Open access

Acute Leukemia Clinical Presentation

Written By

Gamal Abdul Hamid

Submitted: April 27th, 2012 Published: May 15th, 2013

DOI: 10.5772/53531

From the Edited Volume


Edited by Margarita Guenova and Gueorgui Balatzenko

Chapter metrics overview

7,544 Chapter Downloads

View Full Metrics

1. Introduction

Acute leukemias are highly malignant neoplasms and are responsible for a large number of haematopoietic cancer-related deaths (Jemal et al 2006). Although the survival rates have improved remarkably in the younger age group, the prognosis in older patients is still poor (Redaelli et al 2003).

The clinical presentation of acute leukemia results from infiltration of bone marrow or extramedullary sites by blasts. As a result, initial symptoms may be due to the presence of anemia, neutropenia, or thrombocytopenia. Patients generally present with nonspecific complaints including weakness, lethargy, fatigue, dyspnea, fever, weight loss, or bleeding. Blasts may also infiltrate organs or lymph nodes, resulting in hepatosplenomegaly or adenopathy. Bone marrow infiltration with blasts can result in bone pain. Mucosal bleeding, petechiae, ecchymosis, and fundal hemorrhages may occur as a result of thrombocytopenia.

Patients with acute promyelocytic leukemia (APL) characteristically present with coagulopathy and signs of disseminated intravascular coagulation (DIC). It should be noted, however, that rapid cell turnover can result in DIC in any form of acute leukemia.

In acute monocytic leukemia the common findings are weakness, bleeding and a diffuse erythematous skin rash. There is a high frequency of extramedulary infiltration of the lungs, colon, meninges, lymphnodes, bladder and larynx and gingival hyperplasia.

The clinical onset of acute lymphoblastic leukemia (ALL) is most often acute, although a small percentage of cases may evolve insidiously over several months (Pui 2006). The presenting symptoms and signs correlate with the leukemic cell burden and the degree of bone marrow replacement, leading to cytopenias.

1. Marrow failure due to infiltration
– Fatigue, pallor, – Anemia
– spontaneous bruising – Thrombocytopenia
– Infections, sepsis – Neutropenia
2.Infiltration of other organs
– liver, spleen, lymph nodes (particularly in ALL)
– Lymphadenopathy
– Hepatosplenomegaly
– Mediastinal masses (T-ALL)
– Gums
– Gum hypertrophy (monocytic subtype of acute myeloblastic leukemia)
– Bone pain, especially in children with ALL
– Skin -Leukemia cutis
– Soft tissue -Chloromas
– Testis
– Central nervous system (CNS)
– Solid organs
3. Leukostasis(only seen with WBC > 50 x 109/L)
– CNS -Strokes
– Lungs -Pulmonary infiltrates, hypoxemia
4. Constitutional symptoms
– Fevers, sweats are common
– Weight loss uncommon
5. Other
– Exposure of substances that can initiate coagulation can cause DIC

Table 1.

Pathophysiology of the clinical manifestations of acute leukemias


2. Signs, symptoms and laboratory features of Acute Myeloblastic Leukemia (AML)

Clinical manifestations of AML result either from the proliferation of leukaemic cells or from bone marrow failure that leads to decrease in normal cells. Leukaemic cells can infiltrate tissues, leading to hepatomegaly, splenomegaly, skin infiltrates and swollen gums. As an indirect effect of the leukaemic proliferation leading to high cell destruction, hyperuricaemia and occasionally renal failure may occur. The haematopoiesis suppression leads to clinical features of anaemia, neutropenia and thrombocytopenia. Signs and symptoms that signal the onset of AML include pallor, fatigue, weakness, palpitations, and dyspnea on exertion. They reflect the development of anemia; however, weakness, loss of sense of wellbeing, and fatigue on exertion may be disproportionate to the severity of anemia. (Gur et al 1999). Easy bruising, petechiae, epistaxis, gingival bleeding, conjunctival hemorrhages, and prolonged bleeding from skin injuries reflect thrombocytopenia and are frequent early manifestations of the disease. Very infrequently gastrointestinal, genitourinary, bronchopulmonary, or central nervous system bleeding can occur at the onset of the disease. Neutropenia translates into infectious manifestations. Pustules or other minor pyogenic infections of the skin and of minor cuts or wounds are most common. Major infections such as pneumonia, pyelonephritis, and meningitis are uncommon as presenting features of the disease, in part because absolute neutrophil counts under 500/μl (0.5 × 109/L) are uncommon until chemotherapy is begun. Anorexia and weight loss are frequent findings. Fever is present in many patients at the time of diagnosis. Myeloid (granulocyte) sarcoma (MS) is an extramedullary tumor that occurs in 2 to 14% of cases of AML (John et al 2004); and is composed of immature and mature granulocytes or monocytes (Brunning et al 2001). These neoplasms are known by a variety of names in the literature, including granulocytic sarcoma, monocytic sarcoma, extramedullary myeloid cell tumor, myelosarcoma, myeloblastoma, and chloroma (Carneiro et al. 1984, Valbuena et al 2005). Virtually any extramedullary site can be involved by MS. Most patients with MS have a history of a myeloid neoplasm, most often AML and less often a myelodysplastic or myeloproliferative disease (Brunning et al 2001). Alternatively, MS can be the initial manifestation of AML that subsequently involves blood and bone marrow (Schmitt-Graff et al 2002). Very rarely, MS can be the only site of disease. MS is relatively more common in patients who have leukemias with prominent monocytic differentiation, such as acute myelomonocytic or monocytic leukemia and chronic myelomonocytic leukemia (Menasce et al 1999, Elenitoba et al 1996). MS manifesting as a testicular mass is uncommon and only rarely has occurred as an isolated mass. The tumors are usually localized ; they often involve bone, periostium, soft tissues, lymph nodes, or skin. Common sites of myeloid sarcoma are orbit and paranasal sinuses. However, it should be noted that according to the WHO classification the infiltrates of any site of the body by myeloid blasts in AML patients are not classified as myeloid sarcoma unless they present with tumor masses in which the tissue architecture is effaced (Pileri et al 2008).

Blasts may infiltrate organs or lymph nodes, resulting in adenopathy or hepatosplenomegaly. Palpable splenomegaly and hepatomegaly occur in about one third of patients. Testicular infiltration is less common in AML than ALL, with an incidence of 1 to 8 % ( Wiernik et al 2001). Meningeal involvement has been reported in 5 to 20% of children and up to 16% of adults with AML (John et al 2004). Leukemic blast cells circulate and enter most tissues in small numbers. Occasionally biopsy or autopsy will uncover marked aggregates or infiltrates of leukemic cells, and less frequently collections of such cells may cause functional disturbances.


3. Signs, symptoms and laboratory features of Acute Promyelocytic Leukemia (APL)

Acute promyelocytic leukaemia (APL) is a distinctive sub-type of acute myeloid leukaemia that has distinct biologic and clinical features.

According to the older French-American-British (FAB) classification of AML, based solely on morphology as determined by the degree of differentiation along different cell lines and the extent of cell maturation (Cheson et al 1990), APL is sub-typed as AML-M3. The new World Health Organization (WHO) classification of AML incorporates and interrelates morphology, cytogenetics, molecular genetics, and immunologic markers and is more universally applicable and prognostically valid (Brunning et al 2001). APL exists as 2 types, hypergranular or typical APL and microgranular (hypogranular) APL. APL comprises 5% to 8% of cases of AML and occurs predominately in adults in midlife (Büchner et al. 1999). Both typical and microgranular APL are commonly associated with DIC (Karp et al. 1987, Gollard et al 1996, Davey et al 1986, Tobelem et al 1980 ). The severe bleeding diathesis associated with APL has a specific sensitivity to treatment with all-trans retinoic acid (ATRA), which acts as a differentiating agent (Licht et al 1995). High complete remission rates in APL may be obtained by combining ATRA treatment with chemotherapy (Brunning et al 2001).


