Summary of bionomics of the DVS of the Americas (created by cross referencing TAG and literature searches). Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
1. Introduction
Human malarial protozoa are transmitted by mosquitoes of the genus
The aim of this chapter is to document the distribution of these DVS using global and regional maps. In addition, behavioural summaries are provided for the most important species, i.e. those on each continent that are considered the most dangerous and responsible for most malaria transmission, and hence have the greatest impact on human health. Only the primary vectors in those regions with current and problematic malaria transmission are discussed further here (i.e. the vectors of Europe and the Middle-East are not included – but more details can be found in Sinka
The maps presented (e.g. Figure 1) provide species location information and highlight the existence of a greater number of vector species than is often considered, many in sympatry, across the malarial zones. Amongst these DVS, there are often important behavioural characteristics that must be considered if successful vector control is to be applied. For example, some species do not always enter houses to bite, are most active in the early evening, and prefer to rest outdoors after feeding, such as many of the species common in South America (e.g.
Maps clearly illustrate the spatial extent of a species’ distribution. Often, even within a single
The maps presented in this chapter are not a comprehensive analysis of all anophelines. They show only those species designated as DVS; a categorisation initially based on information taken from a number of authoritative reviews [8-12] ([10] translated and updated:[13]) and with additional guidance from a technical advisory group of vector experts [3, 5, 14, 15]. This chapter will also briefly touch upon the methodology behind creating the distribution maps for these DVS including what information is needed to ensure increasingly accurate maps can be produced in future.
2. Global
The global DVS map (Figure 1) gives a clear overview of the variability in vector complexity across the world. Africa appears to show a relatively simple picture of a small number of highly dominant species covering large areas of the continent and although the ‘secondary DVS’ are not shown (see Figure 4), even with their influence, the comparative complexity between African and Asia is very different. The Asian-Pacific region has 19 DVS [14] (16 of which are shown on the multi-species maps presented here (Figures 1 & 5) – see below) whereas Africa has only seven DVS [5], with the three ‘primary’ DVS shown on the global map (Figure 1 - see below). Of the 19 species in the Asian-Pacific, nine are now considered species complexes, whereas of the seven African DVS, only
North America (excluding Mexico) shows a simple vector profile (Figure 2). There are only two species considered here as DVS:
The individual regions (Americas, Africa, and Asia-Pacific) are discussed in more detail in the following sections.

Figure 1.
The global distribution of 34 DVS. (Map reproduced from Sinka
3. The Americas
On a global scale, the nations of the Americas benefit from having the lowest
There are nine DVS in the Americas (Figure 2, Table 1) [15], with two species having their distributions contained entirely within North America (

Table 1.
Many of the American species show great variability in their adult behaviour, with most showing little preference for biting either humans or animals [15] (Table 1), tending to feed on whichever host they first encounter. This variability is also reflected in their propensity to bite both indoors and out. Overall, the majority of DVS in the Americas will rest outside after biting (Table 1, [15]).
Despite similar adult behaviour amongst many of the South American DVS, there are a number of behavioural characteristics found in the larval stages that do differentiate the species (Table 1). For example
The

Figure 2.
Multi-species map of the nine DVS of the Americas (map reproduced from Sinka

Figure 3.
Predicted distribution maps for a)
4. Africa
Across the huge and variable landscape of the African continent, there is a corresponding variability in the intensity of malaria transmission [32, 33]. Sub-saharan Africa is, however, home to localities suffering from the highest global malaria transmission levels, and hence, morbidity and mortality of malaria [17, 32, 34-36]; a consequence of the wide spread presence of the most effective and efficient vector currently known,
Figure 1 shows those vector species that can be considered the ‘primary’ DVS of Africa:
The extensive distribution of

Table 2.
Summary of bionomics of the DVS of Africa (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Despite the zoophilic label, the feeding behaviour of
Beside the apparent inability to exist in the forested west of Africa,
The larvae of

Figure 4.
Multi-species map of Africa indicating the distributions of the four ‘secondary’ but still important, DVS. (map reproduced from Sinka et al. [
5. Asia
The region of Central, South and East Asia is home to 46% of the global populations at risk (PAR) of stable falciparum malaria [82] and suffers a particularly high impact of vivax malaria, with an estimated 82% of the world’s PAR of
With at least nine out of 19 DVS found in the Asian-Pacific now considered as a species complex [1, 6], the impetus to correctly identify both the vectors and their behaviours at a specific location is even greater in this region than elsewhere. Indeed, even within those species not currently considered as part of a complex, behavioural variability is common, depending upon location, and in some cases to such an extent that a species considered a vector in one location may be only of secondary importance, or even a non vector in another [14]. For example,

Table 3a.
Summary of bionomics of the DVS of the Asian-Pacific (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.

Table 3b.
Summary of bionomics of the DVS of the Asian-Pacific (created by cross referencing TAG and literature searches) Filled dot (∙) indicates typical behaviour, open dot (◦) indicates non-typical behaviour but examples exist, and dashes (-) indicate no data.
Unfortunately the high number of vectors in this region, and their complexity, have not equated to a higher level of knowledge, despite considerable effort from local scientists as well as from US military entomologists during WWII and the Vietnam War. Indeed, amongst all 41 DVS mapped [5, 14, 15], the two species with the lowest number of occurrence points, were both from the Asian-Pacific region (
5.1. Indian subcontinent (Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka)
The Indian subcontinent is densely populated giving rise to very high figures for the population at risk from malaria, however, the levels of risk are typically lower than those found in sub-saharan Africa. The majority of people at risk are living in areas of low endemicity (<5% prevalence) or areas of unstable malaria transmission where the disease is not endemic. This is true for both falciparum and vivax malaria. A smaller number of people living in India itself are at risk of much higher levels of falciparum malaria (>40% prevalence), possibly equalling the levels of risk found in sub-saharan Africa although there is a need for more data to support these figures [82].
