Summary of the main biotechnological/pharmacological applications of toxins from venomous animals.
1. Introduction
Venoms are the secretion of venomous animals, which are synthesized and stored in specific areas of their body i.e., venom glands. The animals use venoms for defense and/or to immobilize their prey. Most of the venoms are complex mixture of biologically active compounds of different chemical nature such as multidomain proteins, peptides, enzymes, nucleotides, lipids, biogenic amines and other unknown substances. Venomous animals as snakes, spiders, scorpions, caterpillars, bees, insects, wasps, centipedes, ants, toads and frogs have largely shown biotechnological or pharmacological applications. During long-term evolution, venom composition underwent continuous improvement and adjustment for efficient functioning in the killing or paralyzing of prey and/or as a defense against aggressors or predators. Different venom components act synergistically, thus providing efficiency of action of the components. Venom composition is highly species-specific and depends on many factors including age, sex, nutrition and different geographic regions. Toxins, occurring in venoms and poisons of venomous animals, are chemically pure toxic molecules with more or less specific actions on biological systems [1-3]. A large number of toxins have been isolated and characterized from snake venoms and snake venoms repertoire typically contain from 30 to over 100 protein toxins. Some of these molecules present enzymatic activities, whereas several others are non-enzymatic proteins and polypeptides. The most frequent enzymes in snake venoms are phospholipases A2, serine proteinases, metalloproteinases, acetylcholinesterases, L-amino acid oxidases, nucleotidases and hyaluronidases. Higher catalytic efficiency, heat stability and resistance to proteolysis as well as abundance of snake venom enzymes provide them attractive models for biotechnologists, pharmacologists and biochemists [3-4]. Scorpion toxins are classified according to their structure, mode of action, and binding site on different channels or channel subtypes. The venom is constituted by mucopolysaccharides, hyaluronidases, phospholipases, serotonins, histamines, enzyme inhibitors, antimicrobials and proteins namely neurotoxic peptides. Scorpion peptides presents specificity and high affinity and have been used as pharmacological tools to characterize various receptor proteins involved in normal ion channel functionating, as abnormal channel functionating in cases of diseases. The venoms can be characterized by identification of peptide toxins analysis of the structure of the toxins and also have proven to be among the most and selective antagonists available for voltage-gated channels permeable to K+, Na+, and Ca2+. The neurotoxic peptides and small proteins lead to dysfunction and provoke pathophysiological actions, such as membrane destabilization, blocking of the central, and peripheral nervous systems or alteration of smooth or skeletal muscle activity [5-8]. Spider venoms are complex mixtures of biologically active compounds of different chemical nature, from salts to peptides and proteins. Specificity of action of some spider toxins is unique along with high toxicity for insects, they can be absolutely harmless for members of other taxons, and this could be essential for investigation of insecticides. Several spider toxins have been identified and characterized biochemically. These include mainly ribonucleotide phosphohydrolase, hyaluronidases, serine proteases, metalloproteases, insecticidal peptides and phospholipases D [9-10]. Venoms from toads and frogs have been extensively isolated and characterized showing molecules endowed with antimicrobial and/or cytotoxic activities [11]. Studies involving the molecular repertoire of the venom of bees and wasps have revealed the partial isolation, characterization and biological activity assays of histamines, dopamines, kinins, phospholipases and hyaluronidases. The venom of caterpillars has been partially characterized and contains mainly ester hydrolases, phospholipases and proteases [12]. The purpose of this chapter is to present the main toxins isolated and characterized from the venom of venomous animals, focusing on their biotechnological and pharmacological applications.
2. Biotechnological and pharmacological applications of snake venom toxins
While the initial interest in snake venom research was to understand how to combat effects of snakebites in humans and to elucidate toxins mechanisms, snake venoms have become a fertile area for the discovery of novel products with biotechnological and/or pharmacological applications [13-14]. Since then, many different products have been developed based on purified toxins from snake venoms, as well recent studies have been showing new potential molecules for a variety of applications [15].
2.1. Toxins acting on cardiovascular system
Increase in blood pressure is often a transient physiological response to stressful stimuli, which allows the body to react to dangers or to promptly increase activity. However, when the blood pressure is maintained at high levels for an extended period, its long term effects are highly undesirable. Persistently high blood pressure could cause or accelerate multiple pathological conditions such as organ (heart and kidney) failure and thrombosis events (heart attack and stroke) [14]. So, it is important to lower the blood pressure of high-rick patients through use of specific anti-hypertensive agents, and in this scenario, snake venom toxins has been shown to be promising sources [14-15]. This is because it has long been noted that some snake venoms drastically lower the blood pressure in human victims and experimental animals [15]. The first successful example of developing a drug from an isolated toxin was the anti-hypertensive agent Capoten® (captopril), an angiotensin-converting enzyme (ACE) inhibitor modeled from a venom peptide isolated from
2.2. Toxins acting on hemostasis
Desintegrins are a family of cysteine-rich low molecular weight proteins that inhibits various integrins and that usually contain the integrin-binding RGD motif, that binds the GPIIa/IIIb receptor in platelets, thus prevents the binding of fibrinogen to the receptor and consequently platelet aggregation [13]. Two drugs, tirofiban (Aggrastat®) and eptifibatide (Integrillin®) were designed based on snake venom disintegrins and are avaliable in the market as antiplatelet agents, approved for preventing and treating thrombotic complications in patients undergoing percutaneous coronay intervention and in patients with acute cornonary sydrome [30-31]. Tirofiban has a non-peptide structure mimicking the RDG motif of the disintegrin echistatin from
2.3. Toxins with antibiotic activity
Antibiotics are a heterogeneous group of molecules produced by several organisms, including bacteria and fungi, presenting an antimicrobial profile, inducing the death of the agent or inhibiting microbial growth [40]. L-amino acid oxidases (LAAOs) are enantioselective flavoenzymes catalyzing the stereospecific oxidative deamination of a wide range of L-amino acids to form α-keto acids, ammonia and hydrogen peroxide (H2O2). Antimicrobial activities are reported to various LAAOs, such as TJ-LAO from
2.4. Toxins acting on inflammatory and nociceptive responses
Various snake venoms are rich in secretory phospholipases A2 (sPLA2), which are potent pro-inflammatory enzymes producing different families of inflammatory lipid mediators such as arachidonic acid derived eicosanoids, various lysophospholipids and platelet activating factors through cyclooxygenase and lipoxygenase pathways [57]. In a recent study, was described the first complete nucleotide sequence of a βPLI from venom glands of
2.5. Toxins acting on immunological system
Venom-derived peptides are being evaluated as immunosuppressants for the treatment of autoimmune diseases and the prevention of graft rejection [67]. Studies have shown that anti-crotalic serum possesses an antibody content usually inferior to the antibody content of other anti-venom serum suggesting that the crotalic venom is a poor immunogen or that it has components with immunosuppressor activity [68]. Indeed, the immunosuppressive effect of venom and crotoxin (a toxin isolated from
2.6. Toxins with anticancer and cytotoxic activities
Anticancer therapy is an important area for the application of proteins and peptides from venomous animals. Integrins play multiple important roles in cancer pathology including tumor cell proliferation, angiogenesis, invasion and metastasis [72]. Inhibition of angiogenesis is one of the heavily explored treatment options for cancer, and in this scenario snake venom disintegrins represent a library of molecules with different structure, potency and specificity [1]. RGD-containing disintegrins was identified in several snake venoms, inhibiting tumor angiogenesis and metastasis, such as accutin (from
3. Biotechnological and pharmacological applications of scorpion venom toxins
Scorpions are venomous arthropods, members of Arachnida class and order Scorpiones. These animals are found in all continents except Antarctica, and are known to cause problems in tropical and subtropical regions. Actually these animals are represented by 16 families and approximately 1500 different species and subspecies which conserved their morphology almost unaltered [92-93]. The scorpion species that present medically importance belonging to the family Buthidae are represented by the genera
3.1. Toxins acting on cardiovascular system
The first peptide from scorpion endowed effects of bradykinin and on arterial blood pressure was isolated from the Brazilian scorpion
3.2. Toxins with antibiotic activity
In order to defend themselves against the hostile environment, scorpions have developed potent defensive mechanisms that are part of innate and adaptive immunity [99]. Cysteine-free antimicrobial peptides have been identified and characterized from the venom of six scorpion species [100]. Antimicrobial peptides isolated from scorpion venom are important in the discovery of novel antibiotic molecules [101]. The first antimicrobial peptide isolated from scorpions were of the defensin type from
3.3. Toxins acting on acting on inflammatory and nociceptive response
The use of toxins as novel molecular probes to study the structure-function relationship of ion-channels and receptors as well as potential therapeutics in the treatment of wide variety of diseases is well documented. The high specificity and selectivity of these toxins have attracted a great deal of interest as candidates for drug development [8]. At least five peptides have been identified from
3.4. Toxins acting on acting on immunological system
OSK1 (alpha-KTx3.7) is a 38-residue toxin cross-linked by three disulphide bridges initially purified from the venom of the central Asian scorpion
3.5. Toxins with anticancer and cytotoxic activities
One of the most notable active principles found in scorpion venom is chlorotoxin (Cltx), a peptide isolated from the species
3.6. Toxins with insecticides applications
Evidence for the potential application of scorpions toxins as insecticides has emerged in recent years. The precise action mechanism of several of these molecules remains unknown; many have their effects via interactions with specific ion channels and receptors of neuromuscular systems of insects and mammals. These highly potent and specific interactions make venom constituents attractive candidates for the development of novel therapeutics, pesticides and as molecular probes of target molecules [132].
Toxin Lqhα IT from the scorpion
4. Biotechnological and pharmacological applications of spider venom toxins
Spider venoms contain a complex mixture of proteins, polypeptides, neurotoxins, nucleic acids, free amino acids, inorganic salts and monoamines that cause diverse effects in vertebrates and invertebrates [145]. Regarding the pharmacology and biochemistry of spider venoms, they present a variety of ion channel toxins, novel non-neurotoxins, enzymes and low molecular weight compounds [146].
4.1. Toxins acting on cardiovascular system
Venom from the South American tarantula
4.2. Toxins acting on hemostasis
ARACHnase (Hemostasis Diagnostics International Co., Denver, CO) is a normal plasma that contains a venom extract from the brown recluse spider,
4.3. Toxins with antibiotic activity
Two peptide toxins with antimicrobial activity, lycotoxins I and II, were identified from venom of the wolf spider
4.4. Toxins acting on inflammatory and nociceptive response
Psalmotoxin 1, a peptide extracted from the South American tarantula
4.5. Toxins acting on immunological system
The antiserum most commonly used for treatment of loxoscelism in Brazil is anti-arachnidic serum. This serum is produced by the Instituto Butantan (São Paulo, Brazil) by hyperimmunization of horses with venoms of the spiders
4.6. Toxins with anticancer and cytotoxic activities
Psalmotoxin 1 was evaluated on inhibited Na+ currents in high-grade human astrocytoma cells (glioblastoma multiforme, or GBM). These observations suggest this toxin may prove useful in determining whether GBM cells express a specific ASIC-containing ion channel type that can serve as a target for both diagnostic and therapeutic treatments of aggressive malignant gliomas [156]. The antitumor activity of a potent antimicrobial peptide isolated from hemocytes of the spider
4.7. Toxins with insecticides applications
Several spider toxins have been studied as potential insecticidal bioactive with great biotechnological possible applications [10]. A component of the venom of the Australian funnel web spider
5. Biotechnological and pharmacological applications of toad and frog toxins
Amphibians (toads, frogs, salamanders etc.) during their evolution have developed skin glands covering most parts of their body surface. From these glands small amounts of a mucous slime are secreted permanently, containing substances with different pharmacologic activities such as cardiotoxins, neurotoxins, hypotensive as well as hypertensive agents, hemolysins, and many others. Chemically they belong to a wide variety of substance classes such as steroids, alkaloids, indolalkylamines, catecholamines and low molecular peptides [11, 163]. Several studies have been showing new potential molecules for a variety of pharmacological applications from toads and frogs venoms.