4. Signs, symptoms and laboratory features of Acute Myelomonocytic (AML-M4) and Acute Monoblastic/Monocytic Leukemia (AML-M5)

Acute myelomonocytic (M4) and monoblastic/monocytic leukemia (M5), are the morphologic subtype of acute myelogenous leukemia that are most commonly characterized by weakness, bleeding and a diffuse erythematous skin rash and frequently presents with extramedullary involvement, including liver, spleen, lymph nodes, gingiva, skin, eyes, larynx, lung, bladder, meninges and the central nervous system. Involvement of the gastrointestinal tract is rare, the mouth, rectum and anal canal being the most affected sites (Lichtman et al 1995). By contrast, leukemic infiltration of the stomach has been very rarely described, and when it has, it has been mainly in children (Kasantikul et al 1989 ; Kontny et al. 1995; Domingo-Domenech et al 2000). Serum and urinary muramidase levels are often extremely high.

Neurological symptoms may occur such as, headache, nausea, vomiting, photophobia, cranial nerve palsies, pupil edema and/ or nuchal rigidity. These symptoms may result from leukostasis, but may also reveal meningeal invasion by myeloblasts or be the presenting symptoms of a "chloroma". These chloromas often have an orbital or periorbital localization, or may arise around the spinal cords causing paraparesis or " Cauda equine" syndrome. CNS leukemic infiltration occurs in 6-16% of AML (Abbott et al 2003), especially in AML-M4.

Renal insufficiency occurs seldom. It is caused by hyperuriccuria and / or hyperphosphaturia, leading to obstructing tubular deposits and oliguria/ anuria.


5. Signs, symptoms and laboratory features of Acute Lymphoblastic Leukemia (ALL)

The clinical presentation of ALL may range from insidious nonspecific symptoms to severe acute life-threatening manifestations, reflecting the extent of bone marrow involvement and degree of extramedullary spread (Pui et al 2006) (Table 2). The symptoms at onset are primarily produced by the detrimental effects of the expanding cell population on bone marrow, and secondarily by the infiltration of other organs and by metabolic disturbances (Henderson et al 1990, Gur et al. 1999). In younger patients the anemia-induced fatigue may be the only presenting feature. Dyspnea, angina, dizziness, and lethargy may reflect the degree of anemia in older patients presenting with ALL. Approximately half of all patients may present with fever attributable to the pyrogenic cytokines, such as IL-1, IL-6, TNF, released from the leukemic cells, infections, or both. Arthralgia and bone pain due to bone marrow expansion by the leukemic cells and occasionally necrosis can be observed, although less commonly in adults compared to children. Pallor, petechiae, and ecchymosis in the skin and mucous membranes due to thrombocytopenia, DIC, or a combination of the above may be observed. ALL may present with either leukopenia (~20%) or moderate (50%–5–25 × 109/L) and severe leukocytosis (10%–>100 ×109/L) with hyperleukocytosis (>100 x 109 /L ) present in approximately 15% of the pediatric patients (Pui et al 2006). Neutropenia (less than 500 granulocytes per mm3) is a common phenomenon and is associated with an increased risk of serious infection. Hypereosinophilia, generally reactive, may be present at diagnosis. The majority of patients present with platelet counts less than 100 × 109/L (75%), while 15% have platelet counts of less than 10 × 109/L. Decreased platelet counts (median, 50x109/L) are usually present at diagnosis and can be readily distinguished from immune thrombocytopenia, as isolated thrombocytopenia is rare in leukemia. Severe hemorrhage is uncommon, even when platelet counts are as low as 20x109/L, and infection and fever are absent. Coagulopathy, usually mild, can occur in T-cell ALL and is only rarely associated with severe bleeding. More than 75% of the patients presents with anemia, which is usually normochromic and normocytic and associated with a normal to low reticulocyte count. Anemia or thrombocytopenia is often mild (or even absent) in patients with T-cell ALL. Pancytopenia followed by a period of spontaneous hematopoietic recovery may precede the diagnosis of ALL in rare cases and must be differentiated from aplastic anemia.

Signs and symptoms Clinical and laboratory findings
Pallor, fatigue, exertional dyspnea, CHF Anemia
Fever (~50%), infection (<30% Neutropenia
Petechiae, ecchymosis, retinal hemorrhages Thrombocytopenia
Hepatomegaly, splenomegaly (~50%), lymphadenopathy
Bone pain and joint pain (5–20%)
Leukocytosis (10% of patients with
WBC > 100,000)
Leukemia cutis Leukostasis
Dyspnea, hypoxia, mental status changes, Cough, dyspnea, chest pain Mediastinal Mass (80% of patients with
T-cell ALL)
Headache, diplopia, cranial neuropathies, Particularly cranial nerves VI, VIII, papilledema, nausea, vomiting CNS involvement (<10%)
Painless testicular/scrotal enlargement Testicular involvement (<1%)
Intracranial bleeding, DIC Elevated prothrombin time (PT), partial thromboplastin time (PTT), low fibrinogen
Tumor lysis syndrome Acute renal failure (uncommon), acidosis,
hypekalemia, hyperphosphatemia, hypocalcemia, elevated serum LDH and, uric acid level

Table 2.

Clinical features of adult acute lymphocytic leukemias

Bone marrow is usually infiltrated with >90% blast cells. Infiltration with less than 50% blasts represents only 4% of cases. Though the distinction between lymphoblastic leukaemia and lymphoma is still arbitrary, for many treatment protocols 25% bone marrow blasts is used as threshold for defining leukaemia (Borowitz & Chan 2008). Normal trilineage haematopoiesis is consequently decreased. The classical triad of symptoms related to bone marrow failure are the following: (1) fatigue and increasing intolerance to physical exercise (caused by anaemia), (2) easy bruising and bleeding from mucosal surfaces and skin (caused by thrombocytopenia especially when platelets are <20 × 109 /L), and (3) fever with infections (40% of all cases, caused by absolute granulocytopenia). Hyperleukocytic leukaemias with >100 x 109 /L blast cells rarely lead to the leukostasis syndrome and catastrophic early bleeding (Porcu et al 2000 ). Also malaise, lethargy, weight loss, fevers, and night sweats are often present but typically are not severe. Compared to AML, patients with ALL experience more bone and joint pain. Rarely, they may present with asymmetric arthritis, low back pain, diffuse osteopenia, or lytic bone lesions [Gur et al 1999]. Children experience these symptoms more frequently than adults. Young children may have difficulties in walking due to bone pain [Farhi et al 2000]. Lymphadenopathy, splenomegaly, and hepatomegaly are more common than in AML and affect half of the adults with ALL. CNS involvement is also more common in ALL compared to AML. Patients may present with cranial neuropathies (most often involving the 6th and 7th cranial nerves). Nausea, vomiting, headache, or papilledema may result from meningeal infiltration and obstruction of the outflow of cerebrospinal fluid (CSF) leading to a raised intracranial pressure. Testicular involvement, presenting as a painless, unilateral mass, is noted at diagnosis in approximately 2% of boys. It is associated with infant or adolescent age, hyperleukocytosis, splenomegaly, and mediastinal mass [Farhi et al 2000]. The diagnosis of testicular involvement is made by wedge biopsies. Bilateral biopsies are necessary due to the high incidence of contralateral testicular disease [Amendola et al 1985.[


6. Central nervous system involvement

The incidence of CNS involvement in patients with AML is considerably less common than CNS involvement in both adults and children with ALL (Charles et al 2012). Early CNS leukemia occurs in 8% of patients at the time of the first diagnosis while the percentage of relapsing CNS leukemia is 10%. (Hardiono et al 2001).

