:"Dr.",name:"Margarita",surname:"Pesheva",slug:"margarita-pesheva",fullName:"Margarita Pesheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4756",title:"New Aspects in Molecular and Cellular Mechanisms of Human Carcinogenesis",subtitle:null,isOpenForSubmission:!1,hash:"3d0f53df3dd15a086df1fc78bd2aaed7",slug:"new-aspects-in-molecular-and-cellular-mechanisms-of-human-carcinogenesis",bookSignature:"Dmitry Bulgin",coverURL:"https://cdn.intechopen.com/books/images_new/4756.jpg",editedByType:"Edited by",editors:[{id:"93072",title:"Dr.",name:"Dmitry",surname:"Bulgin",slug:"dmitry-bulgin",fullName:"Dmitry Bulgin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4537",title:"Updates on Cancer Treatment",subtitle:null,isOpenForSubmission:!1,hash:"e4d069af27b0dd4f600d1ae75aee66cd",slug:"updates-on-cancer-treatment",bookSignature:"Leticia B. A. Rangel and Ian Victor Silva",coverURL:"https://cdn.intechopen.com/books/images_new/4537.jpg",editedByType:"Edited by",editors:[{id:"60359",title:"Dr.",name:"Letícia",surname:"Rangel",slug:"leticia-rangel",fullName:"Letícia Rangel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3462",title:"Neoadjuvant Chemotherapy",subtitle:"Increasing Relevance in Cancer Management",isOpenForSubmission:!1,hash:"4f88a3fde61b5535375bde00b9c13d1e",slug:"neoadjuvant-chemotherapy-increasing-relevance-in-cancer-management",bookSignature:"Maurie M. Markman",coverURL:"https://cdn.intechopen.com/books/images_new/3462.jpg",editedByType:"Edited by",editors:[{id:"162295",title:"Dr.",name:"Maurie",surname:"Markman",slug:"maurie-markman",fullName:"Maurie Markman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3291",title:"T-Cell Leukemia",subtitle:"Characteristics, Treatment and Prevention",isOpenForSubmission:!1,hash:"fb2dc976b5929dc5fa310da0c658e55e",slug:"t-cell-leukemia-characteristics-treatment-and-prevention",bookSignature:"Mariko Tomita",coverURL:"https://cdn.intechopen.com/books/images_new/3291.jpg",editedByType:"Edited by",editors:[{id:"49567",title:"Dr.",name:"Mariko",surname:"Tomita",slug:"mariko-tomita",fullName:"Mariko Tomita"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"64875",slug:"erratum-introductory-chapter-primary-concept-of-hypoxia-and-anoxia",title:"Erratum - Introductory Chapter: Primary Concept of Hypoxia and Anoxia",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/64875.pdf",downloadPdfUrl:"/chapter/pdf-download/64875",previewPdfUrl:"/chapter/pdf-preview/64875",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/64875",risUrl:"/chapter/ris/64875",chapter:{id:"62932",slug:"introductory-chapter-primary-concept-of-hypoxia-and-anoxia",signatures:"Shrilaxmi Bagali, Gavishsidappa A. Hadimani, Mallanagouda S. Biradar and Kusal K. Das",dateSubmitted:"June 18th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"December 12th 2018",book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",fullName:"Kusal Das",slug:"kusal-das",email:"kusaldas@yahoo.com",position:null,institution:null},{id:"188854",title:"Prof.",name:"M.S.",middleName:null,surname:"Biradar",fullName:"M.S. Biradar",slug:"m.s.-biradar",email:"editor.bjhs@bldeuniversity.ac.in",position:null,institution:null},{id:"263841",title:"Dr.",name:"Shrilaxmi",middleName:null,surname:"Bagali",fullName:"Shrilaxmi Bagali",slug:"shrilaxmi-bagali",email:"shrikots@yahoo.in",position:null,institution:null},{id:"265434",title:"Dr.",name:"Gavishiddappa A.",middleName:null,surname:"Hadimani",fullName:"Gavishiddappa A. Hadimani",slug:"gavishiddappa-a.-hadimani",email:"gavish.hadimani@yahoo.com",position:null,institution:null}]}},chapter:{id:"62932",slug:"introductory-chapter-primary-concept-of-hypoxia-and-anoxia",signatures:"Shrilaxmi Bagali, Gavishsidappa A. Hadimani, Mallanagouda S. Biradar and Kusal K. Das",dateSubmitted:"June 18th 2018",dateReviewed:"July 12th 2018",datePrePublished:"November 5th 2018",datePublished:"December 12th 2018",book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",fullName:"Kusal Das",slug:"kusal-das",email:"kusaldas@yahoo.com",position:null,institution:null},{id:"188854",title:"Prof.",name:"M.S.",middleName:null,surname:"Biradar",fullName:"M.S. Biradar",slug:"m.s.-biradar",email:"editor.bjhs@bldeuniversity.ac.in",position:null,institution:null},{id:"263841",title:"Dr.",name:"Shrilaxmi",middleName:null,surname:"Bagali",fullName:"Shrilaxmi Bagali",slug:"shrilaxmi-bagali",email:"shrikots@yahoo.in",position:null,institution:null},{id:"265434",title:"Dr.",name:"Gavishiddappa A.",middleName:null,surname:"Hadimani",fullName:"Gavishiddappa A. Hadimani",slug:"gavishiddappa-a.-hadimani",email:"gavish.hadimani@yahoo.com",position:null,institution:null}]},book:{id:"7009",title:"Hypoxia and Anoxia",subtitle:null,fullTitle:"Hypoxia and Anoxia",slug:"hypoxia-and-anoxia",publishedDate:"December 12th 2018",bookSignature:"Kusal K. Das and Mallanagouda Shivanagouda Biradar",coverURL:"https://cdn.intechopen.com/books/images_new/7009.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10403",leadTitle:null,title:"Recent Advances in Numerical Simulations",subtitle:null,reviewType:"peer-reviewed",abstract:"A numerical simulation is a computing calculation following a program that develops a mathematical model for a physical, social, economic, or biological system. Numerical simulations are required for analyzing and studying the behavior of systems whose mathematical models are very complex, as in the case of nonlinear systems. Capturing the resulting uncertainty of models based on uncertain parameters and constraints in confidence intervals (1-D), or more generally (>1-D) confidence regions, is very common for expressing to which degree the computed result is believed to be consistent with possible values of the targeted observable. This book examines the different methods used in numerical simulations, including adaptive and stochastic methods as well as finite element analysis research. This work is accompanied by studies of confidence regions, often utilized to express the credibility of such calculations and simulations.",isbn:"978-1-83968-169-1",printIsbn:"978-1-83968-168-4",pdfIsbn:"978-1-83969-315-1",doi:"10.5772/intechopen.91589",price:119,priceEur:129,priceUsd:155,slug:"recent-advances-in-numerical-simulations",numberOfPages:290,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"d74c4bc8f3f49c49eb2e80810d938611",bookSignature:"Francisco Bulnes and Jan Peter Hessling",publishedDate:"September 22nd 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10403.jpg",keywords:null,numberOfDownloads:3238,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:1,numberOfTotalCitations:2,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 13th 2020",dateEndSecondStepPublish:"December 11th 2020",dateEndThirdStepPublish:"February 9th 2021",dateEndFourthStepPublish:"April 30th 2021",dateEndFifthStepPublish:"June 29th 2021",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:"A pioneering researcher in mathematical nanotechnology and formal engineering research theory, appointed director of the IINAMEI and research groups head, many awards, and several badges in the World. Author of more than 100 papers and published many books. Publons reviewer.",coeditorOneBiosketch:"Holder of the Chalmers University of Technology Ph.D. degree and M.Sc. degree in physics from the University of Massachusetts. The original proposer of Deterministic Sampling for uncertainty quantification and model calibration.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes",profilePictureURL:"https://mts.intechopen.com/storage/users/92918/images/system/92918.png",biography:"Dr. Francisco Bulnes has a Ph.D. in Mathematical Sciences from the Instituto de Matemáticas, Universidad Nacional Autonoma deMéxico (IM/UNAM). He is the director of Advanced International Research in Mathematics and Engineering (IINAMEI) and editor in chief of the journal Mathematics. Dr. Bulnes has authored more than 100 journal papers and several books in mathematics and physics research. He is a well known researcher and pioneer in curvature energy theory, mathematical theory of research and mathematical theory of nanotechnology. He has received various honors and awards (Doctorates Honoris Causa) from universities and both governmental and non-governmental organizations. He has two post-doctorates in mathematics from Cuba and Russia. His biography has been published as a tribute book in many countries of the world.",institutionString:"Investigación Internacional Avanzada en Matemáticas e Ingeniería (IINAMEI), Mexico",position:null,outsideEditionCount:null,totalCites:0,totalAuthoredChapters:"12",totalChapterViews:"0",totalEditedBooks:"6",institution:null}],coeditorOne:{id:"20815",title:"Dr.",name:"Jan Peter",middleName:null,surname:"Hessling",slug:"jan-peter-hessling",fullName:"Jan Peter Hessling",profilePictureURL:"https://mts.intechopen.com/storage/users/20815/images/system/20815.jpg",biography:"Jan Peter Hessling earned a Ph.D. in Theoretical Physics from Chalmers University of Technology, Gothenburg, Sweden, in 1996, and an MSc in Physics from the University of Massachusetts, USA, in 1991. Since then, he has been devoted to novel mathematical and statistical concepts, recently focusing on modeling uncertainty and digital filtering. Dr. Hessling is the original proposer of Deterministic Sampling for uncertainty quantification and Dynamic Metrology for the analysis of dynamic measurements utilizing custom digital filtering. He has authored four book chapters for InTechOpen and about twenty journal articles. Since 2016, these concepts are further developed in the privately held company Kapernicus AB, which is dedicated to applied mathematical R&D, offering statistical model sampling (SavvySampler®) and digital filtering of road surfaces (RoadNotes®) worldwide.",institutionString:"Independent scientist",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"2",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"599",title:"Computer Simulation",slug:"numerical-analysis-and-scientific-computing-computer-simulation"}],chapters:[{id:"75127",title:"Femtosecond Laser Pulses: Generation, Measurement and Propagation",slug:"femtosecond-laser-pulses-generation-measurement-and-propagation",totalDownloads:231,totalCrossrefCites:0,authors:[{id:"342055",title:"Associate Prof.",name:"Mounir",surname:"Khelladi",slug:"mounir-khelladi",fullName:"Mounir Khelladi"}]},{id:"75857",title:"Numerical Simulations of Detections, Experiments and Magnetic Field Hall Effect Analysis to Field Torsion",slug:"numerical-simulations-of-detections-experiments-and-magnetic-field-hall-effect-analysis-to-field-tor",totalDownloads:196,totalCrossrefCites:0,authors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}]},{id:"76600",title:"A Monotonic Method of Split Particles",slug:"a-monotonic-method-of-split-particles",totalDownloads:129,totalCrossrefCites:0,authors:[{id:"181004",title:"Prof.",name:"Yury",surname:"Yanilkin",slug:"yury-yanilkin",fullName:"Yury Yanilkin"},{id:"347790",title:"Dr.",name:"Vadim",surname:"Kolobyanin",slug:"vadim-kolobyanin",fullName:"Vadim Kolobyanin"},{id:"347791",title:"Dr.",name:"Vladimir",surname:"Shmelev",slug:"vladimir-shmelev",fullName:"Vladimir Shmelev"}]},{id:"76170",title:"Numerical Simulation Modelling of Building-Integrated Photovoltaic Double-Skin Facades",slug:"numerical-simulation-modelling-of-building-integrated-photovoltaic-double-skin-facades",totalDownloads:266,totalCrossrefCites:0,authors:[{id:"343273",title:null,name:"Siliang",surname:"Yang",slug:"siliang-yang",fullName:"Siliang Yang"}]},{id:"77110",title:"Parameter Dependencies of a Biomechanical Cervical Spine FSU - The Process of Finding Optimal Model Parameters by Sensitivity Analysis",slug:"parameter-dependencies-of-a-biomechanical-cervical-spine-fsu-the-process-of-finding-optimal-model-pa",totalDownloads:232,totalCrossrefCites:0,authors:[{id:"180120",title:"Dr.",name:"Sabine",surname:"Bauer",slug:"sabine-bauer",fullName:"Sabine