Time domain-OCT and Spectral domain-OCT based classification of Diabetic macular edema.
\r\n\tWith the discovery of more unconventional heavier crude and alternative hydrocarbon sources, primary upgrading or cracking of the oil into lighter liquid fuel is critical. With increasing concern for environmental sustainability, the regulations on fuel specifications are becoming more stringent. Processing and treating crude oil into a cleaner oil with better quality is equally important. Hence, there has been a relentless and continuous effort to develop new crude upgrading and treating technologies, such as various catalytic systems for more economical and better system performance, as well as cleaner and higher-quality oil.
\r\n\r\n\tThis edited book aims to provide the reader with an overview of the state-of-the-art technologies of crude oil downstream processing which include the primary and secondary upgrading or treating processes covering desulfurization, denitrogenation, demetallation, and evidence-based developments in this area.
",isbn:"978-1-80356-681-8",printIsbn:"978-1-80356-680-1",pdfIsbn:"978-1-80356-682-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"808b0ddfb3b92e0636ae44a83ef7dbd9",bookSignature:"Dr. Ching Thian Tye",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11542.jpg",keywords:"Crude Oil Properties, Hydrocracking, Catalytic Cracking, Coking, Visbreaking, Thermal Cracking, Hydroprocessing, Hydrodesulfurization, Desulfurization, Denitrogenation, Demetallation, Dearomatization",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 22nd 2022",dateEndSecondStepPublish:"April 19th 2022",dateEndThirdStepPublish:"June 18th 2022",dateEndFourthStepPublish:"September 6th 2022",dateEndFifthStepPublish:"November 5th 2022",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the School of Chemical Engineering in Universiti Sains Malaysia and dedicated researcher in fuel-related catalytic process and chemical reaction engineering. Dr. Tye serves on a review panel for international and national refereed journals, scientific proceedings as well as international grants.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"304947",title:"Dr.",name:"Ching Thian",middleName:null,surname:"Tye",slug:"ching-thian-tye",fullName:"Ching Thian Tye",profilePictureURL:"https://mts.intechopen.com/storage/users/304947/images/system/304947.jpg",biography:"Dr. Tye is an associate professor at the School of Chemical Engineering in Universiti Sains Malaysia. She received her doctoral degree at The University of British Columbia, Canada. She is working in the area of chemical reaction engineering and catalysis. She has been involved in projects to improve catalysis activities, system efficiency, as well as products quality via different upgrading and treating paths that are related to petroleum and unconventional oil such as heavy oil, used motor oil, spent tire pyrolysis oils as well as renewable resources like palm oil. She serves as a review panel for international & national refereed journals, scientific proceedings as well as international grants.",institutionString:"Universiti Sains Malaysia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Universiti Sains Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"44803",title:"Flexible Circuit Technologies for Biomedical Applications",doi:"10.5772/55308",slug:"flexible-circuit-technologies-for-biomedical-applications",body:'The human body is an incredibly complex organism that exhibits an impressive resilience to external influences, such as infecting bacteria and inhaled particles. This, however, proves to be a difficult problem to overcome when designing and implementing implantable devices for medical therapy, as the body is supremely primed to resist any artificial intervention. One of the critical parameters to consider is the mechanical compatibility of the implanted device with the tissue of interest. Additionally, the footprint of the device should ideally be as minimal as possible to decrease tissue damage and to minimize encapsulation responses. Until recently, however, it has proven difficult to integrate naturally inflexible solid state circuits with flexible components due to connection complexities and pitch limitations. In addition, material and fabrication limitations have prevented the implementation of thin-film cables, radiofrequency coils, and neural stimulation electrode arrays in implantable devices.
Here, after a brief review of the literature, we discuss novel flexible technologies being developed for biomedical applications, and especially for high density functional neural stimulation and recording. The distinctive parameters of a unique material, namely the semicrystalline thermoplastic parylene C, that make it particularly well-suited as a biocompatible substrate for thin-film biomedical circuits are discussed, explaining the reasoning for its use in a novel paradigm as a substrate and not just as a coating. In addition, we discuss a new packaging scheme that has been developed to enable high lead count interconnects using microfabrication equipment for alignment and patterning, and demonstrate a complete parylene-based stimulation microsystem combining radiofrequency coils with solid state circuits and electrodes in a parylene substrate. This integration of solid state circuits with flexible, biocompatible components gives rejuvenated hope for a new generation of neural prosthetics aimed to provide eyesight to the blind and limb movement to para- and quadriplegic patients through spinal cord stimulation. These technologies can also enable integration of solid state devices with novel bioMEMS sensors in such a manner that devices previously only conceived of are now possible.
Blindness due to such outer retinal diseases as retinitis pigmentosa (RP) and age-related macular degeneration (AMD) affect hundreds of thousands of people worldwide. In fact, it has been estimated by The Eye Diseases Prevalence Research Group and the National Eye Institute that AMD alone will affect three million people in the United States by the year 2020 [1]. In addition, the prevalence of RP has been estimated to be approximately 1 in 4000 [2]. Although the pathogeneses of these retinal photoreceptor diseases are, to date, not entirely understood, it is known that they are largely restricted to the outer retina, and that downstream circuitry, although it undergoes significant remodeling, is relatively spared [3-5]. There exist several possible approaches to thwarting the devastating effects of these diseases. Of these, the surgical, pharmacological, stem cell, and dietary approaches are promising. Laser ablation of leaky blood vessels and diets rich in antioxidants, for example, have been shown to slow the progress of AMD, but not to have any effect on its incidence. Effective pharmacologic agents, likewise, have long been elusive. Recent evidence has shown that stem cell therapy could also be a possibility for the treatment of such diseases, by possibly replacing the lost photoreceptors with stem cells capable of maturing into photoreceptors that then make connections with the rest of the retina [6]. However, such treatments, in reality, are still very far away from being used in clinical practice, and have a number of ethical and political barriers to their implementation.
In need of another possible treatment for these profound retinal diseases, in 1994 Humayun
As a follow-up to this study, it was shown in 1996 by Humayun
There are now a large variety of approaches to artificial vision, each with their own advantages and disadvantages. There is this epiretinal approach (Figure 1), in which an electrode array is placed directly on the retina from its anterior aspect. There is the subretinal approach, in which an electrode or photodiode array is placed within the layers of the retina [10], as is also shown in Figure 1 (this can be further subdivided to the
The harbinger of an epiretinal prosthesis was the successful demonstration of a prototype 16-electrode device, fabricated by Second Sight Medical Products, Inc. (Sylmar, CA, USA) in six patients [15]. While clearly not enabling such activities of daily living as newspaper reading and facial recognition, previously completely blind subjects can, for instance, differentiate between a plate, a cup, and a knife, in a high-contrast environment free from background distracters, an undeniably incredible feat of engineering and medicine. Furthermore, subjects have been shown to be able to discriminate direction of movement of parallel white bars on a black background, and can locate white squares within a quadrant of otherwise black space [16]. This implant demonstrated the technology as well as the remarkable ability for the human brain to compensate for low-resolution input. Although this had previously been demonstrated by cochlear prostheses for patients with severe hearing impediments [17], it was unclear whether this plasticity would translate well to visual prostheses. In fact, patients have demonstrated their ability to discriminate large letters simply by
System overview and relative locations of epiretinal and subretinal implants [
Spinal cord injury (SCI) can occur through a variety of mechanisms. The primary modalities fall into two major categories: trauma (e.g., automobile/motorcycle accident, sports injury such as from diving or horse riding, violence, fall), or disease (e.g., spina bifida or tumor). Spinal cord injuries can affect motor function, sensation, and autonomic functions (e.g., bladder control, breathing). Approximately 50% of SCIs in the United States are classified as complete [19]. This means that the spinal cord has lost the ability to transmit information across a segment within it, cutting off all functional communication from the brain to the nerves below the injury site and resulting in no sensation or voluntary control of motor function below the injury site due to lost input from the brain. This usually results in para- or quadriplegia, depending on the site of injury. Although in most cases the cord is not completely transected or even cut, it is significantly damaged by interruption of blood flow supplying one of its segments or through spinal contusion. Even though the vertebral column protects the cord, when trauma is sufficient to compromise this protective cage, the broken vertebrae can impinge on the cord and crush or destroy the axons within it very quickly, with continued loss of axons over time [20]. Some estimates pin the prevalence of spinal cord injury in the United States at approximately 250,000 [21], with an incidence of approximately 10,000 to 12,000 per year [22], while others state the prevalence is significantly higher, at around 450,000 [19]. Approximately 55% of spinal cord injuries occur in young victims between 16 and 30 years of age, making it a disease to bear usually for the rest of their lifetime, and more than 80% of victims are males [22]. In some cases of incomplete injury, function can be recovered over time [23]. However, in most cases, some level of impairment is permanent.
The complexity of the spinal cord is undeniable. In fact, despite the popular misconception that the spinal cord serves only as a communication conduit between the brain to the muscles and organs and from the skin back to the brain, it is much more accurate to view the spinal cord as an extension of the brain. While the spinal cord below a complete injury does indeed lose input from the motor cortex, and its ability to send sensations of touch to the brain is completely compromised, the spinal cord is not rendered useless. Even an intact cord does a lot of the primary processing and reflex control without any input to or from the brain.
In patients with spinal cord injury, there are several approaches to rehabilitation. The foot-drop stimulator, wherein stimulation of the peroneal nerve affects localized contraction of ankle dorsiflexors to counteract the problem of foot drag, has been widely studied [24] with mixed results [25-27]. Other functional movements requiring much more coordinated musculature responses are far more difficult with implantable peripheral nerve or muscle stimulators because of the need to control timing as well as pulse amplitudes of likely a large number of electrodes in rapid succession. Skin surface electrodes such as those in the ParaStep system [28, 29] suffer from these problems as well as the problem that many muscle groups are difficult to target from this more remote location. In addition, because in complete SCIs the voluntary input from the motor cortex to initiate such movements is lost, an accessory mechanism for determining the desired motion is warranted. This may require recording electrode arrays in the motor cortex as another component of this system, as well as possible electrical stimulatory feedback (in addition to the visual feedback already present). Any such system, then, is likely to be quite complex and difficult to implement in practice.
We propose a system, which eventually will be completely implantable, that is capable of stimulating the dorsum of the spinal cord in such a manner that modulation of the sensory input to the cord, interneruonal activity within, and even motor output from the cord, is possible. Tonic, subthreshold stimulation, applied at precise times and precise locations along the spinal cord, would likely help sustain or stop locomotor activity with the kind of coordination and rhythmicity already discussed. Perhaps in combination with both locomotor and standing training as well as appropriate pharmacological administration (e.g., quipazine), it is possible that such an array would give those with both complete and incomplete spinal injury the ability to stand and walk once again. In order to provide appropriate proprioceptive input in the case of complete SCI, it would likely be possible to provide an accessory device or muscle stimulator to initiate this type of activity. However, this approach leverages the innate activity and processing power present in the spinal cord to its greatest extent and likely obviates the need for a stimulation control system of great complexity in order to bring about coordinated muscle activity, as is necessary for a peripheral muscle or motor neuron control system. Such electrical stimulation may also, as has been hypothesized in the case of subthreshold retinal stimulation systems as well, have the capability of promoting axon regrowth [30, 31] and facilitating plastic changes in the cord. Such an array would likely need to be conformable to the cord, and would need to be implanted in relatively close apposition to it, either epidurally (from which location the electrical field would need to penetrate several meningeal layers) or subdurally, such that it is closer to the surface of the cord. In the ideal case, the array would be flexible enough to move with the cord during motion and bending such that functional targets are the same in any position. In addition, it should be the case that such an array can also record from the cord so as to recognize returning action potentials from the dorsal root and modulate this input accordingly. This approach, then, requires a high-density array with many electrode sites from which to choose during training and daily activity, as well as the ability to both record from and stimulate the cord, something which current arrays, such as those for pain management, simply can not do because they are too bulky, inflexible, and of too low a density (up to 16 electrodes).
Parylene is the trade name for a family of semicrystalline thermoplastic polymers known as the poly(para-xylylenes) (PPX). These were discovered in 1947 by Michael Szwarc in Manchester, England [32]. It was originally deposited in an investigation of aliphatic carbon-hydrogen bonds where the carbon was attached directly to a benzene ring, by heating toluenes and ortho-, meta- and para-xylenes to very high temperatures and looking for degradation products [33]. The very first parylene film deposited, then, was parylene N (with no substitutions on the benzene ring), and was temporarily known as a Szwarcite snakeskin. This deposition process, however, had the disadvantage that gaseous by-products were an inherent part of the method. William Gorham, an employee at Union Carbide, soon thereafter devised an alternate method of parylene deposition that involved the pyrolysis of a dimerized form of the material, di-para-xylylene, or [2.2] paracyclophane. It was largely unknown at the time how to make this dimer in large amounts as it had only been isolated as an impurity in Szwarc’s method. However, in 1951 Donald Cram reported a method for making this material in bulk. On February 17, 1965, Union Carbide announced the availability of parylene films and the new vacuum deposition method, known as the Gorham process. There were over 20 types of parylene actually developed, but only three were considered commercially viable: these were parylene N (no chlorines on the benzene ring), parylene C (one chlorine on the benzene ring), and parylene D (with two chlorines on the benzene ring) (Figure 2). However, a new fluorinated version of parylene, parylene HT, has recently become commercially available, and can be deposited in a new parylene deposition system.
In the Gorham vapor-deposition process [34] (depicted in Figure 3), which takes place at vacuum (~25-35 mT, to increase mean free path to the substrate), a charge of parylene dimer is placed in a vaporizer furnace. The dimer evaporates at approximately 130 to 150 °C, and then passes through a very high temperature pyrolysis (~650 to 750 °C) furnace, where the molecule is split into monomers. The monomers enter a chamber that is held at room temperature, and polymerize on all exposed surfaces in the chamber conformally and without pinholes. Residual monomer is collected on a cold trap. Different variants of parylene require varying process conditions, but the method remains essentially the same.
The three originally commercialized parylene variants.
center) Gorham process for parylene deposition. (left) Chemical structures at corresponding points. (right) PDS 2010 Labcoater System.