The range of the
Members of the complex are found at a wide range of altitudes, from plains to hilly and mountainous areas [100]. The habitats they utilise are also varied and include forested and deforested ecotypes and irrigated areas. Consequentially, the larval sites they inhabit are also wide-ranging and include man-made habitats such as irrigation canals, borrow pits, domestic wells, tanks and gutters as well as natural sites such as stream margins and rock pools [96, 100, 101, 104-107]. A tolerance to brackish water has also been reported [96, 108], although freshwater sites appear to be preferred. With many aspects of behaviour dependent on sibling, further investigations, coupled with confirmed identifications of each species, are needed before targeted vector control can be applied.
Again, despite a large distribution (Figure 1) [14], the behaviour and ecology of the
The ability of the larval stages of
5.2. Southeast Asia (Cambodia, Laos, Myanmar, Thailand, Vietnam)
Human populations in Southeast Asia, with the exception of Myanmar, are typically exposed to low levels of falciparum and vivax malaria endemicity, unstable malaria transmission or are living in malaria-free areas. The majority of the population in Myanmar live in areas with low malaria endemicity but significant numbers live in areas of moderate (5-40% prevalence) and high (>40% falciparum prevalence or >7% vivax prevalence) risk. There is increasing evidence that knowlesi malaria is transmitted from monkeys to humans in this region, particularly in the South, but the level of risk is currently unmeasured [82, 83, 134, 135].
The Dirus and Minimus complexes both contain species considered particularly efficient in transmitting malaria. Indeed, the
Larvae are typically found in small, temporary, shallow and shaded pools of fresh water within the forest environment, such as puddles, pits, animal footprints, wheel ruts, hollow logs and slow flowing streams (Table 3a) [151-154].
Species of the
5.3. Asia-Pacific (Indonesia, Papua New Guinea, Philippines, Solomon Islands, Vanuatu, Timor Leste)
Human populations in the Asia-Pacific, with the exception of Papua New Guinea and Indonesian Papua, typically live in areas with low levels of falciparum and vivax malaria endemicity (<5% prevalence), or unstable malaria transmission or that are malaria-free. The majority of the population in Papua New Guinea live in areas with low malaria endemicity (<5% prevalence) but significant numbers live in areas of moderate (5-40% prevalence) risk. [82, 83].
The DVS in the Asia-Pacific region (as categorised here) are dominated by three of the 12 members of the Punctulatus Group, namely
Despite being the most studied member of the Punctulatus Group, there are still many unknowns regarding the ecology and behaviour of the species of the
The larvae of

Figure 5.
Multi-species map of South-East Asia and the Asia-Pacific region indicating the distribution of 13 DVS of particular importance. (map reproduced from Sinka et al. [
The last DVS in this region is a member of the
6. Map methodology
A full description of the methodology used to create the individual and multi-species maps is given in Sinka
The maps presented here were created using the Boosted Regression Tree (BRT) environmental niche modelling method [187, 188]. This method uses spatially defined presence data and environmental and climatic variables to identify the conditions that typify a species’ habitat. The model then identifies all locations where such conditions exist and therefore other localities where the species could potentially occur (i.e. its fundamental niche). It also provides an estimate of the probability of occurrence, i.e. applying a numerical value to indicate the conditions within the acceptable range of a species. The multi-species maps show only presence pixels with a probability value greater than 0.5 for each species.
To create the multi-species maps, the individual species distributions were overlaid ensuring the most dominant species (established through consultation with a technical advisory group of vector experts) was uppermost. Where more than one species was considered dominant in an area the species distributions were merged.
7. Conclusions
The maps given in this chapter are presented with the caveat that they represent only the beginning of a process to establish the distribution of these vectors. As with all species distribution modelling, the accuracy of the output is limited by the amount and quality of the data that is available to the model. The data must be accurately geo-referenced and reflect the true and full identity of the species to be modelled. Our maps were created using the most comprehensive database of species occurrence currently available, yet still, for many of the DVS, the quality of the data is ambiguous and the quantity is poor. However, as more reliable and repeatable methods of species identification are developed, species occurrence data and the corresponding bionomics will be better understood as the taxonomy of many of these species are resolved. Moreover, a greater commitment for data sharing between research groups, public health officials, modellers and map makers is beginning to increase the quantity and quality of data available and subsequently, increasingly accurate maps and a greater understanding of transmission dynamics, combined with the benefits of targeted vector control, is making the prospect of the global elimination of malaria a much more realistic goal.
Acknowledgments
The information detailed in this chapter is based on a study originally conceived by Simon Hay and completed in collaboration with an esteemed group of vector experts, who were generous with both their time and expertise, and without whom, the bionomics sections would be a great deal shorter and the maps a great deal poorer. I would therefore like to thank Michael J. Bangs, Theeraphap Chareonviriyaphap, Maureen Coetzee, Ralph E. Harbach, Janet Hemingway, Sylvie Manguin, Charles M. Mbogo and Yasmin Rubio-Palis. Thanks also to Catherine Moyes for providing malaria parasite backgound information and for proof reading this work.References
- 1.
Genus Anopheles Meigen, 1818.Mosquito Taxonomic Inventory [database on the Internet]2011 [cited 2 December 2011]. Available from: http://mosquito-taxonomic-inventory.info. - 2.
Service MW, Townson H. The Anopheles vector. In: Gilles HM, Warrell DA, editors. Essential Malariology. Fourth edition ed. London: Arnold; 2002. p. 59-84. - 3.