Bauer"},{id:"343297",title:"MSc.",name:"Ivanna",surname:"Kramer",slug:"ivanna-kramer",fullName:"Ivanna Kramer"}]},{id:"77022",title:"A Numerical Simulator Based on Finite Element Method for Diffusion-Advection-Reaction Equation in High Contrast Domains",slug:"a-numerical-simulator-based-on-finite-element-method-for-diffusion-advection-reaction-equation-in-hi",totalDownloads:178,totalCrossrefCites:0,authors:[{id:"341891",title:"Dr.",name:"Hani",surname:"Akbari",slug:"hani-akbari",fullName:"Hani Akbari"}]},{id:"75801",title:"A Modified Spectral Relaxation Method for Some Emden-Fowler Equations",slug:"a-modified-spectral-relaxation-method-for-some-emden-fowler-equations",totalDownloads:191,totalCrossrefCites:0,authors:[{id:"185293",title:"Dr.",name:"Gerald Tendayi",surname:"Marewo",slug:"gerald-tendayi-marewo",fullName:"Gerald Tendayi Marewo"}]},{id:"77307",title:"Numerical Modeling of Soil Water Flow and Nitrogen Dynamics in a Tomato Field Irrigated with Municipal Wastewater",slug:"numerical-modeling-of-soil-water-flow-and-nitrogen-dynamics-in-a-tomato-field-irrigated-with-municip",totalDownloads:170,totalCrossrefCites:0,authors:[{id:"191059",title:"Dr.",name:"Ali Erfani",surname:"Agah",slug:"ali-erfani-agah",fullName:"Ali Erfani Agah"}]},{id:"75421",title:"Determination of Values Range of Physical Quantities and Existence Parameters of Normal Spherical Detonation by the Method of Numerical Simulation",slug:"determination-of-values-range-of-physical-quantities-and-existence-parameters-of-normal-spherical-de",totalDownloads:228,totalCrossrefCites:0,authors:[{id:"264900",title:"Mr.",name:"Myron",surname:"Polatayko",slug:"myron-polatayko",fullName:"Myron Polatayko"}]},{id:"73036",title:"On Statistical Assessments of Racial/Ethnic Inequalities in Cigarette Purchase Price among Daily Smokers in the United States: Non-Hispanic Whites Pay Least",slug:"on-statistical-assessments-of-racial-ethnic-inequalities-in-cigarette-purchase-price-among-daily-smo",totalDownloads:267,totalCrossrefCites:0,authors:[{id:"326641",title:"Associate Prof.",name:"Julia N.",surname:"Soulakova",slug:"julia-n.-soulakova",fullName:"Julia N. Soulakova"},{id:"326645",title:"Dr.",name:"Trung",surname:"Ha",slug:"trung-ha",fullName:"Trung Ha"}]},{id:"74426",title:"Intensive Computational Method Applied for Assessing Specialty Coffees by Trained and Untrained Consumers",slug:"intensive-computational-method-applied-for-assessing-specialty-coffees-by-trained-and-untrained-cons",totalDownloads:306,totalCrossrefCites:0,authors:[{id:"326912",title:"Dr.",name:"Gilberto",surname:"Liska",slug:"gilberto-liska",fullName:"Gilberto Liska"},{id:"337973",title:"Dr.",name:"Luiz Alberto",surname:"Beijo",slug:"luiz-alberto-beijo",fullName:"Luiz Alberto Beijo"},{id:"337974",title:"Dr.",name:"Marcelo Ângelo",surname:"Cirillo",slug:"marcelo-angelo-cirillo",fullName:"Marcelo Ângelo Cirillo"},{id:"337976",title:"Dr.",name:"Flávio Meira",surname:"Borém",slug:"flavio-meira-borem",fullName:"Flávio Meira Borém"},{id:"337977",title:"Dr.",name:"Fortunato Silva De",surname:"Menezes",slug:"fortunato-silva-de-menezes",fullName:"Fortunato Silva De Menezes"}]},{id:"74188",title:"The Periodic Restricted EXPAR(1) Model",slug:"the-periodic-restricted-expar-1-model",totalDownloads:271,totalCrossrefCites:0,authors:[{id:"326078",title:"Dr.",name:"Mouna",surname:"Merzougui",slug:"mouna-merzougui",fullName:"Mouna Merzougui"}]},{id:"77644",title:"Severe Testing and Characterization of Change Points in Climate Time Series",slug:"severe-testing-and-characterization-of-change-points-in-climate-time-series",totalDownloads:115,totalCrossrefCites:0,authors:[{id:"343188",title:"Dr.",name:"James",surname:"Ricketts",slug:"james-ricketts",fullName:"James Ricketts"},{id:"414600",title:"Prof.",name:"Roger",surname:"Jones",slug:"roger-jones",fullName:"Roger Jones"}]},{id:"76773",title:"International Benchmark Activity in the Field of Sodium Fast Reactors",slug:"international-benchmark-activity-in-the-field-of-sodium-fast-reactors",totalDownloads:211,totalCrossrefCites:0,authors:[{id:"14024",title:"Dr.",name:"Giovanni",surname:"Bruna",slug:"giovanni-bruna",fullName:"Giovanni Bruna"},{id:"346291",title:"M.Sc.",name:"Domenico",surname:"De Luca",slug:"domenico-de-luca",fullName:"Domenico De Luca"},{id:"354262",title:"Dr.",name:"Alessandro",surname:"Petruzzi",slug:"alessandro-petruzzi",fullName:"Alessandro Petruzzi"},{id:"354264",title:"Dr.",name:"Marco",surname:"Cherubini",slug:"marco-cherubini",fullName:"Marco Cherubini"},{id:"354265",title:"Ph.D.",name:"Simone",surname:"Di Pasquale",slug:"simone-di-pasquale",fullName:"Simone Di Pasquale"}]},{id:"75766",title:"On the Determination of Molar Heat Capacity of Transition Elements: From the Absolute Zero to the Melting Point",slug:"on-the-determination-of-molar-heat-capacity-of-transition-elements-from-the-absolute-zero-to-the-mel",totalDownloads:248,totalCrossrefCites:1,authors:[{id:"208177",title:"Prof.",name:"Amauri",surname:"Garcia",slug:"amauri-garcia",fullName:"Amauri Garcia"},{id:"219198",title:"Prof.",name:"José Adilson",surname:"de Castro",slug:"jose-adilson-de-castro",fullName:"José Adilson de Castro"},{id:"225272",title:"Prof.",name:"Ivaldo",surname:"Leão Ferreira",slug:"ivaldo-leao-ferreira",fullName:"Ivaldo Leão Ferreira"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8907",title:"Advances in Quantum Communication and Information",subtitle:null,isOpenForSubmission:!1,hash:"6b074960b5f71319aa57217e7b54216e",slug:"advances-in-quantum-communication-and-information",bookSignature:"Francisco Bulnes, Vasilios N. Stavrou, Oleg Morozov and Anton V. Bourdine",coverURL:"https://cdn.intechopen.com/books/images_new/8907.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:"advances-in-complex-analysis-and-applications",bookSignature:"Francisco Bulnes and Olga Hachay",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8600",title:"Recent Advances in Integral Equations",subtitle:null,isOpenForSubmission:!1,hash:"55d44e96dac2ef01fb52708933293c71",slug:"recent-advances-in-integral-equations",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/8600.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3729",title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",subtitle:null,isOpenForSubmission:!1,hash:"0e1538fba70d1a9ed222ff4e8d5b8d90",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebras",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/3729.jpg",editedByType:"Authored by",editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3036",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 2",isOpenForSubmission:!1,hash:"39d85d5d566c24744e4ac69fc297bb36",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-2",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/3036.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3037",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 3",isOpenForSubmission:!1,hash:"1de63ac4f2c398a1304a7c08ee883655",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-3",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/3037.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1485",title:"Applications of Monte Carlo Method in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"08abe20f1549c83cfb208c83e12ee7df",slug:"applications-of-monte-carlo-method-in-science-and-engineering",bookSignature:"Shaul Mordechai",coverURL:"https://cdn.intechopen.com/books/images_new/1485.jpg",editedByType:"Edited by",editors:[{id:"21994",title:"Prof.",name:"Shaul",surname:"Mordechai",slug:"shaul-mordechai",fullName:"Shaul Mordechai"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1025",title:"Engineering Education and Research Using MATLAB",subtitle:null,isOpenForSubmission:!1,hash:"6e4cf9f0e6d7dccba13bc8edc4bf8e70",slug:"engineering-education-and-research-using-matlab",bookSignature:"Ali H. Assi",coverURL:"https://cdn.intechopen.com/books/images_new/1025.jpg",editedByType:"Edited by",editors:[{id:"12279",title:"Dr.",name:"Ali",surname:"Assi",slug:"ali-assi",fullName:"Ali Assi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"46364",title:"Cadherin-Fc Chimeric Protein-Based Biomaterials: Advancing Stem Cell Technology and Regenerative Medicine Towards Application",doi:"10.5772/58287",slug:"cadherin-fc-chimeric-protein-based-biomaterials-advancing-stem-cell-technology-and-regenerative-medi",body:'‘Stem cell’ – the term was first coined by Russian histologist Alexander Maksimov in 1908 to herald the existence of special cells those have capacity to generate blood cell. Stem cells are the core materials of regenerative medicine and tissue engineering. Although there are multiple types of stem cells available based on their origin and functionality; however, scientifically they can be classified into four well-defined classes– (1) embryonic stem cell (ESC), (2) adult stem cells (ASC) for example, muscle satellite cells are muscle-specific adult stem cell, (3) induced pluripotent stem cell (iPSC), and (4) pathological stem cells (PSC) for example, cancer stem cells (CSC) [1]. Out of these 4 types, ESC and ASCs are true physiological stem cells, iPSCs are engineered stem cells and PSCs are conditional stem cells. Among them, ESC and iPSC are being considered true pluripotent stem cells, which have the capacity for unlimited self-renewal and differentiation into all the specialized cell types of the body. Therefore these cells have been considered the most favorable cells for using in regenerative medicine and tissue engineering [2,3,4,5,6,7,8].
Stem cells need a special environment for their survival, maintenance and growth. During the early stage of establishing the culture methodologies for stem cells, it was realized that they need support from other cells for example, mouse embryonic fibroblast (MEF). Co-culture methodology with gamma-irradiated MEF cells used as feeder-cells and enriched culture media with fetal bovine serum (FBS) were successfully utilized for establishing
Matrigel was one of the first biomaterials that was effectively applied as plate-coating materials for
The individual components of Matrigel provide specific functional queues to ESCs and iPSCs. For example, ESC exhibits normal growth when cultured on laminin-coated plate, which was not observed on either fibronectin- or collagen IV-coated surface [21,22,23,24]. It was also reported that specific laminin isoforms have distinctive effects on stem cells; for instance, laminin-111, -332, -511 support adhesion and proliferation of stem cells but isoforms -211 and -411 of laminin do not [22]. The information suggested that designing a defined matrix for stem cell culture requires special biomaterials that can deliver concurrent supports for cell adhesion, proliferation and differentiation. In fact, effective stem cell culture condition with high pluripotency was occasionally achieved in spite of introducing several synthetic and semisynthetic biomaterials alone or as a blend as cell-culture substrate, and therefore, designing such a biomaterial remains a challenging but ultimately rewarding task.
Pioneering work from our laboratory introduced Fc-chimeric protein in stem cell technology approximately a decade ago, and over the years we and others have established multiple Fc-chimeric proteins as significantly favorable cell-recognizable biomaterials in stem cell technology. These works with varieties of Fc-chimeric proteins spanning from ECM component protein [for example, E-cadherin (ECad)] to cytokine [for example, hepatocyte growth factor (HGF)] have shown tremendous potential to overcome the major barriers in stem cell technology, namely defined condition for stem cell culture, selective differentiation to the target lineages, convenient purification of the desired cells etc., for the application of stem cell technology targeting to regenerative medicine. In this article we will focus on ECad-Fc and NCad-Fc chimeric proteins as novel cell-recognizable biomaterials in stem cell technology towards application in regenerative medicine.