Patients with CNS involvement may be asymptomatic or may have symptoms related to increased intracranial pressure (headache, nausea, vomiting, irritability). All patients newly diagnosed with ALL should have a lumbar puncture for cytologic analysis of the cerebrospinal fluid; for AML, however, this is performed only in patients with symptoms indicative of CNS involvement (Pavlovsky et al 1973). There is an association of central nervous system involvement and diabetes insipidus in AML with monosomy 7, abnormalities of chromosome 3 and inversion of chromosome 16. (Glass et al 1987; Lavabre-Bertrand et al. 2001; Harb et al 2009).

Central nervous system hemorrhage and infection are reported to cause 80% (Lazarus et al 2006 ) of all deaths in patients with leukemia. The intracerebral hemorrhages that are often related to intravascular leukostases and leukemic nodules, and associated with leukocyte counts more than 100x109/L in peripheral blood (Phair et al 1964).

6.1. Leukemic parenchymal tumor

CNS may be affected as a solid tumors consisting of myeloid leukemic blasts called granulocytic sarcomas or chloromas (Recht et al 2003, Teshima et al 1990). The term chloroma results from the greenish color of these tumors caused by the presence of myeloperoxidase. Chloromas usually have a dural attachment although parenchymal tumors have rarely been reported. These tumors are hypercellular and avidly enhance with either cranial magnetic resonance imaging (MRI) or cranial computed tomography (CT). Neurologic findings are dependent upon location. Chloromas most often occur in bone that may result in epidural spinal cord compression, the orbit that may result in proptosis and a restrictive ophthalmopathy, or dura, which may simulate a meningioma.

6.2. Intracranial hemorrhage

Hemorrhagic complications are common in patients with acute leukemia (approximately 20%) and constitute the second most common cause of death in such patients (20% of all leukemic deaths result from intracranial hemorrhage) (Kim et al 2004, Kawanami et al 2002). Intracranial hemorrhage (ICH) is the most common hemorrhagic complication in acute promyelocytic leukemia and is not infrequent in AML and ALL (ranging in occurrence from 2-18% of all patients with acute leukemia). ICH may occur at the time of diagnosis (early hemorrhage) or subsequent to diagnosis and following initial treatment (late hemorrhage) (Cortes et al 2001). DIC, disseminated aspergillosis or mucormycosis, leukemic cell infiltration, thrombocytopenia or L-asparaginase chemotherapy-related consequences, are the most common etiologies for ICH. Both DIC (especially common in the M3 subtype of AML) and thrombocytopenia typically result in a solitary often-massive ICH whereas disseminated fungal infection and ICH occurring during neutropenia and is a result of hemorrhagic infarction. Leukemic cell infiltration occurs with extreme leukocytosis (defined as >300x109 leukemic cells/L and increase the risk of multiple intracranial hemorrhages in acute leukaemia( Bunin et al 1985). L-asparaginase may induce hyperfibrinogenemia and result in cortical vein or sinus thrombosis complicated with venous infarction. Fungal-related mycotic aneurysms may also lead to ICH and would be a consideration in a patient with blood culture positive for fungus. Topographically the majority of ICH is intraparenchymal with cerebral hemorrhage more common than cerebellar. (Wolk et al 1974).

Subarachnoid hemorrhage occurs in the context of ICH, either in isolation or more frequently as more diffuse hemorrhage secondary to DIC. Spinal subarachnoid hemorrhage may occur in the context of DIC and acute promyelocytic leukemia and present primarily with back pain that migrates rostrocaudally.

Risk - factor analysis revealed that female gender, APL, leukocytosis, thrombocytopenia and prolonged PT were the risk factors for fatal intracranial hemorrhages, while other reports have suggested the significance of serum fibrinogen (Wide et al 1990).

6.3. Leukemic meningitis

Meningeal leukemia appears more often in patients with ALL than in those with AML (Lazarus et al 2006). The manner in which leukemia cells enter the CNS is a subject of controversy, but the likely source include hematogenous spread or direct spread from adjacent infiltrated bone marrow.

Meningitis in leukemia may result from leptomeningeal infiltration of tumor (LM), subarachnoid hemorrhage, chemical (treatment-related following intra-CSF instillation of chemotherapy) or infection (bacterial or fungal) (Cash et al 1987, Dekker et al 1985). The presence or absence of LM always needs to be ascertained as if diagnosed, prognosis is profoundly affected. Chemical meningitis (typically due to intra-CSF cytarabine or methotrexate and most often given intraventricularly) is temporally related to intra-CSF chemotherapy. Chemical meningitis begins one to two days after intra-CSF chemotherapy administration, It is transient typically lasting less than five days and demonstrates no evidence of infection by CSF culture. Like other meningitis syndromes, patients complain of headache, fever, nausea, vomiting, photophobia and meningismus. Notwithstanding an inflammatory CSF, chemical meningitis rapidly abates and is mitigated by oral steroids. Infectious meningitis occurs in leukemia due to immunosuppression both as a result of the underlying disease and its treatment. Listeria, Candida and Aspergillus are common infectious etiologies however clinical presentation differs. Listeria presents as a meningitise syndrome whereas Candida presents with a diffuse encephalopathy and multiple small brain abscesses and Aspergillus presents with progressive hemorrhagic stroke confined to a single vascular territory (Gerson et al 1985, Winston et al 1993).

6.4. Cerebrospinal fluid in leukemic patients

The cerebrospinal fluid findings in leukemic patients must be carefully evaluated since bacterial meningitis, abscess formation or fungal disease occur with increased frequency. Cerebrospinal fluid pleocytosis, chemical abnormalities (elevated protein and low sugar) and elevated pressure may be present in these potential complications of the disease or its therapy. Appropriate cultures and stains, are often helpful in diagnosis. Abscesses can often be detected by brain scans, electroencephalograms and arteriography.

6.4.1. Categories of CNS status at diagnosis of acute leukemia

Patients who have nontraumatic diagnostic lumbar punctures at diagnosis may be placed into 3 categories according to white blood cells (WBCs) per microliter and the presence or absence of blasts on the cytospin: central nervous system 1 (CNS1) refers to CSF with <5 WBCs per microliter with cytospin negative for blasts; Cxlink refers to CSF with <5 WBCs per microliter with cytospin positive for blasts; CNS3 refers to CSF with >5 WBCs per microliter with cytospin positive for blasts. Children with ALL who presents with CNS disease at diagnosis (CNS3) are at high risk for treatment failure compared with patients not meeting the criteria of the CNS disease at diagnosis. Patients with Cxlink may be at an increased risk of CNS relapse, although this may not apply to all treatment regimens and can be overcome by more intensive intrathecal treatment (Burger et al 2003).