5.1. Toxins acting on cardiovascular system
Neurotensin-like peptides has been identified from frog skin, such as margaratensin, isolated from
5.2. Toxins acting on hemostasis
Annexins are a well-known multigene family of Ca2+-regulated membrane-binding and phospholipid-binding proteins. A novel annexin A2 (Bm-ANXA2) was isolated and purified from
5.3. Toxins with antibiotic activity
Toxins with antibiotic activity are the most well studied toxins in toads and frogs. Two antimicrobial bufadienolides, telocinobufagin and marinobufagin, were isolated from skin secretions of the Brazilian toad
5.4. Toxins acting on inflammatory and nociceptive responses
Epibatidine, an azabicycloheptane alkaloid isolated from the skin of frog
5.5. Toxins with anticancer and cytotoxic activities
5.6. Toxins with insulin releasing activity
Diabetes mellitus is a disease in which the body is unable to sufficiently produce or properly use insulin. Newer therapeutic modalities for this disease are extremely needed. Peptides with insulin-releasing activity have been isolated from the skin secretions of the frog
6. Biotechnological and pharmacological applications of bee and wasp toxins
Stinging accidents caused by wasps and bees generally produce severe pain, local damage and even death in various vertebrates including man, caused by action of their venoms. Bee venom contains a variety of compounds peptides including melittin, apamin, adolapin, and mast cell degranulating (MCD) peptide, in addition of hyaluronidase and phospholipase A enzymes, that plays a variety of biological activities. The chemical constituents of venoms from wasps species include acetylcholine, serotonin, norepinephrine, hyaluronidase, histidine decarboxylase, phospholipase A2 and several polycationic peptides and proteins [12].
6.1. Toxins acting on cardiovascular system
Honey bee venom and its main constituents have a marked effect on the cardiovascular system, most notably a fall in arterial blood pressure [183]. From the hemodynamic point of view, the venom, in higher doses, is extremely toxic to the circulatory system and in smaller doses, however, produce a stimulatory effect upon the heart [184]. Melittin, a strongly basic 26 amino-acid polypeptide which constitutes 40–60% of the whole dry honeybee venom, induces contractures and depolarization in skeletal muscle [12]. Melittin is cardiotoxic
6.2. Toxins acting on hemostasis
The mechanism by which bee venom affects the hemostatic system remains poorly understood [187]. Among the serine proteases isolated from bees, which acts as a fibrin(ogen)olytic enzyme, activator prothrombin and directly degrades fibrinogen into fibrin degradation products, are the Bi-VSP (
6.3. Toxins with antibiotic activity
Antimicrobial peptides have attracted much attention as a novel class of antibiotics, especially for antibiotic-resistant pathogens. They provide more opportunities for designing novel and effective antimicrobial agents [194]. Melittin has various biological, pharmacological and toxicological actions including antibacterial and antifungal activities [195]. Bombolitin (structural and biological properties similar to those of melittin), isolated from the venom of
6.4. Toxins acting on inflammatory and nociceptive responses
Bee venom has been used in Oriental medicine and evidence from the literature indicates that bee venom plays an anti-inflammatory or anti-nociceptive role against inflammatory reactions associated with arthritis and other inflammatory diseases [200]. Bee venom demonstrated neuroprotective effect against motor neuron cell death and suppresses neuroinflammation-induced disease progression in symptomatic amyotrophic lateral sclerosis (ALS) mice model [200]. Melittin has effects on the secretion of phospholipase A2 and inhibits its enzymatic activity, which is important because phospholipases may release arachidonic acid which is converted into prostaglandins [201]. Have also been reported that melittin decreased the high rate of lethality, attenuated hepatic inflammatory responses, alleviated hepatic pathological injury and inhibited hepatocyte apoptosis. Protective effects were probably carried out through the suppression of NF-jB activation, which inhibited TNF-α liberation. Therefore, melittin may be useful as a potential therapeutic agent for attenuating acute liver injury [202]. In addition of melittin, others agents has shown anti-inflammatory activity. Among them are adolapin and MCDP. Adolapin showed marked anti-inflammatory and anti-nociceptive properties due to inhibition of prostaglandin synthase system [203]. MCDP, isolated of
6.5. Toxins acting on immunological system
Characterization of the primary structure of allergens is a prerequisite for the design of new diagnostic and therapeutic tools for allergic diseases. Major allergens in bee venom (recognized by IgE in more than 50% of patients) include phospholipase A2 (PLA2), acid phosphatase, hyaluronidase and allergen C, as well as several proteins of high molecular weights (MWs) [205]. Besides these, Api m 6, was frequently (42%) recognized by IgE from bee venom hypersensitive patients [206]; from wasp venom were purified Vesp c 1 (phospholipase A1) and Vesp c 5 (antigen-5) from
6.6. Toxins with anticancer and cytotoxic activities
Bee venom is the most studied among the arthropods covered in this chapter regarding its anti-cancer activities, due mainly to two substances that have been isolated and characterized: melittin and phospholipase A2 (PLA2). Melittin and PLA2 are the two major components in the venom of the species
6.7. Toxins with insulin releasing activity
Bee venom inhibits insulitis and development of diabetes in non-obese diabetic (NOD) mice. The cumulative incidence of diabetes at 25 weeks of age in control was 58% and NOD mice bee venom treated was 21% [224]. Mastoparan, component of wasp venom, is known to affect phosphoinositide breakdown, calcium influx, exocytosis of hormones and neurotransmitters and stimulate the GTPase activity of guanine nucleotide-binding regulatory proteins [225]. Thus, it is reported in the literature that mastoparan stimulates insulin secretion in human, as well as in rodent. Furthermore, glucose and alpha-ketoisocaproate (alfa-KIC) increase the mastoparan-stimulated insulin secretion [226].
7. Biotechnological and pharmacological applications of ant, centipede and caterpillar venom toxins
Ant, centipede and caterpillar venoms have not been studied so extensively as the venoms of snakes, scorpions and spiders. Ant venoms are rich in the phospholipase A2 and B, hyaluronidase, and acid and alkaline phosphatase as well as in histamine itself [227]. Centipede venoms have been poorly characterized in the literature. Studies have reported in centipede venoms the presence of esterases, proteinases, alkaline and acid phosphatases, cardiotoxins, histamine, and neurotransmitter releasing compounds in
7.1. Toxins acting on cardiovascular system
A study showed that the
7.2. Toxins acting on hemostasis
There are numerous studies in literature reporting the effects on the hemostatic system of toxins from caterpillars. The effect of a crude extract of spicules from
7.3. Toxins with antibiotic activity
Venom alkaloids from
7.4. Toxins acting on inflammatory and nociceptive responses
Venom from the tropical ant
7.5. Toxins acting on immunological system
The most frequent cause of insect venom allergy in the Southeastern USA is the imported fire ant and the allergens are among the most potent known. Fire ant venom is a potent allergy-inducing agent containing four major allergens, Sol i I, Sol i II, Sol i III and Sol i IV [243-244].
7.6. Toxins with anticancer and cytotoxic activities
Solenopsin A, a primary alkaloid from the fire ant
7.7. Toxins with insecticides applications
Peptides named ponericins from ant
In Table 1, is presented a summary of the main biotechnological/pharmacological applications of toxins from venomous animals covered in this chapter.
Toxins acting on cardiovascular system | ||||
Snakes | NP | Anti-hypertensive agent | [21] | |
BPP | Anti-hypertensive agent (development of captopril and derivatives) | [16] | ||
NP | Anti-hypertensive agent | [4] | ||
NP | Anti-hypertensive agent | [24] | ||
NP | Anti-hypertensive agent | [23] | ||
BPP | Anti-hypertensive agent | [17] | ||
DNP | Anti-hypertensive agent: natriuretic peptide | [19] | ||
C10S2C2 | Anti-hypertensive drug: L-type Ca2+channels blocker | [27] | ||
S4C8 | Anti-hypertensive agent: L-type Ca2+channels blocker | [27] | ||
Calciseptine | Anti-hypertensive agent: L-type Ca2+channels blocker | [25] | ||
FS2 toxins | Anti-hypertensive agent: L-type Ca2+channels blocker | [26] | ||
NP | Anti-hypertensive agent | [20] | ||
NP | Anti-hypertensive agent | [22] | ||
NP | Anti-hypertensive agent | [21] | ||
Stejnihagin | Anti-hypertensive agent: L-type Ca2+channels blocker | [29] | ||
Scorpions | BPP | Anti-hypertensive agent | [97] | |
BPP | Anti-hypertensive agent | [98] | ||
BPP | Anti-hypertensive agent | [96] | ||
Spiders | GsMtx-4 | Blocks cardiac stretch-activated ion channels and suppresses atrial fibrillation in rabbits | [147] | |
Toads and Frogs | Atelopidtoxin | Hypotensive agent and ventricular fibrillation inductor | [167] | |
Bufalin | NaK+-ATPase inhibitor | [165] | ||
Semi-purified skin extracts | Hypotensive agent | [168] | ||
Bradykinin | Hypotensive agent and smooth muscle exciting substance | [11] | ||
Margaratensin | Neurotensin-like peptide | [164] | ||
Cinobufagin | NaK+ATPase inhibitor | [165] | ||
Bradykinin | Hypotensive agent and smooth muscle exciting substance | [11] | ||
Bees and Wasps | Cardiopep | Beta-adrenergio-like stimulant and anti-arrhythmic agent | [185] | |
Mastoparan B | Anti-hypertensive agent | [186] | ||
Toxins acting on hemostasis | ||||
Snakes | Ancrod | Anticoagulant and defibrinogenating agent (Viprinex®) | [34] | |
Bhalternin | Treatment and prevention of thrombotic disorders | [35] | ||
Batroxobin | Anticoagulant and defibrinogenating agent (Defibrase®) | [33] | ||
Mixture of a TLE with a thromboplastin-like enzyme | Treatment of hemorrhages (Haemocoagulase®) | [13] | ||
BE-I-PLA2 | Antiplatelet agent | [39] | ||
BleucMP | Treatment and prevention of cardiovascular disorders and strokes | [36] | ||
Leucurogin | Antiplatelet agent | [32] | ||
Echistatin | Antiplatelet agent | [30] | ||
Barbourin | Antiplatelet agent | [31] | ||
Trimarin | Treatment and prevention of thrombotic disorders | [38] | ||
VLH2 | Treatment and prevention of thrombotic disorders | [37] | ||
Spiders | Phospholipase-D | Platelet aggregation inductor | [149] | |