An ideal chemically defined xenogeneic-agent free stem cell culture system might be consists of chemically known matrix for plate coating that would provide structural basal support to the stem cells and defined media that is supplemented with highly pure recombinant proteins as functional cytokines. The system should essentially be free from serum or feeder-cells or any other animal products. Even though it is very demanding however, designing and preparing a completely defined stem cell culture system is highly challenging. One worthwhile goal is to design a defined plate-coating material that can successfully replace Matrigel. Since stem cells are essentially dependent on cell-cell or cell-surface interaction for survival, which are mainly mediated by extracellular matrix protein (ECM), a cell-recognizable biomaterial should preferably mimic ECM protein(s).
Such kind of biomaterials can either be employed as a scaffolding molecule that may provide structural support of the growing cells, or as functional effector molecules that can target cellular signal recognition machineries like cell surface receptors or channels to trigger or maintain signaling cascades necessary for survival, proliferation, and differentiation of experimental cells [25]. To act as an artificial ECM the biomaterial under consideration should mimic the physicochemical and biological properties of native components of ECM to facilitate targeted functionalities of cell for example, adhesion, proliferation, differentiation, etc [26]. Similarly, the candidate effector molecules should have physicochemical signature of the comparable native molecules for recognition as functional substrate to endogenous receptors or channels of experimental cells. Synthetic biomaterials have limitations for providing perfect biochemical structural motif for effective recognition by the cellular recognition machineries to execute necessary cellular function, and therefore are generally not efficient enough for practical applications for
Proteins are native elements of cells and natural ECM scaffolds [27] and therefore recombinant proteins could be one of the best candidates to design superior biomaterial for application in regenerative medicine and tissue engineering. Recent progress in biochemistry, molecular biology, bioinformatics, and engineering provides the prospect of expressing and purifying desired recombinant protein with high yield (g/L is achievable) in large scale [28], which can eventually be applied (directly or with modification) as novel, simplified, and bio-active macromolecules in regenerative medicine and tissue engineering [29,30,31]. Such proteins can be generated from a genetic template by natural cellular read-out process namely, DNA>RNA>protein that ensures excellent uniformity and reproducibility of the designed biomaterial depending on cellular conditions, where the production is executed. The native biological production process confirms high degree of reproducibility, which is not realistic by traditional chemosynthetic or mechanosynthetic processes. On the contrary, protein science has its own negative issues for example, highly efficient expression system for the desired protein, convenient purification of the target protein, proper folding of the purified protein, stability of the functional protein, mode of application of experimental protein etc. Chimeric protein technology has long been considered one of the potential methodologies to overcome many of these issues including higher productivity, better stability, and efficient purification of a target protein for bulk scale. Fc-chimeric protein is one such engineered protein that was introduced in 1989, and has been showing great promise for comparatively convenient production efficiency of chimeric protein with functional integrity and long-term stability, and therefore successful applcation in diverse fields of biomedical sciences [32,33,34]. An illustration of Fc-chimeric protein is shown in Fig. 1 with ECad-Fc as a model.
Schematics of Fc-chimeric protein, and its molecular function. (A) Functional domain of target protein is fused as N-terminal with the Fc domain of IgG. ECad is shown here as an example. (B) Plasma-membrane localized ECad dimer can interact with apposing ECad dimer and form high affinity binding that makes cell-cell and cell-surface adhesion.
The cadherins is a large family of single transmembrane proteins with more than 100 members. Out of these we will be focusing on epithelial cadherin (ECad) and neural cadherin (NCad) in this report. They are the member of classical cadherin family, and both of them are glycosylated in their extracellular domain. They have the ability to function as adhesion molecules for the relevant protein-expressing cells. Generally cadherin forms homophilic dimer, and the dimeric forms of cadherins take part in Ca+2-dependent coupling from apposing cells that mediates cell-cell adhesion. These single transmembrane-domain plasma membrane-resident proteins are not only necessary for cell-cell adhesion but also involved in indispensible signaling cascades, which are critical for the development-to-homeostasis-to-demise of cells and organisms.
The extracellular N terminal region of ECad consists of 5 structural domains, which are the signature motifs for ECad and are responsible for the homophilic binding between two neighboring as well as apposing molecules, while the C-terminal intracellular region of ECad interacts with several intracellular proteins such as β-catenin/Armadillo and p-120 catenin [35,36,37]. The p-120 catenin is associated with the targeted transport and stabilization of the adhesion complexes on the plasma membrane. Beside, β-catenin interacts with α-catenin, which in turn initiates actin filament formation
ECad has been shown linked with many early-to-late developmental and differentiation processes
As a biomaterial, ECad-Fc was first applied as plate-coating materials for hepatocyte differentiation experiments [50]. It was observed that differentiated hepatocytes can efficiently adhere with the cell culture plate coated with ECad-Fc. The adhered cells demonstrated comparable molecular characteristics e.g., low DNA synthesizing activity and maintenance of tryptophan oxygenase (TO) expression like those of spheroid-form hepatocytes. As well, the hepatocyte cultured on ECad-Fc-coated plate supported the differentiation of hepatocytes in culture. These results suggested important roles of ECad-Fc matrix for the maintenance of differentiating hepatocytes. This was the first report of ECad-mediated matrix dependability, as a biomaterial, for any cell type in regenerative medicine. After a while, Nagaoka
Xenogeneic-agent free stem cell culture method is extremely critical if the objective of the relevant protocol is to apply the relevant products in regenerative medicine. Since MEF secrets many unidentified molecules, which are potential xenogeneic elements for human subject therefore feeder-cell-based early methodologies are not considerable for applying in regenerative medicine. Matrigel is also produced from mouse carcinoma tissue and ill-defined therefore causing serious known and unknown hazards of xenogeneic contamination in experimentations. An immunogenic sialic acid (NeuGc) has been identified in a co-culture experiment for human ESCs applying MEF and animal derivatives as serum replacement [24,56]. This is specifically worrying as such kind of non-human sialic acid can initiate immunogenic processes in human triggering complete graft rejection and consequential complexities. Non-human animal-derived products also can be a possible cause for mycoplasma contamination, which can directly infect the cells in culture and either damage them totally or can change their properties, and thereby directly or indirectly initiate complicacies for regenerative medicine protocols. Human feeder-cells and serum have been recommended for culturing human ESCs to evade xenogeneic compound in experimental system for regenerative medicine. However, this is associated with a high risk of microbial contamination, for example retroviral components, and hence are not as suitable for
The study of Nagaoka
ECad-Fc is a defined matrix for culturing monolayer of iPS cells. Mouse EB3 cells were successfully cultured on ECad-Fc-coated surface that showed monolayer phenotype (C and D) compare with compact colony phenotype (A and B) for general protocol, which was significantly advantageous for faster growth (E), and higher transfection eficiency (F).
This type of cooking-plate technology, where ECad-Fc provides basal support to the cells, and other immobilized factors for example, LIF-Fc [57] which satisfy specific needs, can be very advantageous for (1) ensuring undifferentiated state of stem cell in culture, (2) cost reduction associated with cytokines, and (3) hassle-free working condition without the necessity of regular media change, which is a standard time-consuming practice for stem cell culture.
The single-cell phenotype seen for ESCs was also observed for other stem cells for example, mouse embryonal carcinoma cells F9 and P19 but not for differentiated cells for example, NMuMG mouse mammary gland cells, MDCK kidney epithelial cells and isolated mouse primary hepatocytes [60]. This result indicated that ECad-Fc-mediated cellular migratory behaviors are most likely specific for embryonic stem cells. Reportable that ECad-facilitated cell-cell adhesion is often rearranged during initial stages of embryogenesis to control cell migration, cell sorting, and tissue function, which is suggesting a close cooperativity of stem cell maintenance, proliferation, and differentiation with ECad [39,48,49,61,62]. However, there is no such suitable system to explore the necessary signaling pathways to address these questions. Nevertheless, since ESC does not form colony on ECad-Fc cell-cooking plate therefore this can be a perfect tool for obtaining single cell model system of stem cells to investigate relevant signaling pathways necessary for stem cell maintenance, proliferation, and differentiation. Our recent study successfully exploited this single-cell phenotype for monitoring cell cycle properties of stem cells on cell-cooking plate (unpublished), indicating the importance of this system for cell biology experiments designed to reveal their individual characteristics. The findings could be invaluable for regulating stem cells for desired application in regenerative medicine.
Most of the stem cell innovations, comprising generation of ESCs and iPSCs, were primarily established in mouse model, and then applied in human models. Similarly, ECad-Fc cell-cooking plate technology was first developed and established for murine stem cells [55,57]. Thereafter, ECad-Fc cooking-plate was successfully applied for human ESC culture following similar methodologies with additional consideration for mild enzymatic treatment during the cell dissociation and seeding steps [56]. A strong protease cocktail Accutase (Millipore) was used for murine ESC culture; however, Accutase treatment was found detrimental to human ESCs, which was recuperated by using enzyme-free proprietary preparation named, Cell Dissociation Buffer (Life Technologies). It is reportable that the human ESCs were cultured on ECad-Fc cooking plate with a completely defined media named mTeSR1 (Stemcell Technologies), and that made the culture method completely defined and xenogeneic-agent free, which is a significant achievement in regenerative medicine. The stem cells cultured on ECad-Fc cooking-plate were practically identical to those cultured on Matrigel-coated plate including cell morphology, proliferation rate, preservation of undifferentiated phenotype, and ability of differentiation into multiple cell types in embryoid bodies as well as in teratoma assay [56]. Interestingly, contrasting with the single-cell phenotype for mouse ESCs, human ESCs produced normal colony forming phenotype on ECad-Fc cooking-plate. The mechanism underlying the difference for this observation was not completely understood though.
Human and mouse ESCs have been shown to demonstrate significant disparities in expression of cell surface markers, transcription factors, cytokines, and proteins in them. The difference was evidently recognized by the fact that mouse ESC can be maintained in undifferentiated state with the addition of LIF devoid of feeder-cell but human ESC cannot [14]. It has been shown that the inhibition of Rho-ROCK signaling pathway generates cell scattering in human ESCs suggesting direct connection between cell scattering and signaling pathways [63]. While both mouse and human ESCs express ECad, however, it appears there are diverse additional factors involved to define ECad-mediated activities in these cells and additional investigations are required to reveal the complete molecular circuitry associated to this phenomenon.
MSC is a type of ASCs, and can be collected from donor by satisfying approved ethical issues. These cells have been considered as potential starting materials for regenerative medicine and tissue engineering. They must be expanded
Targeted differentiation of stem cells and enrichment of desired cell for example, hepatocytes, from the pool of differentiated cells are very important steps towards use of the cells for regenerative medicine. Functionally matured hepatocytes derived from stem cells can be a potential remedy for various hepatic diseases. There have been several hepatic differentiation protocols reported from ESCs using orthodox techniques including embryonic body (EB) formation, and clustered colony formation on gelatin- or feeder-cell-coated plates [52,54]. However, these protocols come with many drawbacks, for example, heterogeneous cell population, spontaneous differentiation, xenogeneic contamination, inefficient conversion to hepatocytes, requirement for enrichment of target cell population etc. Our group has effectively applied ECad-Fc as a cell-recognizable plate-coating materials that facilitated good quality mouse ESCs in culture with superior proliferative activities and single-cell phenotype. Similarly, the cell-recognition property of such Cadherin-Fc chimeric protein was exploited for the possibility of facilitated differentiation of ESCs to specific cells for example, hepatocytes and neural cells [29,30,50,65]. Remarkably, ECad-Fc substratum favored progressive differentiation of ESCs to cells with features of definitive endoderm, hepatic progenitor cells, and finally phenotypical as well as functional hepatocytes-like cells [30,50]. The ECad-Fc-coated substratum stimulated selective hepatocyte differentiation in association with ectopic hepatocyte-producing cocktail resulting around 55% hepatic endoderm cells devoid of neuroectoderm and mesoderm markers [30]. High level of (approximately 98%) ECad and developing-hepatocyte marker α-fetoprotein (FTP) were co-expressed in these cells. Since these differentiating hepatocytes express high level of ECad on the plasma membrane therefore ECad-Fc was employed for on-site one-step enrichment of
The enhanced differentiation and cell-recognizable properties were also observed with ECad-Fc and NCad-Fc-based mixed biomaterial cooking-plate for neural cells [65], and is discussed in detail under NCad-Fc section. Such kind of ECad-Fc and NCad-Fc hybrid cooking-plate can be applied for either generation of large number of homogeneous cell population, which can be applied for therapeutic evaluation, or for analyzing the signaling pathways related to nerve generation at a single cell level.
iPSCs are commonly derived from somatic cells by ectopic and forced expression of common transcription factors Oct4, Sox2, and Nanog along with protocol-dependent treatments with cocktails of some other transcription factors, and even miRNA or small molecules [10,66,67,68,69,70,71,72,73]. Despite the existence of many protocols for generating iPSCs, the required time and efficiency of iPSC generation is still not practical for application of the technology to a mass scale. As per recent published information, depending on protocol, it may take somewhere between 2~4 weeks to get a 1% conversion of cells to iPSCs. During the reprograming process, starting cells experience mesenchymal-to-epithelial transitions (METs) as a natural requirement [74]. This fact was further proved by the findings that MET happens during the initial stage of reprograming process [71,74,75]. Recent evidence further suggested significant functional roles of ECad and other cell adhesion molecules in METs.