Hay SI, Sinka ME, Okara RM, Kabaria CW, Mbithi PM, Tago CC, Benz D, Gething PW, Howes RE, Patil AP, Temperley WH, Bangs MJ, Chareonviriyaphap T, Elyazar IR, Harbach RE, Hemingway J, Manguin S, Mbogo CM, Rubio-Palis Y, Godfray HC. Developing global maps of the dominant Anopheles vectors of human malaria. PLoS Med. 2010;7(2):e1000209. - 4.
Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI. A global map of dominant malaria vectors. Parasit Vectors. 2012;5(69). - 5.
Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HCJ, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010;3(1):117. - 6.
Harbach RE. The classification of genus Anopheles (Diptera: Culicidae): a working hypothesis of phylogenetic relationships. Bull Entomol Res. 2004;94(6):537-53. - 7.
Collins FH, Paskewitz SM. Malaria: current and future prospects for control. Annu Rev Entomol. 1995;40:195-219. - 8.
Service MW. Appendix II. Characteristics of some major Anopheles vectors of human malaria. In: Gilles HM, Warrell DA, editors. Bruce-Chwatt's Essential Malariology. Third ed. London: Edward Arnold; 1993. p. 305-10. - 9.
Service MW. The Anopheles vector. In: Gilles HM, Warrell DA, editors. Bruce-Chwatt's Essential Malariology. Third ed. London: Edward Arnold; 1993. p. 96-123. - 10.
Mouchet J, Carnevale P, Coosemans M, Julvez J, Manguin S, Richard-Lenoble D, Sircoulon J. Biodiversité du paludisme dans le monde. Montrouge, France: John Libbey Eurotext; 2004. - 11.
Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J. A global index representing the stability of malaria transmission. Am J Trop Med Hyg. 2004;70(5):486-98. - 12.
White GB. Malaria. Geographical distribution of arthropod-borne diseases and their principal vectors Geneva: World Health Organization, Division of Vector Biology and Control1989 Contract No.: WHO/VBC/89967. - 13.
Manguin S, Carnevale P, Mouchet J, Coosemans M, Julvez J, Richard-Lenoble D, Sircoulon J. Biodiversity of malaria in the world. Montrouge, France: John Libbey Eurotext; 2008. - 14.
Sinka ME, Bangs MJ, Manguin S, Chareonviriyaphap T, Patil AP, Temperley WH, Gething PW, Elyazar IR, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2011;4:89. - 15.
Sinka ME, Rubio-Palis Y, Manguin S, Patil AP, Temperley WH, Gething PW, Van Boeckel T, Kabaria CW, Harbach RE, Hay SI. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis. Parasit Vectors. 2010 Aug 16;3(1):72. - 16.
Manguin S, Boëte C. Global impact of mosquito biodiversity, human vector-borne diseases and environmental change. In: Lopez-Pujol J, (ed.). The importance of biological interactions in the study of biodiversity. Rijeka, Croatia: InTech open access Publisher; 2011. p. 390. - 17.
Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, Kabaria CW, Manh BH, Elyazar IR, Brooker S, Smith DL, Moyeed RA, Snow RW. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009 Mar 24;6(3):e1000048. - 18.
WHO/PAHO (World Health Organization/Pan American Health Organization). Malaria in the Americas: time series epidemiological data from 2000 to 2007. Washington DC: Pan American Health Organization, Regional Office for the Americas 2008. - 19.
WHO/PAHO (World Health Organization/Pan American Health Organization). Regional strategic plan for malaria in the Americas 2006-2010. Washington, DC: Pan American Health Organization, Regional Office for the Americas 2006. - 20.
WHO (World Health Organization). Global strategic framework for integrated vector management. Geneva: World Health Organization 2004. - 21.
Conn JE, Wilkerson RC, Segura MN, de Souza RT, Schlichting CD, Wirtz RA, Povoa MM. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg. 2002;66(1):18-22. - 22.
Grillet ME, Montañez H, Berti J. Estudio biosistemático y ecológico de Anopheles aquasalis y sus implicaciones para el control de la malaria en el estado Sucre: II. Ecología de sus criaderos. Bol Dir Malariol San Amb 1998;38(1):38-46. - 23.
Manguin S, Peyton EL, James AC, Roberts DR. Apparent changes in the abundance and distribution of Anopheles species on Grenada Island. J Am Mosq Control Assoc. 1993;9(4):403-7. - 24.
Brochero HL, Rey G, Buitrago LS, Olano VA. Biting activity and breeding sites of Anopheles species in the municipality Villavicencio, Meta, Colombia. J Am Mosq Control Assoc. 2005;21(2):182-6. - 25.
Moreno JE, Rubio-Palis Y, Acevedo P. Identificación de criaderos de anofelinos en un área endémica del estado Bolívar, Venezuela. Bol Malariol San Amb 2000;40:21-30. - 26.
Moreno JE, Rubio-Palis Y, Paez E, Perez E, Sanchez V. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela. Med Vet Entomol. 2007 Dec;21(4):339-49. - 27.
Manguin S, Roberts DR, Peyton EL, Rejmankova E, Pecor J. Characterization of Anopheles pseudopunctipennis larval habitats. J Am Mosq Control Assoc. 1996;12(4):619-26. - 28.
Rubio-Palis Y, Zimmerman RH. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol. 1997 Sep;34(5):499-510. - 29.
Bond JG, Novelo-Gutierrez R, Ulloa A, Rojas JC, Quiroz-Martinez H, Williams T. Diversity, abundance, and disturbance response of Odonata associated with breeding sites of Anopheles pseudopunctipennis (Diptera: Culicidae) in southern Mexico. Environ Entomol. 2006 Dec;35(6):1561-8. - 30.
Bond JG, Quiroz-Martinez H, Rojas JC, Valle J, Ulloa A, Williams T. Impact of environmental manipulation for Anopheles pseudopunctipennis Theobald control on aquatic insect communities in southern Mexico. J Vector Ecol. 2007 Jun;32(1):41-53. - 31.