7. Testicular involvement

Involvement of the testis - one of the most common sites of relapse in acute lymphoblastic leukemia usually presents with painless enlargement of one or both testis. Testicular involvement occurs in 10% to 23% of boys during the course of the disease at a median time of 13 months from diagnosis. Occult testicular involvement is recognized in 10% to 33% of boys undergoing bilateral wedge biopsies performed during the first 3 years of treatment or at any time after cessation of the therapy (Lanzkowsky et al. 1985). In a study in which biopsies were done in boys with newly diagnosed ALL, microscopic testicular involvement was reported to be 21% (Neimeyer et al 1993). Testicular involvement of the endothelial side of the interstitium of one or both testis, leads to increased testicular size and firmness [Kay et al 1983 ]. Hydrocele resulting from lymphatic obstruction may also present with painless scrotal enlargement and is readily identified by ultrasonography. Overt testicular involvement may occur in any form of acute lymphoblastic leukemia, most commonly in common C-ALL, but also in T-ALL and B-ALL. Rarely it is present when ALL is first diagnosed, but most often it is a late complication and, as with meningeal leukemia, the higher the initial blood blast count is, the earlier the discovery of testicular disease is likely ( Nesbit et al 1980).


8. Superior vena cava syndrome

Superior vena cava syndrome comprises the signs and symptoms associated with compression or obstruction to the superior vena cava. Patients with ALL (particularly T-ALL), may present with symptoms of cough, dyspnea, stridor, or dysphagia from tracheal and esophageal compression by a mediastinal mass (15% of patients). Compression of the great vessels by a bulky mediastinal mass also may lead to the life threatening superior vena cava syndrome (Marwaha et al 2011). A child with leukemia may experience anxiety, confusion, drowsiness and sometimes unconsciousness (Salsali et al 1969). There is facial edema, plethora, cyanotic faces. Venous engorgement of neck, chest and arm with collateral vessel and some sign of pleural effusion and pericardial effusion may be present (Rice et al 2006).


9. Skin involvement

Various cutaneous lesions can be observed in patients with acute leukemias. These include specific cutaneous lesions resulting from infiltration of the skin by the leukemic cells, characteristic diseases such as pyoderma gangrenosum and Sweet syndrome, cutaneous signs of infection or hemorrhage resulting from the bone marrow dysfunction induced by the malignant process or chemotherapy.

Skin involvement may be of three types: nonspecific lesions, leukemia cutis, or granulocytic sarcoma of skin and subcutis. Nonspecific lesions include macules, papules, vesicles, pyoderma gangrenosum, or vasculitis (Bourantas et al. 1994, Nambiar Veettil et al 2009), neutrophilic dermatitis (Sweet's syndrome) (Cho K-H et al 1997, Philip R Cohen 2007), cutis vertices gyrata, or erythema multiforme or nodosum (Byrd et al 1995). Leukemia cutis lesions usually appear at the time of diagnosis of systemic disease or thereafter, but occasionally can occur before peripheral blood or bone marrow involvement (aleukemic leukemia cutis). (Christos Tziotzios et al 2011, Márcia Ferreira et al 2006). T-cell ALL may show epidermotropism and monocytic leukemia often involves the entire dermis and the superficial panniculus (Yalcin et al 2004).


10. The gastrointestinal tract

Gastrointestinal (GI) manifestations of leukemia occur in up to 25% of patients at autopsy, generally during relapse. Its presence varies with the type of leukemia and has been decreasing over time due to improved chemotherapy. Gross leukemic lesions are most common in the stomach, ileum, and proximal colon. Leukemia in the esophagus and stomach includes hemorrhagic lesions from petechiae to ulcers, leukemic infiltrates, pseudomembranous esophagitis, and fungal esophagitis. (Dewar et al. 1981) The mouth, colon, and anal canal are sites of involvement that most commonly lead to symptoms. Oral manifestations may bring the patient to the dentist; gingival or periodontal infiltration and dental abscesses may lead to an extraction followed by prolonged bleeding or an infected tooth socket. (Dean et al. 2003). The gingival hyperplasia is most commonly seen with the AML subtypes acute monocytic leukemia M5 (67%), acute myelomonocytic leukemia M4 (18.5%) and acute myelocytic leukemia M1-M2 (3.7%) (Cooper et al 2000). Enterocolitis, a necrotizing inflammatory lesion involving the terminal ileum, cecum, and ascending colon, can be a presenting syndrome or can occur during treatment. Fever, abdominal pain, bloody diarrhea, or ileus may be present and occasionally mimic appendicitis. Intestinal perforation, an inflammatory mass, and associated infection with enteric gram-negative bacilli or clostridial species are often associated with a fatal outcome. Isolated involvement of the gastrointestinal tract is rare.(Tim et al 1984).. Neutropenic enterocolitis (NE), which is a fulminant necrotizing process is a well-recognized complication of neutropenia in patients dying from hematologic malignancies especially acute leukemia as indicated by various autopsy series ( Steinberg et al 1973). Proctitis, especially common in the monocytic variant of AML, can be a presenting sign or a vexing problem during periods of severe granulocytopenia and diarrhea.(Christos Tziotzios et al. 2011)

11. Respiratory tract involvement

Infectious and noninfectious pulmonary complications represent a critical problem for patients with leukemia, which itself can be the direct cause of pulmonary leukostasis, pulmonary leukemic infiltration (PLI), and leukemic cell lysis pneumopathy. These disorders are usually more frequent in patients with hyperleukocytic leukemia. Pulmonary leukostasis is characterized by occlusion of the pulmonary capillaries and arterioles by leukemic cells. Leukemic infiltration may lead to laryngeal obstruction, parenchymal infiltrates, alveolar septal infiltration, or pleural seeding. Each of these events can result in severe symptoms and radiologic findings (Potenza et al 2003, Wu et al 2008).

Pulmonary disease in leukaemia is frequent and often lethal. Lung involvement in leukaemia is primarily due to (a) leukostasis of vessels and (b) true leukaemic infiltration of interstitium and alveoli. (Majhail et al 2004, Porcu et al 2000) Clinically, leukostasis in leukaemia should be suspected in patients with unexplained fever and cardiopulmonary or cerebral dysfunction. Pulmonary leukostasis was found in about40% of autopsy series. (Mark et al 1987). Maile et al 1983 noted parenchymal opacities on 90% of chest radiographs obtained shortly before death in adult patients with leukaemia. These radiologic opacities on autopsy were attributed to infections, haemorrhages, leukaemic infiltrations and edema. In addition, drug induced pulmonary infiltrates and leukoagglutinin transfusion reactions were also reported (Mark et al 1987). In spite of the above data, pulmonary leukostasis in leukaemia has been mentioned only incidentally as a cause of abnormalities on chest radiography.

12. Cardiac complications

Cardiac complications of the patients with acute leukemia are common. Most of the cardiac complications may be due to chemotherapeutics such as antracyclins, besides anemia, infections, or direct leukemic infiltrations of the heart. Symptomatic pericardial infiltrates, transmural ventricular infiltrates with hemorrhage, and endocardial foci with associated intracavitary thrombi can, on occasion, cause heart failure, arrhythmia, and death. Infiltration of the conducting system or valve leaflets or myocardial infarction may occur. (Ashutosh et al 2002, Fernando et al 2004). Cardiac and other tissue damage as a consequence of release of eosinophil granule contents can occur in patients with leukemia, associated with eosinophilia (Kocharian et al 2006). Cardiac damage is a major determinant of the overall prognosis.

13. Urogenital involvement

The urogenital organs can also be affected. The kidneys are infiltrated with leukemic cells in a high proportion of cases, but functional abnormalities are rare. Hemorrhages in the pelvis or the collecting system are frequent, however, cases of vulvar, bladder neck, prostatic, or testicular involvement have been described.. (Quien et al 1996).