Toads and Frogs | Bm-ANXA2 | Antiplatelet agent | [169] | |
Bees and Wasps | Bs-VSP | Prothrombin activator, thrombin-like protease and a plasmin-like protease agent | [190] | |
Bi-VSP |
Prothrombin activator, thrombin-like protease and a plasmin-like protease agent | [188] | ||
Bi-KTI | Plasmin inhibitor agent | [187] | ||
Bt-VSP | Prothrombin activator, thrombin-like protease and a plasmin-like protease agent | [189] | ||
Protease I | Anticoagulant agent | [192] | ||
Magnifin | Inductor platelet aggregation agent | [193] | ||
Magnvesin | Anticoagulant agent | [191] | ||
Ants, Centipedes and Caterpillars |
Lonomin V | Inhibitor platelet aggregation agent | [236] | |
Lopap | Prothrombin activator agent | [233] | ||
Lonofibrase | Fibrinogenolytic and fibrinolytic agent Agent | [234] | ||
Losac | Procoagulant agent | [235] | ||
Toxins with antibiotic activity | ||||
Snakes | Balt-LAAO-I | Anti-bacterial agent | [42] | |
Myotoxin II | Anti-bacterial agent | [50] | ||
LAAO | Antiparasitic agent | [48] | ||
BmarLAAO | Anti-bacterial, antifungal and antiparasitic agent | [47] | ||
Neuwiedase | Antiparasitic agent | [55] | ||
BpirLAAO-I | Anti-bacterial and antiparasitic agent | [44] | ||
BFPA | Anti-bacterial agent | [53] | ||
Casca LAO | Anti-bacterial agent | [45] | ||
Crotoxin | Antiviral agent | [56] | ||
PLA2-CB | Antiviral agent | [56] | ||
PLA2-IC | Antiviral agent | [56]] | ||
EcTx-I | Anti-bacterial agent | [51] | ||
Vgf-1 | Anti-bacterial agent | [54] | ||
LAAO | Anti-bacterial agent | [46] | ||
PnPLA2 | Anti-bacterial agent | [52] | ||
TJ-LAO | Anti-bacterial agent | [41] | ||
TM-LAO | Anti-bacterial agent | [43] | ||
Scorpions | Hadrurin | Anti-bacterial agent | [110] | |
Defensin | Anti-bacterial agent | [102] | ||
Opistoporin I/II | Anti-bacterial and antifungal agent | [106] | ||
Pandinin I/II | Antimicrobial agent | [101] | ||
Scorpine | Anti-bacterial and antiparasitic agent | [104] | ||
Cationic amphipatic peptide | Antimicrobial agent | [109] | ||
Bactridines | Anti-bacterial agent | [111] | ||
Spiders | Lycotoxins I/II | Antimicrobial agent | [150] | |
Toads and Frogs | 6-methyl-spinaceamine | Anti-bacterial agent | [172] | |
Bufalin | Antiviral agent | [173] | ||
Cinobufagin | Antiviral agent | [173] | ||
Telocinobufagin | Anti-bacterial agent | [170] | ||
Marinobufagin | Anti-bacterial agent | [170] | ||
Apinaceamine | Anti-bacterial agent | [172] | ||
SPXs | Anti-bacterial agent | [171] | ||
Telocinobufagin | Antiparasitic agent | [174] | ||
Hellebrigenin | Antiparasitic agent | [174] | ||
Bees and Wasps |
Melittin | Anti-bacterial agent | [195] | |
Bi-Bombolitin | Anti-bacterial and antifungal agent | [196] | ||
Osmin | Anti-bacterial and antifungal agent | [197] | ||
MP-VB1 | Anti-bacterial and antifungal agent | [198] | ||
VESP-VB1 | Anti-bacterial and antifungal agent | [198] | ||
Ants, Centipedes and Caterpillars | Pilosulin 1 | Anti-bacterial and antifungal agent | [239] | |
Scolopin 1 | Anti-bacterial and antifungal agent | [240] | ||
Scolopin 2 | Anti-bacterial and antifungal agent | [240] | ||
Toxins acting on inflammatory and nociceptive responses | ||||
Snakes | Crotamine | Antinociceptive agent | [63] | |
Crotoxin | Antinociceptive agent | [64] | ||
Hyal | Anti-edematogenic agent | [59] | ||
βPLI | Phospholipase inhibitor | [58] | ||
Cobrotoxin | Antinociceptive agent | [65] | ||
Hannalgesin | Antinociceptive agent | [66] | ||
Scorpions | BmKIT2 | Antinociceptive agent | [115] | |
J123 peptide | K+ channel blocker | [112] | ||
Spiders | SMase D | Pro-inflammatory agent | [152] | |
Phospholipase D | Pro-inflammatory agent | [152] | ||
Psalmotoxin 1 | Antinociceptive and anti-inflammatory agent | [151] | ||
Toads and Frogs | Epibatidine | Antinociceptive agent | [175] | |
Deltorphins | Opioid analgesic agents | [176] | ||
Dermorphins | Opioid analgesic agents | [61] | ||
Bees and Wasps | Melittin | Anti-inflammatory agent | [202] | |
MCDP | Anti-inflammatory agent | [204] | ||
Ants, Centipedes and Caterpillars | Myrmexins | Anti-inflammatory agent | [242] | |
Toxins acting on immunological system | ||||
Snakes | Crotapotin | Immunossupressive agent | [69] | |
Crotoxin | Immunossupressive agent | [68] | ||
OVF | Complement system activator agent | [71] | ||
Scorpions | Kaliotoxin | Ca2+ activated K+ channel | [121] | |
Hongotoxin | K+ channel blocker | [123] | ||
Margatoxin | Immunosuppressive agent | [120] | ||
Noxiustoxin | K+ channel blocker | [124] | ||
Agitoxin I/II/III | K+ channel blocker | [122] | ||
OSK1 | Immunosuppressive agent | [119] | ||
Pi1 | K+ channel blocker | [125] | ||
Spiders | SMase D | Antiserum | [155] | |
SMase D | Antiserum | [155] | ||
Bees and Wasps | Protonectin 1-6 | Chemotactic agent | [211] | |
Api m 1 | Allergen | [213] | ||
Api m 2 | Allergen | [213] | ||
Api m 6 | Allergen | [206] | ||
rVPr1 | Immunosuppressive agent | [210] | ||
rVPr3 | Immunosuppressive agent | [210] | ||
Pol a 5 | Allergen | [213] | ||
Vesp c 1 (phospholipase A1) | Allergen | [207-208] | ||
Vesp c 5 (antigen-5) | Allergen | [207-208] | ||
Polybia-MPI | Chemotactic agent | [212] | ||
Polybia-CP | Chemotactic agent | [212] | ||
Vesp ma 2 | Allergen agent | [207-208] | ||
Vesp ma 5 | Allergen | [207-208] | ||
Ves g 5 | Allergen | [213] | ||
Ves v 5 | Allergen | [213] | ||
Ants, Centipedes and Caterpillars | Sol i I | Allergen | [244] | |
Sol i II | Allergen | [243] | ||
Sol i III | Allergen | [243] | ||
Sol i IV | Allergen | [243] | ||
Toxins with anticancer and cytotoxic activity | ||||
Snakes | Accutin | Anticancer agent: disintegrin | [73] | |
ACTX-6 | Anticancer agent: L-amino acid oxidase | [82] | ||
Contortrostatin | Anticancer agent: disintegrin | [75] | ||
Salmosin | Anticancer agent: disintegrin | [74] | ||
sPLA2 | Anticancer agent | [86] | ||
BJcuL | Anticancer agent | [89] | ||
Bl-LAAO | Anticancer agent | [84] | ||
Metalloproteinase | Anticancer agent | [90] | ||
Lectin | Anticancer agent | [91] | ||
sPLA2 | Anticancer agent | [85] | ||
Rhodostomin | Anticancer agent: disintegrin | [78] | ||
Crotatroxin | Anticancer agent: disintegrin | [77] | ||
Disintegrin | Anticancer agent | [79] | ||
sPLA2 | Anticancer agent | [87] | ||
LAAO | Anticancer agent | [81] | ||
OHAP-1 | Anticancer agent: L-amino acid oxidase | [83] | ||
Jerdonin | Anticancer agent: disintegrin | [76] | ||
Scorpions | Bengalin | Anticancer agent | [116] | |
Chlorotoxin | Anticancer agent | [126] | ||
rBmK CTa | Anticancer agent | [130] | ||
Neopladine 1 and 2 | Anticancer agent | [131] | ||
Spiders | Gomesin | Cytotoxic and anticancer agent | [157] | |
Psalmotoxin 1 | Anticancer agent | [156] | ||
Toads and Frogs | Cutaneous venom | Anticancer agent | [180] | |
Bufalin | Anticancer agent | [178] | ||
Cinobufagin | Anticancer agent | [178] | ||
Bufotalin | Anticancer agent | [179] | ||
Brevinin-2R | Anticancer agent | [181] | ||
CBG | Anticancer and immunotherapeutic agent to treat immune-mediated diseases | [177] | ||
Bees and Wasps | Lasioglossins | Anticancer agent | [219] | |
Polybia-MPI | Cytotoxic and antiproliferative agent | [223] | ||
Polybia-MP-II | Cytotoxic agent (hemolytic activity on erythrocytes) | [222] | ||
Polybia-MP-III | Cytotoxic agent (hemolytic activity on erythrocytes) | [222] | ||
Ants, Centipedes and Caterpillars | Glycosphingolipid 7 | Anticancer agent | [246] | |
Solenopsin A | Anticancer agent | [245] | ||
Toxins with insulin releasing activity | ||||
Toads and Frogs | Peptides from skin secretion | Insulin-releasing activity | [182] | |
Bees and Wasps | Wasp venom | Mastoparan | Stimulator of insulin secretion agent | [226] |
Toxins with insecticides applications | ||||
Scorpions | AaH IT1 | Anti-insect agent | [142] | |
Bjα IT | Anti-insect agent | [137] | ||
BmKM1 | Anti-insect agent | [140] | ||
Bm 32/33 | Anti-insect agent | [144] | ||
Bot IT1 | Anti-insect agent | [135] | ||
Bom III/IV | Anti-insect agent | [139] | ||
Lqhα IT | Anti-insect agent | [134] | ||
Lqh III/ VI/ VII | Anti-insect agent | [141] | ||
OD1 | Anti-insect agent | [137] | ||
Spiders | SMase D | Anti-insect agent | [161] | |
LiTxx1/ LiTxx2/ LiTxx3 | Anti-insect agent | [158] | ||
δ-PaluIT1/ δ-PaluIT2 | Anti-insect agent | [162] | ||
Tx4(6-1) | Anti-insect agent | [160] | ||
Ants, Centipedes and Caterpillars | Ponericins G1 | Insecticide Agent | [238] | |
Ponericins G2 | Insecticide Agent | [238] | ||
Ponericins family W | Insecticide Agent | [238] |
8. Conclusion
The biodiversity of venoms and toxins made it a unique source of leads and structural templates from which new therapeutic agents may be developed. Such richness can be useful to biotechnology and/or pharmacology in many ways, with the prospection of new toxins in this field. Venoms of several animal species such as snakes, scorpions, toads, frogs and their active components have shown potential biotechnological applications. Recently, using molecular biology techniques and advanced methods of fractionation, researchers have obtained different native and/or recombinant toxins and enough material to afford deeper insight into the molecular action of these toxins. The mechanistic elucidation of toxins as well as their use as drugs will depend on insight into toxin biochemical classification, structure/conformation determination and elucidation of toxin biological activities based on their molecular organization, in addition to their mechanism of action upon different cell models as well as their cellular receptors. Furthermore, expansions in the fields of chemistry and biology have guided new drug discovery strategies to maximize the identification of biotechnological relevant toxins. In fact, with so much diversity in the terrestrial fauna to be explored in the future, is extremely important providing a further stimulus to the preservation of the precious ecosystem in order to develop the researches focusing on identify and isolate new molecules with importance in biotechnology or pharmacology.
Acknowledgments
Our research on this field is supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Norte (FAPERN), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
References
- 1.
Gomes A. Bhattacharjee P. Mishra R. Biswas A. K. Dasgupta S. C. Giri B. Debnath A. Gupta S. D. Das T. 2010 Anticancer potential of animal venoms and toxins. 48 2 93 103 - 2.
Braud S. Bon C. Wisner A. 2000 Snake venom proteins acting on hemostasis. 82 9-10 851 9 - 3.
Kang T. S. Georgieva D. Genov N. Murakami M. T. Sinha M. Kumar R. P. Kaur P. Kumar S. Dey S. Sharma S. Vrielink A. Betzel C. Takeda S. Arni R. K. Singh T. P. Kini R. M. 2011 Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis. 278 23 4544 4576 - 4.
