1. Introduction
Landscape planning, often referred to as ‘environmental planning’ or ‘ecological planning’, is a way of directing or managing changes in the landscape so that human actions are in tune with nature and environment (Zaucer and Golobic, 2010).
Landscape planning is undergoing change due to new requirements. Its previous main task of controlling spatial uses and the development of nature and the landscape has extended. Implementation of the European requirements for the Natura 2000 network, for the Water Framework Directive (WFD), the Floods Directive as well as the Strategic Environmental Assessment (SEA) can be made considerably easier and can be coordinated with the help of landscape planning. It is ideally suited, for example, as the basis of the Strategic Environmental Assessment or as an extensive information base for river basin planning covering all natural resources. In addition, landscape planning increasingly supports the tasks of providing members of the public with environmental information and their participation in sustainable local community and landscape planning (Haaren, et al., 2008).
Landscape planning can be better used as a versatilely usable information basis for overall spatial planning, impact mitigation regulation or environmental assessments if the information is presented according to the requirements of this planning and these instruments. Spatial planning has always been regarded as an activity that, in seeking solutions for a certain social problem, brings a change into the territory. It primarily looks after social needs, the economical use of the resource and its fertility. Because spatial planning is essentially economic in orientation, it is generally characterized as developmental planning (Zaucer and Golobic, 2010). The basic distinction between spatial planning and landscape planning is that the former is essentially economic and developmental in orientation, while the latter is more concerned with environmental and landscape qualities and thus protective in orientation. It must be noted that landscape planning does not represent a substitute for spatial planning. With developed approaches and methods, it may complement a set of spatial planning approaches and methods and contribute to larger efficiency of bottom‐up comprehensive planning (Zaucer and Golobic, 2010). The aim of landscape planning is thus to prevent or at least limit the degradation of the environment to a minimum while increasing, as far as possible, ‘creativity’ in order to meet the developmental needs. By combining approaches from the natural sciences and the planning disciplines landscape planning has developed a range of different methods and tools for integration of environmental objectives into the process of analysis and the development of planning proposals. Landscape planning approaches and methods are transparent and systematic, which makes them useful for participatory and comprehensive spatial planning (Zaucer and Golobic, 2010).
Landscape planning is currently developing away from rigid planning to a generally accessible and easy to update information base and a basis for action. By using new data processing and transfer technologies, landscape planning can be developed into an information and communication platform, which also communicates data and knowledge about nature and the landscape to the public and makes simple consultation and participation possibilities available via the internet. This development is borne by a new understanding of government action which is characterised by more proximity to citizens and transparency in politics and the administration. Landscape planning therefore supports implementation of Agenda 21 as well as the objectives of the Aarhus Convention and the associated EU Directives and federal laws for the introduction of more democracy in environmental issues. It promotes the enlightenment of members of the public and businesses as well as their commitment to their environment and homeland. Because landscape planning creates fundamentals, competence and incentives for own initiatives, resourcefulness and commitment to the integration of environmental aspects in landscape usage (Haaren, et al., 2008).
Landscape planning is also a way to effectively include the environmental requirements of different sectors into planning process. One of the most valuable approaches is vulnerability analysis, where environmental qualities are assessed from the viewpoint of potential threat resulting from planned actions. It functions as an integrating and conflict‐solving tool, since it (Zaucer and Golobic, 2010):
includes a whole territory (of a chosen administrative / planning unit),
considers a whole range of diverse environmental components,
supports active dialog between stakeholders,
may embrace all interests (natural, social, economic, and political) and evaluate their consequences and thus supports crosssectoral or comprehensive planning, and
supports search for an optimal solution.