The existing variants of parylene have varying properties as well as uses. Parylene N is primarily used as a dielectric and when lubricity and crevice penetration is important. Parylene C is an ISO 10993, United States Pharmacopeia (USP) Class VI material (the highest biocompatibility rating for plastics in the United States) and has excellent water barrier properties. In addition, it has a very large elongation to break. Parylene D has now been largely replaced by parylene HT [35], but is used when mechanical strength is of primary concern. Parylene HT has extremely low coefficients of static and kinetic friction, excellent thermal stability and good water barrier properties, high ultraviolet stability, and is also ISO 10993 biocompatible [35-37]. Finally, very recently, Kishimoto Sangyo Co., Ltd. in Japan has devised additional parylenes in which amino groups have been added to the benzene rings. The amino group may add even more improved biostability, but could also generate bioactivity that may or may not be beneficial to device functionality. We have preliminarily tested these amino parylenes have found them to be compatible with standard parylene processing technology, such as oxygen plasma reactive-ion etching (RIE), in our cleanroom, but they will not be explored further in this text.
The advantages of using parylene, and, more specifically, parylene C, as the structural material for neuroprostheses, when compared with technologies based on the use of other materials such as PDMS, polyimide [38] and silicon [39], include parylene’s pinhole-free conformality due to its unique room-temperature chemical vapor deposition process, its low water permeability, its chronic implantability and its high flexibility and mechanical strength (Young’s modulus ~4 GPa). The Young’s moduli of two other commonly used materials for neuroprostheses, PDMS and polyimide 2611, are graphed alongside that of parylene C in Figure 4. PDMS arrays have been handled by surgeons in our vivarium, and these are often as reported as too floppy and difficult to handle due in part to the low Young’s modulus, hence requiring very large thicknesses to handle appropriately. In addition, polyimide 2611 (often chosen because its water permeability is lower than that of other polyimides) has a Young’s modulus larger than that of parylene C. It has been suggested that polyimide arrays often are too rigid and can damage the retina. In addition, they tear quite easily. Parylene C handles very well under surgical manipulation, and, as we will show, behaves very well when implanted. In addition, the thickness of parylene films is determined by the mass of dimer placed in the vaporizer. As such, thicknesses can be very thin or very thick, and thicknesses are very repeatable and well controlled, more so than spin-on coatings, especially when deposited over step junctions. Parylene thickness can be controlled so as to match the rigidity to the application of interest, more easily than most other materials. Since parylene is deposited at room temperature (we have verified this using Temp-Plate irreversible temperature recorders traceable to NIST (Wahl Instruments, Inc., Asheville, NC, USA)), the coating process is post-IC compatible. Parylene C is also optically transparent, enabling the anatomy to be seen through the cable and the array during ophthalmic surgery, post-implantation examination, and follow-up. While many groups use parylene C as a coating on their arrays for many of these reasons, we have chosen to use it as the main substrate for our devices [40, 41], a paradigm that leverages these advantages to the greatest extent.
Comparison of Young’s moduli of various materials. Ordinate is logarithmic.
Although parylene is known to be biocompatible in many sites of implantation, in order to initially assess the intraocular biocompatibility of the material in the unique immune environment of the eye, an approximately 2 cm × 0.5 cm piece of unmodified 20 µm thick parylene C was implanted in the vitreous cavity of the right eyes of two rabbits for six months. The retinas of the right eyes of both rabbits were compared post-mortem with those of their left eyes that served as controls. Histological evaluation revealed no discernable difference between right and left eyes, indicating that there was no detectable adverse retinitis, choroiditis, endophthalmitis, or scleritis seen as a result of parylene implantation in the vitreous cavity [40]. These results supported the tenet that parylene C is a biocompatible bulk material for an intraocular retinal prosthesis and other ocular implants, and paved the way for the design and fabrication of a flexible electrode arrays and a packaging system using parylene C as the primary substrate. Given these biocompatibility results, we have also been investigating parylene in several other ocular implants, with excellent results to date [42-44]. Similar experiments were performed with parylene C implanted on the spinal cord of mice. The arrays were well tolerated, with no obvious immune reaction or gliosis.
Single-metal-layer parylene C-based electrode arrays are fabricated as shown in Figure 5. A photoresist sacrificial layer is optionally spun on a standard silicon wafer. Approximately 8 µm of parylene C is then vapor deposited in a PDS2010 system (Specialty Coating Systems, Indianapolis, IN, USA) on the entire wafer. An LOR3B photoresist layer (Microchem Corp., Newton, MA, USA) and an AZ1518 layer (AZ Electronic Materials, Branchburg, NJ, USA) are spun on top of the parylene, exposed in a 10X reduction GCA Mann 4800 DSW wafer stepper (General Signal Corporation, Stamford, CT, USA) or a Kasper 2001 contact aligner (Kasper Instruments, Inc., Sunnyvale, CA, USA) depending on the required resolution of the electrode array, and developed to achieve a liftoff pattern comprising contacts, conductive traces, and electrodes. After hard bake, approximately 2000 Å to 5000 Å of platinum, with or without a 200 Å titanium layer, is then e-beam evaporated (SE600 RAP, CHA Industries, Fremont, CA, USA) on the wafer. The subsequent photoresist strip generates the desired single-layer metallization pattern. An approximately 7 µm thick coating of parylene C is then deposited, followed by a spin coating of photoresist. This photoresist etch mask is exposed over the areas of the electrodes and contact pads and to pattern the overall array geometry, and the entire wafer is then subjected to an RIE in oxygen plasma, removing the parylene insulation over the electrodes and the parylene surrounding the array. The photoresist mask is then removed with solvent. Finally, if a sacrificial photoresist layer was used, the array is released from the substrate in an acetone bath. If no sacrificial layer was used, it is peeled from the silicon in a water bath. Ultimately, for most cases, the sacrificial photoresist layer is unnecessary, and can often complicate array fabrication due to cracking while under process. The arrays can be easily released from a natively oxidized silicon surface by placing them in a deionized water bath and peeling them from their edge. The water will then release the rest of the structure due to the hydrophobicity of the underlying parylene surface.
A single-layer square-grid electrode array, consisting of 256 Ti/Pt thin-film electrodes 125 µm in diameter in a 16 × 16 grid with connecting lines of 12 µm pitch fabricated in the manner of Figure 5 is shown in Figure 6. An SEM highlighting the typical electrode morphology in such structures is shown in Figure 7. As can be seen, the parylene covering the electrode has been completely removed, whereas the incoming trace remains conformally coated with the material.
Fabrication process for parylene-based single-metal-layer flexible MEAs.
Photograph of Ti/Pt electrode array of 256 electrodes and lines of 12 µm pitch.
SEM of electrode morphology showing parylene C insulation surrounding exposed metal electrode.
Parylene C-based arrays of thin-film platinum electrodes, comprising four 200 µm diameter stimulating electrodes and 56 recording electrodes of 10 µm diameter were fabricated according to the single-metal-layer process on a glass substrate. These were placed in a bicarbonate perfusate under a microscope and connected to a stimulus generator and preamplification board (Multi Channel Systems MCS GmbH, Reutlingen, Germany) [45]. As shown in Figure 8, a retina isolated from larval tiger salamander (
Isolated larval tiger salamander retina (darker region at left) overlying parylene-based platinum electrode array. Arrow indicates 10 µm diameter electrode used for recording trace in
With the lights off, a 20 µA, 400 µs/phase, cathodic-first biphasic electrical pulse was applied between the stimulating electrode indicated with an asterisk in Figure 8 and the ground electrode. The voltage trace from the recording electrode is shown in Figure 9. This stimulation was consistently repeatable over a 50 pulse train with a 400 ms inter-pulse interval, and other stimulating electrodes were also capable of “epiretinally” stimulating other cells in the retinal slice. As is clear from these results, the parylene-based platinum electrode was able to stimulate the tissue and elicit a response similar to the response generated from a light pulse in this intact retina. Given these results and the knowledge garnered from clinical trials with prototype arrays fabricated of other materials, it is not unreasonable to presume that our arrays will most likely be able to stimulate retinal tissue in other species, including human.
Typical recording of response of cells overlying recording electrode to a 20 µA, 400 µs/phase, cathodic-first biphasic electrical pulse from “epiretinal” stimulating parylene-based platinum electrode denoted with an asterisk in
The ideal spinal cord stimulation system, just like the retinal system, would have a power source, circuitry for driving the appropriate electrodes, as well as a cable and electrode array, this time implanted epidurally or subdurally on the spinal cord. We believe that a penetrating electrode array would be problematic for implantation and would likely lose efficacy and fail ultimately due to a gliosis over time, as has been shown in many other studies [27]. The power source could be an RF coil, or could, due to the much larger space available in the abdomen and back as compared with the eye, be a rechargeable battery capable of charging through the inductive link. The RF coil, in addition, would enable reprogramming of the implanted electronics for alternative stimulation protocols at the physician’s discretion. The electrode array should be conformable to the spinal cord so that it can tonically stimulate at low currents and with high precision. While a completely implantable system is the ultimate goal, an interim goal is to stimulate the spinal cord chronically from an array connected to a head plug, while simultaneously being able to record electromyograms (EMGs). In order to achieve this, we have studied the efficacy of the multielectrode array portion of this system and have begun to develop a connector technology capable of connecting 36 electrodes in with a small enough form factor to be chronically mounted on a mouse skull.
Parylene MEA for murine spinal cord stimulation and recording.
Spinal cord arrays, consisting of five or ten electrodes of 250 µm diameter were designed and fabricated (Figure 10). Interelectrode spacing was controlled so that each array of electrodes covered four to five segments of the murine lumbosacral spinal cord upon implantation. Suture holes were also designed into the body of the array to ensure placement and attachment of the array on the cord, as well as to facilitate implantation (suture can be attached to the end of the array and can be threaded along the cord first to help direct the array along it).
The single-metal layer fabrication process was performed using a contact aligner process for fast throughput. The fabricated arrays were annealed to increase the adhesion of parylene to parylene. At the same time, they were clamped between two pieces of Teflon or glass slides coated with aluminum foil to ensure they would be flat during implantation. The arrays were connected via Clincher connectors (FCI, Versailles Cedex, France) to the stimulation and recording electronics.
Just prior to implantation, the arrays were rinsed in isopropyl alcohol. Under isoflurane anesthesia, the spinal cord electrode arrays were implanted epidurally on spinal cord segments L2-S1 in nontransected mice. The electrodes were oriented linearly along the rostrocaudal extent of the cord. Recording capability was assessed by using the electrode array to record spinal cord potentials evoked by tibial nerve stimulation. Following stimulation of the tibial nerve, somatosensory evoked potentials were recorded from the cord dorsum at three lumbosacral levels (P1-P3, rostral to caudal). The recorded waveform consisted of three response peaks, two of which are clearly depicted in Figure 11 (N1 and N3). These findings closely mirror results reported previously in a study using conventional spinal cord recording electrodes [46] demonstrating that the recording capability of the array electrodes matches that of conventional electrodes. By measuring the difference in the response latencies obtained at each electrode position (corresponding to different levels of the spinal cord), and by utilizing the known, fixed interelectrode spacing, accurate measurements of the conduction velocities were obtained. The properties of these responses can potentially be used to diagnose the progressive recovery of the spinal cord as a result of treatments provided after a spinal cord injury.
To test the capability of the electrode array to act as a multichannel stimulating device for generating hindlimb movements, constant-current monophasic stimulus pulses (amplitude: 50-850 µA, frequency: 0.3-10 Hz, pulse duration: 0.5 ms) were applied to the spinal cord between each of the array electrodes and a ground electrode located near the shoulder, while muscle activity was monitored using electromyogram (EMG) recordings of the tibialis anterior and medial gastrocnemius muscles. Stimulation generated a typical three-component EMG action potential consisting of an early (direct motor), a middle (monosynaptic), and a late (polysynaptic) response, classified by post-stimulus latency (Figure 12). These data clearly indicate that the parylene arrays were able to stimulate the spinal cord in such a way that the musculature was activated.
Peak amplitudes of somatosensory evoked potentials (N1 and N3) recorded from three levels of the rostrocaudal spinal cord (P1-P3). Example waveform at top shows approximate response times.
Typical medial gastrocnemius (ankle plantarflexor) EMG recording showing early, middle, and late responses after stimulation of spinal cord with parylene MEA.
Because of the known spacing of the electrodes on the array (as compared with traditional fine-wire electrodes which do not have known interelectrode spacing), we were able, in addition, to determine whether electrode position had a significant impact on muscle recruitment. The appearance and magnitude of each of the EMG responses was indeed correlated with the choice of electrode position (Figure 13). This serves as evidence that position of stimulation is very important. With a one-dimensional array, it is difficult to assess whether a bilateral stimulation paradigm would also result in lateralization of response, but we strongly suspect that this would be the case.
Medial gastrocnemius EMG showing varying levels of activation due to stimulation at different rostrocaudally located electrode sites.
An inherent problem with single-metal-layer arrays is that electrodes and traces are necessarily fabricated alongside each other. For high-lead-count devices, this limits the size of electrodes and tends to crowd electrodes and traces into artificial groups. To allay these problems, a dual-metal-layer approach was devised that enables traces to pass underneath overlying electrodes.
Dual-metal-layer electrode arrays are fabricated as shown in Figure 14. Approximately 8 µm of parylene C is first deposited on a silicon wafer with the optional photoresist sacrificial layer, forming the underside of the electrode array. A platinum or titanium-platinum metal liftoff process is used to define traces with 16 µm pitch and 2000 Å to 3000 Å thickness. A second parylene deposition (~1 µm) forms the insulation between the two metal layers. At this point, 6 µm by 6 µm vias are patterned in the insulation layer over the ends of the traces using an O2 plasma RIE. A second step-coverage optimized liftoff process is used to define a second metal layer comprising electrodes and traces, while at the same time achieving electrical continuity between the underlying traces and the overlying electrodes. A final parylene coating approximately 7 µm thick forms the top insulation. The electrodes are exposed and the overall geometry of the implant is defined in a final set of O2 reactive-ion etches using a thick photoresist etch mask. Finally, the arrays are peeled from the wafer in a water bath or released through removal of the sacrificial photoresist in acetone. The process depends on optimal step coverage of the parylene sidewall during evaporation, which is aided, in part, by the slightly isotropic nature of the O2 plasma etch of parylene [47] as well as by the special design of the rotating wafer domes inside the e-beam evaporator, for which the angle of attack of the metal evaporant is adjusted for best coverage. This requirement conflicts marginally with those for successful metal liftoff, however, in this case, the liftoff technique is robust even under these step-coverage optimized conditions due to the choice of an LOR/positive photoresist compound layer.