Bond JG, Rojas JC, Arredondo-Jimenez JI, Quiroz-Martinez H, Valle J, Williams T. Population control of the malaria vector Anopheles pseudopunctipennis by habitat manipulation. Proc Biol Sci. 2004 Oct 22;271(1553):2161-9. - 32.
Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol. 2005 Jan;3(1):81-90. - 33.
Hay SI, Rogers DJ, Toomer JF, Snow RW. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans R Soc Trop Med Hyg. 2000;94(2):113-27. - 34.
Fontenille D, Simard F. Unravelling complexities in human malaria transmission dynamics in Africa through a comprehensive knowledge of vector populations. Comp Immunol Microbiol Infect Dis. 2004 Sep;27(5):357-75. - 35.
Guerra CA, Gikandi PW, Tatem AJ, Noor AM, Smith DL, Hay SI, Snow RW. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med. 2008 Feb;5(2):e38. - 36.
Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med. 2010;7(6):e100029. - 37.
Coluzzi M. The clay feet of the malaria giant and its African roots: hypotheses and inferences about origin, spread and control of Plasmodium falciparum . Parassitologia. 1999 Sep;41(1-3):277-83. - 38.
Gillies MT, de Meillon B. The Anophelinae of Africa South of the Sahara (Ethiopian zoogeographical region). 2nd ed. Johannesburg: The South African Institute for Medical Research; 1968. - 39.
Temu EA, Minjas JN, Coetzee M, Hunt RH, Shift CJ. The role of four anopheline species (Diptera: Culicidae) in malaria transmission in coastal Tanzania. Trans R Soc Trop Med Hyg. 1998 Mar-Apr;92(2):152-8. - 40.
Gillies MT, Coetzee M. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Johannesburg: The South African Institute for Medical Research; 1987. - 41.
Cuamba N, Mendis C. The role of Anopheles merus in malaria transmission in an area of southern Mozambique. J Vector Borne Dis. 2009 Jun;46(2):157-9. - 42.
Bryan JH. Anopheles gambiae andA. melas at Brefet, The Gambia, and their role in malaria transmission. Ann Trop Med Parasitol. 1983 Feb;77(1):1-12. - 43.
Charlwood JD, Smith T, Kihonda J, Heiz B, Billingsley PF, Takken W. Density-independent feeding success of malaria vectors (Diptera: Culicidae) in Tanzania. Bull Entomol Res. 1995 Mar;85(1):29-35. - 44.
Gelfand HM. Anopheles gambiae Giles andAnopheles melas Theobald in a coastal area of Liberia, West Africa. Trans R Soc Trop Med Hyg. 1955 Nov;49(6):508-27. - 45.
Muirhead-Thomson RC. Studies on salt-water and fresh-water Anopheles gambiae on the East African coast. Bull Entomol Res. 1951;41:487-502. - 46.
Muirhead-Thomson RC. Studies on Anopheles gambiae andA. melas in and around Lagos. Bull Entomol Res. 1948;38:527-58. - 47.
Muirhead-Thomson RC. Studies on the breeding places and control of Anopheles gambiae andA. gambiae var.melas in coastal districts of Sierra Leone. Bull Entomol Res. 1946;36:185-252. - 48.
Hunt RH, Coetzee M, Fettene M. The Anopheles gambiae complex: a new species from Ethiopia. Trans R Soc Trop Med Hyg. 1998 Mar-Apr;92(2):231-5. - 49.
Coluzzi M, Petrarca V, Dideco MA. Chromosomal inversion intergradation and incipient speciation in Anopheles gambiae . B Zool. 1985;52(1-2):45-63. - 50.
Della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001;10(1):9-18. - 51.
Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, Alloueche A, Curtis CF, Toure YT, Coluzzi M. The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation withinAn. gambiae s.s. Insect Mol Biol. 2003;12(3):241-5. - 52.
Caputo B, Nwakanma D, Jawara M, Adiamoh M, Dia I, Konate L, Petrarca V, Conway DJ, Della Torre A. Anopheles gambiae complex along The Gambia river, with particular reference to the molecular forms ofAn. gambiae s.s. Malar J. 2008 Sep 22;7(1):182. - 53.
Costantini C, Ayala D, Guelbeogo WM, Pombi M, Some CY, Bassole IH, Ose K, Fotsing JM, Sagnon N, Fontenille D, Besansky NJ, Simard F. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae . BMC Ecol. 2009 May 21;9(1):16. - 54.
Della Torre A, Costantini C, Besansky NJ, Caccone A, Petrarca V, Powell JR, Coluzzi M. Speciation within Anopheles gambiae -the glass is half full. Science. 2002 Oct 4;298(5591):115-7. - 55.
Della Torre A, Tu ZJ, Petrarca V. On the distribution and genetic differentiation of Anopheles gambiae s.s. molecular forms. Insect Biochem Molec. 2005 Jul;35(7):755-69. - 56.
Diabate A, Dabire RK, Heidenberger K, Crawford J, Lamp WO, Culler LE, Lehmann T. Evidence for divergent selection between the molecular forms of Anopheles gambiae : role of predation. BMC Evol Biol. 2008 Jan 11;8(1):5. - 57.
Diabate A, Dabire RK, Kim EH, Dalton R, Millogo N, Baldet T, Simard F, Gimnig JE, Hawley WA, Lehmann T. Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment. J Med Entomol. 2005;42(4):548-53. - 58.
Sharp BL, Lesueur D. Behavioral variation of Anopheles arabiensis (Diptera: Culicidae) populations in Natal, South Africa. Bull Entomol Res. 1991 Mar;81(1):107-10. - 59.
White GB. Anopheles gambiae complex and disease transmission in Africa. Trans R Soc Trop Med Hyg. 1974;68(4):278-301. - 60.