Landscape planning today should not be viewed as a static plan but as a dynamic, continuously or modularly changeable information and working basis. Landscape planning is expected to be need- and problem-oriented. Against the background of fast changes in use of nature and landscape, these requirements are becoming increasingly important (Haaren, et al., 2008). Landscape planning, design and management are practised directly or indirectly by many others and in many sectors, including land use planning, agriculture, forestry, nature conservation, amenity land management, and so on, and we include all these in our approach. The term ‘landscape’ used here is also broad and includes much more than ‘the appearance of the area of land which the eye can see at once’ (Chambers, 1993). Landscape is an evolving cross-disciplinary area, which draws contributions from art, literature, ecology, geography and much more (Benson and London, 2000). As the legal basis of the various planning and instruments partly name natural resources as sensitive receptors, partly landscape functions, it should be possible to access landscape planning information structured both by natural resources and landscape functions.
Landscape-ecological planning is a specialization within landscape planning that focuses on spatial planning, the organization of uses and relationships of land uses to achieve explicit goals (e.g. habitat improvement, sustainability). While the landscapeecological planning approach is characterized by a focus on the linkage of ecological patterns and processes, it also includes the actions and values of humans, and social and economic dimensions (Hersperger 1994). Finally, landscape-ecological planning adopts the landscape as the principle spatial unit of research and planning recommendations (Ahern, 2006).
Landscape analysis has a significant function in the process of decision making for the future land use, organization of the space, nature protection, and rational use of the nature resources. Basic problems and tasks of the landscape analysis and planning are located in discovering and solving the conflicts among the development of the society and very complex task in nature assignment. The development covers more intensive engagement of space and more intensive land use, organization and arrangement. The features of the land and space with their entire natural and produced substratum are the significant categories for determination of future development. In this context, landscape analysis and planning appear as an activity of primary task to connect developing possibilities and tendencies for certain space (Pecova, 2000). These strategies, in essence, define the planning context with respect to the macro-drivers of change in a given landscape and the strategic nature of the planners’ response. Defining these strategies also helps to place the planning activity within a broader context, which is particularly important when planning methods are transferred or adopted for use in different locations, contexts or for different applications (Ahern, 2006). Landscape planning methods can also be classified and understood according to their strategic orientation: protective, defensive, offensive or opportunistic (Ahern 1995). Planning methods can also be understood and classified according to their resource or goal orientation. The abiotic–biotic–cultural (ABC) model is useful to describe the specific goals addressed in planning and the level of integration between these goals (Ahern, 1995) (Figure 1). In this model, abiotic goals include water resources, soil and air quality. Biotic goals focus on biodiversity in general, including individual species and habitat protection and ecological restoration. Cultural goals are human-based and include: transportation, land use, recreation, historic preservation and economic goals (Ahern, 2006).
Figure 1. presents an array of planning types graphically organized within a triangle that represents the ABC model. In this diagram a number of planning sectors or themes are located according to their emphasis and level of integration within the ABC resources. The figure shows that an evolution is occurring towards a more integrated planning perspective as represented by the central circle (Ahern, 2006).

Figure 1.
The abiotic, biotic and cultural resource-planning continuum (
The combination of different landscape factors and the interactions between the natural resources are also significant for performance and ability to function. Apart from the description and assessment of the landscape functions (current condition and development potential), statements for specific areas are made on the sensitivity of distinct (sub)landscapes to impacts as well as on the ability to restore their performance and functional capability (Haaren, et al., 2008). This can be achieved by appropriate linking of standard text units in digital landscape plans. It is also advisable not only to be able to select specific individual cartographic areas but also to easily find and collate text statements on special landscape units. This service will assist the administrations or project sponsors in consolidating the respective relevant area descriptions for comments or environmental assessments. The effort spent on these preparations pay off because the information is so conveniently accessible and is easier to integrate in other planning and instruments (Haaren, et al., 2008). In landscape planning the existing condition of nature and the landscape is determined and assessed on the basis of legal and functional objectives and standards, which also include landscape planning objectives at a higher level. To this end the available data and information is collated and, where necessary, it is supplemented and updated by additional surveys. The fundamental information on the soils, geology, bodies of water, air and climate, fauna and flora is used to deduce statements regarding the performance and functions of the individual natural resources and/or the balance of nature and the landscape overall (Haaren, et al., 2008).