ECad interacts with cytoskeletal components
The protocols for generating ESCs or iPSCs as well as differentiation to target cells from these cells require cell isolation step either by mechanical process or in combination with enzymatic treatment [79]. These types of methodologies require skilled labor, specialized instrumentation, additional time and cost, and distinct morphologic and phenotypic features. Several protocols have been described recently for enzyme-selective passage of specific cells; however, they are not globally applicable and very often appeared with unwanted cells. Enzymatic treatment also caused karyotypic anomalies compared with manual passaging [66,80]. FACS protocol has been applied for cell sorting based on surface marker recognition. However, relevant protocols need enzymatic treatment, application of foreign molecules, and mechanical processes involving severe stress on experimental cells [81,82], which are highly unfavorable for cells. ECad-Fc cooking-plate, advantageously, neither needs any kind of mechanical sorting nor any harsh chemical or enzymatic treatment. The experimental cells can selectively and strongly make homophilic binding with ECad-Fc matrix in a Ca+2-dependent manner subjected to the differential expression pattern of ECad in them during the transformation process. The cells with no or low level expression of ECad cannot and does not firmly bind with ECad-Fc substratum and can be washed off with suitable buffer thus offering a unique, robust, and stress-free cell enrichment system. Such a protocol ensures quicker, cheaper and convenient cell enrichment system for
N-cadherin (NCad) or neural cadherin is also known as Cadherin-2, which is encoded in human by
During embryogenesis cells undergo an epithelial-mesenchymal transition (EMT) initiating upregulation of NCad and the downregulation of ECad in the mesoderm [88]. It has been suggested that NCad expression is essential for morphogenesis of the mesodermal germ layer during gastrulation [89]. NCad expression pattern has been found complementary to that of ECad in epidermal ectoderm [88,90,91]. NCad expression has been detected in mesoderm and notochord in the early phase of embryonic development, which is later also evident in neural tissue, lens placode [92], some epithelial tissues, myocardium of heart [93], epiblast of skeletal muscle [94], endothelial cells, osteoblasts, mesothelium, limb cartilage, and primordial germ cells [95,96].
NCad is found to be present in the early hematopoietic progenitor CD34+CD19+ cells, and it was proposed that NCad plays critical role for the hematopoietic cell differentiation as well as the early retention of this subpopulation in bone marrow [97]. During skeletal muscle formation mesodermal precursors exit from the cell cycle, and differentiate into myoblasts that terminally differentiates into multinucleate myofibers [98]. Cell cycle arrest and the expression of skeletal muscle–specific genes are the critical checkpoints for this developmental process [99]. All the epiblast cells undergoing skeletal myogenesis express the skeletal muscle-specific transcription factor MyoD, among them only the cells expressing NCad but not ECad can differentiate into skeletal muscle [94]. NCad function-perturbing antibodies showed that it plays a significant role in interaction between myoblasts in myotube formation and in myofibrillogenesis [100,101,102]. NCad is also found to be involved in myoblast migration in limb bud [103].
Cartilage is formed from the vertebrate embryonic limb by a highly synchronized and systematic event of cell commitment, condensation and chondrogenic differentiation of mesenchymal cells to chondrogens, and by the production of cartilaginous matrix. SOX9, an essential transcription factor for chondrocyte differentiation and cartilage formation, binds to the SOX9-binding motif in NCad promoter [104] that facilitates expressing of NCad gene products to play necessary roles in cellular condensation [105]. Prolonged expression of NCad due to the missexpression of wnt7a stabilizes NCad-mediated cell-cell adhesion resulting inhibition of chondrogenesis from mesenchymal chondrogenic culture [106]. The level of NCad mRNA was found increases during osteoblast differentiation and decreased during adipogenic differentiation thus suggesting their involvement in relevant differentiation processes [107]. NCad expression is increased in osteoblasts by BMP-2, FGF-2 and phorbol ester (e.g., PMA) in PKC-dependent manner, whereas factors like TNFα and IL-1 reduce the expression of NCad [108].
Migratory cell populations, also known as neural crest cells, are pluripotent cells those originate from dorsal part of neural tube and play important roles in embryonic development and pathophysiological conditions. These cells express NCad when they are associated with neural tube; however, NCad expression is down-regulated after EMT process and the relevant cells started to migrate over long distance, and finally transform into different types of tissues and cell populations, such as peripheral nervous system, cartilage, bone and melanocytes. Slug plays here important roles in down-regulating NCad that leads to a loss of cell-cell adhesion and allowing the cells to migrate. The dorso-ventral migratory cells re-express NCad during dorsal root and sympathetic ganglia developmental steps and promotes cell aggregation; thereafter, only dermal melanocytes express NCad [109,110]. This observation is suggesting critical involvement of NCad in the development of relevant tissues.
Several proteins can interact with NCad
EMT of squamous epithelial cells ectopically expressed specific amino acid sequences of EC4 of NCad induces motility. The cell motility behavior and adhesion is independent to each other, as antibody against the aforementioned relevant amino acid sequence of NCad inhibits cell motility but the cell-cell adhesion phenomena was uninterrupted [114]. The influence of NCad mediated cell migration is cell type specific, as it was found that NCad can inhibit LM8 mouse osteosarcoma cell migration but it did not have any significant effect on the movement of MDA-MB-435 cells [115]. The cytoplasmic domain of NCad form complexes with various types of molecules, such as p120, β-catenin, α-catenin and GAP-43, and regulate various cytoskeletal dynamics. All of these interactions are critically involved in tissue-to-animal development, morphogenesis and maturation, and is suggesting the possibility of exploiting this gene product for regenerative medicine.
NCad-Fc was introduced by Lambert et al. in 2000, and the study revealed that NCad-Fc not only induced the recruitment of NCad on the plasma membrane but also other components of the cadherin/catenin complex. This work for the first time demonstrated that NCad-Fc can mimic natural cell-cell contact formation and signal transduction [116]. Pioneering work from our lab has introduced NCad-Fc as cell-coating biomaterials for stem cell culture. NCad-Fc protein was collected from ‘pRC-NCFC’ plasmid, which was constructed by inserting the N terminal extracellular domain of mouse NCad into pRC/CMV (Invitrogen) plasmid [29]. The expression and purification methodologies of NCad-Fc are similar like ECad-Fc and have been described in details in relevant publications [50,55,117]. Over recent years our laboratory work revealed significant advantages of NCad-Fc in neural differentiation from stem cells. Early work was performed with mouse embryonic carcinoma cell P19 and neural stem cell MEB5 because of their easy management over the ESCs. It was observed that culturing these cell lines on NCad-Fc substratum can maintain the undifferentiated state and scattering morphology compare with other control substratum such as gelatin, fibronectin, laminin or poly-L- ornithine. P19 and MEB5 cells were differentiated effectively to neural lineage on this defined matrix in presence of retinoic acid supplemented with insulin-transferrin-selenium commercial preparation (ITS, Invitrogen). Interestingly, P19 cells showed higher level of
Later, the findings were extrapolated to MEF-dependent mouse embryonic stem cell ST1 and mouse iPSCs to evaluate whether the effect is restricted to specific pre-committed cell lines or it is globally applicable [65]. Since during EMT conversion ECad is downregulated and NCad is upregulated therefore a hybrid matrix of ECad-Fc and N-Cad-Fc was designed to exploit the stage-specific cadherin switching phenomenon. The concept was that, initially the ESCs and iPSCs would bind to ECad-Fc through cell-resident ECad, however, during and after neuroectoderm formation cadherin switching will cater for cellular NCad in place of ECad that would bind to NCad-Fc. The cadherin switching was experimentally confirmed in house during neural differentiation protocol (Fig. 3A), where Dkk-1, a Wnt signaling pathway antagonist, and LeftyA, a Nodal signaling pathway antagonist were used for triggering neural differentiation. Specific markers for primitive ectoderm, primitive neural stem cells, neural stem and progenitor cells were checked. Along with, promisingly, the efficiency of neural progenitor differentiation from mouse ESCs on cadherin-Fc chimeric matrix was significantly higher compare to the cells cultured on other standard substratum as evaluated by the higher level of expression of neural progenitor marker Nestin gene products. Furthermore, the differentiated cells exhibited greater levels expression of βIII-tubulin (Tuj1) (Fig. 3B), microtubule associated protein 2 (MAP2), Pax6, and tyrosine hydroxylase but not GFAP, which is a marker of glial cell, signifying the presence of a lineage confined to neural cells.
NCad-Fc, and ECad-Fc promote directed differentiation of target lineage from iPSCs. (A) Western blot data revealed ECad to NCad switching occurs during neuronal differentiation. The expression level was normalized using house-keeping gene, β-actin. (B) βIII-tubulin expression was significantly higher on E/NCad-Fc matrix compared to gelatin.