Fabrication process for parylene-based dual-metal-layer flexible MEAs.
Chronically implantable retinal electrode arrays comprising 1024 75 µm diameter electrodes arranged in a complex biomimetic pattern that closely mimics the density of RGC in the human retina [48] were designed (the electrode density varied radially in a ratio matched to that of the RGCs), as shown at the left in Figure 15. These arrays (shown at right in Figure 15) were fabricated according to the dual-layer process, with 60 of the electrodes connected via two traces each to facilitate electrical conductivity verification. The strength of metal adhesion was verified using a Scotch tape test, which demonstrated that direct platinum evaporation is feasible without the need for a titanium adhesion layer. Electrical testing demonstrated a typical line impedance of a contact-electrode-contact circuit to be approximately 5 kΩ, which included two 8 µm wide traces of 20 mm length, as well as two via step junctions connecting underlying traces to the overlying electrode. Two types of via and electrode configurations were tested. Some electrodes (electrode SEM given in Figure 16 (left)) had vias connecting to the underlying trace near the center of the electrode, hence enabling charge spreading from the center of the electrode. One possible drawback to this configuration is that the contact from trace to electrode over the sidewall is a potentially vulnerable point of the circuit during processing (e.g., subsequent RIE processes) and during pulsing in electrolyte because the metal may be thinner there. The other electrode configuration had vias located adjacent to the electrode (electrode SEM given in Figure 16 (right)), with the possible advantage that it would be protected during RIE and subsequent pulsing by the overlying conformal parylene layer. An SEM showing the morphology of a single central via is given in Figure 17. This clearly depicts the sidewall coverage responsible for the electrical contact between the first and the second metal layers. In both configurations, each via had an impedance of less than 12.5 Ω. The best final configuration has not yet been determined.
(left) Design of biomimetic dual-metal-layer retinal electrode array showing biomimetic arrangement of electrodes. (right) Fabricated biomimetic chronically implantable arrays with 60 of 1024 75 µm diameter electrodes connected through dual-layer process with U.S. dime for size comparison.
Two possible dual-layer electrode configurations. Electrode with central vias (left), and electrode with abutting vias (right).
Magnified view of trace to electrode via showing sidewall coverage.
The arrays were successfully molded to the approximate curvature of the canine retina (Figure 18 (top)) using heat-annealing and a custom mold in a vacuum chamber, and sterilized using ethylene oxide gas. Two biomimetic arrays were implanted in the right eye of two canines through a 5 mm pars plana incision after vitrectomy, and were affixed to the retina (Figure 18 (bottom)) using a retinal tack modified by the addition of a PDMS washer (to account for the thin nature of the parylene arrays).
Heat-molded and annealed retinal electrode array with retained spherical curvature (top), and intraoperative photographs of tacking in each canine (bottom).
Fundus photographs (left) showing parylene MEAs tacked to the right retina of both animals and FAs (right) showing normal vessel perfusion under the arrays. Arrows point to retinal tacks.
Follow-up in both animals was conducted for six months using fundus photography, fluorescein angiography (FA), in which blood is fluorescently stained to assess vessel perfusion in the retina, and optical coherence tomography (OCT), an interferometric technique that enables cross-sectional imaging of the retina. Fundus photography and FAs of both animals, examples of which are shown in Figure 19, consistently demonstrated that vessel filling underneath the array was normal. Obstruction and vessel leakage would have been visualized if the array were placing excessive pressure on the retina. In addition, OCT demonstrated that the electrodes were consistently less than 50 µm away from the ganglion cell layer in both animals (typical OCTs of both animals are shown in Figure 20), an outcome that theoretically would afford excellent electrical coupling between the electrodes and the electrically excitable cells of the retina. It is important to note that in the OCT of the second canine, the scan was taken along a segment furthest from the tack site, where one might expect the least proximity. Even at this location, this array remained in very close apposition throughout the six-month implantation. Post-enucleation histology has since confirmed the excellent biostability seen during follow-up.
OCTs of both animals showing very close apposition (<50 µm) of the arrays to the RGC layer.
As was briefly mentioned previously, the dual-layer process proffers considerable advantages over the more traditional single-layer approach. Design of single-layer electrode arrays is usually hindered by the need to route traces amongst the electrodes. This tends to cause crowding of traces and electrodes into groups, an organization that may not be optimal for stimulating the tissue of interest. In addition, this has a propensity to constrain the geometric area of the electrodes in the MEAs to smaller sizes, and thus reduces the number of electrodes possible in a given area. The dual-layer process obviates these problems by enabling traces to pass under overlying electrodes without making contact to them, having the effect of both relaxing the constraints on electrode size and number and enabling more complex electrode organization (such as the biomimetic one presented in this work). Although the arrays fabricated here had just 60 electrodes of connectivity with 120 traces total, this was without making full use of both layers for wire routing and connection of electrodes. In order to not make traces unnecessarily narrow and of too high impedance, we believe an extension of this process to three or more metal layers will be necessary to achieve 1024 electrodes of total connectivity. Indeed, this fabrication process is easily extendable to create such structures through addition of extra layers of parylene and metal. Given the encouraging biostability results presented here and the ability of these arrays to stimulate retinal tissue, future studies will include chronic stimulation from implanted parylene-based arrays in an animal model.
As a possible mechanism for extending the longevity of chronically pulsed electrodes, we have investigated electroplated films of high surface-area platinum. Specially designed thin-film platinum electrode arrays, consisting of sixteen 75 µm and 150 µm diameter electrodes of 3000 µm center-to-center spacing, were fabricated according to the single-layer process. Initial experiments were performed on these arrays to determine material morphologies after plating at different potentials in an aqueous ammonium hexachloroplatinate solution according to Whalen
The electrode morphologies of a typical array of 16 electrodes plated at different potentials are shown in Figure 21. Note that the 4 corner electrodes (1, 4, 13, and 16) were not plated. Magnified views of some of the possible morphologies attainable via this mechanism are shown in Figure 22. These micrographs show morphologies that likely correspond to a drastically increased surface area. In order to confirm this cyclic voltammograms (CVs) in O2-free H2SO4 were taken of the electrodes before and after platinization. According to [50], “real” electrode surface area can be adequately estimated by integration of the area over the hydrogen adsorption peak or likewise the area under the hydrogen desorption peak. The two CVs in Figure 23 show that there was a more than 40-fold increase in surface area after platinization when compared with the pre-plated surface area (note the change in scale of the ordinate from nA to µA). Under pulsing, the voltage responses of both plated and unplated electrodes remained stable for approximately 29 days, at which point the unplated electrodes showed signs of failure. Voltage responses for one such electrode on day 26, 29, and 31 are overlaid in Figure 24 (left), which documents the progression of failure. The plated electrodes, on the other hand, remained intact for much longer, most surviving more than 50 days, or 430 million pulses, at which point the testing goal was met and the test was stopped. Overlaid voltage responses for one such electrode, showing the voltage responses at day 26, day 31, and day 50, are shown in Figure 25 (right). The electrochemical impedances at 1 kHz of a typical plated and unplated electrode are shown in Figure 25. A dramatic jump in impedance was observed for the unplated electrode at the time of failure, while the plated electrode demonstrated only minor variability in its lower impedance throughout the 430-million-pulse trial (most variability happened on the days that CVs were taken, as expected). These preliminary data corroborate the evidence that plating of the electrodes is beneficial to longevity, and suggest that high surface-area platinization of electrodes can have a dramatic effect on extending electrode life while lowering electrochemical impedance to charge delivery. Future work will include replication of these tests and chronic pulsing at high temperatures for longer times to further accelerate and assess the possible modes of failure.
SEM of each of the electrodes on a typical 16-electrode array after platinization.
Magnified views of possible surface morphologies after platinization.
CVs showing more than 40-fold increase in electrode surface area from before plating (left) and after plating (right). The surface area is estimated by integrating the area under the peaks circled in red. Note change in scale of the ordinate. Scan rate: 100 mV/s. Electrolyte: O2-free H2SO4 (N2-bubbled).
Voltage responses to a current pulse for (left) an unplated electrode, documenting the process of electrode failure, and (right) a plated electrode, showing steady responses throughout the 50 day test. Note response amplitudes for plated electrodes are far lower than those for the unplated electrode, as expected [
Magnitude of the electrochemical impedances at 1 kHz of an unplated and plated electrode over time. The unplated electrode showed a dramatic increase in impedance around day 30, at which time the test was stopped, whereas the plated electrode showed steady impedance through day 50. The arrow denotes a temporary dip in impedance due to CV scanning.
Despite our ability to fabricate such a large number of electrodes in such a small area, a significant impediment to future progress is the problem of how to package and interconnect these multielectrode arrays with foundry-fabricated ASICs, discrete components (e.g., chip capacitors, oscillators, diodes) and RF coils in a way that provides for high lead-count interconnects. A wafer-level process is cost prohibitive, as it is necessary to maximize the area of a wafer devoted to IC processing to keep costs low. Furthermore, current technologies for packaging would be far too tedious and low yield to apply to a 1000-electrode device. In order to achieve our goal of a 1000-electrode retinal prosthesis and a high-density spinal cord stimulation system, then, a new way of forming such a package so as to enable high-lead-count integration is necessary.
We have invented a way to place prefabricated chips, manufactured, for example, at a foundry, into the fabrication process of a parylene-based multielectrode array and/or RF coil, such that all interconnections to the chip are made using standard photolithography and standard microfabrication techniques in a fully scalable manner [40]. This packaging scheme is known as the chip-level integrated interconnect (CL-I2) package. Figure 26 shows an overview of the fabrication process and how multiple chips could be joined together in this manner. A detailed discussion of the fabrication process, as adapted from [40], follows.
Overview of the CL-I2 process. Multiple chip connections are possible.
Three MOSIS-fabricated ASICs, as well as seven chips fabricated to simulate them (with circuitry that facilitated testing), were used to demonstrate the CL-I2 packaging technology. In order to fabricate the replicas of the MOSIS chips, these chips were imaged using a WYKO interferometer (Veeco Instruments Inc., Woodbury, NY, USA), and were found to have mean dimensions of 2.500 mm in length, 2.617 mm in width, and 254.2 µm in total thickness.
One hundred angstroms of chrome and 2000 Å of gold were e-beam evaporated on a 260 µm thick silicon wafer. Using a photoresist mask, the metal was wet etched to pattern pads of the same size and in the same locations as on the MOSIS-fabricated chips (approximately 70–100 × 100 µm2 with a center-to-center pad spacing of approximately 200 µm), as well as a pattern of short circuits connecting these pads to nearby pads. After stripping the photoresist, a second photoresist layer was spun on the wafer and patterned as a mask for a Bosch through-wafer etch in a PlasmaTherm SLR-770B deep reactive ion etching (DRIE) system (Unaxis Corporation, St. Petersburg, FL, USA). This etch defined the length, width, and thickness of the simulated chips as 2.49 mm, 2.61 mm, and 260 µm, respectively. Finally, the photoresist mask was removed from the individual chips. In this manner, chips comprising simple electrical shorts and intrinsic resistors were fabricated as our primary CL-I2 package test structures (Figure 27.)
MOSIS ASIC (left) next to test chip (right).
The only properties of these prefabricated chips that had to be known before incorporation in the CL-I2 process were their overall length, width, and thickness, and the dimensions and locations of the contact pads. Figure 28 gives a detailed CL-I2 process flow. To begin, shallow alignment marks are etched into a standard 550 µm thick silicon wafer using a thin photoresist mask and an SF6 plasma. 2.51 × 2.63 mm2 holes are then patterned after alignment in a 10X reduction stepper in thick photoresist and an optional silicon dioxide mask. Through holes are then etched using the Bosch DRIE process. After photoresist and oxide removal, Nitto tape is placed on the frontside of the wafer. The chips are then self-aligned in the holes by inserting them from the backside (the Nitto tape enables frontside planarization whereas the lateral dimensions of the etched cavity determine lateral displacement), and they are sealed in place using several drops of sacrificial photoresist to cover the backside of the chip and to fill the gaps around it. A subsequent approximately 12 µm thick parylene C deposition in a PDS2010 mechanically anchors the chips in place from the backside. After removal of the frontside parylene by peeling off the Nitto tape, vertical displacements of the chips are measured using a stylus profilometer (Alphastep 200 and P-15, KLA-Tencor, San Jose, CA, USA).
Detailed process flow for CL-I2 package fabrication.
The parylene-based flexible electrodes, or, in this implementation, contact pads for electrical testing, are then fabricated on this wafer as if it were a whole wafer with prefabricated integrated circuitry. First, a photoresist sacrificial layer is spun on the wafer and patterned to expose the chip’s surface. After baking to remove excess solvent, approximately 3 µm of parylene C is deposited on the entire wafer. Photoresist is spun on the wafer, exposed in the 10X reduction stepper, and developed to pattern etch holes above the on-chip pads, similar to the vias in the dual metal-layer process. This pattern is transferred into the parylene using an O2 plasma in an RIE system, exposing the metal of these on-chip pads. Two hundred angstroms of titanium and 2000 Å of gold are deposited in the e-beam evaporation system using optimized step coverage, and patterned (using a photoresist mask and wet etching) to define the remote contact pads and remote pad to on-chip pad interconnects. The top photoresist is stripped, and a second layer of approximately 10 µm of parylene C is deposited and patterned as before, but this time to open the remote pads/electrodes to enable electrical testing. Finally, all photoresist, including the sacrificial layer, is removed by soaking the wafer in acetone, releasing a flexible parylene skin with embedded interconnects to the packaged ASIC. The host wafer can be substituted in the process with a precisely machined substrate, and can be reused after this release step. It is also important to note that the ASIC or discrete component can be of any thickness, but generally the thickness should be less than that of the host wafer or machined substrate, and it can have parylene or any hermetic coating deposited on it
We successfully performed photolithography on ten prefabricated stand-alone chips using this paradigm: seven test chips (three conformally coated in parylene
The accurate horizontal alignment of the perimeter interconnects to the embedded chips is shown in Figure 31, with Figure 32 giving a detailed micrograph of a single interconnect for both the test chip (a) and the MOSIS chip (b). By design, the chips should be self-aligned to within 10 µm of lateral displacement; some chips were aligned far better than this, however others were misaligned worse than this. With tighter tolerances on the cavity sidewalls, or with chip-alignment lithographic equipment, this alignment error could be improved. The embedded chip with remote contact pads is shown in Figure 33, and Figure 34 depicts the flexibility of this package. Functional contacts to the chips were verified as described in [40].