2. Inventory and analysis of the landscape
2.1. Terrain analysis
Topographical maps of Greek origin Topos (place) and graphics (lines formed figure) is formed from the word, used for lines shows created in the forms. These are the natural and cultural aspects of the land, the horizontal and vertical cases, show a horizontal plane and under a certain scale. Soil maps and other maps are used in making topographic maps as a base map (Figure 2). Soil experts determine the elevation and slope curves, positions the most benefit from relief..

Figure 2.
Grading curves for an example area
First of all, check whether the map is up to date. If the current deficiencies detected during the observations, can be added to the map. Or new information obtained from different sources (water sources, wells, dams, ponds, bridges, new uses, etc.) can be placed on the map. Horizontal and vertical cross-section for the map to be more easily interpreted. Thus, the difference in level between the high and low parts of the land surface structure and can be detected (hills, peaks, valleys, valley bottoms, slopes) (Figure 3). This is due to differences in harmful situations, measures to prevent them must be determined. The base terrain, steep slopes, private entities, such as delta, flood deposits, flood areas identified as sensitive areas. The cross sections obtained terrain, concave (depressions, valleys, depressions and so on.) And convex (ridges, hills) allows to perceive how it has developed to take shape. It is also important heights, large and small valleys, flood beds and borders determined and displayed. Accordingly, both precipitation and drainage of surface water streams flow distribution to be determined. Surface water flow intensive - is less dense areas should be considered.

Figure 3.
Elevation for an area
According to Kienast, 1993; for many countries topographic maps in the scale of 1:20’000 to 1:30’000 provide reliable monitoring data over the last 100 to 150 yrs (Hodgson and Alexander, 1990). Additionally, there are often rich collections of detailed plans in larger scales (1 :5000 to 1500) that date back to the late 18th and the early 19th century (Di.int, 1990; Miiller, 1990). For the present study the main data sources are two series of topographic maps in the scale of 1:25 ’000 dating back to the 1880’s (Figure 4). Since topographic maps are perceptions of the environment and often rather a ‘text than a mirror of reality’ (Harley, 1989), definition of specific landscape elements or habitat types may vary considerably over time and the location of features is often less accurate in earlier map editions compared with today’s standards (Hodgson and Alexander, 1990). Some of these misinterpretations are impossible to correct. However with a strict crossdating and a comparison of the historic maps with data from independent sources, most incompatibilities were eliminated. This was accomplished by consulting the written protocols and field notes of the topographers.

Figure 4.
Dijital elevation model (for spatial analyst)
Elevation maps are easily constructed by selecting intervals from the base maps. Altitudes can be represented by coloring spaces between topographic intervals. Elevation changes are depicted in shades of browns, yellows, or grays with felt markers, colored pencils, crayons, or through the use of computer technology, becoming lighter or darker as elevation increases
In addition, topographic maps allow visibility analysis is made from.Visibility analysis based on viewsheds is one of the most frequently used GIS analysis. This analyst ise used. This analysis is used in many studies of landscape architecture (Figure 5).

Figure 5.
Visibility analysis (observer offset:120 m. and target offset:100 m.)
Contour curves are some of the features (Karadeniz, 2010):
All points on a contour curve above are the same height above sea level,
Each contour curve closes in on itself. Even with the edge of the map, the map will continue and close neighbors,
A closed contour curve shows the peak or pit.
Contour curves do not cut each other.
The slope increases, the contour lines pass as close to each other
In the cross-sections in order to compare the characteristic profile shapes with each other is possible to make topographic maps. (Figure
Contour maps of curves that can be obtained; Height groups, slope, aspect maps (except that 3-D images);
Height Groups
Curved contour map is obtained by the separation of certain groups heights (Figure 6).
2.2. Slope
Slopes may be subdivided according to steepness and direction. Slope direction is referred to as

Figure 6.
Land profile graph (made by DEM)

Figure 7.