Culturing of ESCs and iPSCs on ECad-Fc and NCad-Fc hybrid substratum not only developed scattered cell morphology as reported for ECad-Fc substratum but higher cell proliferation rate and enhanced differentiation efficiency were also noted. Along with these phenomena significant higher degree of homogeneity and enhanced differentiation efficiency were also observed, which is a remarkable advantage for harvesting target neuronal cells from
Some cells release 90 kDa fragment of soluble NCad (sNCad), and NCad-Fc was used to mimic sNCad response on neurite development [118]. Application of NCad-Fc by Doherty
Not only for neuronal population related regenerative medicine, NCad-Fc also showed potentials for application in other tissues as well, for example myogenesis related issues. Charrasse
To design an efficient biomaterial capable of maintaining and stewarding specific cell phenotypes critical for the development, homeostasis, differentiation, and regeneration of tissues, the material must have a high degree of selective recognition property to the desired cells. As well, such a biomaterial should be devoid of unexpected stimulation characteristics to the cells that can be hazardous to them or to the desired results of the protocols. Being the intrinsic component of cellular milieu, proteins are highly desirable molecules to be used in regenerative medicine and tissue engineering technology. Their 3D conformation made them perfectly fit in the cell-biology and ensuring that only specific function to the experimental cells has been achieved. The natural homeostasis properties of cells can adequately remove these proteins once they are used up without exerting any unnatural effect or stress to the cells. Expressing and purifying large protein with proper 3D conformation is extremely challenging therefore mimetic peptide technology has been becoming popular. These small peptide sequences represent small functional domain of the relevant proteins, albeit not with the native 3D structure of the parent protein molecule. While most cases they are being generated using artificial synthetic technology in test tubes, however, their purity, reproducibility and yield are major concerns for their confident application in stem cell technology. Additional limitations for mimetic peptides are (1) the restricted size of desired peptides, and (2) inability to provide native post-translational modifications, most of which are critical for proper bio-functionality of the relevant molecule. Therefore mimetic peptides cannot and do not behave identically as their natural parent protein. On the contrary, Fc-chimeric proteins can be generated with high degree of reproducibility with identical molecular properties using the natural cellular readout process from the DNA template. The additional stability of the target protein instigated by the presence of Fc domain is significantly advantageous for higher yield of the tailored chimeric protein. The intrinsic property of Fc domain to form homodimer is beneficial to keep the target chimeric protein in soluble form. On the other hand, the natural affinity of Fc domain to bind with Protein A or Protein G is a technical boon for convenient purification of the target protein without fusion of any secondary bait to the amino acid sequence, which often create complex situation for getting rid of them at the later stage of the processing to harvest only the desired designed protein. Directional binding of Fc domain with the polystyrene or hydrophobic surface and catering the functional protein outwards is also an intrinsic benefit for using this class of chimeric proteins for obtaining higher functional efficacy of the applied biomaterials. Since the specific homophilic interactions between cadherins mediate cell attachment therefore specific cadherin isoform-expressing cells can be purified by using the relevant cadherin-Fc biomaterial as surface-coating materials. For example, iPS cells express high level of ECad and neuronal cells express NCad therefore, by employing these matrices in different time points of differentiation protocol, the target cells can be purified
With the increase in population and urbanization, energy use also has grown rapidly worldwide. Energy use in the building sector (commercial and residential buildings) has increased between 20 and 40% in developed countries [1]. Several researchers have worked on moderating the use of fossil fuels by introducing alternative energy sources such as industrial waste heat, biogas and biomass, nuclear energy, geothermal and solar energy, groundwater [2, 3, 4, 5]. The European Union is responsible for 33% of the total CO2 emission [2]. Based on the European Green Deal, the European Commission has provided an action plan to ensure energy transition as the EU aims to become the first climate-neutral continent by 2050 [6]. To oblige with these implications, energy-saving technologies have to be integrated into different energy sectors, especially the building sector since the energy demand is 36% of the global final energy use [7]. Studies have been conducted to analyze the increased use of biomass to reduce CO2 emission in different sectors such as transportation and building sectors [8, 9]. One way of reducing the amount of resource use is to connect several customers’ heat and cold demands with the available sources [10]. District energy systems are said to promise energy security as they offer flexibility in their energy use compared to individual energy systems [11]. The heating or cooling resources can be from renewable sources of energy as well as non-renewable sources.
The cooling energy demand for buildings varies depending on countries and their outdoor temperatures. Buildings have various cooling demands due to the differences in the construction material, size, occupant behavior, the purpose of the building, etc. However, it should be pointed that even identical buildings have different cooling demands depending on the kind of activities within the building. Due to the recent changes in climate and its implications on the energy performance of the buildings and indoor thermal conditions, different space cooling technologies have gained more attention. It is likely to predict the growth of cooling demand in Europe due to rising ambient temperatures (including heat waves), heat island effects, higher thermal insulation levels, increased comfort desires/requirements, and the fact that saturation of cooling demand is significantly lower than in the USA and Asia. Estimated cooling saturation for commercial and residential buildings in the USA was 80 and 65%, respectively, and Japan had 100 and 85%, respectively, in the year 2005. Corresponding cooling saturation numbers for Europe were 27 and 5%, respectively [12]. The cooling saturation for EU27 has passed 40% for the service sector and is around 7% for residential buildings [12]. It has been estimated that 10% of all building areas in EU28 were cooled and covered around 16% of the total cooling demand in the year 2014 [13]. In Europe district cooling was introduced in the 1990s; however, it is still a rather uncommon cooling solution with a market share of only around 1% of the cooling market in 2014 [12].
The desired indoor conditions can be met using individual cooling devices such as air conditioners, central air conditioning systems, or district cooling system (DCS). The district cooling system supplies chilled water for cooling and dehumidification to a group of buildings in a district (city, neighborhood, or campus). The coolant (usually water) is typically generated at a central chiller plant and circulates through a distribution network between a central cooling plant and the buildings in the district [14, 15]. Figure 1 depicts a DCS using a natural source such as a lake/sea to cool the buildings. It is generally referred to as free cooling.
Schematic of a district cooling system (DCS). Reprint with permission from Gävle Energi AB [
Water in the district cooling network gets cold from nearby natural cold sources, such as a river/sea, and if needed from the cooling machines, that is, when the temperature of the cold source (the river) is high. The combination of free-cooling and cooling machines demands less electricity compared to separate heat pumps or cooling machine installations in every building.
Water from the river/sea is used to cool the water in the district cooling network. When the district cooling water is cooled to 6°C, it is pumped to the connected building/consumers through the distribution network that comprises supply and return pipe. The cold and heat carriers in the district network are generally in the form of pressurized water and to be economical, the dense urban areas appear to be a fulfilling choice as the distribution pipes should be short [10].
Cold is delivered to the consumers (offices, buildings, industries, server halls, etc.) through the district cooling network with the help of the heat exchangers at user buildings [17]. Cold can be delivered to the cooling coils (to cool the supply air in the air handling units) or via chilled beams installed in the building zones.
Overall, as seen in Figure 1, four major parts could be introduced in a district heating or cooling system: the main supply unit, distribution networks, user stations, and finally the heating or cooling system inside the building’s zones. Cold can be supplied for industrial purposes too, such as food preparation, although it is beyond the scope of this chapter.
It is possible to incorporate either a single or multiple cooling technologies in the DCS central chiller plant depending on the available energy sources (thermal or electrical), environmental and economic considerations as well as the demand profile. Absorption chillers are among the available options for chiller plants. Absorption chillers use heat and not electricity as their primary source of energy [18]. They possess a lower COP (coefficient of performance); however, the electricity consumption and primary energy use are reduced in these chillers and the mechanical compressor of a compression chiller is substituted by a thermal compressor [19]. Renewable thermal energy such as biomass waste or solar energy could be utilized using heat-driven chillers or thermal power plants. In such plants, the heat could be transferred to electrical or mechanical energy to drive the vapor compression chillers. The triple-effect lithium bromide absorption chillers could be exploited for DCS as they could be driven by higher-grade sustainable heat sources [20].
Free cooling is another option for a central plant. The available natural cold sources are involved in cooling the building; the heat will naturally flow out without the need of the compressor and the vapor-compression refrigeration system [15, 21, 22, 23]. Rivers, lakes, the sea, and outdoor air are among the natural cold sources. By using seawater air conditioning, deepwater conditioning could be employed as in this situation, and the water temperature is well below the ambient temperature (generally around 5°C). For such DCS, it is possible to utilize 100% free cooling. However, given the lack of natural cold sources, free cooling could be combined with other cooling technologies such as absorption chillers to compensate for the lack of available cold from the lake/sea, especially on a seasonal basis. An approach to using naturally cold water is cold district heating and cooling [24]. In this context, the cold water from the lake, sea, etc., is used for direct or active cooling in the system and serves as the cooling fluid. With the help of the decentralized chillers or pumps, the water is chilled or heated for the district system. A research project introduced seawater district cooling and analyzed the system through a case study in Diego Garcia [25]. It was concluded that the system was economically efficient and reduced maintenance and electricity usage.
This book chapter aims to investigate the implementation of district cooling systems by exploring research studies reported in the literature. The topics addressed include typologies and design parameters, benefits and limitations, applications of the system, and the technology readiness level.
To provide an overview of the available district cooling systems and their performance for different applications in various climate conditions, a literature review was performed.
Different databases have been used to identify available books and academic literature, including ScienceDirect, Google Scholar, and Scopus.
Keywords such as district energy, district cooling system, free cooling, absorption chillers, the resilient building were used. No limitation was applied on the publication period, though recently published works were prioritized.
In this section, three different classification groups are proposed. The primary proposed classification is based on the system: Centralized and decentralized DCS. The former category is suitable for large-scale regions where the energy is distributed among several buildings in an area. The latter category is more suitable for small capacities where the energy conversion takes place in the units outside the buildings and then is transferred to the buildings [2, 26, 27, 28].
The second proposed category is based on the central plant: free cooling systems or the use of heat pumps and chillers [29, 30, 31].
The third category is based on the occupant behavior as well as the building typology, which is design parameters that can affect the energy use in the buildings. Occupant behavior mainly consists of interactions with operable windows, lighting, blinds, thermostats, and plug-in appliances. Building types are such as villa, retail, public office.
Literature covers the benefits and limitations (disadvantages) of DCS. These benefits and limitations are categorized from three perspectives; environmental, operational, and economical.
Environmental advantages:
District heating and cooling (DHC) possesses the ability to be integrated with renewable resources, consequently reducing greenhouse gas (GHG) emissions, and saves energy. The central water-cooled chiller plants on the large scale use a lower amount of energy and appear more efficient compared to the on-site small capacity systems [20, 32, 33, 34]. Therefore, DCS appears more successful in dense areas in a city or municipality since nearby these areas, there are generally some natural cooling or waste energy sources available [35]. However, these two criteria can be found in many areas and cities.
A DHC system aims at saving primary energy, electricity, space, inhibiting air pollution, and reducing environmentally harmful refrigerants [36].
A DHC system aims at saving energy and space, and inhibiting air pollution, and helps to eliminate environmentally harmful refrigerants [36, 37].
District cooling can greatly reduce the electricity use and peak power demand, and thus reduce energy use, during the cooling season [35].
Environmental disadvantages:
Depending on the central plants, DCSs may not totally be environmentally friendly as long-term use of the free cooling sources such as sea or lake might affect the temperature of the sources and limit the cooling capacity if no anticipating measures are considered. It also could affect the ecosystem of the sources [38].
A free cooling system uses a vast amount of water, which is a problem in areas lacking water [30].
Operational advantages:
Prevention of intensive use of chillers and machinery space in the user stations [39].
Noise and structure load reduction [39].
Saves space by removing the cooling tower and chiller plant from the buildings or roofs [39].
A wide range of production methods and always the latest type of equipment are integrated with DCS due to mitigation measures against global warming [30, 40].
District cooling has less requirement for technical staff on building level [34].
Operational disadvantages:
Heat loss within the plant itself as well as the building serviced by the DHC due to distribution losses in pipes and heat exchangers is inevitable [41, 42].
Economic advantages:
The transparency of costs and future proof investment due to easy payment of utility bills [30].
The DCS is relatively flexible as different central plants could be utilized based on the fuel cost, therefore reducing the cooling cost [20, 35, 43].
Owned by the municipality, a district cooling system can capture cash flows that were previously paid for imported natural gas or electricity [35].
DCS can provide more job opportunities as it provides more reliable and flexible services by a specialized professional team [39].
Economic disadvantages:
Selection of a system that shows large environmental benefits may, in fact, end up not being economical as both the environmental and economic aspects have to be considered together [32].
In purpose to utilize cogeneration of district system and electricity, larger DHC is required [44].
High initial investment costs and lack of negotiable prices and tariffs from the customer’s side as DCS are often owned by few local energy companies, and there is a risk of monopoly for the cooling prices and tariffs [10].
In this section, DC cooling technologies, energy sources, operational aspects, and the applications of DC systems are reviewed based on implemented DC technologies through published DC design and analysis research. Before heading to the applications of the DC systems, the concept of resilience is introduced.
The resilience of the building is its ability to withstand extreme weather conditions and recover from the possible incurred damages efficiently and quickly [45]. Chen et al. [46] investigated the resilient cooling strategies and Hay [47] investigated resilience as a developing planning tool for communities. District energy was recommended as the technology that can balance the relationship between the communities and the region [47]. Sharifi et al. advocated for developing district energy systems, net-zero buildings, and neighborhoods as criteria for assessing urban energy resilience [48].
Based on a report from International District Energy Association (IDEA) [49], in 2019, 303 buildings and Ca 10.8 million ft2 were added to the district systems, beyond North America, which is a strong growth in the district systems employment. The number of buildings and the area that was used for the system in 2018 correspond to 156 buildings and Ca 50 million ft2. Based on the statistics in [50], 70% of residential end users in high-population areas in Europe were powered by fossil fuel in 2015. Hence, DHC networks show great potentials that can help in decarbonization and improvement of indoor air quality as these systems help to reduce the primary energy use by utilizing renewable sources of energy and reducing the thermal losses [51].