14. Musculoskeletal system

Musculoskeletal manifestations are the presenting complaint in up to 20% of patients with pediatric leukemia,(Andreas et al 2007). The main clinical osteoarticular manifestations in early leukemia include limb pain, nighttime pain, arthralgia, and arthritis. Skeletal manifestations of acute leukaemia (bone or back pain, arthritis or radiographical abnormalities of skeleton) are well described in children (Barbosa et al 2002). Arthritis can occur at any time during the course of acute leukaemia. It may lead to delay in diagnosis and therapy and any delay in therapy is associated with poor prognosis (Sandeep et al 2006). The most common clinical presentation of leukaemic arthritis is additive or migratory asymmetrical oligoarticular large joint arthritis and in some cases juvenile idiopathic arthritis. (Evans et al. 1994, Mirian et al. 2011). The joints most commonly involved are the knee, followed by the ankle, wrist, elbow, shoulder and hip. Onset of arthritis may be sudden or insidious, and parallel the course of acute leukaemia (Sandeep et al. 2006).

Arthritis as the first manifestation of acute leukaemia is however extremely uncommon in adults.

15. Hyperleukocytosis and leukostasis

Leukostasis is a syndrome, caused by clumping of leukocytes in the vasculature of the lungs and brain, often resulting in hypoxia, dyspnea, confusion, and coma, and may be fatal.

Leukapheresis is indicated in the initial management of leukostasis in patients with hyperleukocytosis in acute leukemias, particularly myeloid leukemias, or in patients who are at high risk of developing such a complication.

Adult T-cell leukemia/lymphoma is a distinct form of ALL that presents with progressive lymphadenopathy, hepatosplenomegaly, and hypercalcemia. It involves the skin, lungs, bone marrow, intestinal tract, and CNS. This disease is associated with HTLV-1 and is endemic in the Caribbean, southeastern United States, Africa, and Japan. Circulating tumor cells have a characteristic “cloverleaf”-shaped nucleus.

The risk factors for leukostasis are acute the leukaemia itself, younger age (most common in infants), certain types of leukaemia like acute promyelocytic (microgranular variants), acute myelomonocytic, acute monocytic leukaemia and T cell type of ALL. Cytogenetic abnormalities – 11q23 translocations and presence of Philadelphia chromosome are also associated with leukostasis (Porcu et al 2000). The pathogenesis of leukostasis is determined by: - 1) sluggish flow with stasis, 2) aggregation of leukaemic cells, 3) formation of microthrombi, 4) release of toxic granules, 5) endothelial damage, 6) oxygen consumption by leukocytes, 7) tissue invasion (Litchman et al 1987). Leukostasis is usually associated with counts of >100 x 109 but acute monocytic leukaemia may present with leukostasis with counts of 50 x 109/L. 5-13% of patients of AML and 10-30% of patients of ALL will manifest with hyperleukocytosis. Earlier leukostasis was thought to be due to the presence of critical leukocrit (fractional leukocyte volume) and increased viscosity. Although hyperleukocytosis is also common presenting feature in patients with ALL, particularly with T-cell phenotype, 11q23, and t(9;22) chromosomal rearrangements, symptomatic leukostasis is exceedingly rare [Porcu et al 2000]. While WBC count is a major factor contributing to microvessel occlusion seen with leukostasis, other features, such as activation of adhesion cell surface markers and mechanical properties of the leukemic blasts, are likely to be important. For example, the stiffness of myeloid blasts, as measured by atomic force microscopy, is 18 times that of lymphoid blasts [Rosenbluth et al 2006]. This difference in deformability of the cells may at least partially explain the increased frequency of leukostasis in AML compared to than in ALL. Presence of symptoms suggestive of leukostasis, such as headache, blurred vision, dyspnea, hypoxia, constitute a medical emergency and efforts should be made to lower the WBC rapidly. However, the role of leukapheresis to reduce tumor burden in patients with ALL and leukocytosis remains controversial.

16. Metabolic complications

Hyperuricemia and hyperphosphatemia with secondary hypocalcemia are frequently encountered at diagnosis, even before chemotherapy is initiated, especially in patients with B-cell or T-cell ALL with high leukemic cell burden. Severe metabolic abnormalities may accompany the initial diagnosis of ALL and AML (Haralampos et al 1999). Patients with high leukemic burden are at risk of developing acute tumor lysis syndrome (ATLS). Such metabolic changes may lead to the development of oliguric renal failure due to the tubular precipitation of urate and calcium phosphate crystals, fatal cardiac arrhythmias, hypocalcemic tetany, and seizures ( Jeha 2001).

17. Lactic acidosis

Lactic acidosis (LA), as the presenting manifestation of acute leukemia, is rare, but potentially fatal complication of acute leukemia (Grossman et al 1983), characterized by low arterial pH due to the accumulation of blood lactate. It has been suggested that LA occurring in the setting of hematological malignancy is associated with an extremely poor prognosis [Sillos et al 2001]. Lactate, the end product of anaerobic glycolysis, is metabolized to glucose by the liver and kidneys. Because leukemic cells have a high rate of glycolysis even in the presence of oxygen and produce a large quantity of lactate, LA may result from an imbalance between lactate production and hepatic lactate utilization [Sillos et al 2001]. Several factors may contribute to the high rate of glycolysis. Overexpression or aberrant expression of glycolytic enzymes, such as hexokinase, the first rate-limiting enzyme in the glycolytic pathway [Mazurek et al 1997] allows leukemic blasts to proliferate rapidly and survive for prolonged periods [Mathupala et al 1997]. Although insulin normally regulates the expression of this enzyme, insulin-like growth factors (IGFs) that are overexpressed by malignant leukemic cells, can mimic insulin activity [Werner 1996,]. LA is frequently associated with acute tumor lysis syndrome (ATLS) and its extent is correlated with the severity of ATLS.

Typically, the patient with lactic acidosis presents with weakness, tachycardia, nausea, mental status changes, hyperventilation, and hypotension, which may progress to frank shock as acidosis worsens. Laboratory studies show a decreased blood pH (<7.37), a widened anion gap (>18), and a low serum bicarbonates.

HCT-CI weighted scores Definitions of comorbidities included in the new HCT-CI Comorbidity
1 Atrial fibrillation or flutter, sick sinus syndrome, or ventricular arrhythmias Arrhythmia
1 Coronary artery disease - one or more vessel-coronary artery stenosis requiring medical treatment, stent, or bypass graft, congestive heart failure, myocardial infarction, or EF ≤ 50% Cardiac
1 Crohn disease or ulcerative colitis Inflammatory bowel disease
1 Requiring treatment with insulin or oral hypoglycemics but not diet alone Diabetes
1 Transient ischemic attack or cerebrovascular accident Cerebrovascular disease
1 Depression or anxiety requiring psychiatric consult or treatment Psychiatric disturbance
1 Chronic hepatitis, bilirubin > ULN to 1.5 × ULN, or AST/ALT > ULN to 2.5 × ULN Hepatic, mild
1 Patients with a body mass index > 35 kg/m2 Obesity
1 Requiring continuation of antimicrobial treatment after day 0 Infection
2 SLE, RA, polymyositis, mixed CTD, or polymyalgia rheumatica Rheumatologic
2 Requiring treatment Peptic ulcer
2 Serum creatinine > 2 mg/dL, on dialysis, or prior renal transplantation Moderate/severe rena
2 DLco and/or FEV1 66%-80% or dyspnea on slight activity Moderate pulmonary
3 Treated at any time point in the patient's past history, excluding nonmelanoma skin cancer Prior solid tumo
3 Except mitral valve prolapse Heart valve disease
3 DLco and/or FEV1 ≤ 65% or dyspnea at rest or requiring oxygen Severe pulmonary
3 Liver cirrhosis, bilirubin > 1.5 × ULN, or AST/ALT > 2.5 × ULN Moderate/severe hepatic

Table 3.