Murayama N. Hayashi M. A. F. Ohi H. Ferreira L. A. F. Hermann V. V. Saito H. Fujita Y. Higuchi S. Fernandes B. L. Yamane T. Camargo A. C. M. 1997 Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin-potentiating peptides and a C-type natriuretic peptide 94 4 1189 1193 - 5.
Quintero-Hernández V. Ortiz E. Rendón-Anaya M. Schwartz E. F. Becerril B. Corzo G. Possani L. D. 2011 Scorpion and spider venom peptides: Gene cloning and peptide expression. 58 8 644 663 - 6.
Verano-Braga T. Rocha-Resende C. Silva D. M. Ianzer D. Martin-Eauclaire M. F. Bougis P. E. De Lima ME Santos R. A. S. Pimenta A. M. C. 2008 Tityus serrulatus Hypotensins: A new family of peptides from scorpion venom. 371 3 515 520 - 7.
Almeida D. D. Scortecci K. C. Kobashi L. S. Agnez-Lima L. F. Medeiros S. R. B. Silva-Junior A. A. Junqueira-de-Azevedo I. L. M. Fernandes-Pedrosa M. F. 2012 Profiling the resting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. 13 362 - 8.
Petricevich V. L. 2010 Scorpion venom and the inflammatory response. 903295 - 9.
Tambourgi D. V. Pedrosa M. F. F. Van Den Berg. C. W. Gonçalves-de-Andrade R. M. Ferracini M. Paixão-Cavalcante D. Morgan B. P. Rushmere N. K. 2004 Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands. 41 8 831 840 - 10.
Senff-Ribeiro A. Henrique da. Silva P. Chaim O. M. Gremski L. H. Paludo K. S. Bertoni da. Silveira R. Gremski W. Mangili O. C. Veiga S. S. 2008 Biotechnological applications of brown spider (Loxosceles genus) venom toxins. 26 3 210 218 - 11.
Habermehl GG. 1995 Antimicrobial activity of amphibian venoms 327 339 - 12.
Habermann E. 1972 Bee and wasp venoms. 177 4046 314 322 - 13.
Sajevic T. Leonardi A. Križaj I. 2011 Haemostatically active proteins in snake venoms 57 5 627 645 - 14.
Koh C. Y. Kini R. M. 2012 From snake venom toxins to therapeutics- cardiovascular examples. 59 4 497 506 - 15.
Hodgson W. C. Isbister G. K. 2009 The application of toxins and venoms to cardiovascular drug discovery. 9 2 173 176 - 16.
Ferreira S. H. 1965 A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca. 24 1 163 169 - 17.
Barreto S. A. Chaguri L. C. A. G. Prezoto B. C. Lebrun I. 2012 Characterization of two vasoactive peptides isolated from the plasma of the snake Crotalus durissus terrificus Biomedicine and Pharmacotherapy66 4 256 265 - 18.
Vink S. Jin A. H. Poth K. J. Head G. A. Alewood P. F. 2012 Natriuretic peptide drug leads from snake venom. 59 4 434 445 - 19.
Schweitz H. Vigne P. Moinier D. Frelin C. Lazdunski M. 1992 A new member of the natriuretic peptide family is present in the venom of the green mamba (Dendroaspis angusticeps). Jul 15;267 20 13928 13932 - 20.
Ho P. L. Soares M. B. Maack T. Gimenez I. Puorto G. Furtado M. D. F. D. Raw I. 1997 Cloning of an unusual natriuretic peptide from the South American coral snake Micrurus corallinus 250 1 144 149 - 21.
Higuchi S. Murayama N. Saguchi K. Ohi H. Fujita Y. Camargo A. C. M. Ogawa T. Deshimaru M. Ohno M. 1999 Bradykinin-potentiating peptides and C-type natriuretic peptides from snake venom. 44 1-2 129 135 - 22.
Amininasab M. Elmi M. M. Endlich N. Endlich K. Parekh N. Naderi-Manesh H. Schaller J. Mostafavi H. Sattler M. Sarbolouki M. N. Muhle-Goll C. 2004 Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. 557 1-3 104 108 - 23.
Evangelista J. S. A. M. Martins A. M. C. Nascimento N. R. F. Sousa C. M. Alves R. S. Toyama D. O. Toyama M. H. Evangelista J. J. F. Menezes D. B. Fonteles M. C. Moraes M. E. A. Monteiro H. S. A. 2008 Renal and vascular effects of the natriuretic peptide isolated from Crotalus durissus cascavella venom. 52 7 737 744 - 24.
Siang AS Doley R. Vonk F. J. Kini R. M. 2010 Transcriptomic analysis of the venom gland of the red-headed krait (Bungarus flaviceps) using expressed sequence tags 11 - 25.
De Weille J. R. Schweitz H. Maes P. Tartar A. Lazdunski M. 1991 Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. 88 6 2437 2440 - 26.
Yasuda O. Morimoto S. Jiang B. Kuroda H. Kimura T. Sakakibara S. Fukuo K. Chen S. Tamatani M. Ogihara T. 1994 FS2. A mamba venom toxin, is a specific blocker of the L-type calcium channels. 21 5 287 302 - 27.
Joubert F. J. Taljaard N. 1980 The complete primary structures of two reduced and S-carboxymethylated Angusticeps-type toxins from Dendroaspis angusticeps (green mamba) venom. 623 2 449 456 - 28.
Joubert F. J. Taljaard N. 1980 The primary structure of a short neurotoxin homologue (S4C8) from Dendroaspis jamesoni kaimosae (Jameson’s mamba) venom 12 4 567 574 - 29.
Zhang P. Shi J. Shen B. Li X. Gao Y. Zhu Z. Zhu Z. Ji Y. Teng M. Niu L. 2009 Stejnihagin, a novel snake metalloproteinase from Trimeresurus stejnegeri venom, inhibited L-type Ca2+ channels 53 2 309 315 - 30.
Bilgrami S. Tomar S. Yadav S. Kaur P. Kumar J. Jabeen T. Sharma S. Singh T. P. 2004 Crystal structure of Schistatin, a disintegrin homodimer from Saw-scaled Viper (Echis carinatus) at 2.5 Å Resolution. 341 3 829 837 - 31.
Scarborough R. M. Rose J. W. Hsu MA Phillips D. R. Fried V. A. Campbell A. M. Nannizzi L. Charo I. F. 1991 Barbourin: a GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. 266 15 9359 9362 - 32.
Higuchi D. A. Almeida M. C. Barros C. C. Sanchez E. F. Pesquero P. R. Lang E. A. S. Samaan M. Araujo R. C. Pesquero J. B. Pesquero J. L. 2011 Leucurogin, a new recombinant disintegrin cloned from Bothrops leucurus (white-tailed-jararaca) with potent activity upon platelet aggregation and tumor growth 58 1 123 129 - 33.
Stocker K. Barlow G. H. 1976 The coagulant enzyme from Bothrops atrox venom (batroxobin). 45 214 - 34.
Nolan C. Hall L. S. Barlow G. H. 1976 Ancrod, the coagulating enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. 45 205 - 35.
Costa J. O. Fonseca K. C. Mamede C. C. N. Beletti M. E. Santos-Filho N. A. Soares A. M. Arantes E. C. Hirayama S. N. S. Selistre-de-Araújo H. S. Fonseca F. Henrique-Silva F. Penha-Silva N. Oliveira F. 2010 Bhalternin: functional and structural characterization of a new thrombin-like enzyme from Bothrops alternatus snake venom. 55 7 1365 1377 - 36.
Gomes M. S. R. Queiroz M. R. Mamede C. C. N. Mendes MM Hamaguchi A. Homsi-Brandeburgo M. I. Sousa M. V. Aquino E. N. MS Castro Oliveira. F. Rodrigues V. M. 2011 Purification and functional characterization of a new metalloproteinase (BleucMP) from Bothrops leucurus snake venom 153 3 290 300 - 37.
Hamza L. Gargioli C. Castelli S. Rufini S. Laraba-Djebari F. 2010 Purification and characterization of a fibrinogenolytic and hemorrhagic metalloproteinase isolated from Vipera lebetina venom 92 7 797 805 - 38.
Kumar R. V. Gowda C. D. R. Shivaprasad H. V. Siddesha J. M. Sharath B. K. Vishwanath B. S. 2010 Purification and characterization of ‘Trimarin’ a hemorrhagic metalloprotease with factor Xa-like activity, from Trimeresurus malabaricus snake venom. 126 5 e356 e364 - 39.
Modesto J. C. A. Spencer P. J. Fritzen M. Valença R. C. Oliva M. L. V. Silva M. B. Chudzinski-Tavassi A. M. Guarnieri M. C. 2006 BE-I-PLA2, a novel acidic phospholipase A2 from Bothrops erythromelas venom: isolation, cloning and characterization as potent anti-platelet and inductor of prostaglandin I2 release by endothelial cells. 72 3 377 384 - 40.
Chopra I. Hesse L. O’Neill A. J. 2002 Exploiting current understanding of antibiotic action for discovery of new drugs. Symposium Series Society for Applied Microbiology;31 4S 15S - 41.
Lu Q. M. Wei Q. Jin Y. Wei J. F. Wang W. Y. Xiong Y. L. 2002 L-amino acid oxidase from Trimeresurus jerdonii snake venom: purification, characterization, platelet aggregation-inducing and antibacterial effects. 11 4 345 352 - 42.
Stábeli R. G. Marcussi S. Carlos G. B. Pietro R. C. L. R. Selistre-de-Araújo H. S. Giglio J. R. Oliveira E. B. Soares A. M. 2004 Platelet aggregation and antibacterial effects of an L-amino acid oxidase purified from Bothrops alternatus snake venom. 12 11 2881 2886 - 43.
Wei J. F. Wei Q. Lu Q. M. Tai H. Jin Y. Wang W. Y. Xiong Y. L. 2003 Purification, characterization and biological activity of an L-amino acid oxidase from Trimeresurus mucrosquamatus venom. 35 3 219 224 - 44.
Izidoro L. F. M. Ribeiro M. C. Souza G. R. L. Sant’Ana C. D. Hamaguchi A. Homsi-Brandeburgo M. I. Goulart L. R. Beleboni R. O. Nomizo A. Sampaio S. V. Soares A. M. Rodrigues V. M. 2006 Biochemical and functional characterization of an L-amino acid oxidase isolated from Bothrops pirajai snake venom. 14 20 7034 7043 - 45.
Toyama M. H. Toyama D. D. O. Passero L. F. D. Laurenti M. D. Corbett C. E. Tomokane T. Y. Fonseca F. V. Antunes E. Joazeiro P. P. Beriam L. O. S. Martins M. A. C. Monteiro H. S. A. Fonteles M. C. 2006 Isolation of a new L-amino acid oxidase from Crotalus durissus cascavella venom. 47 1 47 57 - 46.
Samel M. Tõnismägi K. Rönnholm G. Vija H. Siigur J. Kalkkinen N. Siigur E. 2008 L-amino acid oxidase from Naja naja oxiana venom. 149 4 572 580 - 47.
Torres A. F. C. Dantas R. T. Toyama M. H. Diz-Filho E. Zara F. J. Queiroz M. G. R. Nogueira N. A. P. Oliveira M. R. Toyama D. O. Monteiro H. S. A. Martins A. M. C. 2010 Antibacterial and antiparasitic effects of Bothrops marajoensis venom and its fractions: phospholipase A2 and L-amino acid oxidase. 55 4 795 804 - 48.
Deolindo P. Teixeira-Ferreira A. S. Da Matta R. A. Alves E. W. 2010 L-Amino acid oxidase activity present in fractions of Bothrops jararaca venom is responsible for the induction of programmed cell death in Trypanosoma cruzi. 56 6 944 955 - 49.
Arni R. K. Ward R. J. 1996 Phospholipase A2- a structural review. 34 8 827 841 - 50.