A few studies are introduced to show the performance of DCS through simulation and real data collection in different climate conditions and their effects on building’s cooling loads. The studies that were dedicated to Asian countries are presented to show the diversity of DHC systems as Asian countries are developing more DHC systems to reduce air pollution, primary energy use, etc. Later in this section, research projects dedicated to DHS in Europe are introduced.
A study was conducted on the performance of DCS vs. individual cooling systems (ICS) in Hong Kong considering different chilled water pump schemes [52, 53] for commercial buildings. Based on the simulation results, DCS consumes around 15% less energy compared to ICS. The annual operation cost of DCS also is 10% lower than ICS under the electrical tariffs of Hong Kong.
Energy modeling of DCS was conducted in [14] in the South East Kowloon Development Project in Hong Kong for residential and commercial buildings. Based on the simulation results, chilled water, eutectic salt, and ice storage could respectively result in a 38, 38, and 22% reduction in installed cooling capacity. An et al. [54], Yan et al. [55], and Nagota et al. [56] analyzed the performance of DCS in districts in China and Japan and concluded the energy-saving effect of DCS. Studies were conducted with absorption chillers as the cooling technology in other parts of Asia such as Thailand [57], Turkey [58], Iran [59] and concluded the energy and carbon emission-saving effect of DCS. As it could be seen from the mentioned studies so far, the positive economic implication of the DHC system is generally observed from the conducted studies.
The Scandinavian market is taking the lead with 49 operating DCS, followed by Germany (28 operating DCS) and Italy (14 operating DCS) [30].
A detailed study on the market of DCS in Sweden is done by [60]. Major district cooling systems appear in Stockholm, Gothenburg, Linköping, Solna-Sundbyberg, Lund, and Uppsala. Based on the statistics reported by Energiförtagen [61], deliveries for 2018 totaled 1156 GWh. It was a record year for Swedish district cooling and an increase of 26 percent compared to 2017, due to an exceptionally hot summer. The total length of district cooling pipelines increased to 627 km, while in 2019, deliveries totaled 991GWh. Figure 2 shows deliveries and network length from 1996 to 2019 [61].
District cooling deliveries (GWh) and network length (km) in Sweden [
From Figure 2, and the economic and environmental benefits provided through the expansion of DC capacity, a continued growth in DCS is expected.
Fahlén et al. [62] presented a study based on the DHC system of Gothenburg. Combined heat and power (CHP) plants and excess heat from industries supply about 80% of the heat. The study assesses the potential of absorption cooling technology to improve the economic and environmental performance of the DHC system. The results show potentials for cost-effective CO2 emission reduction.
The use of absorption chillers in a DCS in Sweden was studied in [63, 64] and the energy performance of the system appeared to improve. A DCS was initiated in 1995, in the city center in Södermalm, Stockholm. Later, it was expanded and another area was added to the system. Both the districts are connected by pipes located in lake Mälaren [65]. In the Södermalm DCS, existing heat pumps in Hammarbyverket were used.
DCS design has evolved over the years from for example constant to variable flow in the distribution loop. These evolutions and updates in design practices have continuously been upgraded and employed in the system. A long-term security of supply is a driving factor in the heating/cooling systems especially in DHC since the heat/cold is generally supplied by local units. Therefore, it is important to upgrade the design in such a way as to achieve this aim. To be able to express a general reliability level, a definition has been anticipated as the system reliability rate for a DH system [10]. The rate is regarded as the ratio between the numbers of supplied available district heating to the customers during a year by total hours in a year [10]. Many factors are responsible for low system reliability rates such as the fuel supply, pipe failures in the distribution networks, water leakages caused by corrosion or pressure surges, and power outages. The latter mentioned factor also influences the short-term reliability of the system. All the mentioned incidents affect the resilience of the system. To compensate for the power outage, a backup electricity generation is generally anticipated for the main distribution pump. To measure the technology readiness level also, the U.S. Department of Energy has introduced a method to calculate the readiness level [66].
Another problem associated with DHC systems that affect the resilience of the system is the high delta-T syndrome. Due to several reasons, degradations occur over time, which deteriorates the standard temperature difference between the supply and return water that in turn affects the performance of the system. A research project was conducted on the low delta-T problem of the DCS in Gothenburg, Sweden [67]. The problem was analyzed by collecting operational data from the Gothenburg district cooling system along with chilled water systems from 37 of the connected buildings. The results depicted several solutions in the district cooling system to overcome a low delta-T and increase the return temperature. For instance, it was recommended to comply with the building design guidelines as well as limit the flow on the primary side of the heat exchanger, and this helps to restrict the operation in the saturation zone of the heat exchanger. A similar study was carried out by Henze et al. [68] on two university campuses in Massachusetts and Colorado and proposed a solution that provided additional cooling load to the campuses with the same central plant system. The mentioned issues raise the importance of maintenance of the system since the system has to be able to retain its ability to withstand future shocks such as those mentioned above, as well to extend its technical lifetime to remain resilient.
To quantify the energy efficiency of the DCS, three energy efficiency factors were proposed [55]. These factors are presented using Eqs. (1)-(3) and each is explained in this section.
“Coefficient of performance” of the chiller plant is represented by
SCOP represents the “system coefficient of performance,” which is the overall energy efficiency of the chiller plant and the distribution system (Eq. (3)). Based on the previous studies, 80% of the energy consumed by the chilled water pumps leads to cooling loss, which is due to the chilled water distribution; therefore, it must be accounted for in the calculation process.
Keeping the efficiency of the system aside, the feasibility of a DHC system could be investigated by taking into account the cost analysis. To provide an effective evaluation of the energy system and the cost-effective alternatives, life cycle cost analysis (LCCA) could be considered. The energy performance and cost analysis of DCS have been evaluated in several studies [69, 70, 71].
LCCA takes into account the costs involving the construction, operation, and demolition phases [72]. The life cycle cost (LCC) is as below [71]:
where
The dynamic payback period (PP) of investment, considering the time value of the capital, is calculated using Eq. (6):
where
With the increase in energy demand, especially cooling energy due to climate changes and the rise in comfort requirements in buildings, meeting the future energy demand has gained more attention. Resilient, economic, and environmentally friendly solutions are required to meet the future energy demand. To fulfill the growing cooling demand and the community’s growing concern about carbon footprint reduction and energy resilience, DC systems are becoming increasingly attractive to communities. District energy is a flexible system in terms of the sources as they can accommodate both cooling and heating. The main focus of the chapter was the district cooling systems and it was aimed to outline the possibilities and benefits of using a district energy system specifically the DCS. Three classification groups based on the system, central plant, and occupant behavior were proposed.
DCS can reduce electricity use and peak demands and be integrated with renewable resources, and, therefore, contributes to reducing greenhouse gas emissions and air pollution. Several sources can be used—free cooling together with electricity or thermally driven chillers. These systems are more efficient in more populated districts. Since the coolant is produced in the central chiller plant, not only the use of space in the building is minimized, but the noise pollution also is reduced. District cooling systems have been reported as economic and environmentally friendly solutions to meet the cooling demand of buildings. The investigated studies in this chapter reported a decrease in energy use when DCS was implemented.
The authors declare no conflict of interest.
Funding of the study by the Swedish Energy Agency, Termo program, is greatly acknowledged (District cooling vs. local solutions for space cooling, project number 48296-1, Dnr: 2019-003410).
CHP | combined heat and power plant |
CO2 | carbon dioxide |
COP | coefficient of performance |
COPplant | coefficient of performance of a chiller plant |
DC | district cooling |
DCS | district cooling system |
delta-T | temperature rise of the cooling water |
DH | district heating |
DHC | district heating and cooling |
GHG | greenhouse gases |
ICS | individual cooling system |
SCOP | system coefficient of performance |
Q | cooling supply of a chiller plant |
Wdistri | energy use of a cooling distribution system |
Wplant | energy use of a chiller plant |
WTFdistri | water transport factor |
PWFin | present worth factor |
CIC | initial capital cost |
Cfuel | natural gas cost |
COM | operational and management cost |
CDispose | abandoned equipment cost |
Ccool | cooling cost |
Cheat | heating cost |
Chotwater | hot water cost |
n | life cycle period |
i | interest rate |
As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review. To maintain these principles IntechOpen has developed basic guidelines to facilitate the avoidance of Conflicts of Interest.
",metaTitle:"Conflicts of Interest Policy",metaDescription:"As an Open Access publisher, IntechOpen is dedicated to maintaining the highest ethical standards and principles in publishing. In addition, IntechOpen promotes the highest standards of integrity and ethical behavior in scientific research and peer-review.",metaKeywords:null,canonicalURL:"/page/conflicts-of-interest-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\\n\\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\\n\\nA Conflict of Interest can be identified at different phases of the publishing process.
\\n\\nIntechOpen requires:
\\n\\nCONFLICT OF INTEREST - AUTHOR
\\n\\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\\n\\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\\n\\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\\n\\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\\n\\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\\n\\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\\n\\nCONFLICT OF INTEREST - REVIEWER
\\n\\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\\n\\nEXAMPLES OF CONFLICTS OF INTEREST:
\\n\\nFINANCIAL AND MATERIAL
\\n\\nNON-FINANCIAL
\\n\\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\\n\\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\\n\\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\\n\\nEXAMPLES:
\\n\\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\\n\\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\\n\\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\\n\\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\\n\\nPolicy last updated: 2016-06-09
\\n"}]'},components:[{type:"htmlEditorComponent",content:"In each instance of a possible Conflict of Interest, IntechOpen aims to disclose the situation in as transparent a way as possible in order to allow readers to judge whether a particular potential Conflict of Interest has influenced the Work of any individual Author, Editor, or Reviewer. IntechOpen takes all possible Conflicts of Interest into account during the review process and ensures maximum transparency in implementing its policies.
\n\nA Conflict of Interest is a situation in which a person's professional judgment may be influenced by a range of factors, including financial gain, material interest, or some other personal or professional interest. For IntechOpen as a publisher, it is essential that all possible Conflicts of Interest are avoided. Each contributor, whether an Author, Editor, or Reviewer, who suspects they may have a Conflict of Interest, is obliged to declare that concern in order to make the publisher and the readership aware of any potential influence on the work being undertaken.
\n\nA Conflict of Interest can be identified at different phases of the publishing process.
\n\nIntechOpen requires:
\n\nCONFLICT OF INTEREST - AUTHOR
\n\nAll Authors are obliged to declare every existing or potential Conflict of Interest, including financial or personal factors, as well as any relationship which could influence their scientific work. Authors must declare Conflicts of Interest at the time of manuscript submission, although they may exceptionally do so at any point during manuscript review. For jointly prepared manuscripts, the corresponding Author is obliged to declare potential Conflicts of Interest of any other Authors who have contributed to the manuscript.
\n\nCONFLICT OF INTEREST – ACADEMIC EDITOR
\n\nEditors can also have Conflicts of Interest. Editors are expected to maintain the highest standards of conduct, which are outlined in our Best Practice Guidelines (templates for Best Practice Guidelines). Among other obligations, it is essential that Editors make transparent declarations of any possible Conflicts of Interest that they might have.
\n\nAvoidance Measures for Academic Editors of Conflicts of Interest:
\n\nFor manuscripts submitted by the Academic Editor (or a scientific advisor), an appropriate person will be appointed to handle and evaluate the manuscript. The appointed handling Editor's identity will not be disclosed to the Author in order to maintain impartiality and anonymity of the review.
\n\nIf a manuscript is submitted by an Author who is a member of an Academic Editor's family or is personally or professionally related to the Academic Editor in any way, either as a friend, colleague, student or mentor, the work will be handled by a different Academic Editor who is not in any way connected to the Author.
\n\nCONFLICT OF INTEREST - REVIEWER
\n\nAll Reviewers are required to declare possible Conflicts of Interest at the beginning of the evaluation process. If a Reviewer feels he or she might have any material, financial or any other conflict of interest with regards to the manuscript being reviewed, he or she is required to declare such concern and, if necessary, request exclusion from any further involvement in the evaluation process. A Reviewer's potential Conflicts of Interest are declared in the review report and presented to the Academic Editor, who then assesses whether or not the declared potential or actual Conflicts of Interest had, or could be perceived to have had, any significant impact on the review itself.