Definitions of comorbidities and HCT-CI scores included in the HCT-CI

18. Comorbidity

Many factors have been studied to predict outcome and allocate treatment in acute leukemia. The best established prognostic factors are karyotype and age. However, comorbidity may play an important role in the outcome.

A comprehensive assessment including performance status, evaluation of comorbidities and abilities to perform activities of daily living, geriatric depression scale in elderly patients has been proven to be useful in detecting treatment-related changes in older cancer patients and has been recommended to be incorporated into clinical outcome analysis. An index developed specifically for patients with hematologic malignancies has been developed: the Hematopoietic Cell Transplantation-Specific Comorbidity Index (HCT-CI) presented in Table 3 (Sorror ML et al 2005). This index captures comorbidities that predict non-relapse mortality in patients considered for allogeneic transplant and also proved to be a helpful tool for defining comorbid conditions in elderly untreated AML patients. (Novotny J et al 2009; Sorror ML et al 2007). Modifications such as modified EBMT risk score have been developed and evaluated for ALL patients (Terwey T et al, 2010).

Comorbidity scoring is currently still under the investigation in many cooperative groups. It is important to bear in mind that when translating the results from clinical trials into treatment decision-making for the individual patient, many patients with e.g. „unacceptable“ renal, cardial or hepatic abnormalities are generally not included into clinical trials. By such approach at least 20-30% of younger patients and more than 50% of elderly patients with AML are excluded and have not been reported in any results. Because of that it would be important to propose comorbidity score for all leukemia patients and to evaluate how many of the patients are able to receive standard therapy and stem cell transplantation, how many of them are candidate for low-intensity treatment and supportive care.

While acute leukemia patients depend on the expert recommendations from their physicians, knowledge of clinical presentation and patient's related prognostic factors can help to improve treatment decision and to identify patients who would benefit most from either intensive or low-intensive treatment or even best supportive care alone.