Santamaría C. Larios S. Angulo Y. Pizarro-Cerda J. Gorvel-P J. Moreno E. Lomonte B. 2005 Antimicrobial activity of myotoxic phospholipases A2 from crotalid snake venoms and synthetic peptide variants derived from their C-terminal region 45 7 807 815 - 51.
Samy R. P. Gopalakrishnakone P. Bow H. Puspharaj P. N. Chow V. T. K. 2010 Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: novel bactericidal and membrane damaging activities. 92 12 1854 1866 - 52.
Vargas L. J. Londoño M. Quintana J. C. Rua C. Segura C. Lomonte B. Núñez V. 2012 An acidic phospholipase A2 with antibacterial activity from Porthidium nasutum snake venom. 161 4 341 347 - 53.
Xu C. Ma D. Yu H. Li Z. Liang J. Lin G. Zhang Y. Lai R. 2007 A bactericidal homodimeric phospholipases A2 from Bungarus fasciatus venom. 28 5 969 973 - 54.
Xie J. P. Yue J. Xiong Y. L. Wang W. Y. Yu S. Q. Wang H. H. 2003 In vitro activities of small peptides from snake venom against clinical isolates of drug-resistant Mycobacterium tuberculosis. 22 2 172 174 - 55.
Bastos L. M. Júnior R. J. O. Silva D. A. O. Mineo J. R. Vieira C. U. Teixeira D. N. S. Homsi-Brandeburgo M. I. Rodrigues V. M. Hamaguchi A. 2008 Toxoplasma gondii: Effects of neuwiedase, a metalloproteinase from Bothrops neuwiedi snake venom, on the invasion and replication of human fibroblasts in vitro 120 4 391 396 - 56.
Muller V. D. M. Russo R. R. Oliveira Cintra. A. C. Sartim M. A. Alves-Paiva R.d. M. Figueiredo L. T. M. Sampaio S. V. Aquino V. H. 2012 Crotoxin and phospholipases A2 from Crotalus durissus terrificus showed antiviral activity against dengue and yellow fever viruses. 59 4 507 515 - 57.
Kini R. M. 2003 Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. 42 8 827 840 - 58.
Lima R. M. Estevão-Costa M. I. Junqueira-de-Azevedo I. L. M. Lee Ho. P. Vasconcelos Diniz. M. R. Fortes-Dias C. L. 2011 Phospholipase A2 inhibitors (βPLIs) are encoded in the venom glands of Lachesis muta (Crotalinae, Viperidae) snakes. 57 1 172 175 - 59.
Bordon K. C. F. Perino M. G. Giglio J. R. Arantes E. C. 2012 198. Isolation, enzymatic characterization and action as spreading factor of a hyaluronidase from Crotalus durissus terrificus snake venom. 60 2 197 - 60.
Garcia F. Toyama M. H. Castro F. R. Proença P. L. Marangoni S. Santos L. M. B. 2003 Crotapotin induced modification of T lymphocyte proliferative response through interference with PGE2 synthesis 42 4 433 437 - 61.
Rajendra W. Armugam A. Jeyaseelan K. 2004 Toxins in anti-nociception and anti-inflammation 44 1 1 17 - 62.
Giorgi R. Bernardi MM Cury Y. 1993 Analgesic effect evoked by low molecular weight substances extracted from Crotalus durissus terrificus venom. 31 10 1257 1265 - 63.
Mancin A. C. Soares A. M. Andrião-Escarso S. H. Faça V. M. Greene L. J. Zuccolotto S. Pelá I. R. Giglio J. R. 1998 The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: A biochemical and pharmacological study. 36 12 1927 1937 - 64.
Zhang H. L. Han R. Chen Z. X. Chen B. W. Gu Z. L. Reid P. F. Raymond L. N. Qin Z. H. 2006 Opiate and acetylcholine-independent analgesic actions of crotoxin isolated from Crotalus durissus terrificus venom. 48 2 175 182 - 65.
Chen R. Robinson S. E. 1992 The effect of cobrotoxin on cholinergic neurons in the mouse. 51 13 1013 1019 - 66.
Pu X. C. Wong P. T. H. Gopalakrishnakone P. 1995 A novel analgesic toxin (Hannalgesin) from the venom of king cobra (Ophiophagus hannah). 33 11 1425 1431 - 67.
Mirshafiey A. 2007 Venom therapy in multiple sclerosis 53 3 353 361 - 68.
Rangel-Santos A. Lima C. Lopes-Ferreira M. Cardoso D. F. 2004 Immunosuppresive role of principal toxin (crotoxin) of Crotalus durissus terrificus venom 44 6 609 616 - 69.
Castro F. R. Farias AS Proença P. L. F. De La Hoz C. Langone F. Oliveira E. C. Toyama M. H. Marangoni S. Santos L. M. B. 2007 The effect of treatment with crotapotin on the evolution of experimental autoimmune neuritis induced in Lewis rats. 49 3 299 305 - 70.
Vogel C. W. Fritzinger D. C. 2010 Cobra venom factor: structure, function, and humanization for therapeutic complement depletion. 56 7 1198 1222 - 71.
Zeng L. Sun Q. Y. Jin Y. Zhang Y. Lee W. H. Zhang Y. 2012 Molecular cloning and characterization of a complement-depleting factor from king cobra, Ophiophagus hannah 60 3 290 301 - 72.
Goodman S. L. Picard M. 2012 Integrins as therapeutic targets 33 7 405 412 - 73.
Yeh C. H. Peng H. C. Huang T. F. 1998 Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin α(v)β3 antagonist and inducing apoptosis. 92 9 3268 3276 - 74.
Kang I. C. Kim DS Jang Y. Chung K. H. 2000 Suppressive mechanism of salmosin, a novel disintegrin in B16 melanoma cell metastasis 275 1 169 173 - 75.
Minea R. Swenson S. Costa F. Chen T. C. Markland F. S. 2006 Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent 34 4-5 177 183 - 76.
Zhou X. D. Jin Y. Chen R. Q. Lu Q. M. Wu J. B. Wang W. Y. Xiong Y. L. 2004 Purification, cloning and biological characterization of a novel disintegrin from Trime resurus jerdonii venom. Toxicon43 1 69 75 - 77.
Galán J. A. Sánchez E. E. Rodríguez-Acosta A. Soto J. G. Bashir S. Mc Lane M. A. Paquette-Straub C. Pérez J. C. 2008 Inhibition of lung tumor colonization and cell migration with the disintegrin crotatroxin 2 isolated from the venom of Crotalus atrox. 51 7 1186 1196 - 78.
Yeh C. H. Peng H. C. Yang R. S. Huang T. F. 2001 Rhodostomin, a snake venom disintegrin, inhibits angiogenesis elicited by basic fibroblast growth factor and suppresses tumor growth by a selective αv/β3 blockade of endothelial cells. 59 5 133 1342 - 79.
Thangam R. Gunasekaran P. Kaveri K. Sridevi G. Sundarraj S. Paulpandi M. Kannan S. 2012 A novel disintegrin protein from Naja naja venom induces cytotoxicity and apoptosis in human cancer cell lines in vitro 47 8 1243 1249 - 80.
Guo C. Liu S. Yao Y. Zhang Q. Sun M. Z. 2012 Past decade study of snake venom L-amino acid oxidase 60 3 302 311 - 81.
Ahn M. Y. Lee B. M. Kim Y. S. 1997 Characterization and cytotoxicity of L-amino acid oxidase from the venom of king cobra (Ophiophagus hannah). 29 6 911 919 - 82.
Zhang L. Wu W. T. 2008 Isolation and characterization of ACTX-6: a cytotoxic L-amino acid oxidase from Agkistrodon acutus snake venom 22 6 554 563 - 83.
Sun L. K. Yoshii Y. Hyodo A. Tsurushima H. Saito A. Harakuni T. Li Y. P. Kariya K. Nozaki M. Morine N. 2003 Apoptotic effect in the glioma cells induced by specific protein extracted from Okinawa Habu (Trimeresurus flavoviridis) venom in relation to oxidative stress 17 2 169 177 - 84.
Naumann G. B. Silva L. F. Silva L. Faria G. Richardson M. Evangelista K. Kohlhoff M. Gontijo C. M. F. Navdaev A. Rezende F. F. Eble J. A. Sanchez E. F. 2011 Cytotoxicity and inhibition of platelet aggregation caused by an L-amino acid oxidase from Bothrops leucurus venom. 1810 7 683 694 - 85.
Daniele J. J. Bianco I. D. Delgado C. Carrillo D. B. Fidelio G. D. 1997 A new phospholipase A2 isoform isolated from Bothrops neuwiedii (Yarara chica) venom with novel kinetic and chromatographic properties. 35 8 1205 1215 - 86.
Costa T. R. Menaldo D. L. Oliveira C. Z. Santos-Filho N. A. Teixeira S. S. Nomizo A. Fuly A. L. Monteiro M. C. De Souza B. M. Palma M. S. Stábeli R. G. Sampaio S. V. Soares A. M. 2008 Myotoxic phospholipases A2 isolated from Bothrops brazili snake venom and synthetic peptides derived from their C-terminal region: cytotoxic effect on microorganism and tumor cells. 29 10 1645 1656 - 87.
Rudrammaji L. M. S. Gowda T. V. 1998 Purification and characterization of three acidic, cytotoxic phospholipases A2 from Indian cobra (Naja naja naja) venom. 36 6 921 932 - 88.
Soares M. A. Pujatti P. B. Fortes-Dias C. L. Antonelli L. Santos R. G. 2010 Crotalus durissus terrificus venom as a source of antitumoral agents. 16 3 480 492 - 89.
Nolte S. Damasio D. C. Baréa A. C. Gomes J. Magalhães A. Zischler L. F. C. M. Stuelp-Campelo P. M. Elífio-Esposito S. L. Roque-Barreira M. C. Reis-Amaral CA Moreno A. N. 2012 BJcuL, a lectin purified from Bothrops jararacussu venom, induces apoptosis in human gastric carcinoma cells accompanied by inhibition of cell adhesion and actin cytoskeleton disassembly 59 1 81 85 - 90.
Gabriel L. M. Sanchez E. F. Silva S. G. dos Santos R. G. 2012 Tumor cytotoxicity of leucurolysin-B, a P-III snake venom metalloproteinase from Bothrops leucurus. 18 1 24 33 - 91.
Nunes E. S. Souza M. A. A. Vaz A. F. M. Silva T. G. Aguiar J. S. Batista A. M. Guerra M. M. P. Guarnieri M. C. Coelho L. C. B. B. Correia M. T. S. 2012 Cytotoxic effect and apoptosis induction by Bothrops leucurus venom lectin on tumor cell lines. 59 7-8 667 671 - 92.
Dehesa-Dávila M. Martin BM Nobile M. Prestipino G. Possani L. D. 1994 Isolation of a toxin from Centruroides infamatus infamatus Koch scorpion venom that modifies Na+ permeability on chick dorsal root ganglion cells. 32 12 1487 1493 - 93.
Chowell G. Díaz-Dueñas P. Bustos-Saldaña R. Mireles AA Fet V. 2006 Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000-2001). 47 7 753 758 - 94.
Goudet C. Chi C. W. Tytgat J. 2002 An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch 40 9 1239 1258 - 95.
Ferreira L. A. F. Alves E. W. Henriques O. B. 1993 Peptide T, a novel bradykinin potentiator isolated from Tityus serrulatus scorpion venom. 31 8 941 947 - 96.
Pimenta A. M. C. De Lima M. E. 2005 Small peptides, big world: Biotechnological potential in neglected bioactive peptides from arthropod venoms. 11 11 670 676 - 97.