White GB. The Anopheles gambiae complex and malaria transmission around Kisumu, Kenya. Trans R Soc Trop Med Hyg. 1972;66(4):572-81. - 61.
White GB, Rosen P. Comparative studies on sibling species of Anopheles gambiae Giles complex (Dipt: Culicidae). II. Ecology of Species A and B in savanna around Kaduna, Nigeria, during transition from wet to dry season. Bull Entomol Res. 1973;62(4):613-25. - 62.
Tirados I, Costantini C, Gibson G, Torr SJ. Blood-feeding behaviour of the malarial mosquito Anopheles arabiensis : implications for vector control. Med Vet Entomol. 2006;20(4):425-37. - 63.
Shililu J, Mbogo C, Ghebremeskel T, Githure J, Novak R. Mosquito larval habitats in a semi-arid ecosystem in Eritrea: impact of larval habitat management on Anopheles arabiensis populations. Am J Trop Med Hyg. 2007 Jan;76(1):103-10. - 64.
Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M, Ghebregziabiher A, Sintasath D, Bretas G, Mbogo C, Githure J, Brantly E, Novak R, Beier JC. Larval habitat diversity and ecology of anopheline larvae in Eritrea. J Med Entomol. 2003;40(6):921-9. - 65.
Kamau L, Munyekenye GO, Vulule JM, Lehmann T. Evaluating genetic differentiation of Anopheles arabiensis in relation to larval habitats in Kenya. Infect Genet Evol. 2007 Mar;7(2):293-7. - 66.
Abdullah MA, Merdan AI. Distribution and ecology of the mosquito fauna in the southwestern Saudi Arabia. J Egypt Soc Parasitol. 1995 Dec;25(3):815-37. - 67.
Mwangangi JM, Muturi EJ, Shililu JI, Muriu S, Jacob B, Kabiru EW, Mbogo CM, Githure JI, Novak RJ. Environmental covariates of Anopheles arabiensis in a rice agroecosystem in Mwea, Central Kenya. J Am Mosq Control Assoc. 2007 Dec;23(4):371-7. - 68.
Mwangangi JM, Muturi EJ, Shililu J, Muriu SM, Jacob B, Kabiru EW, Mbogo CM, Githure J, Novak R. Survival of immature Anopheles arabiensis (Diptera: Culicidae) in aquatic habitats in Mwea rice irrigation scheme, central Kenya. Malar J. 2006;5:114. - 69.
Mwangangi J, Shililu J, Muturi E, Gu WD, Mbogo C, Kabiru E, Jacob B, Githure J, Novak R. Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya. J Vector Ecol. 2006 Dec;31(2):245-51. - 70.
Mutero CM, Blank H, Konradsen F, van der Hoek W. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya. Acta Trop. 2000;76(3):253-63. - 71.
Ameneshewa B, Service MW. Resting habits of Anopheles arabiensis in the Awash River valley of Ethiopia. Ann Trop Med Parasitol. 1996;90(5):515-21. - 72.
Coluzzi M, Sabatini A, Petrarca V, Di Deco MA. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg. 1979;73(5):483-97. - 73.
Coetzee M, Fontenille D. Advances in the study of Anopheles funestus , a major vector of malaria in Africa. Insect Biochem Mol Biol. 2004 Jul;34(7):599-605. - 74.
Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg. 2003;69(2):200-5. - 75.
Weeto MM, Koekemoer LL, Kamau L, Hunt RH, Coetzee M. Evaluation of a species-specific PCR assay for the Anopheles funestus group from eleven African countries and Madagascar. Trans R Soc Trop Med Hyg. 2004 Mar;98(3):142-7. - 76.
Antonio-Nkondjio C, Kerah CH, Simard F, Awono-Ambene P, Chouaibou M, Tchuinkam T, Fontenille D. Complexity of the malaria vectorial system in Cameroon: contribution of secondary vectors to malaria transmission. J Med Entomol. 2006;43(6):1215-21. - 77.
Awolola TS, Oyewole IO, Koekemoer LL, Coetzee M. Identification of three members of the Anopheles funestus (Diptera: Culicidae) group and their role in malaria transmission in two ecological zones in Nigeria. Trans R Soc Trop Med Hyg. 2005;99(7):525-31. - 78.
Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol. [Article]. 2000 Jun;14(2):181-9. - 79.
Carnevale P, Guillet P, Robert V, Fontenille D, Doannio J, Coosemans M, Mouchet J. Diversity of malaria in rice growing areas of the Afrotropical region. Parassitologia. 1999;41(1-3):273-6. - 80.
Chandler JA, Highton RB, Hill MN. Mosquitoes of the Kano Plain, Kenya. I. Results of indoor collections in irrigated and nonirrigated areas using human bait and light traps. J Med Entomol. 1975 Dec 30;12(5):504-10. - 81.
Sogoba N, Doumbia S, Vounatsou P, Bagayoko MM, Dolo G, Traore SF, Maiga HM, Toure YT, Smith T. Malaria transmission dynamics in Niono, Mali: the effect of the irrigation systems. Acta Trop. 2007 Mar;101(3):232-40. - 82.
Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IR, Johnston GL, Tatem AJ, Hay SI. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10:378. - 83.
Gething PW, Elyazar IRF, Moyes CM, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price R, Müller I, Baird JK, Hay SI. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012;6(9):e1814. - 84.
Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IRF, Baird KJ, Snow RW, Hay SI. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010;4(8):e774. - 85.
Dash AP, Bendley MS, Das AK, Das M, Dwivedi SR. Role of An. annularis as a vector of malaria in inland of Orissa. J Commun Dis. 1982;14:224. - 86.