  1. 1. AbbottB. LRubnitzJ. ETongXSrivastavaD. KPuiC. Het alClinical significance of central nervous system involvement at diagnosis of pediatric acute myeloid leukemia; Leukemia 200317209096
  2. 2. AmendolaBHutchinsonRCrossmannH. BAmendolaM. AIsolated testicular leukemic relapse; Urology 1987i Volume XXX, 33240243
  3. 3. AndreasHGomoll, Childhood Leukemia Presenting as Sternal Osteomyelitis, The American Journal of Orthopedics, Am J Orthop. 2007E148E150.
  4. 4. Ashutosh HardikarPrem Shekar. Cardiac Involvement in a Case of Acute Lymphoblastic Leukemia, Ann Thorac Surg 20027313102
  5. 5. BarbosaC. MNakamuraCTerreriM. Tet alMusculoskeletal manifestation as the onset of acute leukemias in childhood]. Pediatr (Rio J) 2002784814Portuguese.
  6. 6. BorowitzM. JChan JKC. B lymphoblastic leukemia/lymphoma, not otherwise specified. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds S.H. Swerdlow, E. Campo, N.L. Harris, E.S. Jaffe, S.a. Pileri, H. Stein, J. thiele & J.W. Vardiman), IARC, Lyon, 2008127129
  7. 7. BourantasKMalamou-mitsiVChristouLet alCutaneous vasculitis as the initial manifestation in acute myelomonocytic leukemia. Ann Intern Med 1994
  8. 8. BrunningR. DMatutesEFlandrinGet alAcute myeloid leukemia not otherwise categorized: myeloid sarcoma. In: Jaffe ES, Harris NL, Stein H, et al, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; 20012001104105
  9. 9. BrunningR. DMatutesEHarrisN. Let alAcute myeloid leukaemia: introduction. In: Jaffe ES, Harris NL, Stein H, et al., eds.: Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press, 2001World Health Organization Classification of Tumours, 3., 7780
  10. 10. BüchnerTHiddemannWWörmannBet alDouble induction strategy for acute myeloid leukemia: the effect of high-dose cytarabine with mitoxantrone instead of standard-dose cytarabine with daunorubicin and 6thioguanine: a randomized trial by the German AML Cooperative Group. Blood 1999
  11. 11. BuninN. JPuiC. HDiffering complications of hyperleukocytosis in children with acute lymphoblastic and nonlymphoblastic leukemia. J clin Oncol 1985315901595
  12. 12. BurgerBZimmermannMMannGet alDiagnostic cerebrospinal fluid examination in children with acute lymphoblastic lymphoma: significance of low leukocyte counts with blast or traumatic lumpar puncture. J Clinoncol. 2003211848
  13. 13. ByrdJ. CEdenfieldW. JShieldsD. Jand Dawson NA; Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. JCO Jul 1, 1995
  14. 14. CarneiroP. CDAmicoENavesJB, et al. Granulocytic sarcoma (chloroma): spinal cord compression and testicular involvement. Rev Hosp Clin Fac Med Sao Paulo. 198439248250
  15. 15. CashJFehirK. MPollackM. SMeningeal Involvement in Early Stage Chronic Lymphocytic Leukemia. Cancer 198759798800
  16. 16. Charles A SchifferRichard A Larson et al, Involvement of the central nervous system with acute myeloid leukemia, Up-to-date Jan 25, 2012
  17. 17. ChesonB. DCassilethP. AHeadD. Ret alReport of the National Cancer Institute-sponsored workshop on definitions of diagnosis and response in acute myeloid leukemia. J Clin Oncol 1990858139
  18. 18. ChoK-HHanK-HSimS-Wet alNeutophilic dermatoses associated with myeloid malignancy. Clin Exp Dermatol 1997
  19. 19. Christos TziotziosAreti Makrygeorgou, The Clinical Picture Leukemia cutis, Cleveland clinic journal of medicine 20114
  20. 20. CooperC. LLoewenRShoreTGingival hyperplasia complicating acute myelomonocytic leukemia. J. Can. Dent. Assoc 2000667879
  21. 21. CortesJCentral nervous system involvement in adult acute lymphocytic leukemia. HematolOncolClin North Am. 200115145162
  22. 22. DaveyD. DFourcarKBurnsC. PGoekin JA: Acute myelocytic leukemia manifested by prominent generalized lymphadenopathy. Am J Hematol 1986
  23. 23. DeanAK, JW Ferguson, ES Marvan, Acute leukaemia presenting as oral ulceration to a dental emergency service. Australian Dental Journal 2003;48:3..
  24. 24. DekkerA. WEldersonAPuntKSixmaJ. JMeningeal Involvement in Patients With Acute Nonlymphocytic Leukemia. Cancer 19855620782082
  25. 25. DewarG. JLimC-N. HMichalyshynBAkabutu J: Gastrointestinal complications in patients with acute and chronic leukemia. Can J Surg 1981
  26. 26. DjunicIVirijevicMNovkovicADjurasinovicVColovicNVidovicASuvajdzic-vukovicNTominDPretreatment risk factors and importance of comorbidity for overall survival, complete remission, and early death in patients with acute myeloid leukemia. Hematology. 2012Mar;172538
  27. 27. Domingo-domènechEBoquéCNarváezJ. ARomagosaVDomingo-clarósAGrañenaAAcute monocytic leukemia in the adult presenting with associated extramedullary gastric infiltration and ascites. Haematologica 20008588757
  28. 28. Elenitoba-johnsonKHodgesG. FKingT. Cet alExtramedullary myeloid cell tumors arising in the setting of chronic myelomonocytic leukemia: a report of two cases. Arch Pathol Lab Med. 19961206267
  29. 29. EvansT. INercessianB. MSandersK. MLeukemic arthritis. Semin Arthritis Rheum. 1994Aug;2414856
  30. 30. FarhiD. CRosenthalN. SAcute lymphoblastic leukemia. Clin Lab Med 20002011728vii
  31. 31. FernandoPChaves,* Karen Quillen, Pericardial Effusion: A Rare Presentation of Adult T-Cell Leukemia/Lymphoma, American Journal of Hematology 200477381383
  32. 32. GersonS. Let alInvasive pulmonary aspergillosis in adult acute leukemia: clinical clues to its diagnosis. J Clin Oncol, 198511091116
  33. 33. GlassJ. PVantasselPKeatingM. Jet alCentral nervous system complications of a newly recognized subtype of leukemia: AMML with a pencentric inversion of chromosome 16. Neurology 1987
  34. 34. GollardR. PRobbinsB. APiroLSaven A: Acute myelogenous leukemia presenting with bulky lymphadenopathy. Acta Haematol 1996
  35. 35. GrossmanLHollowayRDCostaMRoncariDLazarovitsABakerM, et al. Lactic acidosis in a patient with acute leukemia. Clin Invest Med 19836858
  36. 36. GurHKorenVEhrenfeldMBen-bassatISidiYRheumatic manifestations preceding adult acute leukemia: Characteristics and implication in course and prognosis. Acta Haematol 1999101116
  37. 37. HarbATanWWildingG. EBattiwallaMSaitS. NWangE. SWetzlerMAcute myeloid leukemia and diabetes insipidus with monosomy 7. Cancer Genet Cytogenet 2009190297100
  38. 38. HaralamposJMilionis, Constantinos L. Bourantas, Kostas C. Siamopoulos, Moses S. Elisaf. Acid-Base and Electrolyte Abnormalities in Patients With Acute Leukemia; American Journal of Hematology, 199962201207
  39. 39. HardionoDPusponegoro, et alClinical features and survival pattern of central nervous system leukemia in children with acute lymphoblastic leukemia, PaediatrIndones 200141247252
  40. 40. HendersonE. SAfshaniEClinical manifestation and diagnosis. In: Henderson ES, Lister TA, editors. Leukemia. 5th ed. Philadelphia: WB Saunders. 1990291359
  41. 41. JehaSTumor lysis syndrome. Seminars in Hematology 2001Suppl 10), 4-8.
  42. 42. JemalASiegelRWardECancer statistics, 2006CA Cancer J Clin. 2006; 56106130
  43. 43. JohnPGreerMMariaRand MarshaCAcute Myeloid Leukemia in Adults. In: Wintrobe’s Clinical Hematology. Lippincott Williams & Wilkins, A wolters Kluwer Company Philadelphia 11th edition 200420972142
  44. 44. KarpJ. EMerzW. GHendricksenCet alOral norfloxacin for prevention of gram-negative bacterial infections in patients with acute leukemia and granulocytopenia. A randomized, double-blind, placebo controlled trial. Ann Intern Med 1987106117
  45. 45. KasantikulVShuangshotiSPhanthumchindaKSubacute combined degeneration of the spinal cord in acute monoblastic leukemia. J Med Assoc Thai 1989724747
  46. 46. KawanamiTKuritaKYamakawaMOmotoEKatoTCerebrovascular disease in acute leukemia: a clinicopathological study of 14 patients. Intern Med. 2002411211304
  47. 47. KayH. ETesticular infiltration in acute lymphoblastic leukaemia. British Journal Haematology 1983
  48. 48. KimHLeeJ-HChoiS-Jet alAnalysis of fatal intracranial hemorrhage in 792 acute leukemia patients. Haematologica 200489622624
  49. 49. KocharianAMIzadyarCardiac Involvement in a Patient with Eosinophilia and Inversion of Chromosome 16(13q22A Case of Chronic Eosinophilic Leukemia or AML-M4EO?, Archive of SID 2006
  50. 50. KontnyUGutjahrPSchumacherRUnusual pattern of gastric and hepatic infiltration in an infant with acute monocytic leukemia. Pediatr Radiol 19952511920
  51. 51. Lanzkowsky PhilipLeukemias. In Manual of Pediatric Hematology and Oncology. Churchill Livingstone, New York, Edinburgh, London, Madrid, Melbourne, Milan, Tokyo. 1985295