Zeng X. C. Li W. X. Peng F. Zhu Z. H. 2000 Cloning and characterization of a novel cDNA sequence encoding the precursor of a novel venom peptide (BmKbpp) related to a bradykinin- potentiating peptide from Chinese scorpion Buthus martensii Karsch. 49 3 207 210 - 98.
El -Saadani M. A. M. El -Sayed M. F. 2003 A bradykinin potentiating peptide from Egyptian cobra venom strongly affects rat atrium contractile force and cellular calcium regulation. 136 4 387 395 - 99.
Bulet P. Stöcklin R. Menin L. 2004 Anti-microbial peptides: From invertebrates to vertebrates 198 169 - 100.
Elgar D. Du Plessis J. Du Plessis L. 2006 Cysteine-free peptides in scorpion venom: Geographical distribution, structure-function relationship and mode of action. 5 25 2495 2502 - 101.
Corzo G. Escoubas P. Villegas E. Barnham K. J. He W. Norton R. S. Nakajima T. 2001 Characterization of unique amphipathic antimicrobial peptides from venom of the scorpion Pandinus imperator. 359 1 35 45 - 102.
Cociancich S. Goyffon M. Bontems F. Bulet P. Bouet F. Menez A. Hoffmann J. 1993 Purification and Characterization of a Scorpion Defensin, a 4kDa Antibacterial peptide presenting structural similarities with insect defensins and scorpion toxins 194 1 17 22 - 103.
Ehret-Sabatier L. Loew D. Goyffon M. Fehlbaum P. Hoffmann J. A. Van Dorsselaer A. Bulet P. 1996 Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood. 271 47 29537 29544 - 104.
Conde R. Zamudio F. Z. Rodrı́guez M. H. Possani L. D. 2000 Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. 471 2-3 165 168 - 105.
Dai L. Corzo G. Naoki H. Andriantsiferana M. Nakajima T. 2002 Purification, structure-function analysis, and molecular characterization of novel linear peptides from scorpion Opisthacanthus madagascariensis. 293 5 1514 1522 - 106.
Moerman L. Bosteels S. Noppe W. Willems J. Clynen E. Schoofs L. Thevissen K. Tytgat J. Van Eldere J. Van Der Walt J. Verdonck F. 2002 Antibacterial and antifungal properties of α-helical, cationic peptides in the venom of scorpions from southern Africa. 269 19 4799 4810 - 107.
Rodríguez La Vega. R. C. García B. I. D’Ambrosio C. Diego-García E. Scaloni A. Possani L. D. 2004 Antimicrobial peptide induction in the haemolymph of the Mexican scorpion Centruroides limpidus limpidus in response to septic injury. 61 12 1507 1519 - 108.
Uawonggul N. Thammasirirak S. Chaveerach A. Arkaravichien T. Bunyatratchata W. Ruangjirachuporn W. Jearranaiprepame P. Nakamura T. Matsuda M. Kobayashi M. Hattori S. Daduang S. 2007 Purification and characterization of Heteroscorpine-1 (HS-1) toxin from Heterometrus laoticus scorpion venom. 49 1 19 29 - 109.
Elgar D. Verdonck F. Grobler A. Fourie C. Du Plessis. J. 2006 Ion selectivity of scorpion toxin-induced pores in cardiac myocytes 27 1 55 61 - 110.
Torres-Larios A. Gurrola G. B. Zamudio F. Z. Possani L. D. 2000 Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus 267 16 5023 5031 - 111.
Díaz P. D’Suze G. Salazar V. Sevcik C. JD Shannon Sherman. N. E. Fox J. W. 2009 Antibacterial activity of six novel peptides from Tityus discrepans scorpion venom. A fluorescent probe study of microbial membrane Na+ permeability changes 54 6 802 817 - 112.
Shijin Y. Hong Y. Yibao M. Zongyun C. Han S. Yingliang W. Zhijian C. Wenxin L. 2008 Characterization of a new Kv1.3 channel-specific blocker, J123, from the scorpion Buthus martensii Karsch 29 9 1514 1520 - 113.
Wang Z. Wang W. Shao Z. Gao B. Li J. Che J. H. Zhang W. 2009 Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions 330 1-2 97 104 - 114.
Shao J. Kang N. Liu Y. Song S. Wu C. Zhang J. 2007 Purification and characterization of an analgesic peptide from Buthus martensii Karsch. 21 12 1266 1271 - 115.
Bai Z. T. Liu T. Pang X. Y. Chai Z. F. Ji Y. H. 2007 Suppression by intrathecal BmK IT2 on rat spontaneous pain behaviors and spinal c-Fos expression induced by formalin 73 4-6 248 253 - 116.
Gupta S. D. Gomes A. Debnath A. Saha A. 2010 Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: Through mitochondrial pathway and inhibition of heat shock proteins 183 2 293 303 - 117.
Deshane J. Garner C. C. Sontheimer H. 2003 Chlorotoxin inhibits glioma cell invasion via matrix metalloproteinase-2. 278 6 4135 4144 - 118.
Pessini A. C. Kanashiro A. Malvar Dd. C. Machado R. R. Soares D. M. Figueiredo MJ Kalapothakis E. Souza G. E. P. 2008 Inflammatory mediators involved in the nociceptive and oedematogenic responses induced by Tityus serrulatus scorpion venom injected into rat paws. 52 7 729 736 - 119.
Jaravine V. A. Nolde D. E. Reibarkh M. J. Korolkova Y. V. Kozlov S. A. Pluzhnikov K. A. Grishin E. V. Arseniev A. S. 1997 Three-dimensional structure of toxin OSK1 from Orthochirus scrobiculosus scorpion venom. 36 6 1223 1232 - 120.
Garcia-Calvo M. Leonard R. J. Novick J. Stevens S. P. Schmalhofer W. Kaczorowski G. J. Garcia M. L. 1993 Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. 268 25 18866 18874 - 121.
Crest M. Jacquet G. Gola M. Zerrouk H. Benslimane A. Rochat H. Mansuelle P. Martin-Eauclaire M. F. 1992 Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca2+-activated K+ channels characterized from Androctonus mauretanicus mauretanicus venom. 267 3 1640 1647 - 122.
Garcia ML. 1994 Purification and characterization of three inhibitors of voltage-dependent K+ channels from Leiurus quinquestriatus var. Hebraeus venom. 33 22 6834 6839 - 123.
Koschak A. Bugianesi R. M. Mitterdorfer J. Kaczorowski G. J. Garcia M. L. Knaus H. G. 1998 Subunit composition of brain voltage-gated potassium channels determined by hongotoxin-1, a novel peptide derived from Centruroides limbatus venom. 273 5 2639 2644 - 124.
Domingos Possani. L. Martin BM Svendsen I. B. 1982 The primary structure of noxiustoxin: A K+ channel blocking peptide, purified from the venom of the scorpion Centruroides noxius Hoffmann 47 5 285 289 - 125.
Olamendi-Portugal T. Gómez-Lagunas F. Gurrola G. B. Possani L. D. 1996 A novel structural class of K+-channel blocking toxin from the scorpion Pandinus imperator. 315 3 977 981 - 126.
Soroceanu L. Manning Jr T. J. Sontheimer H. 1999 Modulation of glioma cell migration and invasion using Cl- and K+ ion channel blockers. 19 14 5942 5954 - 127.
Mamelak A. N. Jacoby D. B. 2007 Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). 4 2 175 186 - 128.
Jacoby D. B. Dyskin E. Yalcin M. Kesavan K. Dahlberg W. Ratliff J. Johnson E. W. Mousa S. A. 2010 Potent pleiotropic anti-angiogenic effects of TM601, a synthetic chlorotoxin peptide. 30 1 39 46 - 129.
Wu J. J. Dai L. Lan Z. D. Chi C. W. 2000 The gene cloning and sequencing of Bm-12, a Chlorotoxin-like peptide from the scorpion Buthus martensi Karsch. 38 5 661 668 - 130.
Fu Y. J. Yin L. T. Liang A. H. Zhang C. F. Wang W. Chai B. F. Yang J. Y. Fan X. J. 2007 Therapeutic potential of chlorotoxin-like neurotoxin from the Chinese scorpion for human gliomas. 412 1 62 67 - 131.
D’Suze G. Rosales A. Salazar V. Sevcik C. 2010 Apoptogenic peptides from Tityus discrepans scorpion venom acting against the SKBR3 breast cancer cell line 56 8 1497 1505 - 132.
De Lima ME Figueiredo S. G. Pimenta A. M. C. Santos D. M. Borges M. H. Cordeiro M. N. Richardson M. Oliveira L. C. Stankiewicz M. Pelhate M. 2007 Peptides of arachnid venoms with insecticidal activity targeting sodium channels. 146 1-2 264 279 - 133.
Eitan M. Fowler E. Herrmann R. Duval A. Pelhate M. Zlotkin E. 1990 A scorpion venom neurotoxin paralytic to insects that affects sodium current inactivation: purification, primary structure, and mode of action. 29 25 5941 5947 - 134.
Karbat I. Frolow F. Froy O. Gilles N. Cohen L. Turkov M. Gordon D. Gurevitz M. 2004 Molecular basis of the high insecticidal potency of scorpion alpha-toxins. 279 30 31679 31686 - 135.
Borchani L. Stankiewicz M. Kopeyan C. Mansuelle P. Kharrat R. Cestèle S. Karoui H. Rochat H. Pelhate M. El Ayeb M. 1997 Purification, structure and activity of three insect toxins from Buthus occitanus tunetanus venom. 35 3 365 382 - 136.
Arnon T. Potikha T. Sher D. Elazar M. Mao W. Tal T. Bosmans F. Tytgat J. Ben-Arie N. Zlotkin E. 2005 BjαIT: a novel scorpion α-toxin selective for insects- unique pharmacological tool. 35 3 187 195 - 137.
Jalali A. Bosmans F. Amininasab M. Clynen E. Cuypers E. Zaremirakabadi A. Sarbolouki M. N. Schoofs L. Vatanpour H. Tytgat J. 2005 OD1, the first toxin isolated from the venom of the scorpion Odonthobuthus doriae active on voltage-gated Na+ channels. 579 19 4181 4186 - 138.
Krimm I. Gilles N. Sautière P. Stankiewicz M. Pelhate M. Gordon D. Lancelin-M J. 1999 NMR structures and activity of a novel α-like toxin from the scorpion Leiurus quinquestriatus hebraeus. 285 4 1749 1763 - 139.
Cestèle S. Stankiewicz M. Mansuelle P. De Waard M. Dargent B. Gilles N. Pelhate M. Rochat H. Martin-Eauclaire-F M. Gordon D. 1999 Scorpion α-like toxins, toxic to both mammals and insects, differentially interact with receptor site 3 on voltage-gated sodium channels in mammals and insects. 11 3 975 985 - 140.
Wang C. G. Ling M. H. Chi C. W. Wang D. C. Stankiewicz M. Pelhate M. 2003 Purification of two depressant insect neurotoxins and their gene cloning from the scorpion Buthus martensi Karsch The61 1 7 16 - 141.
Hamon A. Gilles N. Sautière P. Martinage A. Kopeyan C. Ulens C. Tytgat J. Lancelin J. M. Gordon D. 2002 Characterization of scorpion α-like toxin group using two new toxins from the scorpion Leiurus quinquestriatus hebraeus. 269 16 3920 3933 - 142.
Pelhate M. Zlotkin E. 1982 Actions of insect toxin and other toxins derived from the venom of the scorpion Androctonus australis on isolated giant axons of the cockroach (Periplaneta americana). 97 67 - 143.
Pelhate M. Stankiewicz M. Ben Khalifa. R. 1998 Anti-insect scorpion toxins: historical account, activities and prospects. 192 3 463 484 - 144.