\n\nEXAMPLES OF CONFLICTS OF INTEREST:
\n\nFINANCIAL AND MATERIAL
\n\nNON-FINANCIAL
\n\nAuthors are required to declare all potentially relevant non-financial, financial and material Conflicts of Interest that may have had an influence on their scientific work.
\n\nAcademic Editors and Reviewers are required to declare any non-financial, financial and material Conflicts of Interest that could influence their fair and balanced evaluation of manuscripts. If such conflict exists with regards to a submitted manuscript, Academic Editors and Reviewers should exclude themselves from handling it.
\n\nAll Authors, Academic Editors, and Reviewers are required to declare all possible financial and material Conflicts of Interest in the last five years, although it is advisable to declare less recent Conflicts of Interest as well.
\n\nEXAMPLES:
\n\nAuthors should declare if they were or they still are Academic Editors of the publications in which they wish to publish their work.
\n\nAuthors should declare if they are board members of an organization that could benefit financially or materially from the publication of their work.
\n\nAcademic Editors should declare if they were coauthors or they have worked on the research project with the Author who has submitted a manuscript.
\n\nAcademic Editors should declare if the Author of a submitted manuscript is affiliated with the same department, faculty, institute, or company as they are.
\n\nPolicy last updated: 2016-06-09
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"16"},books:[{type:"book",id:"11027",title:"Basics of Hypoglycemia",subtitle:null,isOpenForSubmission:!0,hash:"98ebc1e36d02be82c204b8fd5d24f97a",slug:null,bookSignature:"Dr. Alok Raghav",coverURL:"https://cdn.intechopen.com/books/images_new/11027.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11273",title:"Ankylosing Spondylitis",subtitle:null,isOpenForSubmission:!0,hash:"e07e8cf78550507643fbcf71a6a9d48b",slug:null,bookSignature:"Dr. Jacome Bruges Armas",coverURL:"https://cdn.intechopen.com/books/images_new/11273.jpg",editedByType:null,editors:[{id:"70522",title:"Dr.",name:"Jacome",surname:"Bruges Armas",slug:"jacome-bruges-armas",fullName:"Jacome Bruges Armas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11566",title:"Periodontology - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"75ef2eae3087ec0c7f2076cc64e2cfc3",slug:null,bookSignature:"Dr. Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/11566.jpg",editedByType:null,editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"92c881664d1921c7f2d0fee34b78cd08",slug:null,bookSignature:"Dr. Jaime Bustos-Martínez and Dr. Juan José Valdez-Alarcón",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",editedByType:null,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",subtitle:null,isOpenForSubmission:!0,hash:"069d6142ecb0d46d14920102d48c0e9d",slug:null,bookSignature:"Dr. Mihaela Laura Vica",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",editedByType:null,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11570",title:"Influenza - New Approaches",subtitle:null,isOpenForSubmission:!0,hash:"157b379b9d7a4bf5e2cc7a742f155a44",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11583",title:"Parkinson’s Disease - Animal Models, Current Therapies and Clinical Trials",subtitle:null,isOpenForSubmission:!0,hash:"99788a4a7f9ee0b4de55de293a2ed3d0",slug:null,bookSignature:"Prof. Sarat Chandra Yenisetti",coverURL:"https://cdn.intechopen.com/books/images_new/11583.jpg",editedByType:null,editors:[{id:"181774",title:"Prof.",name:"Sarat Chandra",surname:"Yenisetti",slug:"sarat-chandra-yenisetti",fullName:"Sarat Chandra Yenisetti"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11584",title:"Recent Advances in Distinctive Migraine Syndromes",subtitle:null,isOpenForSubmission:!0,hash:"44a6090845f971a215ddf013f1dc2027",slug:null,bookSignature:"Dr. Theodoros Mavridis, Dr. Georgios Vavougios and Associate Prof. Dimos-Dimitrios Mitsikostas",coverURL:"https://cdn.intechopen.com/books/images_new/11584.jpg",editedByType:null,editors:[{id:"320230",title:"Dr.",name:"Theodoros",surname:"Mavridis",slug:"theodoros-mavridis",fullName:"Theodoros Mavridis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11587",title:"Updates on ADHD - New Approaches to Assessment and Intervention",subtitle:null,isOpenForSubmission:!0,hash:"e0718a84e5fda7ed4287095c3ef27dae",slug:null,bookSignature:"Dr. Celestino Rodríguez Pérez and Mrs. Debora Areces",coverURL:"https://cdn.intechopen.com/books/images_new/11587.jpg",editedByType:null,editors:[{id:"85114",title:"Dr.",name:"Celestino",surname:"Rodríguez Pérez",slug:"celestino-rodriguez-perez",fullName:"Celestino Rodríguez Pérez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11588",title:"Autism Spectrum Disorders - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"934f063be3eacb5dd0902ae8bc622392",slug:null,bookSignature:"Associate Prof. Marco Carotenuto",coverURL:"https://cdn.intechopen.com/books/images_new/11588.jpg",editedByType:null,editors:[{id:"305627",title:"Associate Prof.",name:"Marco",surname:"Carotenuto",slug:"marco-carotenuto",fullName:"Marco Carotenuto"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11590",title:"Updates in Anorexia and Bulimia Nervosa",subtitle:null,isOpenForSubmission:!0,hash:"c8f5d69fff84a3687e5511bade9cc261",slug:null,bookSignature:"Prof. Ignacio Jáuregui-Lobera and Dr. José V Martínez Quiñones",coverURL:"https://cdn.intechopen.com/books/images_new/11590.jpg",editedByType:null,editors:[{id:"323887",title:"Prof.",name:"Ignacio",surname:"Jáuregui-Lobera",slug:"ignacio-jauregui-lobera",fullName:"Ignacio Jáuregui-Lobera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:199},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"998",title:"Oral Implantology",slug:"oral-implantology",parent:{id:"174",title:"Dentistry",slug:"dentistry"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:179,numberOfWosCitations:307,numberOfCrossrefCitations:147,numberOfDimensionsCitations:385,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"998",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7056",title:"An Update of Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"fab27916553ca6427ec1be823a6d81f2",slug:"an-update-of-dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/7056.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5185",title:"Dental Implantology and Biomaterial",subtitle:null,isOpenForSubmission:!1,hash:"9b6bdd65b23207e491dd8a3c1edc41dc",slug:"dental-implantology-and-biomaterial",bookSignature:"Mazen Ahmad Jawad Amin Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5185.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4548",title:"Current Concepts in Dental Implantology",subtitle:null,isOpenForSubmission:!1,hash:"f375fecfc0c281e814ac8bcec7faf6f1",slug:"current-concepts-in-dental-implantology",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/4548.jpg",editedByType:"Edited by",editors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"451",title:"Implant Dentistry",subtitle:"The Most Promising Discipline of Dentistry",isOpenForSubmission:!1,hash:"af264376cc47bfd447ff2a0c2cf1bdc7",slug:"implant-dentistry-the-most-promising-discipline-of-dentistry",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/451.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"179",title:"Implant Dentistry",subtitle:"A Rapidly Evolving Practice",isOpenForSubmission:!1,hash:"a02b0b58e53fa2f96f1ca450e8ec3ad3",slug:"implant-dentistry-a-rapidly-evolving-practice",bookSignature:"Ilser Turkyilmaz",coverURL:"https://cdn.intechopen.com/books/images_new/179.jpg",editedByType:"Edited by",editors:[{id:"26024",title:"Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"18416",doi:"10.5772/16475",title:"Dental Implant Surface Enhancement and Osseointegration",slug:"dental-implant-surface-enhancement-and-osseointegration",totalDownloads:18676,totalCrossrefCites:38,totalDimensionsCites:99,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"S.Anil, P.S. Anand, H. Alghamdi and J.A. Jansen",authors:[{id:"25232",title:"Prof.",name:"Sukumaran",middleName:null,surname:"Anil",slug:"sukumaran-anil",fullName:"Sukumaran Anil"},{id:"28373",title:"Prof.",name:"John",middleName:null,surname:"Jansen",slug:"john-jansen",fullName:"John Jansen"},{id:"77058",title:"Dr.",name:"Seham",middleName:null,surname:"Alyafei",slug:"seham-alyafei",fullName:"Seham Alyafei"},{id:"82073",title:"Dr.",name:"Subhash",middleName:null,surname:"Narayanan",slug:"subhash-narayanan",fullName:"Subhash Narayanan"}]},{id:"18415",doi:"10.5772/16936",title:"Osseointegration and Bioscience of Implant Surfaces - Current Concepts at Bone-Implant Interface",slug:"osseointegration-and-bioscience-of-implant-surfaces-current-concepts-at-bone-implant-interface",totalDownloads:12502,totalCrossrefCites:16,totalDimensionsCites:42,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Mustafa Ramazanoglu and Yoshiki Oshida",authors:[{id:"26726",title:"Prof.",name:"Yoshiki",middleName:null,surname:"Oshida",slug:"yoshiki-oshida",fullName:"Yoshiki Oshida"},{id:"29841",title:"Prof.",name:"Mustafa",middleName:null,surname:"Ramazanoglu",slug:"mustafa-ramazanoglu",fullName:"Mustafa Ramazanoglu"}]},{id:"18426",doi:"10.5772/18746",title:"Factors Affecting the Success of Dental Implants",slug:"factors-affecting-the-success-of-dental-implants",totalDownloads:17474,totalCrossrefCites:9,totalDimensionsCites:35,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Carlos Nelson Elias",authors:[{id:"32438",title:"Prof.",name:"Carlos",middleName:null,surname:"Elias",slug:"carlos-elias",fullName:"Carlos Elias"}]},{id:"18414",doi:"10.5772/17512",title:"Dental Implant Surfaces – Physicochemical Properties, Biological Performance, and Trends",slug:"dental-implant-surfaces-physicochemical-properties-biological-performance-and-trends",totalDownloads:13080,totalCrossrefCites:5,totalDimensionsCites:30,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Ahmed M. Ballo, Omar Omar, Wei Xia and Anders Palmquist",authors:[{id:"19042",title:"Dr.",name:"Wei",middleName:null,surname:"Xia",slug:"wei-xia",fullName:"Wei Xia"},{id:"28549",title:"Dr.",name:"Ahmed",middleName:"M.",surname:"Ballo",slug:"ahmed-ballo",fullName:"Ahmed Ballo"},{id:"81291",title:"Dr.",name:"Omar",middleName:null,surname:"Omar",slug:"omar-omar",fullName:"Omar Omar"},{id:"81292",title:"Dr.",name:"Anders",middleName:null,surname:"Palmquist",slug:"anders-palmquist",fullName:"Anders Palmquist"}]},{id:"18417",doi:"10.5772/18309",title:"Implant Stability - Measuring Devices and Randomized Clinical Trial for ISQ Value Change Pattern Measured from Two Different Directions by Magnetic RFA",slug:"implant-stability-measuring-devices-and-randomized-clinical-trial-for-isq-value-change-pattern-measu",totalDownloads:13176,totalCrossrefCites:8,totalDimensionsCites:19,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Jong-Chul Park, Jung-Woo Lee, Soung-Min Kim and Jong-Ho Lee",authors:[{id:"31057",title:"Prof.",name:"Jong-Ho",middleName:null,surname:"Lee",slug:"jong-ho-lee",fullName:"Jong-Ho Lee"},{id:"48351",title:"Prof.",name:"Jong-Chul",middleName:null,surname:"Park",slug:"jong-chul-park",fullName:"Jong-Chul Park"},{id:"83313",title:"Dr.",name:"JungWoo",middleName:null,surname:"Lee",slug:"jungwoo-lee",fullName:"JungWoo Lee"}]}],mostDownloadedChaptersLast30Days:[{id:"18432",title:"Clinical Complications of Dental Implants",slug:"clinical-complications-of-dental-implants",totalDownloads:56478,totalCrossrefCites:2,totalDimensionsCites:5,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Su-Gwan Kim",authors:[{id:"27797",title:"Prof.",name:"Su-Gwan",middleName:null,surname:"Kim",slug:"su-gwan-kim",fullName:"Su-Gwan Kim"}]},{id:"47927",title:"Miniscrew Applications in Orthodontics",slug:"miniscrew-applications-in-orthodontics",totalDownloads:4697,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Fatma Deniz Uzuner and Belma Işık Aslan",authors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan"},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner"}]},{id:"50308",title:"Antibiotics in Implant Dentistry",slug:"antibiotics-in-implant-dentistry",totalDownloads:2369,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Antibiotics have been recommended either as an extended treatment for several days or as a single antibiotic prophylaxis dose since the development of dental implant osseointegration technique in the 1970s. It is also performed as part of surgical protocol during the peri-operative phase in the treatment of peri-implantitis. To date, there is a lack of scientific evidence regarding the additive effect of antibiotics in the treatment of dental implant. This has thus left the clinician with inconclusive recommendations, leading to increase antibiotic prescription. With this increase, the development of antibiotic resistance is becoming a threat to modern healthcare that requires revisiting of current indications and implementation of rational treatment strategies. Therefore, more