  52. 52. Lavabre-bertrandTBourquardPChiesaJBerthéasM. FLefortGTaïbJLavabre-bertrandCNavarroMBureauJ. PDiabetes insipidus revealing acute myelogenous leukaemia with a high platelet count, monosomy 7 and abnormalities of chromosome 3: a new entity? Eur J Haematol 2001661669
  53. 53. LazarusH. MRichardsS. MChopraRet alCentral nervous system involvement in adult acute lymphoblastic leukemia at diagnosis: results from the international ALL trial MRC UKALL-XII/ECOG E2993. Blood. 2006108465472
  54. 54. LichtJ. DChomienneCGoyAet alClinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 1995
  55. 55. LichtmanM. AAcute myelogenous leukemia. In: Beutler E, Lichtman MA, Coller BS, Kipps TJ, eds. Williams Hematology. New York: McGraw-Hill;1995272298
  56. 56. LitchmanM. AHealJRoweJ. MHyperleukocytic leukaemia. Rheological and clinical features and management. Ballier’s Clinical Haematology 1987172546
  57. 57. MaileC. WMooreA. VUlreichSPutmanC. EChest radiographic pathologic correlation in adult leukemia patients. Invest Radiol 1983184959
  58. 58. MajhailN. SLichtinA. EAcute leukemia with a very high leukocyte count: confronting a medical emergency. Cleveland Clin J Med 2004716337
  59. 59. Márcia FerreiraMónica Caetano et al, Leukemia cutis resembling a flare-up of psoriasis, Dermatology Online Journal 2006123
  60. 60. MarkAVan Buchem, Wondergem JH, Schultze LJ, teVelde J, Kluin PM, Bode PJ, et al. Pulmonary leukostasis: Radiologic- Pathologic study. Radiology 198716573941
  61. 61. MarwahaR. KKulkamiK. PSuperior vena cava obstruction in childhood acute lymphoblastic leukemia; Indian Ped J. 2011Jan (48)(1) 78-9
  62. 62. MathupalaS. PRempelAPedersenP. LAberrant glycolytic metabolism of cancer cells: Aremarkable coordination of genetic, transcriptional, post-translational, and mutational events that lead to a critical for type II hexokinase. J Bioenerg Biomembr. 1997Aug;29433943
  63. 63. MazurekSBoschekC. BEigenbrodtEThe role of phosphometabolites in cell proliferation, energy metabolism, and tumor therapy. Journal of Bioenergetics and Biomembranes.1997
  64. 64. MenasceL. PBanerjeeS. SBeckettEet alExtra-medullary myeloid tumor (granulocytic sarcoma) is often misdiagnosed: a study of 26 cases. Histopathology. 199934391398
  65. 65. MirianSTamashiro,INa´dia Emi Aikawa et al Discrimination of acute lymphoblastic leukemia from systemic-onset juvenile idiopathic arthritis at disease onset, CLINICS 2011661016651669
  66. 66. Nambiar VeettilJoe THOMAS et al, Cutaneous vasculitis as a presenting manifestation of acute myeloid leukemia, International Journal of Rheumatic Diseases 2009127073
  67. 67. NeimeyerC. MSallahS. EAcute Lympholastic Leukemia. Hematology of infancy and childhood. (Ed. D. Nathan and Oski) Sounders comp. Philadelphia, London, Toronto, Montreal, Sydney, Tokyo. 199312581259
  68. 68. NesbitM. EJr, Robison LL, Ortega JA, Sather HN, Donaldson M, Hammond D. Testicular relapse in childhood acute lymphoblastic leukemia: association with pretreatment patient characteristics and treatment. A report for Childrens Cancer Study Group. Cancer. 1980Apr 15;45820092016
  69. 69. NovotnyJAAisenbreyHNückelUDührsenComorbidity Is An Independent Prognostic Factor in AML: Comparison of Two Comorbidity Scores.; Blood (ASH Annual Meeting Abstracts), Nov 2009
  70. 70. PavlovskySEppinger-helftMMurill FS: Factors that influence the appearance of central nervous system leukemia. Blood 1973
  71. 71. PhairJ. PAndersonR. ENamiki H: The central nervous system in leukemia. Ann Int Med 1964
  72. 72. Philip R CohenSweet’s syndrome- a comprehensive review of an acute febrile neutrophilic dermatosis, Orphanet Journal of Rare Diseases 2007
  73. 73. PileriS. AOraziAFaliniBMyeloid sarcoma. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (eds S.H. Swerdlow, E. Campo, N.L. Harris, E.S. Jaffe, S.a. Pileri, H. Stein, J. thiele & J.W. Vardiman), 2008127129IARC, Lyon.Porcu P, Cripe LD, Ng EW,
  74. 74. PorcuPCripeL. DNgE. WBhatiaSDanielsonC. MOraziAet alHyperleukocytic leukemias and leukostasis: a review of pathophysiology, clinical presentation and management. Leuk Lymphoma 2000118
  75. 75. PotenzaLLuppiMMorselliMet alLeukaemic pulmonary infiltrates inadult acute myeloid leukaemia: a high-resolution computerized tomography study. Br J Haematol. 2003
  76. 76. PuiC. HAcute lymphoblastic leukemia. In: Pui CH, editor. Childhood leukemias. New York: Camridge University Press; 2006439472
  77. 77. QuienE. TWallachBSandhausLet alPrimary extramedullary leukemia of the prostate. Am J Hematol, 1996
  78. 78. RechtLMrugalaMNeurologic complications of hematologic neoplasms. Neurol Clin N Am. 200320032187105
  79. 79. RedaelliALeeJ. MStephensJ. MPashosC. LEpidemiology and clinical burden of acute myeloid leukemia, Expert Rev. Anticancer Ther. 20033695710
  80. 80. RiceT. WRodriguezR. MLightR. WThe superior vena cava syndrome: clinical characteristics and evolving etiology. Medicine (Baltimore). Jan 20068513742
  81. 81. RosenbluthM. JLamW. AFletcherD. AForce microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys J 20069029943003
  82. 82. SalsaliMClifftonE. ESuperior vena cava obstruction in carcinoma of lung. N Y State J Med. Nov 15 19696922287580
  83. 83. SandeepCTelhanAet alAcute differentiated leukemia in an adult presenting as arthritis, Singapore Med J 2006
  84. 84. Schmitt-graffAWickenhauserCKvasnickaH. Met alExtramedullary initial manifestations of acute myeloid leukemia (AML) [in German]. Pathologe. 200223397404
  85. 85. SillosE. Met alLactic acidosis: A metabolic complication of hematologic malignancies: Case report and review of the literature. Cancer 2001
  86. 86. SorrorM. LMarisM. BStorbRBaronFSandmaierB. MMaloneyD. GStorerBHematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood. 2005Oct 15;106829129
  87. 87. SorrorM. LSandmaierB. MStorerB. EMarisM. BBaronFMaloneyD. GScottB. LDeegH. JAppelbaumF. RStorbRComorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J Clin Oncol. 2007Sep 20;2527424654
  88. 88. SteinbergDGoldJBrodinANecrotizing enterocolitis in leukemia. Arch Int Med 1973
  89. 89. TanA. Wet alExtensive calcinosis cutis in relapsed acute lymphoblastic leukaemia. Annals of the Academy of Medicine, Singapore 2004
  90. 90. TerweyT. HHemmatiP. GMartusPDietzEVuongL. GMassenkeilGDörkenBArnoldRA modified EBMT risk score and the hematopoietic cell transplantation-specific comorbidity index for pre-transplant risk assessment in adult acute lymphoblastic leukemia. Haematologica. 2010May;9558108
  91. 91. TeshimaTAkashiKShibukaTet alCentral Nervous System Involvement in Adult T-Cell Leukemia/Lymphoma. Cancer 199065327332
  92. 92. ThiedeCKochSCreutzigEet alPrevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 200610740114020
  93. 93. TimBHunter, John C. Bjelland, Gastrointestinal Complications of Leukemia and Its Treatment, rican Roentgen Ray Society,AJR 1984
  94. 94. TobelemGJacquillatCChastangCet alAcute monoblastic leukemia: a clinical and biologic study of 74 cases. Blood 1980
  95. 95. ValbuenaJ. RAdmirandJ. HGualcoGet alMyeloid sarcoma involving the breast. Arch Pathol Lab Med. 20051293238
  96. 96. VirappanePGaleRHillsRet alMutation of the Wilm’s Tumor 1 gene is a poor prognostic factor associated with chemo-resistance in normal karyotype acute myeloid leukemia. J Clin Oncol. 2008Jul 7.
  97. 97. WeirnikP. HExtramedullary manifestations of adult leukemia. In: American cancer society atlas of clinical oncology adult leukemias. London : BC Decker Inc, 20012001275292
  98. 98. WernerHLeRoith, D. The role of the insulin-like growth factor system in human cancer. Advances in Cancer Research 1996199668183223
  99. 99. WideJ. TDaviesJ. MHemostasis problems in acute leukemia. Blood Rev 19904245251
  100. 100. WinstonD. JChandrasekarP. HLazarusH. MGoodmanJ. LSilberJ. LHorowitzHShadduckR. KRosenfeldC. SHoW. GIslamM. ZBuellD. NFluconazole prophylaxis of fungal infections in patients with acute leukemia. Results of a randomized placebo-controlled, double-blind, multicenter trial. Ann Intern Med, 1993495503
  101. 101. WolkR. WMasseS. RConklinRFreireichE. JThe incidence of central nervous system leukemia in adults with acute leukemia. Cancer 19743386371
  102. 102. WuY. KHuangY. CHuangS. Fet alAcute respiratory distress syndrome caused by leukemic infiltration of the lung. J Formos Med Assoc. 2008
  103. 103. YalcinA. DKeskinACalliNMonocytic Acute Non-Lymphocytic Leukemia Presenting As A Malign-Appearing Cutaneous Eruption. Internet J of Dermatol 2004

Written By

Gamal Abdul Hamid

Submitted: April 27th, 2012 Published: May 15th, 2013