Escoubas P. Stankiewicz M. Takaoka T. Pelhate M. Romi-Lebrun R. Wu F. Q. Nakajima T. 2000 Sequence and electrophysiological characterization of two insect-selective excitatory toxins from the venom of the Chinese scorpion Buthus martensi. 483 2-3 175 80 - 145.
Ori M. Ikeda H. 1998 Spider venoms and spider toxins 17 3 405 426 - 146.
Rash L. D. Hodgson W. C. 2001 Pharmacology and biochemistry of spider venoms. 40 3 225 254 - 147.
Bode F. Sachs F. Franz M. R. 2001 Tarantula peptide inhibits atrial fibrillation. 409 6816 35 36 - 148.
Mc Glasson D. L. Babcock J. L. Berg L. Triplett D. A. 1993 ARACHnase: An evaluation of a positive control for platelet neutralization procedure testing with seven commercial activated partial thromboplastin time reagents. 100 5 576 578 - 149.
Futrell J. M. 1992 Loxoscelism. 304 4 261 267 - 150.
Yan L. Adams M. E. 1998 Lycotoxins, antimicrobial peptides from venom of the wolf spider Lycosa carolinensis. 273 4 2059 2066 - 151.
Mazzuca M. Heurteaux C. Alloui A. Diochot S. Baron A. Voilley N. Blondeau N. Escoubas P. Gelot A. Cupo A. Zimmer A. Zimmer A. M. Eschalier A. Lazdunski M. 2007 A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. 10 8 943 945 - 152.
Van Meeteren L. A. Frederiks F. Giepmans B. N. G. Fernandes Pedrosa. M. F. Billington S. J. Jost B. H. Tambourgi D. V. Moolenaar W. H. 2004 Spider and bacterial Sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. 279 12 10833 10836 - 153.
Fernandes Pedrosa. M. F. Junqueira de Azevedo. I. D. L. M. Gonçalves-de-Andrade R. M. Van Den Berg. C. W. Ramos C. R. R. Lee Ho. P. Tambourgi D. V. 2002 Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom 298 5 638 645 - 154.
Murakami M. T. Fernandes-Pedrosa M. F. Tambourgi D. V. Arni R. K. 2005 Structural basis for metal ion coordination and the catalytic mechanism of sphingomyelinases D. 280 14 13658 13664 - 155.
De Almeida D. M. Fernandes-Pedrosa M. F. Gonçalves de Andrade. R. M. Marcelino J. R. Gondo-Higashi H. Junqueira de Azevedo. I. D. L. M. Ho P. L. Van Den Berg. C. Tambourgi D. V. 2008 A new anti-loxoscelic serum produced against recombinant sphingomyelinase D: Results of preclinical trials. 79 3 463 470 - 156.
Bubien J. K. Ji H. L. Gillespie G. Y. Fuller C. M. Markert J. M. Mapstone T. B. Benos D. J. 2004 Cation selectivity and inhibition of malignant glioma Na+ channels by Psalmotoxin 1. 287 5 56-5)C1282 C1291 - 157.
Rodrigues E. G. Dobroff A. S. S. Cavarsan C. F. Paschoalin T. Nimrichter L. Mortara R. A. Santos E. L. Fázio MA Miranda A. Daffre S. Travassos L. R. 2008 Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. 10 1 61 68 - 158.
Khan S. A. Zafar Y. Briddon R. W. Malik K. A. Mukhtar Z. 2006 Spider venom toxin protects plants from insect attack 15 3 349 357 - 159.
De Castro C. S. Silvestre F. G. Araújo S. C. Yazbeck G. D. M. Mangili O. C. Cruz I. Chávez-Olórtegui C. Kalapothakis E. 2004 Identification and molecular cloning of insecticidal toxins from the venom of the brown spider Loxosceles intermedia 44 3 273 280 - 160.
Figueiredo S. G. Garcia M. E. L. P. Valentim A. D. C. Cordeiro M. N. Diniz C. R. Richardson M. 1995 Purification and amino acid sequence of the insecticidal neurotoxin Tx4(6-1) from the venom of the’armed’ spider Phoneutria nigriventer (Keys). 33 1 83 93 - 161.
Zobel-Thropp P. A. Kerins A. E. Binford G. J. 2012 Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. 60 3 265 271 - 162.
Ferrat G. Bosmans F. Tytgat J. Pimentel C. Chagot B. Gilles N. Nakajima T. Darbon H. Corzo G. 2005 Solution structure of two insect-specific spider toxins and their pharmacological interaction with the insect voltage-gated Na+ channel. 59 2 368 379 - 163.
Toledo R. C. Jared C. 1995 Cutaneous granular glands and amphibian venoms 111 1 1 29 - 164.
Tang Y. Q. Tian Sh. Hua Jc. Wu Sx. Zou G. Wu Gf. Zhao Em. 1990 Isolation, chemical and biological characterization of margaratensin, a neurotensin-related peptide from the skin of Rana margaratae. 33 7 828 834 - 165.
Wang D. L. Qi F. H. Tang W. Wang F. S. 2011 Chemical constituents and bioactivities of the skin of Bufo bufo gargarizans cantor 8 4 559 567 - 166.
Cruz J. S. Matsuda H. 1993 Arenobufagin, a compound in toad venom, blocks Na+-K+ pump current in cardiac myocytes. - 167.
Shindelman J. Mosher H. S. Fuhrman F. A. 1969 Atelopidtoxin from the Panamanian frog, Atelopus zeteki. 7 4 315 319 - 168.
Erspamer G. F. Severini C. Erspamer V. Melchiorri P. 1989 Pumiliotoxin B-like alkaloid in extracts of the skin of the australian myobatrachid frog Pseudophryne coriacea: effects on the systemic blood pressure of experimental animals and the rat heart. 28 4 319 328 - 169.
Zhang Y. Yu G. Wang Y. Zhang J. Wei S. Lee W. Zhang Y. 2010 A novel annexin A2 protein with platelet aggregation-inhibiting activity from amphibian Bombina maxima skin 56 3 458 465 - 170.
Cunha Filho. G. A. Schwartz C. A. Resck I. S. Murta M. M. Lemos S. S. Castro M. S. Kyaw C. Pires Jr O. R. Leite J. R. S. Bloch Jr C. Schwartz E. F. 2005 Antimicrobial activity of the bufadienolides marinobufagin and telocinobufagin isolated as major components from skin secretion of the toad Bufo rubescens. 45 6 777 782 - 171.
Dourado F. S. Leite J. R. S. A. Silva L. P. Melo J. A. T. Bloch Jr C. Schwartz E. F. 2007 Antimicrobial peptide from the skin secretion of the frog Leptodactylus syphax. 50 4 572 580 - 172.
Preusser H. J. Habermehl G. Sablofski M. Schmall Haury. D. 1975 Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. 13 4 285 289 - 173.
Cui X. Inagaki Y. Xu H. Wang D. Qi F. Kokudo N. Fang D. Tang W. 2010 Anti-hepatitis B virus activities of cinobufacini and its active components bufalin and cinobufagin in HepG2.2.15 Cells 33 10 1728 1732 - 174.
Tempone A. G. Pimenta D. C. Lebrun I. Sartorelli P. Taniwaki N. N. de Andrade Jr H. F. Antoniazzi MM Jared C. 2008 Antileishmanial and antitrypanosomal activity of bufadienolides isolated from the toad Rhinella jimi parotoid macrogland secretion. 52 1 13 21 - 175.
Yogeeswari P. Sriram D. Bal T. R. Thirumurugan R. 2006 Epibatidine and its analogues as nicotinic acetylcholine receptor agonist: an update 20 5 497 505 - 176.
Erspamer V. Melchiorri P. Falconieri-Erspamer G. Negri L. Corsi R. Severini C. Barra D. Simmaco M. Kreil G. 1989 Deltrophins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. 86 13 5188 5192 - 177.
Wang X. L. Zhao G. H. Zhang J. Shi Q. Y. Guo W. X. Tian X. L. Qiu J. Z. Yin L. Z. Deng X. M. Song Y. 2011 Immunomodulatory effects of cinobufagin isolated from Chan Su on activation and cytokines secretion of immunocyte in vitro 13 5 383 392 - 178.
Qi F. Inagaki Y. Gao B. Cui X. Xu H. Kokudo N. Li A. Tang W. 2011 Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways. 102 5 951 958 - 179.
Su C. L. Lin T. Y. Lin C. N. Won S. J. 2009 Involvement of caspases and apoptosis-inducing factor in bufotalin-induced apoptosis of hep 3B cells. 57 1 55 61 - 180.
Balboni F. Bernabei P. A. Barberio C. Sanna A. Rossi Ferrini. P. Delfino G. 1992 Cutaneous venom of Bombina variegata pachypus (Amphibia, anura): effects on the growth of the human HL 60 cell line. 16 4 329 338 - 181.
Ghavami S. Asoodeh A. Klonisch T. Halayko A. J. Kadkhoda K. Kroczak T. J. Gibson S. B. Booy E. P. Naderi-Manesh H. Los M. 2008 Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. 12 3 1005 1022 - 182.
Marenah L. Shaw C. Orr D. F. Mc Clean S. Flatt P. R. Abdel-Wahab Y. H. A. 2004 Isolation and characterisation of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas 120 1-3 33 38 - 183.
Marsh N. A. Whaler B. C. 1980 The effects of honey bee (Apis mellifera L.) venom and two of its constituents, melittin and phospholipase A2, on the cardiovascular system of the rat. 18 4 427 435 - 184.
Kaplinsky E. Ishay J. Ben-Shachar D. Gitter S. 1977 Effects of bee (Apis mellifera) venom on the electrocardiogram and blood pressure. 15 3 251 256 - 185.
Vick J. A. Shipman W. H. Brooks R. Jr 1974 Beta adrenergic and anti-arrhythmic effects of cardiopep, a newly isolated substance from whole bee venom. 12 2 139 144 - 186.
Ho C. L. Hwang L. L. Lin Y. L. Chen C. T. Yu H. M. Wang K. T. 1994 Cardiovascular effects of mastoparan B and its structural requirements. 259 3 259 264 - 187.
Choo Y. M. Lee K. S. Yoon H. J. Qiu Y. Wan H. Sohn M. R. Sohn H. D. Jin B. R. 2012 Antifibrinolytic role of a bee venom serine protease inhibitor that acts as a plasmin Inhibitor 7 2 - 188.
Choo Y. M. Lee K. S. Yoon H. J. Kim B. Y. Sohn M. R. Roh J. Y. Je Y. H. Kim N. J. Kim I. Woo S. D. Sohn H. D. Jin B. R. 2010 Dual function of a bee venom serine protease: prophenoloxidase-activating factor in arthropods and fibrin(ogen)olytic enzyme in mammals. 5 5 1 - 189.
Qiu Y. Choo Y. M. Yoon H. J. Jia J. Cui Z. Wang D. Kim D. H. Sohn H. D. Jin B. R. 2011 Fibrin(ogen)olytic activity of bumblebee venom serine protease. 255 2 207 213 - 190.
Qiu Y. Choo Y. M. Yoon H. J. Jin B. R. 2012 Molecular cloning and fibrin(ogen)olytic activity of a bumblebee (Bombus hypocrita sapporoensis) venom serine protease. 15 1 79 82 - 191.
Han J. You D. Xu X. Han W. Lu Y. Lai R. Meng Q. 2008 An anticoagulant serine protease from the wasp venom of Vespa magnifica. 51 5 914 922 - 192.
Haim B. Rimon A. Ishay J. S. Rimon S. 1999 Purification, characterization and anticoagulant activity of a proteolytic enzyme from Vespa orientalis venom. 37 5 825 829 - 193.
Yang H. Xu X. Ma Zhang D. Lai K. R. 2008 A phospholipase A1 platelet activator from the wasp venom of Vespa magnifica (Smith) 51 2 289 296 - 194.