MOSIS chip (center) shown anchored in host silicon substrate (perimeter).
Typical single-axis vertical displacements of all 10 chips after mechanical anchoring in the host wafer (
Embedded chip with fabricated perimeter interconnects (numbered traces connect to numbered remote pads shown in
(a) Example of <10 µm lateral misalignment of a test chip; (b) Example of >10 µm lateral misalignment of a MOSIS chip.
A CL-I2 packaged chip shown resting on a penny.
Demonstrates flexibility of CL-I2 package. Chip can be seen underlying overlying parylene “skin.”
It should be stressed that the lead-count and interconnect density limitations for this technology stem only from the limitations of the microfabrication and photolithography equipment used to fabricate the CL-I2 package, and, in particular, to pattern the first parylene etch (Figure 28, step 7). All interconnects to the chip are fabricated simultaneously during the metal deposition step, and depend on optimal step coverage of the parylene sidewall (aided in part by the slightly isotropic nature of the O2 plasma etch of parylene [47]). The CL-I2 process thus avoids the use of tedious and comparatively low-density ball-wedge [38] or wire bonding.
Our method of incorporating discrete modules into a MEMS process is far more cost-effective when compared with full-wafer IC processing and MEMS integration [51], because valuable space on the wafer is not wasted during the IC fabrication step. Furthermore, in comparison to other ASIC integration attempts [51-53], this packaging scheme is superior for biodevices because it takes advantage of parylene’s low water-absorption [54] and highly conformal pinhole-free deposition, and because the package is both flexible and biocompatible. Among the feasible uses for this technology is the interconnection of chips, devices such as other CMOS-compatible MEMS, as well as discrete components such as chip capacitors, fabricated using different materials and processes, to make large conglomerate circuits for neural prostheses and for other applications. This technology is capable of increasing the previously projected number of I/O interconnects available in 2010 significantly, while using lead-free, biocompatible materials. Fabrication is not limited to the use of parylene as either the backside anchoring material or as the frontside electrode insulation material, although, because of its superior electrical, mechanical, and water permeability properties when compared with other polymers, we believe parylene will ultimately prove to be the best choice for monolithic high-density neural prosthetics. It is interesting to note that another research group has, after our original publications [40, 56, 57], explored an integration technique in polyimide very similar to ours, with interconnect density motivations much akin to our own [58]. We have recently demonstrated a fully integrated parylene-based single-channel neural stimulator [59].
BioMEMS, an emerging field in which MEMS are designed, fabricated, and utilized to interface with and examine biological systems, is a discipline replete with incredible possibilities, but also one that is fraught with potential pitfalls. This is no more true than in the case of implantable microelectronics, where applications abound because of the near perfect match in the sizes of the functional components of the body, namely cells and neurons, and the technologies possible using microfabrication techniques. Materials must be carefully selected such that they are biocompatible with the body, while still enabling maximal functionality to be delivered to the patient, requirements that are often competing in nature. In this vein, the microtechnologies necessary for parylene-based flexible microelectrode technologies have been presented. All evidence thus far points to the fact that such parylene-based technologies are likely an ideal option for implantable neuroprostheses and microdevices.
It should be stressed that these technologies are not limited to use in retinal and spinal cord prostheses. In fact, the ability of our flexible arrays to conform to the geometries of interest in the human body enables them to be used in a variety of locations heretofore previously inaccessible with such high precision. Such locations include the surfaces of the cerebral cortex, another area of interest from both a scientific and treatment point of view due to such neurological problems as stroke, epilepsy, and memory loss. Areas of other interest include peripheral nerve and muscle. It is also possible to embed sensors in such arrays, as has recently been demonstrated [60], to assess mechanical forces placed on the tissues of interest by our arrays as well as to detect extrinsic pressures, such as those within the eye or within blood vessels.
Understandably, there is a public reticence to the implementation of such technologies in the human body. While such apprehension is not a recent phenomenon, the burgeoning era of computerized special effects in television and cinema has helped fuel the fear that the blending of “man” and “machine” can have devastating consequences. What is missed in such intimations is that, in the hands of ethical doctors, engineers, and other scientists, such consequences are extremely remote. But it is not about the inventors of these technologies, and it should never be about personal glory. All of that slips away the moment one talks to a person who has devoted their life to be a pioneer in the field by volunteering to be a test subject of such devices for the benefit of mankind. In such conversations, one realizes the full potential of this technology. Investigation into these devices not only has the possibility to positively affect the lives of such people, by enabling them to “walk” or “see” again, but it transcends all that by bringing about in all involved a sense of camaraderie. Indeed, the selfless motivation of such individuals who devote their most precious commodity, their body, to such studies, more than anything else highlights our very humanity. It shows that, despite the need for such technological innovation, it is only by working together and for one another that we, as a people, can break the bonds of human disease.
Diabetes Mellitus (DM) is a disease characterized by elevated blood glucose levels due to its impaired metabolism. It is principally classified into Type 1 DM and Type 2 DM, the former being defined by the absence of insulin secretion whereas resistance to insulin defines the latter. According to the figures analyzed at the global level, diabetes is expected to affect 629 million people by 2045 in the age category of 20 to 79 years [1]. Long-term uncontrolled DM leads to both macrovascular and microvascular complications. Diabetic Retinopathy (DR), a microvascular complication, affects one-third of the population suffering from diabetes [2, 3]. The pathology of DR involves capillary endothelial cell proliferation, thickening of the basement membrane, and loss of pericytes, leading to the formation of microaneurysms, increase in vessel permeability, and the destruction of the blood-retinal barrier. This leads to the accumulation of fluid within and beneath the layers of the retina, causing diabetic macular edema (DME). Diabetic retinopathy is the leading cause of blindness in individuals of the working-age group [4]. In more advanced cases, capillary blockage and ischemia result in the formation of new blood vessels, resulting in proliferative diabetic retinopathy (PDR).
The definition of clinically significant macular edema in diabetes was given by the Early Treatment Diabetic Retinopathy Study (ETDRS) where slit-lamp biomicroscopy or stereoscopic fundus photography was used to identify retinal thickening and hard exudates [5]. However, the use of slit-lamp biomicroscopy or color fundus photography for examining macular edema is subjective and may fail to detect mild changes in retinal thickness. Biomicroscopy does not provide information regarding the exact retinal layer involved. Fundus fluorescein angiography (FA) is an investigation modality that is used to classify DME into focal and diffuse based on the leakage pattern. This classification helps in guiding focal laser treatment to leaking microaneurysms or grid laser to the leaking capillaries. Ischemic areas and macular ischemia are also well identified on FA. Though FA offers useful information, it is also a subjective test and retinal thickness or morphology cannot be assessed on FA. The advent of optical coherence tomography (OCT), has improved the understanding of DME.
OCT has rapidly grown to become a routine tool of investigation in ophthalmology. Its various advantages lie in the fact that it provides an objective, non-invasive, high resolution, reproducible, and cross-sectional image of the retina [6]. It does not require a highly skilled person for its operation, or pharmacological dilation of the pupil. It is sensitive to identify even mild changes in retinal morphology that are often not visible to the naked eye on clinical examination.
In simple terms, OCT is similar to ultrasound in that a beam of sound or light directed onto a tissue is differentially reflected from structures with different acoustic or optical properties. The time it takes for the sound or light to reflect from the different structures determines the dimensions of the structures. This provides an image similar to the A-scan or depth scan of ultrasound. Imaging of laterally adjacent depth scans provides a two-dimensional or B-scan image. The time delay involved when using light is in femtoseconds requiring interferometry to do the calculations [7].
The first generation OCT machine or Time-Domain OCT (TD-OCT) uses low time-coherence interferometry to obtain depth scans (Figure 1a). A beam splitter splits the light coming from a broadband light source, one directed to the eye and the other to the reference mirror. The position of the reference mirror is changed to mirror the depth of the various layers of tissue being scanned. Light reflected from the two sources is collected and the interferogram is analyzed to give a complete depth scan. TD-OCT involves two scans, one for depth scan and one for lateral scan, thus, resulting in a lesser number of scans acquired per second.
a) Principle of time domain OCT. b) Principle of spectral domain OCT. c) Principle of swept source OCT.
With the use of spectrometer and Fourier-domain technique in the next generation OCT, called Spectral-domain OCT (SD-OCT), the disadvantage of performing a depth scan was avoided. SD-OCT uses an array of photo-detectors to capture the depth scan without having to move the reference mirror (Figure 1b). Therefore, only a lateral scan has to be performed [7]. This increased the scan speed enormously. Further refinement of technology led to the change of the broadband near-infrared superluminescent diode light source of wavelength 840 nm in SD-OCT to a tunable swept laser source with a center wavelength of 1050 nm [8]. In conjunction, the array of photodetectors in SD-OCT was replaced with a single photodetector [8]. This led to the evolution of Swept-source OCT (SS-OCT) (Figure 1c). SS-OCT provides increased scan speed and denser scans with greater resolution as more A-scan and B scans are acquired per second. The scan area is also increased along with scan depth due to the use of a longer wavelength light source which allows better penetration through retinal pigment epithelium (RPE).
The rapid technological evolution of SD-OCT led to the visualization of different hyperreflective and hyporeflective layers of retina commencing from the innermost vitreoretinal interface to the outermost choroid-scleral interface (Figure 2) [9]. The innermost layer visualized is the posterior cortical vitreous which is hyperreflective followed by a hyporeflective preretinal space [10]. The innermost layer of the retina is the hyperreflective internal limiting membrane which overlies the retinal nerve fiber layer (RNFL). The next layer is the ganglion cell layer which is less reflective than the RNFL [11]. Outer to the ganglion cell layer is the hyperreflective inner plexiform layer followed by hyporeflective inner nuclear layer. The outer plexiform layer is hyperreflective. OCT has greatly improved the understanding of human anatomy with the identification of Henle’s layer as a component of outer half of the outer plexiform layer [12]. Outer to the outer plexiform layer lies the hyporeflective outer nuclear layer. This is followed by the external limiting membrane (ELM), another hyperreflective layer. Latest OCT machines have also made possible, the identification of outer retinal layers that are anatomic correlates of the myoid and ellipsoid (EZ) zones of the inner segment of the photoreceptors [13]. The myoid zone is hyporeflective and lies next to the ELM followed by EZ layer which is hyperreflective. This is followed by the hyporeflective layer of outer segments of photoreceptor and then a hyperreflective interdigitation zone is noted between cone outer segments and apical processes of RPE [13]. The next layer or the outermost layer of the retina is the hyperreflective RPE-Bruch’s membrane complex which can be sometimes visualized as separate layers. OCT also helps visualize the components of the choroid [14]. The innermost layer in the choroid is formed by the choriocapillaris. The Sattler’s layer forms the mid choroid and the Haller’s layer forms the outer choroid. The outer boundary of the choroid is the choroidal-scleral junction [14].
Normal anatomical landmarks as seen on swept source OCT image.
Clinically visualized changes of diabetic retinopathy are well delineated on OCT. Hard exudates, cotton wool spots, and epiretinal membrane show hyperreflectivity, edema exhibits hyporeflectivity, and hemorrhages demonstrate backshadowing. Other than these, various discerning features and biomarkers have been identified on OCT which has been discussed later in this chapter.
OCT is a sensitive tool to diagnose, quantify, and classify diabetic macular edema. The first OCT-based classification for DME was given by Otani et al [15]. They were the first to identify 3 patterns of fluid accumulation, including sponge-like retinal swelling, cystoid macular edema, and serous retinal detachment (Figure 3). They further described that early changes of macular edema were confined to the outer retinal layer mainly the outer plexiform layer when compared to histopathology [15]. With the further accumulation of fluid, the inner retinal layers were involved. The presence of serous retinal detachment in patients with DME is a finding which may not be easily distinguished on biomicroscopy or FA.
Cystoid macular edema with presence of serous retinal detachment (spectral-domain OCT).
In 2004, Panozzo proposed a classification system based on five parameters: retinal thickness, volume, morphology, diffusion, and presence or absence of vitreoretinal traction [16]. They quantified the retinal thickness and volume in three different zones around the fovea. The types of macular edema observed were in agreement with that described by Otani et al., [15] with the only difference being that the size of the cyst was measured to subclassify the grade of the cystoid variety of macular edema. The presence of epiretinal traction and its pattern (tangential or anteroposterior) were also described. This distinguished cases with an additional component of retinal distortion (Figure 4). In 2006, Kim et al. demonstrated similar findings of macular edema and posterior hyaloid traction. In addition, they described tractional retinal detachment as a peak-shaped detachment of the retina [17]. These 3 previous classifications used TD-OCT (Table 1).
Vitreomacular traction in a case of diabetic macular edema (captured with SD-OCT).
|
|
|
|
|
|
|
Time domain-OCT and Spectral domain-OCT based classification of Diabetic macular edema.
With the advent of SD-OCT, Murakami et al. for the first time showed that in addition to the morphology of edema, the photoreceptor status played a significant role in the prognosis of visual acuity [18]. They classified edema into serous retinal detachment, cystoid macular edema, and Diffuse type (absence of either cystoid macular edema or serous retinal detachment) with the latter term being used for cases that had retinal thickening but an absence of cysts or serous fluid [18]. Later in 2012, Koleva-Georgieva proposed a classification in which the term early subclinical macular edema was introduced, to describe cases with macular edema which were previously being missed on clinical examination [19]. In addition, they also included the integrity of both the outer retinal layers, the IS/OS (inner segment-outer segment junction, now identified as the EZ layer), and the ELM. Retinal morphology, topography, and presence of traction at macula were also a part of the classification and were similar to the other classifications [19]. In 2013, Helmy et al. further subclassified cystoid macular edema based on the proportion of the largest cyst to the maximum retinal thickness(CME Grade I-IV). The integrity of IS/OS junction and ELM, presence or absence of neurosensory detachment, or vitreoretinal traction were also included. They extended their classification to include the presence of hyperreflective foci in the outer retina from the ELM to the RPE [20].