Ghosh KK, Chakraborty S, Bhattacharya S, Palit A, Tandon N, Hati AK. Anopheles annularis as a vector of malaria in rural West Bengal. Indian J Malariol. 1985;22(2):65-9. - 87.
Gunasekaran K, Sahu SS, Parida SK, Sadanandane C, Jambulingam P, Das PK. Anopheline fauna of Koraput District, Orissa state, with particular reference to transmission of malaria. Indian J Med Res. 1989;89:340-3. - 88.
Mahapatra N, Marai NS, Ranjit MR, Parida SK, Hansdah DP, Hazra RK, Kar SK. Detection of Plasmodium falciparum infection inAnopheles mosquitoes from Keonjhar District, Orissa, India. J Vector Borne Dis. 2006;43(4):191-4. - 89.
Prakash A, Bhattacharyya DR, Mohapatra PK, Mahanta J. Role of the prevalent Anopheles species in the transmission ofPlasmodium falciparum andP. vivax in Assam state, north-eastern India. Ann Trop Med Parasitol. 2004;98(6):559-68. - 90.
Ramasamy R, De Alwis R, Wijesundere A, Ramasamy MS. Malaria transmission at a new irrigation project in Sri Lanka: the emergence of Anopheles annularis as a major vector. Am J Trop Med Hyg. 1992;47(5):547-53. - 91.
Rao TR. The anophelines of India, 2nd edition. New Delhi: Malaria Research Centre, Indian Council of Medical Research 1984. - 92.
Garros C, Koekemoer LL, Coetzee M, Coosemans M, Manguin S. A single multiplex assay to identify major malaria vectors within the African Anopheles funestus and the OrientalAn. minimus groups. Am J Trop Med Hyg. 2004 Jun;70(6):583-90. - 93.
Walton C, Somboon P, O'Loughlin SM, Zhang S, Harbach RE, Linton YM, Chen B, Nolan K, Duong S, Fong MY, Vythilingum I, Mohammed ZD, Trung HD, Butlin RK. Genetic diversity and molecular identification of mosquito species in the Anopheles maculatus group using the ITS2 region of rDNA. Infect Genet Evol. 2007 Jan;7(1):93-102. - 94.
Walton C, Handley JM, Kuvangkadilok C, Collins FH, Harbach RE, Baimai V, Butlin RK. Identification of five species of the Anopheles dirus complex from Thailand, using allele-specific polymerase chain reaction. Med Vet Entomol. 1999 Feb;13(1):24-32. - 95.
Surendran SN, Abhayawardana TA, De Silva BG, Ramasamy R, Ramasamy MS. Anopheles culicifacies Y-chromosome dimorphism indicates sibling species (B and E) with different malaria vector potential in Sri Lanka. Med Vet Entomol. 2000;14(4):437-40. - 96.
Jude PJ, Dharshini S, Vinobaba M, Surendran SN, Ramasamy R. Anopheles culicifacies breeding in brackish waters in Sri Lanka and implications for malaria control. Malar J. 2010 Apr 21;9(1):106. - 97.
Subbarao SK, Sharma VP. Anopheline species complexes and malaria control. Indian J Med Res. 1997;106:164-73. - 98.
Amerasinghe PH, Amerasinghe FP, Konradsen F, Fonseka KT, Wirtz RA. Malaria vectors in a traditional dry zone village in Sri Lanka. Am J Trop Med Hyg. 1999;60(3):421-9. - 99.
Subbarao SK. The Anopheles culicifacies complex and control of malaria. Parasitol Today. 1988;4(3):72-5. - 100.
Barik TK, Sahu B, Swain V. A review on Anopheles culicifacies : from bionomics to control with special reference to Indian subcontinent. Acta Trop. 2009 Feb;109(2):87-97. - 101.
Sharma VP. Fighting malaria in India. Curr Sci. 1998;75:1127-40. - 102.
Surendran SN, De Silva BG, Srikrishnaraj KA, Ramasamy MS, Ramasamy R. Establishment of species E, not B as the major vector of malaria in the Anopheles culicifacies complex in the country. Proc Sri Lanka Assoc Advmt Sci. 2003;59:18. - 103.
Subbarao SK, Vasantha K, Raghavendra K, Sharma VP, Sharma GK. Anopheles culicifacies : siblings species composition and its relationship to malaria incidence. J Am Mosq Control Assoc. 1988;4(1):29-33. - 104.
Vatandoost H, Shahi H, Abai MR, Hanafi-Bojd AA, Oshaghi MA, Zamani G. Larval habitats of main malaria vectors in Hormozgan Province and their susceptibility to different larvicides. Southeast Asian J Trop Med Public Health. 2004;35 Suppl 2:22-5. - 105.
Surendran SN, Ramasamy R. Some characteristics of the larval breeding sites of Anopheles culicifacies species B and E in Sri Lanka. J Vector Borne Dis. 2005;42(2):39-44. - 106.
Sabesan S, Krishnamoorthy K, Jambulingam P, Rajendran G, Kumar NP, Rajagopalan PK. Breeding habitats of Anopheles culicifacies in Rameswaram Island. Indian J Med Res. 1986;84:44-52. - 107.
Amerasinghe FP, Ariyasena TG. Larval survey of surface water-breeding mosquitoes during irrigation development in the Mahaweli Project, Sri Lanka. J Med Entomol. 1990;27(5):789-802. - 108.
Roberts D. Mosquitoes (Diptera: Culicidae) breeding in brackish water: female ovipositional preferences or larval survival? J Med Entomol. 1996 Jul;33(4):525-30. - 109.
Subbarao SK, Nanda N, Vasantha K, Dua VK, Malhotra MS, Yadav RS, Sharma VP. Cytogenetic evidence for three sibling species in Anopheles fluviatilis . Ann Entomol Soc Am. 1994;87:116-21. - 110.