Xu X. Li J. Lu Q. Yang H. Zhang Y. Lai R. 2006 Two families of antimicrobial peptides from wasp (Vespa magnifica) venom 47 2 249 253 - 195.
Lazarev V. N. Parfenova T. M. Gularyan S. K. Misyurina O. Y. Akopian T. A. Govorun V. M. 2002 Induced expression of melittin, an antimicrobial peptide, inhibits infection by Chlamydia trachomatis and Mycoplasma hominis in a HeLa cell line. 19 2 133 7 - 196.
Choo Y. M. Lee K. S. Yoon H. J. Je Y. H. Lee S. W. Sohn H. D. Jin B. R. 2010 Molecular cloning and antimicrobial activity of bombolitin, a component of bumblebee Bombus ignitus venom. 156 3 168 173 - 197.
Stöcklin R. Favreau P. Thai R. Pflugfelder J. Bulet P. Mebs D. 2010 Structural identification by mass spectrometry of a novel antimicrobial peptide from the venom of the solitary bee Osmia rufa (Hymenoptera: Megachilidae) 55 1 20 27 - 198.
Chen W. Yang X. Yang X. Zhai L. Lu Z. Liu J. Yu H. 2008 Antimicrobial peptides from the venoms of Vespa bicolor Fabricius. 29 11 1887 1892 - 199.
Baek J. H. Lee S. H. 2010 Isolation and molecular cloning of venom peptides from Orancistrocerus drewseni (Hymenoptera: Eumenidae). 55 4 711 718 - 200.
Yang E. J. Jiang J. H. Lee S. M. Yang S. C. Hwang H. S. Lee M. S. Choi-M S. 2010 Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. 7 1 69 - 201.
Lee J. Kim S. Kim T. Lee S. Yang H. Lee D. Lee Y. 2004 Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. 32 3 361 7 - 202.
Park J. H. Kim K. H. Lee W. R. Han S. M. Park K. K. 2012 Protective effect of melittin on inflammation and apoptosis in acute liver failure. 17 1 61 69 - 203.
Shkenderov S. Koburova K. 1982 Adolapin- a newly isolated analgetic and anti-inflammatory polypeptide from bee venom. 20 1 317 321 - 204.
Haux P. 1969 Amino acid sequence of MCD-peptide, a specific mast cell-degranulating peptide from bee venom. 350 5 536 546 - 205.
Kettner A. Henry H. Hughes G. J. Corradin G. Spertini F. 1999 IgE and T-cell responses to high-molecular weight allergens from bee venom. 29 3 394 401 - 206.
Kettner A. Hughes G. J. Frutiger S. Astori M. Roggero M. Spertini F. Corradin G. 2001 Api m 6: a new bee venom allergen 107 5 914 920 - 207.
Pantera B. Hoffman D. R. Carresi L. Cappugi G. Turillazzi S. Manao G. Severino M. Spadolini I. Orsomando G. Moneti G. Pazzagli L. 2003 Characterization of the major allergens purified from the venom of the paper wasp Polistes gallicus. 1623 2-3 72 81 - 208.
An S. Chen L. Wei J. F. Yang X. Ma D. Xu X. He S. Lu J. Lai R. 2012 Purification and characterization of two new allergens from the venom of Vespa magnifica. 7 2 27 - 209.
Trindade R. A. Kiyohara P. K. de Araujo P. S. Bueno da. Costa M. H. 2012 PLGA microspheres containing bee venom proteins for preventive immunotherapy. 423 1 124 133 - 210.
Dani M. P. Richards E. H. 2010 Identification, cloning and expression of a second gene (vpr1) from the venom of the endoparasitic wasp, Pimpla hypochondriaca that displays immunosuppressive activity. 56 2 195 203 - 211.
Baptista-Saidemberg N. B. Saidemberg D. M. de Souza B. M. Cesar-Tognoli L. M. Ferreira V. M. Mendes M. A. Cabrera M. P. Ruggiero Neto. J. Palma M. S. 2010 Protonectin (1-6): a novel chemotactic peptide from the venom of the social wasp Agelaia pallipes pallipes. 56 6 880 889 - 212.
Souza B. M. Mendes M. A. Santos L. D. Marques M. R. Cesar L. M. Almeida R. N. Pagnocca F. C. Konno K. Palma M. S. 2005 Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. 26 11 2157 2164 - 213.
Graaf D. C. Aerts M. Danneels E. Devreese B. 2009 Bee, wasp and ant venomics pave the way for a component-resolved diagnosis of sting allergy. 72 2 145 154 - 214.
Ownby C. L. Powell J. R. Jiang M. S. Fletcher J. E. 1997 Melittin and phospholipase A2 from bee (Apis mellifera) venom cause necrosis of murine skeletal muscle in vivo. 35 1 67 80 - 215.
Hait W. N. Grais L. Benz C. Cadman E. C. 1985 Inhibition of growth of leukemic cells by inhibitors of calmodulin: phenothiazines and melittin. 14 3 202 205 - 216.
Moon D. O. Park S. Y. Heo M. S. Kim K. C. Park C. Ko W. S. Choi Y. H. Kim G. Y. 2006 Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. 6 12 1796 1807 - 217.
Orsolic N. Sver L. Verstovsek S. Terzic S. Basic I. 2003 Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. 41 7 861 870 - 218.
Putz T. Ramoner R. Gander H. Rahm A. Bartsch G. Thurnher M. 2006 Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate 55 11 1374 1383 - 219.
Cerovsky V. Budesinsky M. Hovorka O. Cvacka J. Voburka Z. Slaninova J. Borovickova L. Fucik V. Bednarova L. Votruba I. Straka J. 2009 Lasioglossins: three novel antimicrobial peptides from the venom of the eusocial bee Lasioglossum laticeps (Hymenoptera: Halictidae). 10 12 2089 2099 - 220.
Heinen T. E. da Veiga A. B. 2011 Arthropod venoms and cancer. 57 4 497 511 - 221.
Pfeiffer D. R. Gudz T. I. Novgorodov S. A. Erdahl W. L. 1995 The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. 270 9 4923 4932 - 222.
Souza B. M. Silva A. V. Resende V. M. Arcuri H. A. Santos Cabrera. M. P. Ruggiero Neto. J. Palma M. S. 2009 Characterization of two novel polyfunctional mastoparan peptides from the venom of the social wasp Polybia paulista. 30 8 1387 1395 - 223.
Wang K. R. Zhang B. Z. Zhang W. Yan J. X. Li J. Wang R. 2008 Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. 29 6 963 968 - 224.
Kim J. Y. Cho S. H. Kim Y. W. Jang E. C. Park S. Y. Kim E. J. Lee S. K. 1999 Effects of BCG, lymphotoxin and bee venom on insulitis and development of IDDM in non-obese diabetic mice. 14 6 648 652 - 225.
Shin Y. Moni R. W. Lueders J. E. Daly J. W. 1994 Effects of the amphiphilic peptides mastoparan and adenoregulin on receptor binding, G proteins, phosphoinositide breakdown, cyclic AMP generation, and calcium influx. 14 2 133 157 - 226.
Straub S. G. James R. F. Dunne M. J. Sharp G. W. 1998 Glucose augmentation of mastoparan-stimulated insulin secretion in rat and human pancreatic islets. 47 7 1053 1057 - 227.
Mc Gain F. Winkel K. D. 2002 Ant sting mortality in Australia. 40 8 1095 1100 - 228.
Malta M. B. Lira MS Soares S. L. Rocha G. C. Knysak I. Martins R. Guizze S. P. Santoro M. L. Barbaro K. C. 2008 Toxic activities of Brazilian centipede venoms. 52 2 255 263 - 229.
Carrijo-Carvalho L. C. Chudzinski-Tavassi A. M. 2007 The venom of the Lonomia caterpillar: an overview. 49 6 741 757 - 230.
Veiga A. B. Ribeiro J. M. Guimaraes J. A. Francischetti I. M. 2005 A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. 355 11 - 231.
Bohrer C. B. Reck Junior. J. Fernandes D. Sordi R. Guimaraes J. A. Assreuy J. Termignoni C. 2007 Kallikrein-kinin system activation by Lonomia obliqua caterpillar bristles: involvement in edema and hypotension responses to envenomation 49 5 663 669 - 232.
Donato J. L. Moreno R. A. Hyslop S. Duarte A. Antunes E. Le Bonniec B. F. Rendu F. de Nucci G. 1998 Lonomia obliqua caterpillar spicules trigger human blood coagulation via activation of factor X and prothrombin. 79 3 539 542 - 233.
Chudzinski-Tavassi A. M. Schattner M. Fritzen M. Pozner R. G. Reis C. V. Lourenco D. Lazzari MA 2001 Effects of lopap on human endothelial cells and platelets. 31 3-6 257 265 - 234.
Pinto A. F. Dobrovolski R. Veiga A. B. Guimaraes J. A. 2004 Lonofibrase, a novel alpha-fibrinogenase from Lonomia obliqua caterpillars. 113 2 147 154 - 235.
Alvarez Flores. M. P. Fritzen M. Reis C. V. Chudzinski-Tavassi A. M. 2006 Losac, a factor X activator from Lonomia obliqua bristle extract: its role in the pathophysiological mechanisms and cell survival. 343 4 1216 1223 - 236.
Guerrero B. Arocha-Pinango C. L. Salazar A. M. Gil A. Sanchez-Acosta EE Rodriguez. A. Lucena S. 2011 The effects of Lonomin V, a toxin from the caterpillar (Lonomia achelous), on hemostasis parameters as measured by platelet function 58 4 293 303 - 237.
Hink W. F. Romstedt K. J. Burke J. W. Doskotch R. W. Feller D. R. 1989 Inhibition of human platelet aggregation and secretion by ant venom and a compound isolated from venom. 13 2 175 184 - 238.
Orivel J. Redeker V. Le Caer J. P. Krier F. Revol-Junelles A. M. Longeon A. Chaffotte A. Dejean A. Rossier J. 2001 Ponericins, new antibacterial and insecticidal peptides from the venom of the ant Pachycondyla goeldii. 276 21 17823 17829 - 239.
Zelezetsky I. Pag U. Antcheva N. Sahl H. G. Tossi A. 2005 Identification and optimization of an antimicrobial peptide from the ant venom toxin pilosulin. 434 2 358 364 - 240.
Peng K. Kong Y. Zhai L. Wu X. Jia P. Liu J. Yu H. 2010 Two novel antimicrobial peptides from centipede venoms. 55 2-3 274 279 - 241.
Altman R. D. Schultz D. R. Collins-Yudiskas B. Aldrich J. Arnold P. I. Brown H. E. 1984 The effects of a partially purified fraction of an ant venom in rheumatoid arthritis. 27 3 277 284 - 242.
Pan J. Hink W. F. 2000 Isolation and characterization of myrmexins, six isoforms of venom proteins with anti-inflammatory activity from the tropical ant, Pseudomyrmex triplarinus. 38 10 1403 1413 - 243.
Hoffman D. R. 1993 Allergens in Hymenoptera venom XXIV: the amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. 91 1 71 78 - 244.
Hoffman D. R. Sakell R. H. Schmidt M. 2005 Sol i 1, the phospholipase allergen of imported fire ant venom. 115 3 611 616 - 245.
Arbiser J. L. Kau T. Konar M. Narra K. Ramchandran R. Summers S. A. Vlahos C. J. Ye K. Perry B. N. Matter W. Fischl A. Cook J. Silver P. A. Bain J. Cohen P. Whitmire D. Furness S. Govindarajan B. Bowen J. P. 2007 Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis 109 2 560 565 - 246.
Sonoda Y. Hada N. Kaneda T. Suzuki T. Ohshio T. Takeda T. Kasahara T. 2008 A synthetic glycosphingolipid-induced antiproliferative effect in melanoma cells is associated with suppression of FAK, Akt, and Erk activation 31 6 1279 1283