The introduction of intravitreal anti-vascular endothelial growth factor (anti-VEGF) agents significantly changed the treatment of DME a few years ago [22, 23]. Though laser treatment prescribed by the ETDRS study reduced the risk of vision loss significantly, only 20% of laser-treated eyes experienced a gain in visual acuity of at least 3 lines (15 letters) at 2 years [24]. A study by DRCR.net compared the efficacy of anti-VEGF treatment with laser treatment in eyes with DME [25, 26]. Results showed that anti-VEGF therapy was more effective in preventing the loss of visual acuity. In addition, a significant percentage of eyes showed an improvement in mean visual acuity [25, 26].
Monthly injections and follow-up with OCT imaging of the macula have been recommended in various guidelines [27, 28, 29, 30]. Monthly treatment till there is no edema on follow-up OCT scan and reinitiating treatment when edema recurs or vision deteriorates is the preferred clinical practice for the management of DME [30, 31].
However, according to the FDA label of Eylea® (aflibercept), ‘the recommended dose for eylea (for DME) is 2 mg (0.05 mL) administered by intravitreal injection every 4 weeks (approximately every 28 days, monthly) for the first 5 injections followed by 2 mg (0.05 mL) via intravitreal injection once every 8 weeks (2 months)’ [32].
Cases that do not show a response after 3 monthly injections are termed non-responders [31]. Some authorities, however, term a patient nonresponder after the failure of 6 injections [29].
However, other definition of non-responder includes no or minimal reduction in retinal thickness on OCT or no improvement in visual acuity. The study by DRCR.net defined less than 10% decrease in central subfield thickness on OCT and < 5 letter increase in visual acuity as no response to anti-VEGF treatment [21]. Options to treat such cases include other anti-VEGF agents, intravitreal triamcinolone, implantable steroid injection, macular laser, and targeted retinal photocoagulation (TRP) of peripheral capillary nonperfusion areas [30, 31, 33].
Center-involved diabetic macular edema is defined as retinal thickening involving the central subfield zone of the macula that is 1 mm in diameter [34]. The management of center-involved macular edema causing visual decline (visual acuity worse than 20/30) is relatively straightforward and such cases need treatment [28, 35]. The preferred therapy includes intravitreal anti-VEGF agents, steroids, steroid implants, or a combination of these. Cases with center-involved macular edema and good visual function pose a challenge to the treating Ophthalmologist. The dilemma in such cases is whether to start intravitreal therapy or to observe [30, 34]. Such cases have been reported to improve with good control of blood sugar levels alone [31]. The role of anti-VEGF agents in such cases is being explored [36]. These cases have to be monitored at regular intervals to detect deterioration in vision which is an indication to begin anti-VEGF therapy [31, 34].
Non-center involved diabetic macular edema is defined as a retinal thickening in the macula that does not involve the central subfield zone of diameter 1 mm [34]. Laser photocoagulation is still the standard of care for the treatment of cases with non-center involving macular edema [37]. For cases with macular edema with vitreomacular traction, induction of posterior vitreous detachment during pars plana vitrectomy with or without ILM peeling is the recommended choice for treatment [38, 39, 40].
Biomarkers are markers used externally to assess a medical state reliably and accurately [41]. Biomarkers may be physical, chemical, or biological. They are used to assess a physiological state, pathological process, or response to any pharmacological intervention [41]. Imaging biomarkers have the advantage of being non-invasive, reliable, and accurate. Several OCT-based biomarkers have been reported in DME which help in the management of the disease as well as in prognostication [42].
Earlier studies showed a variable correlation between central retinal thickness measured on OCT and visual acuity achieved post-treatment of DME [43, 44]. A study by DRCR.net revealed that this correlation is modest. They also documented cases with a paradoxical decrease in visual acuity with a decrease in retinal thickening [45]. Further studies documented the role of OCT-based markers other than the central retinal thickness that affect visual acuity.
These include bridging retinal processes, the integrity of ELM and EZ, the reflectivity of cone outer segment tips, presence of hyperreflective foci, and subretinal fluid [46, 47, 48, 49].
Long-standing cystoid macular edema with disturbance in ELM and EZ may suggest a poor visual outcome after treatment (Figure 5).
Long standing cystoid macular edema.
Sun and colleagues evaluated a novel marker in OCT, called disorganization of the retinal inner layers (DRIL), within the central 1 mm area of the fovea [50]. They studied the inner retinal layers in cases with existing DME or resolved DME. DRIL is ‘defined as the horizontal extent in microns for which any boundaries between the ganglion cell–inner plexiform layer complex, inner nuclear layer, and outer plexiform layer could not be identified.’ [50]. DRIL was found to have a substantial association with visual acuity. The presence of DRIL explained the paradoxical decrease in visual acuity in cases with resolved DME [50]. Later, Joltikov et al. reported the presence of DRIL in diabetics even before the presence of DR, DME, or PDR [51]. Further, Pelosini et al. proposed a theory to explain the negative correlation between retinal volume and visual acuity [52]. They suggested that the accumulation of fluid within the inner retinal layers causes the bipolar cells to stretch. Bipolar cells connect the photoreceptors to the ganglion cells. Fluid exceeding the limit of elasticity of these bipolar cell axons, may break the continuity of these axons and affect the transmission of signals between ganglion cells and photoreceptors. The irreversible destruction of bipolar cells provides a plausible explanation for cases with no improvement in visual acuity even after the resolution of DME [52]. In another study, the presence of retinal tissue between the cystic cavities in cases with DME was found to predict improvement in visual acuity after anti-VEGF therapy. These retinal tissues comprise of Müller and bipolar cells that transmit impulses between inner and outer retinal layers. The absence of these retinal bridging tissues at baseline explains the foveal thinning after the resolution of edema [53].
SD-OCT imaging of diabetic retinopathy identified an additional intraretinal pathology which was visualized as hyperreflective dot or foci (HF) in few cases of DME [47]. Bolz et al. reported that the location of these HF on OCT was variable [47]. In some cases, they were noted to be dispersed all through the retinal layers. In other cases, they were observed in the walls of microaneurysms or as confluent plaques at the level of the outer plexiform layer [47]. Bolz et al. hypothesized that the HF represented lipid deposits or precursors of hard exudates [47]. The similarity in the reflective property of HF and hard exudates supported their theory. In contrast, Lee and colleagues proposed that HF corresponded to activated microglial cells [54]. They observed a positive correlation between levels of the cytokine CD14 in the aqueous humor and the number of HF on SD-OCT in patients with DME. Cytokine CD14 is derived from activated microglial cells [55]. Microglial cells are the immune cells in the retina that undergo an inflammatory change in DR [56]. However, further studies are required to establish the origin of HF. Midena et al., described HF as dots with a size less than 30 microns, absence of back shadowing, and reflectivity similar to that of the retinal nerve fiber layer [57]. Their description allowed the distinction of HF from other hyperreflective spots on OCT such as intraretinal hemorrhage and microaneurysm. Intraretinal hemorrhage on OCT has a backshadowing effect such that retinal layers beneath the hemorrhage are not visualized. The microaneurysms on OCT have an external diameter of more than 70 microns in size [58]. Several studies reported a negative correlation between the presence of HF and visual acuity [59, 60, 61, 62]. Uji et al. suggested a pathologic association between the presence of HF in the outer retinal layers and disruption of ELM and EZ resulting in photoreceptor dysfunction in cases with DME [59]. The presence of HF has been documented to indicate inflammatory activity or active disease status with studies reporting a significant reduction in HF after treatment with anti-VEGF and steroid implants [60, 61]. HF has also been identified as a predictor of early recurrence of DME after steroid (dexamethasone) implant [62]. HF has also been reported in DME cases that are refractory to anti-VEGF agents [63].
A characteristic arrangement of hyperreflective dots termed as pearl necklace sign in cases of DME was recently reported (Figure 6) [64]. It was originally described as HF surrounding the wall of a cyst located in the outer plexiform layer [64]. However, a similar appearance has recently also been described in cystoid spaces in the outer plexiform-outer nuclear layer and the inner wall of the neurosensory detachment [65]. Treatment with anti-VEGF agents in these cases led to the accumulation of hard exudates in the location of HF. A correlation of pearl necklace sign and visual acuity was only described in cases where the cyst or neurosensory detachment involved the fovea [65].
Pearl necklace sign in a case of diabetic macular edema.
Solid appearing cysts with hyper-reflective material within the cyst have been documented in DME (Figure 7) [66]. The content of these cysts has been hypothesized to be fibrin or of inflammatory origin [66]. However, no alteration to response to anti-VEGF treatment was reported [66].
Hyper reflective material within the cyst in a case of diabetic macular edema.
Another novel OCT finding that has been recently reported in a patient with DME is a subretinal pseudocyst [67]. Contrary to what has been earlier documented, a cyst-like appearance was observed in the subretinal space and not within the retinal layers. The migration of Müller cells into the subretinal space has been proposed to be the reason for the development of the pseudocyst in that location [67].
Advancement in technology has allowed the measurement of the thickness of the photoreceptor layer with SD-OCT in patients with diabetes. Patients with DR, DME, or diabetes but no retinopathy, have reported a thin photoreceptor layer in comparison to healthy individuals [46, 68]. Variation in visual acuity has been correlated to the thickness of the outer segment of the photoreceptor (PROS) in eyes with DME. This thickness of PROS is measured from the inner boundary of IS/OS junction to the inner boundary of the RPE layer [69]. The correlation of thickness of PROS with visual acuity is significant particularly when measuring it at the fovea [49].
Hyperreflective foci within the choroid (HCF) have been recently reported in diabetic eyes [70]. Roy et al. hypothesized that these are intraretinal HF that migrate to the choroid with disruption of ELM and EZ. They documented a negative correlation between visual acuity and the presence of HF in the choroid. The presence of HCF was also observed to have an association with the severity of DR [70].
Studies using enhanced depth OCT imaging have evaluated choroidal thickness in eyes with DME and PDR. These studies have reported contradictory results. Kim and associates documented an increase in choroidal thickness with the increase in severity of DR and cases with DME [71]. They also reported a decrease in choroidal thickness in eyes treated with panretinal photocoagulation (PRP) [71]. In contrast, Querques et al. documented thin choroid in diabetic eyes when compared to control [72]. Rayess et al. documented that eyes with thicker choroid at baseline responded better to anti-VEGF treatment [73].
A recent study using swept-source OCT showed that choroidal thickness increased in the early stages of DR and then decreased as the severity of DR progressed [74]. The study proposed several mechanisms to explain choroidal thickening in early DR. Diabetic choroidopathy resulting in dysfunction of RPE and increased vascular permeability was implied as one of the mechanisms. Inflammation and oxidative stress-induced increase in cytokines was also suspected to be associated with choroidal thickening. In contrast, a decrease in blood flow and hypoxia was probably associated with thinning of the choroid with the progression of DR. However, whether choroidal thinning is primary or secondary to retinal ischemia remains to be established [74].
Choroidal vascularity index (CVI), another OCT-based marker enables the assessment of vascularity of the choroid [75]. Unlike choroidal thickness, this marker does not vary with physiological factors [75]. The choroid has two main components, the stroma, and the vascular layer. CVI is the proportion of the vascular component to the total choroidal area. A positive correlation has been documented between CVI and the status of choroidal blood supply [75]. Studies evaluating the CVI in diabetes have suggested that reduction in choroidal blood flow occurs as an early manifestation in diabetes even before retinopathy developed [76]. The thickening of choroid noted in the early stages of DR is probably explained by an increase in the stromal component of the choroid. As retinopathy progresses, the choroidal blood vessel further reduces in density [76]. However, further studies are required to confirm these theories.
High-resolution OCT imaging allows the evaluation of details of neovascularization in patients with PDR [77, 78].
Neovascularization of the retina was observed to breach the internal limiting membrane and protrude into the vitreous cavity [77]. The posterior hyaloid was attached or partially detached around the neovascularization [77]. Neovascular loops were seen as hyperreflective loops protruding into the vitreous with backshadowing obscuring the retina at the points of attachment [77].
Thick neovascularization of the disc (NVD) was noted to grow along the posterior hyaloid which serves as a scaffold [77]. NVD appeared as hyperreflective tissue over the disc protruding into the vitreous cavity in cases with detached posterior hyaloid, which is uncommon in eyes with NVD [77]. Vaz-Pereira et al. in their study identified SD-OCT-based features that can distinguish active neovascularization from quiescent neovascularization [79]. They observed the presence of hyperreflective dots in the vitreous cavity in cases with active neovascularization. These hyperreflective dots were theorized to represent increased vascular permeability. Features such as the presence of epiretinal membrane, inner retinal tissue contracture, vitreous invasion, and protrusion towards the vitreous were found in cases of quiescent or inactive neovascularization [79]. Another finding in PDR that is observed on OCT is vitreoschisis [80]. This is defined as the splitting of the posterior vitreous which leaves a layer of vitreous attached to the retina when vitreous detachment occurs. These can cause traction on the neovascular vessels and complicate surgery in PDR [80].
In contrast, intraretinal microvascular abnormalities (IRMA) are intraretinal, hyperreflective areas that were observed to distort the inner retinal layers. They do not breach the overlying ILM or vitreous. There is no thickening of the posterior hyaloid [77].
Mishra et al. have recently described a novel technique to facilitate wide-field imaging of the retina beyond the posterior pole. These images provide a better assessment of the vitreoretinal interface and therefore help in surgical planning in eyes with PDR [81].
