Abstract
A new finite element has been implemented in ABAQUS to incorporate the extended finite element method (XFEM) for the solution of hydraulic fracture problems. The proposed element includes the desired aspects of the XFEM so as to model crack propagation without explicit remeshing. In addition, the fluid pressure degrees of freedom have been defined on the element to describe the fluid flow within the crack and its contribution to the crack deformation. Thus the fluid flow and resulting crack propagation are fully coupled in a natural way and are solved simultaneously. Verification of the element has been made by comparing the finite element results with the analytical solutions available in the literature.
1. Introduction
Hydraulic fracturing is a powerful technology for enhancing conventional petroleum production. It is playing a central role in fast growing development of unconventional gas and geothermal energy. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to understand the complex, multiscale mechanics of hydraulic fracturing, to the efficient application of this technology, and to develop innovative, advanced hydraulic fracture technologies for unconventional gas production. The accurate numerical simulation of hydraulic fracture growth remains a significant challenge because of the strong nonlinear coupling between the viscous flow of fluid inside the fracture and fracture propagation (a moving boundary), complicated by the need to consider interactions with existing natural fractures and with rock layers with different properties.
Great effort has been devoted to the numerical simulation of hydraulic fractures with the first 3D modelling efforts starting in the late 1970s [1-2]. Significant progress has been made in developing 2-D and 3-D numerical hydraulic fracture models [3-15]. Boundary integral equation methods or displacement discontinuity techniques have generally been employed to investigate the propagation of simple hydraulic fractures such as radial or plane-strain fractures in a homogeneous, infinite or semi-infinite elastic medium where the appropriate fundamental solutions are available. The finite element method has been used and is particularly useful in modelling the hydraulic fracture propagation in inhomogeneous rocks which may include nonlinear mechanical properties and may be subjected to complex boundary conditions. However, the standard finite element model requires remeshing after every crack propagation step and the mesh has to conform exactly to the fracture geometry as the fracture propagates, and thus is computationally expensive.
By adding special enriched shape functions in conjunction with additional degrees of freedom to the standard finite element approximation within the framework of partition of unity, the extended finite element method [16-17] (XFEM) overcomes the inherent drawbacks associated with use of the conventional finite element methods and enables the crack to be represented without explicitly meshing crack surfaces, and so the crack geometry is completely independent of the mesh and remeshing is not required, allowing for the convenient simulation of the fracture propagation. The XFEM has been employed to investigate the hydraulic fracture problems [18-19].
In this paper, we explore the application of the extended finite element method to hydraulic fracture problems. By taking good advantage of the XFEM and the flexible functionality of user subroutines provided in ABAQUS [20], a user-defined 2-D quadrilateral plane strain element has been coded in Fortran to incorporate the extended finite element capabilities in 2-D hydraulic fracture problems. The user-defined element includes the desired aspects of the XFEM so as to model crack propagation without explicit remeshing. In addition, the extended fluid pressure degrees of freedom are assigned to the appropriate nodes of the proposed elements in order to describe the viscous flow of fluid inside the crack and its contribution to the coupled crack deformation.
2. Problem formulation
2.1. Problem definition
Consider a two-dimensional hydraulically driven fracture

Figure 1.
A two-dimensional domain containing a hydraulic fracture
2.2. Governing equations
The stress inside the domain,
where
Under the assumptions of small strains and displacements, the kinematic equations, which include the strain-displacement relationship, the prescribed displacement boundary conditions and the crack surfaces separation, read
where
The isotropic, linear elastic constitutive law is
where
The fluid flow in the crack is modelled using lubrication theory, given by Poiseuille’s law
where
The fracturing fluid is considered to be incompressible, so the mass conservation equation for the fluid may be expressed as
where the leak-off rate