Chen B, Butlin RK, Pedro PM, Wang XZ, Harbach RE. Molecular variation, systematics and distribution of the Anopheles fluviatilis complex in southern Asia. Med Vet Entomol. 2006;20(1):33-43. - 111.
Nandi J, Kaul SM, Sharma SN, Lal S. Anthropophily of anophelines in Duars of West Bengal and other regions of India. J Commun Dis. 2000;32(2):95-9. - 112.
Nanda N, Yadav RS, Subbarao SK, Joshi H, Sharma VP. Studies on Anopheles fluviatilis andAnopheles culicifacies sibling species in relation to malaria in forested hilly and deforested riverine ecosystems in northern Orissa, India. J Am Mosq Control Assoc. 2000;16(3):199-205. - 113.
Bhatt RM, Kohli VK. Biting rhythms of some anophelines in central Gujarat. Indian J Malariol. 1996;33(4):180-90. - 114.
Malakar P, Das S, Saha GK, Dasgupta B, Hati AK. Indoor resting anophelines of north Bengal. Indian J Malariol. 1995;32(1):24-31. - 115.
Nanda N, Joshi H, Subbarao SK, Yadav RS, Shukla RP, Dua VK, Sharma VP. Anopheles fluviatilis complex: host feeding patterns of species S, T, and U. J Am Mosq Control Assoc. 1996;12(1):147-9. - 116.
Sharma SK, Nanda N, Dutta VK. Studies on the bionomics of Anopheles fluviatilis s.l. and the sibling species composition in the foothills of Shiwalik Range, India. Southeast Asian J Trop Med Public Health. 1995;26(3):566-72. - 117.
Eshghi N, Motabar M, Javadian E, Manoutcheri AV. Biological features of Anopheles fluviatilis and its role in the transmission of malaria in Iran. Trop Geogr Med. 1976 Mar;28(1):41-4. - 118.
Naddaf SR, Oshaghi MA, Vatandoost H, Assmar M. Molecular characterization of Anopheles fluviatilis species complex in the Islamic Republic of Iran. East Mediterr Health J. 2003;9(3):257-65. - 119.
Shukla RP, Pandey AC, Kohli VK, Ojha VP, Sharma VP. Bionomics of vector anophelines in District Naini Tal, Uttar Pradesh. Indian J Malariol. 1995;32(4):153-63. - 120.
Shukla RP, Nanda N, Pandey AC, Kohli VK, Joshi H, Subbarao SK. Studies on bionomics of Anopheles fluviatilis and its sibling species in Nainital District, U.P. Indian J Malariol. 1998;35(2):41-7. - 121.
Reisen WK, Pradhan SP, Shrestha JP, Shrestha SL, Vaidya RG, Shrestha JD. Anopheline mosquito (Diptera: Culicidae) ecology in relation to malaria transmission in the inner and outer terai of Nepal, 1987-1989. J Med Entomol. 1993;30(4):664-82. - 122.
Hanafi-Bojd AA, Vatandoost H, Jafari R. Susceptibility status of Anopheles dthali andAn. fluviatilis to commonly used larvicides in an endemic focus of malaria, southern Iran. J Vector Borne Dis. 2006;43(1):34-8. - 123.
Gunasekaran K. Age composition, natural survival and population growth of Anopheles fluviatilis James, 1902, the major malaria vector in the endemic belt of Koraput District, Orissa, India. Southeast Asian J Trop Med Public Health. 1994;25(1):196-200. - 124.
Bhatt RM, Srivastava HC, Pujara PK. Biology of malaria vectors in central Gujarat. Indian J Malariol. 1994;31(2):65-76. - 125.
Batra CP, Reuben R. Breeding of Anopheles stephensi (Liston) in wells and cisterns in Salem, Tamil Nadu. Indian J Med Res. 1979 Dec;70 Suppl:114-22. - 126.
Batra CP, Mittal PK, Adak T, Subbarao SK. Efficacy of Agnique MMF monomolecular surface film against Anopheles stephensi breeding in urban habitats in India. J Am Mosq Control Assoc. 2006;22(3):426-32. - 127.
Vatandoost H, Oshaghi MA, Abaie MR, Shahi M, Yaaghoobi F, Baghaii M, Hanafi-Bojd AA, Zamani G, Townson H. Bionomics of Anopheles stephensi Liston in the malarious area of Hormozgan Province, southern Iran, 2002. Acta Trop. 2006;97(2):196-203. - 128.
Manouchehri AV, Javadian E, Eshighy N, Motabar M. Ecology of Anopheles stephensi Liston in southern Iran. Trop Geogr Med. 1976 Sep;28(3):228-32. - 129.
Krishnan KS. A. stephensi Liston, 1901. Vectors of Malaria in India. 2nd ed. Delhi: National Society of India for Malaria and Other Mosquito-born Disease; 1961. p. 39-58. - 130.
Zaim M, Ershadi MR, Manouchehri AV, Hamdi MR. The use of CDC light traps and other procedures for sampling malaria vectors in southern Iran. J Am Mosq Control Assoc. 1986;2(4):511-5. - 131.
Reisen WK. Population dynamics of some Pakistan mosquitoes: the impact of residual organophosphate insecticide spray on anopheline relative abundance. Ann Trop Med Parasitol. 1986;80(1):69-75. - 132.
Sweet WC, Rao B. Races of Anopheles stephensi Liston, 1901. Ind Med Gaz. 1937;72:665-74. - 133.
Singh OP. Bionomics of malaria vectors in India: Malaria Research Centre 2002. - 134.
Cox-Singh J, Singh B. Knowlesi malaria: newly emergent and of public health importance? Trends Parasitol. 2008 Sep;24(9):406-10. - 135.
Vythilingam I. Plasmodium knowlesi andWuchereria bancrofti : their vectors and challenges for the future. Front Syst Biol. 2012;3(115). - 136.