OCT angiography (OCTA) provides non-invasive imaging of the retinal vasculature parallel to images provided by FA [82]. The advantage over FA is that it circumvents the need for dye injection and therefore forestalls the risk of incidents like anaphylaxis. With the help of OCTA, people with contraindications to FA, can also undergo imaging of the retinal vasculature. OCTA uses the split-spectrum amplitude decorrelation algorithm [82]. In simple terms, it analyzes the light signals reflected from various tissues on repeated B scan imaging of a particular location. The mobile blood cells of the retinal or choroidal vasculature are the only structures responsible for providing a signal of different intensity or phases on repeated B scans [82]. The other tissues being stationary will not show any difference. It provides high-resolution images of both superficial and deep capillary plexus [83]. It provides better visualization of retinal capillary non-perfusion areas including capillary drop-out areas and foveal avascular zone [84]. Swept source-OCTA systems provide better imaging of the choroidal vasculature compared to SD-OCTA [85]. OCTA enables delineation of the morphology of microaneurysm into saccular or fusiform swelling [86]. Unlike FA, OCTA does not evaluate hyperpermeable pathological vessels. It does not show leakage (as seen on fundus fluorescein angiography) to indicate retinal edema or neovascularization [87]. OCTA also helps to estimate the activity status of the neovascularization [86]. Various quantitative measures have also been described using OCTA [88, 89]. Further details of OCTA are beyond the scope of this chapter.
Adaptive optics OCT improves the transverse resolution of OCT images. Adaptive optics OCT provides microscopic images of the vasculature. It has been used to quantitatively analyze the lumen of retinal capillaries and microaneurysms in diabetic retinopathy [90, 91]. Based on the Doppler principle, Doppler OCT is a functional imaging technique that allows for visualization and measurement of blood flow [92]. Studies have observed reduced retinal blood flow in patients with DR compared to healthy individuals [93].
OCT has become a very valuable tool in the imaging of diabetic retinopathy. It is useful in the diagnosis of DME as well as decision-making regarding the treatment of DME. It is also helpful in following up the cases with DME after treatment with anti-VEGF therapy. It helps in diagnosing non-responders to treatment. It also provides information regarding the vitreoretinal interface and therefore helps decide the need for surgical intervention. It provides reliable qualitative information regarding retinal thickness. Various OCT-based classifications of DME have helped in better understanding of the disease pathogenesis. The evaluation of retinal layers on OCT explains the correlation between the retinal thickness at baseline and the final visual acuity achieved after treatment. The arrival of OCTA has further enhanced the imaging process. It adds to the information provided by SD-OCT or SS-OCT. It gives information regarding the blood supply of the retina, the density of the vessels, changes in the foveal avascular zone and helps to identify neovascular networks. It precludes the use of the invasive fundus fluorescein angiography and hence can be used in people with contraindications to fundus fluorescein angiography.
Thus, OCT has become a vital tool to diagnose and monitor the response of DME to various intravitreal pharmacotherapies including anti-VEGF agents.
IntechOpen publishes different types of publications
",metaTitle:"Types of publications",metaDescription:"IntechOpen publishes different types of publications",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\\n\\nEdited Volumes can be comprised of different types of chapters:
\\n\\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\\n\\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\\n\\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\\n\\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\\n\\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\\n\\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\\n\\nTYPES OF MONOGRAPHS:
\\n\\nSingle or multiple author manuscript
\\n\\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\\n\\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\\n\\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\\n"}]'},components:[{type:"htmlEditorComponent",content:"IntechOpen Edited Volumes are integrated collections of chapters about particular topics that present new areas of research or novel syntheses of existing research and, as such, represent perspectives from various authors.
\n\nEdited Volumes can be comprised of different types of chapters:
\n\nRESEARCH CHAPTER – A research chapter reports the results of original research thus contributing to the body of knowledge in a particular area of study.
\n\nREVIEW CHAPTER – A review chapter analyzes or examines research previously published by other scientists, rather than reporting new findings thus summarizing the current state of understanding on a topic.
\n\nCASE STUDY – A case study involves an in-depth, and detailed examination of a particular topic.
\n\nPERSPECTIVE CHAPTER – A perspective chapter offers a new point of view on existing problems, fundamental concepts, or common opinions on a specific topic. Perspective chapters can propose or support new hypotheses, or discuss the significance of newly achieved innovations. Perspective chapters can focus on current advances and future directions on a topic and include both original data and personal opinion.
\n\nINTRODUCTORY CHAPTER – An introductory chapter states the purpose and goals of the book. The introductory chapter is written by the Academic Editor.
\n\nMonographs is a self-contained work on a particular subject, or an aspect of it, written by one or more authors. Monographs usually have between 130 and 500 pages.
\n\nTYPES OF MONOGRAPHS:
\n\nSingle or multiple author manuscript
\n\nCompacts provide a mid-length publishing format that bridges the gap between journal articles, book chapters, and monographs, and cover content across all scientific disciplines.
\n\nCompacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues, or broader topics on the research subject. Compacts usually have between 50 and 130 pages.
\n\nCollection of papers presented at conferences, workshops, symposiums, or scientific courses, published in book format
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132763},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"5,6,12,13,18 FILLER ads"},books:[{type:"book",id:"11609",title:"Fungicides - Application, Technologies, and Materials for the Future of Plant Disease Management",subtitle:null,isOpenForSubmission:!0,hash:"3a8c9d55c21ce8d69d2edc94f9e592f3",slug:null,bookSignature:"Dr. Mizuho Nita",coverURL:"https://cdn.intechopen.com/books/images_new/11609.jpg",editedByType:null,editors:[{id:"98153",title:"Dr.",name:"Mizuho",surname:"Nita",slug:"mizuho-nita",fullName:"Mizuho Nita"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11648",title:"Current Status and Ecological Aspects of Seabirds",subtitle:null,isOpenForSubmission:!0,hash:"7754b354f7deebdb8576189aefbdbc5c",slug:null,bookSignature:"Dr. Muhammad Nawaz Rajpar",coverURL:"https://cdn.intechopen.com/books/images_new/11648.jpg",editedByType:null,editors:[{id:"183095",title:"Dr.",name:"Muhammad Nawaz",surname:"Rajpar",slug:"muhammad-nawaz-rajpar",fullName:"Muhammad Nawaz Rajpar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11620",title:"Tomato - From Cultivation to Processing Technology",subtitle:null,isOpenForSubmission:!0,hash:"cdc23b5aad5d52bc0f0327c453ac7a1b",slug:null,bookSignature:"Prof. Pranas Viskelis, Dr. Dalia Urbonaviciene and Dr. Jonas Viskelis",coverURL:"https://cdn.intechopen.com/books/images_new/11620.jpg",editedByType:null,editors:[{id:"83785",title:"Prof.",name:"Pranas",surname:"Viskelis",slug:"pranas-viskelis",fullName:"Pranas Viskelis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11020",title:"Dietary Supplements - Challenges and Future Research",subtitle:null,isOpenForSubmission:!0,hash:"2283ae2d0816c17ad46cbedbe4ce5e78",slug:null,bookSignature:"Dr. Venketeshwer Rao and Dr. Leticia Rao",coverURL:"https://cdn.intechopen.com/books/images_new/11020.jpg",editedByType:null,editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11627",title:"Oilseed Crops - Biology, Production and Processing",subtitle:null,isOpenForSubmission:!0,hash:"010cdbbb6a716d433e632b350d4dcafe",slug:null,bookSignature:"Prof. Mirza Hasanuzzaman and MSc. Kamrun Nahar",coverURL:"https://cdn.intechopen.com/books/images_new/11627.jpg",editedByType:null,editors:[{id:"76477",title:"Prof.",name:"Mirza",surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11615",title:"Humus and Humic Substances - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"a9b75be6b30278fca930c4dd560a8b2b",slug:null,bookSignature:"Prof. Abdelhadi Makan",coverURL:"https://cdn.intechopen.com/books/images_new/11615.jpg",editedByType:null,editors:[{id:"247727",title:"Prof.",name:"Abdelhadi",surname:"Makan",slug:"abdelhadi-makan",fullName:"Abdelhadi Makan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11802",title:"Honey - Composition and Properties",subtitle:null,isOpenForSubmission:!0,hash:"60482dae5e08f5b22b0c7a2749cdfc02",slug:null,bookSignature:"Dr. Muhammad Imran, Dr. Muhammad Haseeb Ahmad and Dr. Rabia Shabir Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/11802.jpg",editedByType:null,editors:[{id:"208646",title:"Dr.",name:"Muhammad",surname:"Imran",slug:"muhammad-imran",fullName:"Muhammad Imran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10744",title:"Astrocytes in Brain Communication and Disease",subtitle:null,isOpenForSubmission:!0,hash:"8b6a8e2bb5f070305768945fdef8eed2",slug:null,bookSignature:"Prof. Denis Larrivee",coverURL:"https://cdn.intechopen.com/books/images_new/10744.jpg",editedByType:null,editors:[{id:"206412",title:"Prof.",name:"Denis",surname:"Larrivee",slug:"denis-larrivee",fullName:"Denis Larrivee"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11638",title:"Meat Science and Nutrition - Recent Advances and Innovative Processing Technologies",subtitle:null,isOpenForSubmission:!0,hash:"3923d89fcf837fac59c906f9694ab1f8",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad",coverURL:"https://cdn.intechopen.com/books/images_new/11638.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11667",title:"Marine Pollution - Recent Developments",subtitle:null,isOpenForSubmission:!0,hash:"e524cd97843b075a724e151256773631",slug:null,bookSignature:"Dr. Monique Mancuso",coverURL:"https://cdn.intechopen.com/books/images_new/11667.jpg",editedByType:null,editors:[{id:"318562",title:"Dr.",name:"Monique",surname:"Mancuso",slug:"monique-mancuso",fullName:"Monique Mancuso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11619",title:"Root Vegetables",subtitle:null,isOpenForSubmission:!0,hash:"2c5535e66fed5abd8f80ee521b51b2d3",slug:null,bookSignature:"Dr. Prashant Kaushik",coverURL:"https://cdn.intechopen.com/books/images_new/11619.jpg",editedByType:null,editors:[{id:"311935",title:"Dr.",name:"Prashant",surname:"Kaushik",slug:"prashant-kaushik",fullName:"Prashant Kaushik"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:123},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:76},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4389},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"259",title:"Robotic Surgery",slug:"robotic-surgery",parent:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:4,numberOfSeries:0,numberOfAuthorsAndEditors:39,numberOfWosCitations:179,numberOfCrossrefCitations:91,numberOfDimensionsCitations:196,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"259",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10616",title:"Single Port Gynecologic Laparoscopic and Robotic-Assisted Surgery",subtitle:null,isOpenForSubmission:!1,hash:"0eaecc6e8ea016f111026b607d1673f7",slug:"single-port-gynecologic-laparoscopic-and-robotic-assisted-surgery",bookSignature:"Greg Marchand",coverURL:"https://cdn.intechopen.com/books/images_new/10616.jpg",editedByType:"Edited by",editors:[{id:"322729",title:"M.D.",name:"Greg",middleName:null,surname:"Marchand",slug:"greg-marchand",fullName:"Greg Marchand"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10569",title:"Latest Developments in Medical Robotics Systems",subtitle:null,isOpenForSubmission:!1,hash:"b48d1b7672b3d7e9e59ddc7b86d9b930",slug:"latest-developments-in-medical-robotics-systems",bookSignature:"Serdar Küçük",coverURL:"https://cdn.intechopen.com/books/images_new/10569.jpg",editedByType:"Edited by",editors:[{id:"5424",title:"Dr.",name:"Serdar",middleName:null,surname:"Küçük",slug:"serdar-kucuk",fullName:"Serdar Küçük"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3709",title:"Robot Surgery",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robot-surgery",bookSignature:"Seung Hyuk Baik",coverURL:"https://cdn.intechopen.com/books/images_new/3709.jpg",editedByType:"Edited by",editors:[{id:"6560",title:"Prof.",name:"Seung Hyuk",middleName:null,surname:"Baik",slug:"seung-hyuk-baik",fullName:"Seung Hyuk Baik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3583",title:"Medical Robotics",subtitle:null,isOpenForSubmission:!1,hash:"96c30765ef134cb6d1ee0aed7527c9cb",slug:"medical_robotics",bookSignature:"Vanja Bozovic",coverURL:"https://cdn.intechopen.com/books/images_new/3583.jpg",editedByType:"Edited by",editors:[{id:"256422",title:"Dr.",name:"Vanja",middleName:null,surname:"Bozovic",slug:"vanja-bozovic",fullName:"Vanja Bozovic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:4,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"660",doi:"10.5772/5262",title:"Prototypic Force Feedback Instrument for Minimally Invasive Robotic Surgery",slug:"prototypic_force_feedback_instrument_for_minimally_invasive_robotic_surgery",totalDownloads:5905,totalCrossrefCites:13,totalDimensionsCites:25,abstract:null,book:{id:"3583",slug:"medical_robotics",title:"Medical Robotics",fullTitle:"Medical Robotics"},signatures:"Ulrich Seibold, Bernhard Kuebler and Gerd Hirzinger",authors:null},{id:"642",doi:"10.5772/5244",title:"Motion Tracking for Minimally Invasive Robotic Surgery",slug:"motion_tracking_for_minimally_invasive_robotic_surgery",totalDownloads:3967,totalCrossrefCites:19,totalDimensionsCites:24,abstract:null,book:{id:"3583",slug:"medical_robotics",title:"Medical Robotics",fullTitle:"Medical Robotics"},signatures:"Martin Groeger, Klaus Arbter and Gerd Hirzinger",authors:null},{id:"6510",doi:"10.5772/6893",title:"Classification, Design and Evaluation of Endoscope Robots",slug:"classification-design-and-evaluation-of-endoscope-robots",totalDownloads:4463,totalCrossrefCites:10,totalDimensionsCites:16,abstract:null,book:{id:"3709",slug:"robot-surgery",title:"Robot Surgery",fullTitle:"Robot Surgery"},signatures:"Kazuhiro Taniguchi, Atsushi Nishikawa, Mitsugu Sekimoto, Takeharu Kobayashi, Kouhei Kazuhara, Takaharu Ichihara, Naoto Kurashita, Shuji Takiguchi, Yuichiro Doki, Masaki Mori, and Fumio Miyazaki",authors:null},{id:"634",doi:"10.5772/5236",title:"The Must-Have in Robotic Heart Surgery: Haptic Feedback",slug:"the_must-have_in_robotic_heart_surgery__haptic_feedback",totalDownloads:4107,totalCrossrefCites:1,totalDimensionsCites:11,abstract:null,book:{id:"3583",slug:"medical_robotics",title:"Medical Robotics",fullTitle:"Medical Robotics"},signatures:"Eva U. Braun, Hermann Mayer, Alois Knoll, Ruediger Lange and Robert Bauernschmitt",authors:null},{id:"640",doi:"10.5772/5242",title:"Robotic Long Bone Fracture Reduction",slug:"robotic_long_bone_fracture_reduction",totalDownloads:3400,totalCrossrefCites:0,totalDimensionsCites:11,abstract:null,book:{id:"3583",slug:"medical_robotics",title:"Medical Robotics",fullTitle:"Medical