Figure 2.
Fluid flow within fracture
Substituting of Eq. (4) into Eq. (6) leads to the governing equation for the fluid flow within the fracture
where
where
According to linear elastic fracture mechanics, the criterion that the fracture propagates continuously in mobile equilibrium (quasi-static) takes the form
where
At the inlet, the fluid flux is equal to the injection rate, i.e.,
At the crack tip, the boundary conditions are given by the zero fracture opening and zero flow conditions, i.e.,
The above equations constitute the complete formulation that can be used to predict the evolution of the hydraulic fracture.
3. Weak form and FEM discretization
The weak form of the equilibrium equation is given by
where
For the fluid pressure on the crack surfaces, we define
The crack opening displacement
Then the weak form of the equilibrium equation can be expressed in a more compact form as
The weak form of the governing equation for the fluid flow within the fracture can be written as
which, after integration by parts and substitution of the boundary conditions described above, yields
Consider the coupled problem discretized in the standard (displacement) manner with the displacement vector
and the fluid pressure
where
The crack opening displacement
where
Substitution of the displacement and pressure approximations (Eqs. (18)-(20)) and the constitutive equation (Eq. (3)) into Eq. (15) yields a system of algebraic equations for the discrete structural problem
where the structural stiffness matrix
and the equivalent nodal force vector
and the coupling term arise due to the pressure (tractions) on the crack surface through the matrix
By substituting Eqs. (19) and (20) into Eq. (17), the standard discretization applied to the weak form of the fluid flow equation leads to a system of algebraic equations for the discrete fluid flow problem
where
Then, the discrete governing equations for the coupled fluid-fracture problem can be expressed in matrix form as:
The above equations form the basis for the construction of a finite element which couples the fluid flow within the crack and crack propagation.
4. The extended finite elemet method and element implementation
4.1. Extended finite element approximation
The XFEM approximation of the displacement field for the crack problem can be expressed as [17]
where
The displacement discontinuity given by a crack
where
The enrichment basis functions
where
According to Eq. (28), the displacement discontinuity between the two surfaces of the crack can be obtained as
Combination of Eqs. (31) and (20) enables determining the shape function
The fluid pressure field within the crack is approximated by
where
4.2. Element implementation
As shown in Figure 3, the two-dimensional 4-node plane strain channel and tip elements have been constructed for the hydraulic fracture problem. Each node has the standard displacement degrees of freedom

Figure 3.
2-D 4-node -node plane strain hydraulic fracture elements
So, the active degrees of freedom for the channel element are
and for the tip element the Heaviside enriched degrees of freedom
Gauss quadrature is used to calculate the system matrix and equivalent nodal force. Since the discontinuous enrichment functions are introduced in approximating the displacement field, integration of discontinuous functions is needed when computing the element stiffness matrix and equivalent nodal force. In order to ensure the integral accuracy, it is necessary to modify the quadrature routine. Both the channel and tip elements are partitioned by the crack surface into two quadrature sub-cells where the integrands are continuous and differentiable. Then Gauss integration is carried out by a loop over the sub-cells to obtain an accurate integration result.
Due to the flexibility, the user subroutine of UEL provided in the finite element package ABAQUS [20] has been employed in implementing the proposed elements in Fortran code. The main purpose of UEL is to provide the element stiffness matrix as well as the right hand side residual vector, as need in a context of solving the discrete system of equations.
5. Numerical examples
The proposed user element together with the structural elements provided in the ABAQUS element library are used to establish a finite element model to investigate a plane strain hydraulic fracture problem in an infinite impermeable elastic medium. The far-field boundary conditions are modelled by using infinite elements. The initial testing of this new element formulation involves using boundary value problems of an imposed fluid pressure and an imposed fracture opening. These problems are used to test for both of the two limiting cases of a toughness-dominated and viscosity-dominated plane-strain hydraulic fracture for which the analytical solutions are available in the literature [21].
Comparisons of the FEM predictions with the available analytical solutions to the two limiting cases are given in Figures 4 and 5.