Slope analysis
2.3. Aspect
Aspect map, facing at the surface indicates in which direction. Aspect of a landscape, the climate, especially temperature and rainfall affect the amount of that place. In general, the S, SE, SW, and W aspect "sunny aspects,» is called. N, NE, NW, E aspects, "the shady aspects,» has been described as (Figure 8). The shaded look still water evaporation from the soil temperature is less than would be even less. Therefore, the shady aspects, the same rainfall conditions, sunny look still have a more favorable water economy

Figure 8.
Aspect analysis
2.4. Climate analysis
Heat and temperature are very different concepts. Despite the potential value of objects based on the heat, the temperature of this value emerged as a kinetic form. Therefore, the air temperature is not heat.
Bioclimatic limits of comfort with the body temperature of 15 ° C between 37 ° C ambient unless otherwise stated. Temperature of 20-24 C in the summer, optimum indoor temperature of 21 C values of the optimal bioclimatic comfort. At night, the relative humidity of 40-70% and 18-24 C temperature limit values.
Climatic elements in preparing the vegetation ecological environment, climate, type of vegetation and animals living in the rural and urban areas are the limiting factor.
Analysis, planning to put up a field of plant breeding the human race in the comfort of home to learn about the conditions to create a suitable environment is important for people in planning will be done.
Therefore, the climatic comfort of people trying to manifestation of the analysis depending on the season. Bioclimatic comfort level and the amount of which should be of climatic elements allowing research on human beings endure as a medium between the lowest and highest temperatures bioclimatic comfort limits.
Meteorological elements change vertically and horizontally within short distances. Small-scale variations are brought about by changes in slope and orientation of the ground surface; soil type and moisture; variations in rock, vegetation type and height; and human-made features. These different climates found within a small space are grouped together under the general description of
2.5. Geology
Geology is the study of the earth. This study involves both what has happened in the past, or geological history, and what is happening on and in the earth today.
This analysis was prepared by institutions engaged in geological studies consists of the interpretation of maps and reports. As a result of this review maps and reports, forms the bedrock of physical and chemical state of the soil, water retention properties of the mass due to the hydrogeological characteristics of sedimentary or igneous efficiency, earthquake status (seismicity), the main rock formations are learned.
The inventory of a place requires an understanding of the geological history and processes of the region. Such understanding can begin with a
Summary of geologic inventory elements; regional geographic history, depth to bedrock, outcrops, bedrock types and characteristics, cross sections, columnar sections, surficial deposits (regolith): kames, kettles, eskers, moraines, drift and till, mineral resources, major fault lines, earthquake zones, and seismic activity, rock slides and mud slides (Kienast, 1993)
2.6. Geomorphological analysis
Geomorphological structure, depending on the geological structure of different geological times (Era), composed of the structure of the land. Geological times, the base of the valley bottom and the plain plains, alluvial cones, low and high benches, low, medium, and high plateaus, hills, hilly and mountainous areas and etc. geomorphological formations emerge. Generally, plains, hills, high hills and highlands plateaus are around. Maps, brown hills, valleys, yellow and green, and etc.. are shown in colors. Geomorphological structure studies, microclimate, ground water, agriculture, transport, housing and construction issues during the elections helps. For example, the hills are areas that allow private construction. Dense urban developments planned, slope and valleys, parks and woods considered. Relief: mountains, hills, plains, valleys and plateaus of the surface forms of the earth's crust. Soil formation processes such as erosion and drainage efficiency of distribution and orientation plays a significant role in relief.
The following information can be produced as a result of an examination of relief
the height above sea level
according to an altitude of objects around the comparison and detection of patterns,
certain areas, and the average slope inclination
lands texture local formations (rocks, steep cliffs, sand dunes, karstic, etc.)
Relief, the shape of the land belonging to a landscape on a flat, recessed - ribbed, curved, is a phrase that allows the introduction of phrases such as low or high. Relief characteristics of a landscape, "altitude", "examination", "slope of the land", "shape of the earth» factors are introduced. Relief of a place, climate, vegetation and soil characteristics have a significant impact on.