Robotics"},signatures:"A. E. Graham, S. Q. Xie, K. C. Aw, W. L. Xu and S. Mukherjee",authors:null}],mostDownloadedChaptersLast30Days:[{id:"6513",title:"Simulation Model for the Dynamics Analysis of a Surgical Assistance Robot",slug:"simulation-model-for-the-dynamics-analysis-of-a-surgical-assistance-robot",totalDownloads:3677,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"3709",slug:"robot-surgery",title:"Robot Surgery",fullTitle:"Robot Surgery"},signatures:"Hans-Christian Schneider and Juergen Wahrburg",authors:null},{id:"6517",title:"Robotic Assisted Laparoscopic Hysterectomy",slug:"robotic-assisted-laparoscopic-hysterectomy",totalDownloads:9762,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3709",slug:"robot-surgery",title:"Robot Surgery",fullTitle:"Robot Surgery"},signatures:"Khaled Sakhel",authors:null},{id:"76504",title:"Catheter Robots in the Cardiovascular System",slug:"catheter-robots-in-the-cardiovascular-system",totalDownloads:219,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Robotic-assisted endovascular therapy is a novel approach to augment precise skill requirements while simultaneously reducing radiation exposure. The CorPath system enhances the scope of minimally invasive procedures and facilitates the interventionalists to perform procedures in the field of vascular surgery, neurosurgery and interventional cardiology. The reason for increasing interest in the CorPath system is the ability to control these robots through wireless connection, raising the possibility for remote interventions. CorPath is currently the only commercially available endovascular robotic system. Robotic-assisted approach has a high technical success rate in the field of peripheral vascular and coronary interventions and has encouraging results regarding neurointerventions. Remote endovascular procedures may transform the future of stroke treatment in areas where distance-related time loss can affect procedural outcome.",book:{id:"10569",slug:"latest-developments-in-medical-robotics-systems",title:"Latest Developments in Medical Robotics Systems",fullTitle:"Latest Developments in Medical Robotics Systems"},signatures:"Marton Berczeli, Peter Legeza and Alan Lumsden",authors:[{id:"344345",title:"M.D.",name:"Alan",middleName:null,surname:"Lumsden",slug:"alan-lumsden",fullName:"Alan Lumsden"},{id:"344998",title:"Dr.",name:"Marton",middleName:null,surname:"Berczeli",slug:"marton-berczeli",fullName:"Marton Berczeli"},{id:"350789",title:"Dr.",name:"Peter",middleName:null,surname:"Legeza",slug:"peter-legeza",fullName:"Peter Legeza"}]},{id:"6516",title:"Robotic Sacrocolpopexy and Sacrocervicopexy for the Correction of Pelvic Organ Prolapse",slug:"robotic-sacrocolpopexy-and-sacrocervicopexy-for-the-correction-of-pelvic-organ-prolapse",totalDownloads:4368,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3709",slug:"robot-surgery",title:"Robot Surgery",fullTitle:"Robot Surgery"},signatures:"James C Brien, Michael D Fabrizio and James C Lukban",authors:null},{id:"668",title:"Robotics in General Surgery",slug:"robotics_in_general_surgery",totalDownloads:9904,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"3583",slug:"medical_robotics",title:"Medical Robotics",fullTitle:"Medical Robotics"},signatures:"James Wall, Venita Chandra and Thomas Krummel",authors:null}],onlineFirstChaptersFilter:{topicId:"259",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}}]},overviewPagePublishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:7,paginationItems:[{id:"11476",title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",hash:"8d41fa5f3a5da07469bbc121594bfd3e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 24th 2022",isOpenForSubmission:!0,editors:[{id:"335401",title:"Prof.",name:"Margherita",surname:"Mori",slug:"margherita-mori",fullName:"Margherita Mori"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11460",title:"Pluralistic Approaches for Conservation and Sustainability in Biodiversity",coverURL:"https://cdn.intechopen.com/books/images_new/11460.jpg",hash:"ab014f8ed1669757335225786833e9a9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 22nd 2022",isOpenForSubmission:!0,editors:[{id:"101105",title:"Dr.",name:"Gopal",surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 2nd 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:167,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:151,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:184,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78617",title:"Doppler Ultrasound in the Reproduction of Mares",doi:"10.5772/intechopen.98951",signatures:"Camila Silva Costa Ferreira and Rita de Cássia Lima Morais",slug:"doppler-ultrasound-in-the-reproduction-of-mares",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:304,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:302,paginationItems:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/198499/images/system/198499.jpeg",biography:"Dr. Daniel Glossman-Mitnik is currently a Titular Researcher at the Centro de Investigación en Materiales Avanzados (CIMAV), Chihuahua, Mexico, as well as a National Researcher of Level III at the Consejo Nacional de Ciencia y Tecnología, Mexico. His research interest focuses on computational chemistry and molecular modeling of diverse systems of pharmacological, food, and alternative energy interests by resorting to DFT and Conceptual DFT. He has authored a coauthored more than 255 peer-reviewed papers, 32 book chapters, and 2 edited books. He has delivered speeches at many international and domestic conferences. He serves as a reviewer for more than eighty international journals, books, and research proposals as well as an editor for special issues of renowned scientific journals.",institutionString:"Centro de Investigación en Materiales Avanzados",institution:{name:"Centro de Investigación en Materiales Avanzados",country:{name:"Mexico"}}},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",biography:"Dr. Mirza Hasanuzzaman is a Professor of Agronomy at Sher-e-Bangla Agricultural University, Bangladesh. He received his Ph.D. in Plant Stress Physiology and Antioxidant Metabolism from Ehime University, Japan, with a scholarship from the Japanese Government (MEXT). Later, he completed his postdoctoral research at the Center of Molecular Biosciences, University of the Ryukyus, Japan, as a recipient of the Japan Society for the Promotion of Science (JSPS) postdoctoral fellowship. He was also the recipient of the Australian Government Endeavour Research Fellowship for postdoctoral research as an adjunct senior researcher at the University of Tasmania, Australia. Dr. Hasanuzzaman’s current work is focused on the physiological and molecular mechanisms of environmental stress tolerance. Dr. Hasanuzzaman has published more than 150 articles in peer-reviewed journals. He has edited ten books and written more than forty book chapters on important aspects of plant physiology, plant stress tolerance, and crop production. According to Scopus, Dr. Hasanuzzaman’s publications have received more than 10,500 citations with an h-index of 53. He has been named a Highly Cited Researcher by Clarivate. He is an editor and reviewer for more than fifty peer-reviewed international journals and was a recipient of the “Publons Peer Review Award” in 2017, 2018, and 2019. He has been honored by different authorities for his outstanding performance in various fields like research and education, and he has received the World Academy of Science Young Scientist Award (2014) and the University Grants Commission (UGC) Award 2018. He is a fellow of the Bangladesh Academy of Sciences (BAS) and the Royal Society of Biology.",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",country:{name:"Bangladesh"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",biography:"Kusal K. Das is a Distinguished Chair Professor of Physiology, Shri B. M. Patil Medical College and Director, Centre for Advanced Medical Research (CAMR), BLDE (Deemed to be University), Vijayapur, Karnataka, India. Dr. Das did his M.S. and Ph.D. in Human Physiology from the University of Calcutta, Kolkata. His area of research is focused on understanding of molecular mechanisms of heavy metal activated low oxygen sensing pathways in vascular pathophysiology. He has invented a new method of estimation of serum vitamin E. His expertise in critical experimental protocols on vascular functions in experimental animals was well documented by his quality of publications. He was a Visiting Professor of Medicine at University of Leeds, United Kingdom (2014-2016) and Tulane University, New Orleans, USA (2017). For his immense contribution in medical research Ministry of Science and Technology, Government of India conferred him 'G.P. Chatterjee Memorial Research Prize-2019” and he is also the recipient of 'Dr.Raja Ramanna State Scientist Award 2015” by Government of Karnataka. He is a Fellow of the Royal Society of Biology (FRSB), London and Honorary Fellow of Karnataka Science and Technology Academy, Department of Science and Technology, Government of Karnataka.",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"243660",title:"Dr.",name:"Mallanagouda Shivanagouda",middleName:null,surname:"Biradar",slug:"mallanagouda-shivanagouda-biradar",fullName:"Mallanagouda Shivanagouda Biradar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243660/images/system/243660.jpeg",biography:"M. S. Biradar is Vice Chancellor and Professor of Medicine of\nBLDE (Deemed to be University), Vijayapura, Karnataka, India.\nHe obtained his MD with a gold medal in General Medicine and\nhas devoted himself to medical teaching, research, and administrations. He has also immensely contributed to medical research\non vascular medicine, which is reflected by his numerous publications including books and book chapters. Professor Biradar was\nalso Visiting Professor at Tulane University School of Medicine, New Orleans, USA.",institutionString:"BLDE (Deemed to be University)",institution:{name:"BLDE University",country:{name:"India"}}},{id:"289796",title:"Dr.",name:"Swastika",middleName:null,surname:"Das",slug:"swastika-das",fullName:"Swastika Das",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/289796/images/system/289796.jpeg",biography:"Swastika N. Das is Professor of Chemistry at the V. P. Dr. P. G.\nHalakatti College of Engineering and Technology, BLDE (Deemed\nto be University), Vijayapura, Karnataka, India. She obtained an\nMSc, MPhil, and PhD in Chemistry from Sambalpur University,\nOdisha, India. Her areas of research interest are medicinal chemistry, chemical kinetics, and free radical chemistry. She is a member\nof the investigators who invented a new modified method of estimation of serum vitamin E. She has authored numerous publications including book\nchapters and is a mentor of doctoral curriculum at her university.",institutionString:"BLDEA’s V.P.Dr.P.G.Halakatti College of Engineering & Technology",institution:{name:"BLDE University",country:{name:"India"}}},{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248459/images/system/248459.png",biography:"Akikazu Takada was born in Japan, 1935. After graduation from\nKeio University School of Medicine and finishing his post-graduate studies, he worked at Roswell Park Memorial Institute NY,\nUSA. He then took a professorship at Hamamatsu University\nSchool of Medicine. In thrombosis studies, he found the SK\npotentiator that enhances plasminogen activation by streptokinase. He is very much interested in simultaneous measurements\nof fatty acids, amino acids, and tryptophan degradation products. By using fatty\nacid analyses, he indicated that plasma levels of trans-fatty acids of old men were\nfar higher in the US than Japanese men. . He also showed that eicosapentaenoic acid\n(EPA) and docosahexaenoic acid (DHA) levels are higher, and arachidonic acid\nlevels are lower in Japanese than US people. By using simultaneous LC/MS analyses\nof plasma levels of tryptophan metabolites, he recently found that plasma levels of\nserotonin, kynurenine, or 5-HIAA were higher in patients of mono- and bipolar\ndepression, which are significantly different from observations reported before. In\nview of recent reports that plasma tryptophan metabolites are mainly produced by\nmicrobiota. He is now working on the relationships between microbiota and depression or autism.",institutionString:"Hamamatsu University School of Medicine",institution:{name:"Hamamatsu University School of Medicine",country:{name:"Japan"}}},{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",biography:"Mohammed Khalid received his B.S. degree in chemistry in 2000 and Ph.D. degree in physical chemistry in 2007 from the University of Khartoum, Sudan. He moved to School of Chemistry, Faculty of Science, University of Sydney, Australia in 2009 and joined Dr. Ron Clarke as a postdoctoral fellow where he worked on the interaction of ATP with the phosphoenzyme of the Na+/K+-ATPase and dual mechanisms of allosteric acceleration of the Na+/K+-ATPase by ATP; then he went back to Department of Chemistry, University of Khartoum as an assistant professor, and in 2014 he was promoted as an associate professor. In 2011, he joined the staff of Department of Chemistry at Taif University, Saudi Arabia, where he is currently an assistant professor. His research interests include the following: P-Type ATPase enzyme kinetics and mechanisms, kinetics and mechanisms of redox reactions, autocatalytic reactions, computational enzyme kinetics, allosteric acceleration of P-type ATPases by ATP, exploring of allosteric sites of ATPases, and interaction of ATP with ATPases located in cell membranes.",institutionString:"Taif University",institution:{name:"Taif University",country:{name:"Saudi Arabia"}}},{id:"63810",title:"Prof.",name:"Jorge",middleName:null,surname:"Morales-Montor",slug:"jorge-morales-montor",fullName:"Jorge Morales-Montor",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63810/images/system/63810.png",biography:"Dr. Jorge Morales-Montor was recognized with the Lola and Igo Flisser PUIS Award for best graduate thesis at the national level in the field of parasitology. He received a fellowship from the Fogarty Foundation to perform postdoctoral research stay at the University of Georgia. He has 153 journal articles to his credit. He has also edited several books and published more than fifty-five book chapters. He is a member of the Mexican Academy of Sciences, Latin American Academy of Sciences, and the National Academy of Medicine. He has received more than thirty-five awards and has supervised numerous bachelor’s, master’s, and Ph.D. students. Dr. Morales-Montor is the past president of the Mexican Society of Parasitology.",institutionString:"National Autonomous University of Mexico",institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217215/images/system/217215.jpeg",biography:null,institutionString:"Charusat University",institution:null},{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",biography:"Leszek Szablewski is a professor of medical sciences. He received his M.S. in the Faculty of Biology from the University of Warsaw and his PhD degree from the Institute of Experimental Biology Polish Academy of Sciences. He habilitated in the Medical University of Warsaw, and he obtained his degree of Professor from the President of Poland. Professor Szablewski is the Head of Chair and Department of General Biology and Parasitology, Medical University of Warsaw. Professor Szablewski has published over 80 peer-reviewed papers in journals such as Journal of Alzheimer’s Disease, Biochim. Biophys. Acta Reviews of Cancer, Biol. Chem., J. Biomed. Sci., and Diabetes/Metabol. Res. Rev, Endocrine. He is the author of two books and four book chapters. He has edited four books, written 15 scripts for students, is the ad hoc reviewer of over 30 peer-reviewed journals, and editorial