studies are needed to assess the benefit of antibiotic prescription and whether it is safe to refrain from its use.",book:{id:"5185",slug:"dental-implantology-and-biomaterial",title:"Dental Implantology and Biomaterial",fullTitle:"Dental Implantology and Biomaterial"},signatures:"Dalia Khalil, Bodil Lund and Margareta Hultin",authors:[{id:"179031",title:"Dr.",name:"Dalia",middleName:null,surname:"Khalil",slug:"dalia-khalil",fullName:"Dalia Khalil"},{id:"185113",title:"Dr.",name:"Bodil",middleName:null,surname:"Lund",slug:"bodil-lund",fullName:"Bodil Lund"},{id:"185114",title:"Dr.",name:"Margareta",middleName:null,surname:"Hultin",slug:"margareta-hultin",fullName:"Margareta Hultin"}]},{id:"47915",title:"Rationale for Dental Implants",slug:"rationale-for-dental-implants",totalDownloads:3076,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"4548",slug:"current-concepts-in-dental-implantology",title:"Current Concepts in Dental Implantology",fullTitle:"Current Concepts in Dental Implantology"},signatures:"Ilser Turkyilmaz and Gokce Soganci",authors:[{id:"171984",title:"Associate Prof.",name:"Ilser",middleName:null,surname:"Turkyilmaz",slug:"ilser-turkyilmaz",fullName:"Ilser Turkyilmaz"}]},{id:"18430",title:"An Important Dilemma in Treatment Planning: Implant or Endodontic Therapy?",slug:"an-important-dilemma-in-treatment-planning-implant-or-endodontic-therapy-",totalDownloads:6264,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"179",slug:"implant-dentistry-a-rapidly-evolving-practice",title:"Implant Dentistry",fullTitle:"Implant Dentistry - A Rapidly Evolving Practice"},signatures:"Funda Kont Cobankara and Sema Belli",authors:[{id:"28846",title:"Dr.",name:"Funda",middleName:null,surname:"Kont Çobankara",slug:"funda-kont-cobankara",fullName:"Funda Kont Çobankara"},{id:"75862",title:"Prof.",name:"Sema",middleName:null,surname:"Belli",slug:"sema-belli",fullName:"Sema Belli"}]}],onlineFirstChaptersFilter:{topicId:"998",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81595",title:"Prosthetic Concepts in Dental Implantology",slug:"prosthetic-concepts-in-dental-implantology",totalDownloads:25,totalDimensionsCites:0,doi:"10.5772/intechopen.104725",abstract:"This chapter will address evidence-based prosthetic concepts in dental implantology as well as clinical evidence with focus on appropriate logic and technical skills. Those prosthetic factors are as just important as surgical factors, and long-term success can only be achieved if both of those factors are considered, respected, and strictly followed from planning to prosthetic phase of treatment. This chapter will deal with materials selection for prosthetic part, shape, size, and design of supracrestal parts of abutments and their influence on soft tissue and bone stability around dental implants. Furthermore, one of most important decisions is about choosing the proper way of retention: screw- vs. cement-retained restorations, and it will be discussed in detail. Additionally, emergence profile and its function in soft tissues adaptation and adhesion to different prosthetic materials also have important role in long-term success of dental implant restorations.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Ivica Pelivan"},{id:"80500",title:"Novel Dental Implants with Herbal Composites: A Review",slug:"novel-dental-implants-with-herbal-composites-a-review",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.101489",abstract:"Missing a permanent tooth is a miserable condition faced by a common man. A tooth decay, periodontitis, mechanical trauma, or any systemic complications lead to such a complication. These bone defects when left untreated lead to severe resorption of the alveolar bone. A proper dental filling with an appropriate bone substitute material could prevent such resorption and paves a way for subsequent implant placement. Dental implants are considered as the prime option by dentists to replace a single tooth or prevent bone resorption. A variety of bone substitutes are available differ in origin, consistency, particle size, porosity, and resorption characteristics. Herbal composites in dentistry fabricated using biphospho-calcium phosphate, casein, chitosan, and certain herbal extracts of Cassia occidentalis, Terminalia arjuna bark, Myristica fragans also were reported to possess a higher ossification property, osteogenic property and were able to repair bone defects. C. occidentalis was reported to stimulate mineralization of the bone and osteoblastic differentiation through the activation of the PI3K-Akt/MAPKs pathway in MC3T3-E1 cells of mice. This implant proved better osteoconductivity and bioactivity compared to pure HAP and other BCP ratios. Terminalia Arjuna was also worked in the incorporation in the graft to enhance the osteogenic property of the implant and gave good results. Another implant bone graft was synthesized containing BCP, biocompatible casein, and the extracts of Myristica fragans and subjected to in vitro investigations and the results revealed the deposition of apatite on the graft after immersing in SBF and also the ALP activity was high when treated with MG-63 cells, NIH-3 T3, and Saos 2 cell lines. This study indicates that the inclusion of plant extract enhances the osteogenic property of the graft. Thus, these novel dental implants incorporated with herbal composites evaluated by researchers revealed an enhanced bone healing, accelerates osseointegration, inhibits osteopenia, and inhibits inflammation. This application of herbal composite inclusion in dentistry and its applications has a greater potential to improve the success rate of dental implants and allows the implications of biotechnology in implant dentistry.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gopathy Sridevi and Seshadri Srividya"},{id:"78320",title:"Implant-Retained Maxillary and Mandibular Overdentures - A Solution for Completely Edentulous Patients",slug:"implant-retained-maxillary-and-mandibular-overdentures-a-solution-for-completely-edentulous-patients",totalDownloads:66,totalDimensionsCites:0,doi:"10.5772/intechopen.99575",abstract:"The main goal of modern removable prosthodontics is to restore the normal appearance, function, esthetics and speech in each completely edentulous patient. However, if all teeth are missing in a patient, it becomes very complicated to achieve it using traditional protocols. Therefore, implants were introduced into removable prosthodontics to ensure better retention and stability of the conventional dentures. In case of a large amount of bone missing in the jaw it is necessary to ensure the functioning of the dentures constructing various additional stabilizing and retentive prosthodontic solutions on the osseointegrated implants. Numerous types of attachment systems have been used recently for relating implant-retained overdentures to underlying implants: basically splinting (various bar shape designs) and non-splinting attachments (various ball type attachment, magnet attachment, telescopic coping systems). Indications for their use depend on the surgical and prosthodontic factors such as the number and position of the implants, the amount of free intermaxillary space and the type and size of the overdentures. Different indications, types of the overdentures and the attachment systems will be discussed in this chapter.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Dubravka Knezović Zlatarić, Robert Ćelić and Hrvoje Pezo"},{id:"79724",title:"Implant Stability Quotient (ISQ): A Reliable Guide for Implant Treatment",slug:"implant-stability-quotient-isq-a-reliable-guide-for-implant-treatment",totalDownloads:60,totalDimensionsCites:0,doi:"10.5772/intechopen.101359",abstract:"Implant stability is a prerequisite for successful dental implants and osseointegration. To determine the status of implant stability, continuous monitoring in an objective and qualitative manner is important. To measure implant stability two different stages are there: Primary and secondary. Primary implant stability at placement is a mechanical phenomenon that is related to the local bone quality and quantity, the type of implant and placement technique used. Primary stability is checked from mechanical engagement with cortical bone. Secondary stability is developed from regeneration and remodeling of the bone and tissue around the implant after insertion and affected by the primary stability, bone formation and remodeling. Implant stability is essential for the time of functional loading. Classical benchmark methods to measure implant stability were radiographs or microscopic analysis, removal torque, push-through and pull-through but due to lack of feasibility, time consumption and ethical reasons other methods have been propounded over period of time like measurement of implant torque, model analysis and most important ISQ which has the ability to monitor osseointegration and the life expectancy of an implant. ISQ is a valuable diagnostic and clinical tool that has far-reaching consequences on implant dentistry and this article throws light on advanced and reliable methods of assessing ISQ.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Gaurav Gupta"},{id:"79817",title:"Peri-Implant Soft Tissue Augmentation",slug:"peri-implant-soft-tissue-augmentation",totalDownloads:128,totalDimensionsCites:0,doi:"10.5772/intechopen.101336",abstract:"The peri-implant soft tissue (PIS) augmentation procedure has become an integral part of implant-prosthetic rehabilitation. Minimal width of keratinized mucosa (KM) of 2 mm is deemed necessary to facilitate oral hygiene maintenance around the implant and provide hard and soft peri-implant tissue stability. PIS thickness of at least 2 mm is recommended to achieve the esthetic appearance and prevent recessions around implant prosthetic rehabilitation. The autogenous soft tissue grafts can be divided into two groups based on their histological composition—free gingival graft (FGG) and connective tissue graft (CTG). FGG graft is used mainly to increase the width of keratinized mucosa while CTG augment the thickness of PIS. Both grafts are harvested from the same anatomical region—the palate. Alternatively, they can be harvested from the maxillary tuberosity. Soft tissue grafts can be also harvested as pedicle grafts, in case when the soft tissue graft remains attached to the donor site by one side preserving the blood supply from the donor region. Clinically this will result in less shrinkage of the graft postoperatively, improving the outcome of the augmentation procedure. To bypass the drawback connected with FGG or CTG harvesting, substitutional soft tissue grafts have been developed.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Marko Blašković and Dorotea Blašković"},{id:"79611",title:"Growth Factors and Dental Implantology",slug:"growth-factors-and-dental-implantology",totalDownloads:103,totalDimensionsCites:0,doi:"10.5772/intechopen.101082",abstract:"Normal healing procedure of bone involves various sequential events to develop bone and bridge the bone -to- bone gap. When this healing occurs with a metal (titanium) fixture on one side, it is called as osseointegration. After extensive studies on this topic, it is found that this procedure occurs in presence of various biologic constituents that are spontaneously released at the site. Thus, to accelerate normal healing after implant placement and make results more predictable, it has been proposed to use these autologous factors in the osteotomy site. Since it is the beginning of a new revolution in dental implantology, right now it is essential to analyze all possible combinations of host conditions, bone quality and quantity and bio factors being used. This can definitely be a boon for the patients with compromised systemic or local conditions.",book:{id:"10808",title:"Current Concepts in Dental Implantology - From Science to Clinical Research",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg"},signatures:"Deeksha Gupta"}],onlineFirstChaptersTotal:17},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:13,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:180,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77455",title:"Marek’s Disease Is a Threat for Large Scale Poultry Production",doi:"10.5772/intechopen.98939",signatures:"Wojciech Kozdruń, Jowita Samanta Niczyporuk and Natalia Styś-Fijoł",slug:"marek-s-disease-is-a-threat-for-large-scale-poultry-production",totalDownloads:261,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"74655",title:"Taxon-Specific Pair Bonding in Gibbons (Hylobatidae)",doi:"10.5772/intechopen.95270",signatures:"Thomas Geissmann, Simone Rosenkranz-Weck, Judith J.G.M. Van Der Loo and Mathias Orgeldinger",slug:"taxon-specific-pair-bonding-in-gibbons-hylobatidae",totalDownloads:397,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/46364",hash:"",query:{},params:{id:"46364"},fullPath:"/chapters/46364",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()