2.7. Hydrological analysis
According to (Kienast, 1993); Water is essential for all forms of life. It is also a finite resource. Most water in the hydrosphere is salt water (97.20 percent). Water in the polar icecaps and other frozen areas accounts for 2.15 percent of the resource. This means only 0.65 percent of the water in the world is fresh, and its distribution and quality is uneven (Tarjuelo and de Juan 1999). As a result, water is an essential factor to consider in planning Water resources in conjunction with the natural function of the aquatic ecosystem at every stage of life, are needed by all living beings. Hydrological characteristics of the structure is damaged in any way connected to it will affect the life of the living.
The hydrologic cycle expresses the balance of water in its various forms in the air, on land, and in the sea. As the hydrologic cycle and water budget illustrate,
Hydrological survey planned in the field;
surface drainage analysis
analysis of groundwater
surface water analysis
bottom water analyses can be performed in four different fields.
Types of Utilization of Water Resources (Karadeniz, 2008);
Drinking water (surface + underground - wells)
Agricultural activities (surface + underground - wells)
Industrial activities
commercial activities
transportation
Recreation / tourism activities
2.8. Soils
The skeleton of the geological structure formed by elements of the vitality of plants and animals, which have gained ground, first of all exhaustible not protected, there is no place, no longer works in the life of human nutrition, accommodation, and so on. a substance that has taken over the function of many. Soil, the water and items such as a living source. Soils occupy a unique position in the lithosphere and atmosphere. Sustainable soil use is indispensable for the development of a country. They are a transition zone that links the biotic and abiotic environments.
To determine the important characteristics of soils
To classify soils into defined types and other classificational units
To establish and to plot on maps the boundaries among kinds of soils
To correlate and to predict the adaptability of soils to various crops, grasses, and trees, their behavior and productivity under different management systems, and the yields of adapted crops under defined sets of management practices
The principal purposes of the soil survey are:
To make available all the specific information about each kind of soil that is significant to its use and behavior to those who must decide how to manage it
To provide descriptions of the mapping units so the survey can be interpreted for land uses that require the fundamental facts about soil
Summary of soils inventory elements: Soil series, permeabilit,texture, profiles, erosion potential, drainage potential, soil associations and catenas, cation and anion exchange, acidity–alkalinity
Soil maps, land capability classes and these classes determine the soil physical, chemical and biological properties of soils, as well as training courses are available. In addition, usage patterns according to these properties are stated and symbols are shown on the map.
Soil landslide, fluidity, displacement characteristics of survey plans or maps are very important in terms of processing uses reach a decision on the erroneous.
Soil, landscape planner is one of the important ecological factors affecting the decision. Should not be the decision of any plan without understanding the properties of the soil as it should be.
Soil, landscape planner is one of the important ecological factors affecting the decision. Different climatic conditions, a wide range of rocks of different plant designs at different elevations formed land, water and air, one of the indispensable elements of life. Soil is a limited natural resource. In Turkey, most of the worlds to represent the soil types have different soil types.
2.9. Vegetation
Plants are important to study for many reasons. They may have economic and medicinal value. They provide habitat for wildlife. They have significant influence on natural events like fires and floods and may reduce the human consequences of such events. Plants are beautiful and contribute to the scenic quality of landscapes. Plants are the source of oxygen, which humans need to survive.
Survey analysis of landscape vegetation is one of the most important works. Flora and vegetation survey done by several methods. The flora of an area of all plant species, surveying, site observations and collected in the form of plants can be identified.
Flora cannot work without knowing the vegetation. Stratification, vitality (naturalness) and the other based on qualitative and quantitative characteristics of the plants are grouped and named all of the vegetation. Vegetation surveys, in the form of detailed investigation, Braun /Blanquet's method and the values determined by the quality and quantity of work done with the vegetation maps we developed this method in many countries.
The vegetation plots will be determined by dividing the area of the study of flora as simple as possible. Sample plots can be created in various sizes. For example, a plot of 20x20 m in size of all trees, shrubs, herbaceous plants is determined by the type and size. Plots more detailed surveys, 4x4 m and 1x1 m in size by dividing the sub-plots of plant species can be detected. These plots are given numerical values are determined by density of plant species.