member of peer-reviewed journals. Prof. Szablewski’s research focuses on cell physiology, genetics, and pathophysiology. He works on the damage caused by lack of glucose homeostasis and changes in the expression and/or function of glucose transporters due to various diseases. He has given lectures, seminars, and exercises for students at the Medical University.",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",country:{name:"Poland"}}},{id:"173123",title:"Dr.",name:"Maitham",middleName:null,surname:"Khajah",slug:"maitham-khajah",fullName:"Maitham Khajah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/173123/images/system/173123.jpeg",biography:"Dr. Maitham A. Khajah received his degree in Pharmacy from Faculty of Pharmacy, Kuwait University, in 2003 and obtained his PhD degree in December 2009 from the University of Calgary, Canada (Gastrointestinal Science and Immunology). Since January 2010 he has been assistant professor in Kuwait University, Faculty of Pharmacy, Department of Pharmacology and Therapeutics. His research interest are molecular targets for the treatment of inflammatory bowel disease (IBD) and the mechanisms responsible for immune cell chemotaxis. He cosupervised many students for the MSc Molecular Biology Program, College of Graduate Studies, Kuwait University. Ever since joining Kuwait University in 2010, he got various grants as PI and Co-I. He was awarded the Best Young Researcher Award by Kuwait University, Research Sector, for the Year 2013–2014. He was a member in the organizing committee for three conferences organized by Kuwait University, Faculty of Pharmacy, as cochair and a member in the scientific committee (the 3rd, 4th, and 5th Kuwait International Pharmacy Conference).",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"195136",title:"Dr.",name:"Aya",middleName:null,surname:"Adel",slug:"aya-adel",fullName:"Aya Adel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/195136/images/system/195136.jpg",biography:"Dr. Adel works as an Assistant Lecturer in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. Dr. Adel is especially interested in joint attention and its impairment in autism spectrum disorder",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"94911",title:"Dr.",name:"Boulenouar",middleName:null,surname:"Mesraoua",slug:"boulenouar-mesraoua",fullName:"Boulenouar Mesraoua",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94911/images/system/94911.png",biography:"Dr Boulenouar Mesraoua is the Associate Professor of Clinical Neurology at Weill Cornell Medical College-Qatar and a Consultant Neurologist at Hamad Medical Corporation at the Neuroscience Department; He graduated as a Medical Doctor from the University of Oran, Algeria; he then moved to Belgium, the City of Liege, for a Residency in Internal Medicine and Neurology at Liege University; after getting the Belgian Board of Neurology (with high marks), he went to the National Hospital for Nervous Diseases, Queen Square, London, United Kingdom for a fellowship in Clinical Neurophysiology, under Pr Willison ; Dr Mesraoua had also further training in Epilepsy and Continuous EEG Monitoring for two years (from 2001-2003) in the Neurophysiology department of Zurich University, Switzerland, under late Pr Hans Gregor Wieser ,an internationally known epileptologist expert. \n\nDr B. Mesraoua is the Director of the Neurology Fellowship Program at the Neurology Section and an active member of the newly created Comprehensive Epilepsy Program at Hamad General Hospital, Doha, Qatar; he is also Assistant Director of the Residency Program at the Qatar Medical School. \nDr B. Mesraoua's main interests are Epilepsy, Multiple Sclerosis, and Clinical Neurology; He is the Chairman and the Organizer of the well known Qatar Epilepsy Symposium, he is running yearly for the past 14 years and which is considered a landmark in the Gulf region; He has also started last year , together with other epileptologists from Qatar, the region and elsewhere, a yearly International Epilepsy School Course, which was attended by many neurologists from the Area.\n\nInternationally, Dr Mesraoua is an active and elected member of the Commission on Eastern Mediterranean Region (EMR ) , a regional branch of the International League Against Epilepsy (ILAE), where he represents the Middle East and North Africa(MENA ) and where he holds the position of chief of the Epilepsy Epidemiology Section; Dr Mesraoua is a member of the American Academy of Neurology, the Europeen Academy of Neurology and the American Epilepsy Society.\n\nDr Mesraoua's main objectives are to encourage frequent gathering of the epileptologists/neurologists from the MENA region and the rest of the world, promote Epilepsy Teaching in the MENA Region, and encourage multicenter studies involving neurologists and epileptologists in the MENA region, particularly epilepsy epidemiological studies. \n\nDr. Mesraoua is the recipient of two research Grants, as the Lead Principal Investigator (750.000 USD and 250.000 USD) from the Qatar National Research Fund (QNRF) and the Hamad Hospital Internal Research Grant (IRGC), on the following topics : “Continuous EEG Monitoring in the ICU “ and on “Alpha-lactoalbumin , proof of concept in the treatment of epilepsy” .Dr Mesraoua is a reviewer for the journal \"seizures\" (Europeen Epilepsy Journal ) as well as dove journals ; Dr Mesraoua is the author and co-author of many peer reviewed publications and four book chapters in the field of Epilepsy and Clinical Neurology",institutionString:"Weill Cornell Medical College in Qatar",institution:{name:"Weill Cornell Medical College in Qatar",country:{name:"Qatar"}}},{id:"282429",title:"Prof.",name:"Covanis",middleName:null,surname:"Athanasios",slug:"covanis-athanasios",fullName:"Covanis Athanasios",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/282429/images/system/282429.jpg",biography:null,institutionString:"Neurology-Neurophysiology Department of the Children Hospital Agia Sophia",institution:null},{id:"190980",title:"Prof.",name:"Marwa",middleName:null,surname:"Mahmoud Saleh",slug:"marwa-mahmoud-saleh",fullName:"Marwa Mahmoud Saleh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/190980/images/system/190980.jpg",biography:"Professor Marwa Mahmoud Saleh is a doctor of medicine and currently works in the unit of Phoniatrics, Department of Otolaryngology, Ain Shams University in Cairo, Egypt. She got her doctoral degree in 1991 and her doctoral thesis was accomplished in the University of Iowa, United States. Her publications covered a multitude of topics as videokymography, cochlear implants, stuttering, and dysphagia. She has lectured Egyptian phonology for many years. Her recent research interest is joint attention in autism.",institutionString:"Ain Shams University",institution:{name:"Ain Shams University",country:{name:"Egypt"}}},{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259190/images/system/259190.png",biography:"Dr. Naqvi is a radioanalytical chemist and is working as an associate professor of analytical chemistry in the Department of Chemistry, Government College University, Faisalabad, Pakistan. Advance separation techniques, nuclear analytical techniques and radiopharmaceutical analysis are the main courses that he is teaching to graduate and post-graduate students. In the research area, he is focusing on the development of organic- and biomolecule-based radiopharmaceuticals for diagnosis and therapy of infectious and cancerous diseases. Under the supervision of Dr. Naqvi, three students have completed their Ph.D. degrees and 41 students have completed their MS degrees. He has completed three research projects and is currently working on 2 projects entitled “Radiolabeling of fluoroquinolone derivatives for the diagnosis of deep-seated bacterial infections” and “Radiolabeled minigastrin peptides for diagnosis and therapy of NETs”. He has published about 100 research articles in international reputed journals and 7 book chapters. Pakistan Institute of Nuclear Science & Technology (PINSTECH) Islamabad, Punjab Institute of Nuclear Medicine (PINM), Faisalabad and Institute of Nuclear Medicine and Radiology (INOR) Abbottabad are the main collaborating institutes.",institutionString:"Government College University",institution:{name:"Government College University, Faisalabad",country:{name:"Pakistan"}}},{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",biography:"Gyula Mózsik MD, Ph.D., ScD (med), is an emeritus professor of Medicine at the First Department of Medicine, Univesity of Pécs, Hungary. He was head of this department from 1993 to 2003. His specializations are medicine, gastroenterology, clinical pharmacology, clinical nutrition, and dietetics. His research fields are biochemical pharmacological examinations in the human gastrointestinal (GI) mucosa, mechanisms of retinoids, drugs, capsaicin-sensitive afferent nerves, and innovative pharmacological, pharmaceutical, and nutritional (dietary) research in humans. He has published about 360 peer-reviewed papers, 197 book chapters, 692 abstracts, 19 monographs, and has edited 37 books. He has given about 1120 regular and review lectures. He has organized thirty-eight national and international congresses and symposia. He is the founder of the International Conference on Ulcer Research (ICUR); International Union of Pharmacology, Gastrointestinal Section (IUPHAR-GI); Brain-Gut Society symposiums, and gastrointestinal cytoprotective symposiums. He received the Andre Robert Award from IUPHAR-GI in 2014. Fifteen of his students have been appointed as full professors in Egypt, Cuba, and Hungary.",institutionString:"University of Pécs",institution:{name:"University of Pecs",country:{name:"Hungary"}}},{id:"277367",title:"M.Sc.",name:"Daniel",middleName:"Martin",surname:"Márquez López",slug:"daniel-marquez-lopez",fullName:"Daniel Márquez López",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/277367/images/7909_n.jpg",biography:"Msc Daniel Martin Márquez López has a bachelor degree in Industrial Chemical Engineering, a Master of science degree in the same área and he is a PhD candidate for the Instituto Politécnico Nacional. His Works are realted to the Green chemistry field, biolubricants, biodiesel, transesterification reactions for biodiesel production and the manipulation of oils for therapeutic purposes.",institutionString:null,institution:{name:"Instituto Politécnico Nacional",country:{name:"Mexico"}}},{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",biography:"Angel Catalá studied chemistry at Universidad Nacional de La Plata, Argentina, where he received a Ph.D. in Chemistry (Biological Branch) in 1965. From 1964 to 1974, he worked as an Assistant in Biochemistry at the School of Medicine at the same university. From 1974 to 1976, he was a fellow of the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor of Biochemistry at the Universidad Nacional de La Plata. He is a member of the National Research Council (CONICET), Argentina, and the Argentine Society for Biochemistry and Molecular Biology (SAIB). His laboratory has been interested for many years in the lipid peroxidation of biological membranes from various tissues and different species. Dr. Catalá has directed twelve doctoral theses, published more than 100 papers in peer-reviewed journals, several chapters in books, and edited twelve books. He received awards at the 40th International Conference Biochemistry of Lipids 1999 in Dijon, France. He is the winner of the Bimbo Pan-American Nutrition, Food Science and Technology Award 2006 and 2012, South America, Human Nutrition, Professional Category. In 2006, he won the Bernardo Houssay award in pharmacology, in recognition of his meritorious works of research. Dr. Catalá belongs to the editorial board of several journals including Journal of Lipids; International Review of Biophysical Chemistry; Frontiers in Membrane Physiology and Biophysics; World Journal of Experimental Medicine and Biochemistry Research International; World Journal of Biological Chemistry, Diabetes, and the Pancreas; International Journal of Chronic Diseases & Therapy; and International Journal of Nutrition. He is the co-editor of The Open Biology Journal and associate editor for Oxidative Medicine and Cellular Longevity.",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",country:{name:"Argentina"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",biography:"Francisco Javier Martín-Romero (Javier) is a Professor of Biochemistry and Molecular Biology at the University of Extremadura, Spain. He is also a group leader at the Biomarkers Institute of Molecular Pathology. Javier received his Ph.D. in 1998 in Biochemistry and Biophysics. At the National Cancer Institute (National Institute of Health, Bethesda, MD) he worked as a research associate on the molecular biology of selenium and its role in health and disease. After postdoctoral collaborations with Carlos Gutierrez-Merino (University of Extremadura, Spain) and Dario Alessi (University of Dundee, UK), he established his own laboratory in 2008. The interest of Javier's lab is the study of cell signaling with a special focus on Ca2+ signaling, and how Ca2+ transport modulates the cytoskeleton, migration, differentiation, cell death, etc. He is especially interested in the study of Ca2+ channels, and the role of STIM1 in the initiation of pathological events.",institutionString:null,institution:{name:"University of Extremadura",country:{name:"Spain"}}},{id:"217323",title:"Prof.",name:"Guang-Jer",middleName:null,surname:"Wu",slug:"guang-jer-wu",fullName:"Guang-Jer Wu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/217323/images/8027_n.jpg",biography:null,institutionString:null,institution:null},{id:"148546",title:"Dr.",name:"Norma Francenia",middleName:null,surname:"Santos-Sánchez",slug:"norma-francenia-santos-sanchez",fullName:"Norma Francenia Santos-Sánchez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/148546/images/4640_n.jpg",biography:null,institutionString:null,institution:null},{id:"272889",title:"Dr.",name:"Narendra",middleName:null,surname:"Maddu",slug:"narendra-maddu",fullName:"Narendra Maddu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272889/images/10758_n.jpg",biography:null,institutionString:null,institution:null},{id:"242491",title:"Prof.",name:"Angelica",middleName:null,surname:"Rueda",slug:"angelica-rueda",fullName:"Angelica Rueda",position:"Investigador Cinvestav 3B",profilePictureURL:"https://mts.intechopen.com/storage/users/242491/images/6765_n.jpg",biography:null,institutionString:null,institution:null},{id:"88631",title:"Dr.",name:"Ivan",middleName:null,surname:"Petyaev",slug:"ivan-petyaev",fullName:"Ivan Petyaev",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Lycotec (United Kingdom)",country:{name:"United Kingdom"}}},{id:"423869",title:"Ms.",name:"Smita",middleName:null,surname:"Rai",slug:"smita-rai",fullName:"Smita Rai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424024",title:"Prof.",name:"Swati",middleName:null,surname:"Sharma",slug:"swati-sharma",fullName:"Swati Sharma",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"439112",title:"MSc.",name:"Touseef",middleName:null,surname:"Fatima",slug:"touseef-fatima",fullName:"Touseef Fatima",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Integral University",country:{name:"India"}}},{id:"424836",title:"Dr.",name:"Orsolya",middleName:null,surname:"Borsai",slug:"orsolya-borsai",fullName:"Orsolya Borsai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca",country:{name:"Romania"}}},{id:"422262",title:"Ph.D.",name:"Paola Andrea",middleName:null,surname:"Palmeros-Suárez",slug:"paola-andrea-palmeros-suarez",fullName:"Paola Andrea Palmeros-Suárez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Guadalajara",country:{name:"Mexico"}}}]}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"