Figure 4.
Zero-viscosity case: (a) imposed pressure; and (b) imposed opening

Figure 5.
Zero-toughness case: (a) imposed pressure; and (b) imposed opening
The simulation results for a plane strain toughness-dominated KGD hydraulic fracture are shown in Figure 4. The corresponding analytical solutions for the zero-viscosity case are also shown for comparison. The crack opening is obtained by imposing a given pressure calculated according to the analytical solution (Eq. (41)) on the crack surface of the finite element model. While the fluid pressure is obtained by applying an opening profile calculated from the analytical solution (Eq. (40)) to the crack surface of the finite element model. For the zero-toughness case (Figure 5), the crack opening and the fluid pressure are obtained by imposing the analytical solution of pressure (Eq. (45)) and crack opening (Eq. (44)) to the crack surface of the finite element model, respectively. Only twenty channel elements in total are meshed along the crack length in the finite element model.
It can be seen that the XFEM predictions generally compare well with the analytical solutions for crack openings, while for the fluid pressure the XFEM predictions differ from the analytical solutions at the region close to the crack tip. One main reason for the deviation of the predicted fluid pressure from the analytical solutions near the tip is likely to be because the user-defined element is assumed to be cut through by the crack and no tip element is included in the finite element model. Another reason could be that a static fracture rather than a propagating fracture is simulated here. Improved prediction can be expected with the implementation of a crack tip user-defined element that captures the crack tip singularity correctly.
6. Summary
The application of the extended finite element method to the hydraulic fracture problems has been presented. The discrete governing equations for the coupled fluid-fracture problem have been derived. A user element based on the XFEM has been implemented in ABAQUS, which includes the desired aspects of the XFEM so as to model crack propagation without explicit remeshing. In addition, the fluid pressure degrees of freedom have been introduced and assigned to the appropriate nodes of the proposed element to describe the fluid flow within the crack and its contribution to the crack deformation. Verification of the user-defined element has been made by comparing the FEM predictions with the analytical solutions available in the literature. The preliminary result presented here is a first attempt to the promising application of the XFEM to the hydraulic fracture simulation.
Apendix: Analytical solutions for plane strain Kristianovic-Geertsma-de Klerk (KGD) hydraulic fractures
The solution of a plane strain KGD hydraulic fracture in an infinite elastic body depends on the injection rate
For the plane strain KGD hydraulic fracture, the crack opening
where
The evolution parameter
or as a dimensionless viscosity
For the toughness scaling, denoted by a subscript
The solution for the zero viscosity case is given by [21]
For the viscosity scaling, denoted by a subscript
The first order approximation of the zero toughness solution is [21]
where
Acknowledgments
The author would like to thank Dr. Rob Jeffrey for the support of this work. Furthermore, the author thanks CSIRO CESRE for support and for granting permission to publish.
References
- 1.
On the computation of the three-dimensional geometry of hydraulic fractures. Proceedings of the SPE Symposium on Low Permeability Gas Reservoir. Denver, Richardson: Society of Petroleum Engineers;Clifton R. J Abou-sayed A. S 1979 307 313 - 2.
Dimensional simulation of hydraulic fracturing. Journal of Petroleum Technology.Settari A Cleary M. P 1984 36 8 1177 1190 - 3.
Dimensional hydraulic fracturing simulator. International Journal for Numerical Methods in Engineering.Vandamme L Curran J. H. A 1989 28 4 909 927 - 4.
Dimensional modeling of hydraulic fractures in layered media.1. finite-element formulations. Journal of Energy Resources Technology-Transactions of the ASME.Advani S. H Lee T. S Lee J. K 1990 112 1 1 9 - 5.
Propagation of hydraulically induced fractures- a continuum damage mechanics approach. International Journal of Rock Mechanics and Mining Sciences & Geomechanics.Valko P Economides M. J 1994 31 3 221 229 - 6.
An adaptive finite element scheme for hydraulic fracturing with proppant transport. International Journal for Numerical Methods in Fluids.Ouyang S Carey G. F Yew C. H 1997 24 7 645 670 - 7.
An efficient algorithm for propagating fluid-driven fractures. Computational Mechanics.Papanastasiou P 1999 24 4 258 267 - 8.
Propagation of a penny-shaped hydraulic fracture parallel to the free-surface of an elastic half-space. International Journal of Fracture.Zhang X Detournay E Jeffrey R 2002 115 2 125 158 - 9.
Computer simulation of hydraulic fractures. International Journal of Rock Mechanics and Mining Sciences.Adachi J Siebrits E Peirce A Desroches J 2007 44 5 739 757 - 10.
An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Computer Methods in Applied Mechanics and Engineering.Lecamplon B Detournay E 2007 196 4863 - 11.
An implicit level set method for modeling hydraulically driven fractures. Computer Methods in Applied Mechanics and Engineering.Peirce A Detournay E 2008 - 12.
Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mechanica Solida Sinica.Chen Z. R Bunger A. P Zhang X Jeffrey R. G 2009 22 5 443 452 - 13.
Hydraulic fracture predictions with a fully coupled geomechanical reservoir simulator. SPE Journal.Dean R. H Schmidt J. H 2009 14 4 707 714 - 14.
Numerical modeling of hydraulic fracture problem in permeable medium using cohesive zone model. Engineering Fracture Mechanics.Carrier B Granet S 2012 79 312 - 15.
Finite element modelling of viscosity-dominated hydraulic fractures. Journal of Petroleum Science and Engineering.Chen Z. R 2012 - 16.
Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering.Belytschko T Black T 1999 45 5 601 620 - 17.
A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering.Moes N Dolbow J Belytschko T 1999 46 1 131 150 - 18.
An extended finite element method for hydraulic fracture problems. Communications in Numerical Methods in Engineering.Lecampion B 2009 25 2 121 133 - 19.
Numerical modeling of multistranded hydraulic fracture propagation: accounting for the interaction between induced and natural fractures. SPE Journal.Dahi-taleghani A Olson J. E 2011 16 3 575 581 - 20.
ABAQUS ABAQUS documentation version 6.11 1 2011 - 21.
Propagation regimes of fluid-driven fractures in impermeable rocks. International Journal of Geomechanics.Detournay E 2004 4 1 35 45