Vegetation, vegetation can be classified as natural and cultural. In vegetation surveys should be examined in both studies. Vegetation can be determined by aerial photographs. Vegetation remote sensing system is also an important method used in the search. The vegetation surveys, and maps are used in planning the elections of most plant material.
Summary of vegetation inventory elements; Plant associations and communities, vegetative units, species list, species composition and distribution, physiognomic profiles, ecotone and edge profiles, rare, endangered, and threatened species, fire history (Kienast, 1993).
2.10. Fauna
Fauna, terrestrial and aquatic fauna can be studied in two groups. Land fauna of mammals, birds, frogs and reptiles, insects and invertebrates. These populations, habitats, and is determined in terms of activities. Results are reported with a map of a state of wild life. Within the scope of this report, the general condition of the fauna (endemic, rare, endangered, extinction, etc.). Indicated. Broadly,
Summary of wildlife inventory elements; Species list, species-habitat matrix, animal populations, habitat value map, habitat of rare, endangered, and threatened species
Animal migration is connected to both the ecological and genetic factors need to be taken into consideration surveying point. Migration event, both vertically and horizontally maintained. Regular vertical migration by plankton, the night side of the sea or lakes go deep into the water again in the morning takes the form of strokes. Horizontal migration of many invertebrate and vertebrate animals conducted by the immigration. Vertebrate animals are more regular migrations. Some animals are effective spread plant species. For example, birds, fruits, taking them to various places after eating the seeds of these plants are to help them develop those areas. In addition, the fauna that need to fertilize plants.
In addition, creating a major impact on hunting fauna. Hunting generating stations was established, hunting periods, must be done regularly. Effects on fauna, there are cultural practices, improper applications, the reductions in fauna, migration, and etc. causes problems.
2.11. Analysis of socio-culturel resources
Landscape architecture, planning activities, as well as natural resources, cultural resources present in the area is important in the determination of planning decisions to be taken for these resources. Planning was done by the people for the people by the people are the most important criterion in planning.
In the selection of a cultural use of natural resources in an area to determine the effects of this field, if necessary, the effects on natural resources, cultural resources, and these effects should be known to be determined.
Surveys, social situation, demographics, migration and urbanization, communication and transportation, education, health and nutritional status, settlement and housing status, issues such as public-state relations under investigation. In surveys, the economic situation, land ownership, party products, credit facilities, cooperatives, marketing and market relations, forms of business power, the income levels of the families studied.
References
- 1.
Ahern J 1995 Greenways as a planning strategy In: Fabos, J. and Ahern, J. eds. Greenways: the beginning of an international movement. Elsevier, Amsterdam,131 155 - 2.
Ahern J 2006 Theories, methods and strategies for sustainable landscape planning”. In From Landscape Research to landscape Planning: Aspects of Integration, Education and Application. B. Tress, G. Tress, G. Fry, and P. Opdam, Editors. Springer.119 131 - 3.
Benson J. F London M. H. R 2000 Landscape are complex systems that require a multiscale approach to fully understand, manage, and predict their behavior.0-41925-080-8 Edition). - 4.
Haaren C. V Galler C Ott S 2008 Landscape planning: The basis of sustainable landscape development, Federal Agency for Nature Conservation, Hannover. - 5.
Karadeniz N 2008 Kaynak Envanter ve Analizi, Ankara Üniversitesi, Peyzaj Mimarlığı Bölümü, Ankara, Türkiye. - 6.
Kienast F 1993 Analysis of historic landscape patterns with a Geographical Information System- a methodological outline, Landscape Ecology8 2 103 118 - 7.
Pecova H. S 2000 Landscape Analysis in Spatial Planning, Landscape Ecology: theory and applications for practical purposes, The Problems of Landscape Ecology Vol VI.,93 101 - 8.
andZaucer L. B Golobic M 2010 Landscape plannıng and vulnerabılıty assessment ın the medıterranean, Croatia.