Rosenberg R, Andre RG, Somchit L. Highly efficient dry season transmission of malaria in Thailand. Trans R Soc Trop Med Hyg. 1990;84(1):22-8. - 137.
Manguin S, Garros C, Dusfour I, Harbach RE, Coosemans M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenusCellia in Southeast Asia: An updated review. Infect Genet Evol. 2008 Nov 29;8:489-503. - 138.
Peyton EL, Harrison BA. Anopheles (Cellia )dirus , a new species of the Leucosphyrus Group from Thailand (Diptera: Culicidae). Mosq Syst. 1979;11(1):40-52. - 139.
Peyton EL, Harrison BA. Anopheles (Cellia )takasagoensis Morishita 1946, an additional species in the Balabacensis Complex of Southeast Asia (Diptera: Culicidae). Mosq Syst. 1980;12(3):335-47. - 140.
Peyton EL, Ramalingam S. Anopheles (Cellia )nemophilous , a new species of the Leucosphyrus Group from peninsular Malaysia and Thailand (Diptera: Culicidae). Mosq Syst. 1988;20:272-99. - 141.
Sallum MA, Peyton EL, Wilkerson RC. Six new species of the Anopheles leucosphyrus group, reinterpretation ofAn. elegans and vector implications. Med Vet Entomol. 2005;19(2):158-99. - 142.
Takano KT, Nguyen NT, Nguyen BT, Sunahara T, Yasunami M, Nguyen MD, Takagi M. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam. Parasit Vectors. 2010;3:41. - 143.
Dutta P, Bhattacharyya DR, Khan SA, Sharma CK, Mahanta J. Feeding patterns of Anopheles dirus , the major vector of forest malaria in north east India. Southeast Asian J Trop Med Public Health. 1996;27(2):378-81. - 144.
Manguin S, Bangs MJ, Pothikasikorn J, Chareonviriyaphap T. Review on global co-transmission of human Plasmodium species andWuchereria bancrofti byAnopheles mosquitoes. Infect Genet Evol. 2010 Mar;10(2):159-77. - 145.
Prakash A, Bhattacharyya DR, Mohapatra PK, Mahanta J. Malaria transmission risk by the mosquito Anopheles baimaii (formerly known asAn. dirus species D) at different hours of the night in North-east India. Med Vet Entomol. 2005;19(4):423-7. - 146.
Rattanarithikul R, Konishi E, Linthicum KJ. Detection of Plasmodium vivax andPlasmodium falciparum circumsporozoite antigen in anopheline mosquitoes collected in southern Thailand. Am J Trop Med Hyg. 1996;54(2):114-21. - 147.
Vythilingam I, Phetsouvanh R, Keokenchanh K, Yengmala V, Vanisaveth V, Phompida S, Hakim SL. The prevalence of Anopheles (Diptera: Culicidae) mosquitoes in Sekong Province, Lao PDR in relation to malaria transmission. Trop Med Int Health. 2003;8(6):525-35. - 148.
Trung HD, Bortel WV, Sochantha T, Keokenchanh K, Briet OJ, Coosemans M. Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Trop Med Int Health. 2005;10(3):251-62. - 149.
Misra SP, Nandi J, Narasimham MV, Rajagopal R. Malaria transmission in Nagaland, India. Part I. Anophelines and their seasonality. J Commun Dis. 1993;25(2):62-6. - 150.
Baimai V. Population cytogenetics of the malaria vector Anopheles leucosphyrus group. Southeast Asian J Trop Med Public Health. 1988;19(4):667-80. - 151.
Prakash A, Bhattacharyya DR, Mohapatra PK, Mahanta J. Physico-chemical characteristics of breeding habitats of Anopheles dirus (Diptera: Culicidae) in Assam, India. J Environ Biol. 2002 Jan;23(1):95-100. - 152.
Prakash A, Bhattacharyya DR, Mohapatra PK, Mahanta J. Breeding and day resting habitats of Anopheles dirus in Assam, India. Southeast Asian J Trop Med Public Health. 1997;28(3):610-4. - 153.
Oo TT, Storch V, Becker N. Studies on the bionomics of Anopheles dirus (Culicidae: Diptera) in Mudon, Mon State, Myanmar. J Vector Ecol. 2002;27(1):44-54. - 154.
Htay A, Minn S, Thaung S, Mya MM, Than SM, Hlaing T, Soe S, Druilhe P, Queuche F. Well-breeding Anopheles dirus and their role in malaria transmission in Myanmar. Southeast Asian J Trop Med Public Health. 1999;30(3):447-53. - 155.
Harbach RE, Garros C, Manh ND, Manguin S. Formal taxonomy of species C of the Anopheles minimus sibling species complex (Diptera: Culicidae). Zootaxa. 2007;1654:41-54. - 156.
Harbach RE, Parkin E, Chen B, Butlin RK. Anopheles (Cellia )minimus Theobald (Diptera: Culicidae): neotype designation, characterization, and systematics. Proc Entomol Soc Wash. 2006;108(1):198-209. - 157.
Somboon P, Rory A, Tsuda Y, Takagi M, Harbach RE. Systematics of Anopheles (Cellia )yaeyamaensis sp. n., alias species E of theAn. minimus complex of southeastern Asia (Diptera: Culicidae). Zootaxa. 2010;2651:43-51. - 158.
Farid MA, Chen CT, Hsu TC, Liu SY. Report of WHO evaluation team on malaria eradication in the Ryukyu Islands, 1965. Geneva1966. - 159.
Miyagi I, Toma T, Malenganisho WL, Uza M. Historical review of mosquito control as a component of malaria eradication program in the Ryukyu Archipelago. Southeast Asian J Trop Med Public Health. 1996;27(3):498-511. - 160.
Garros C, Van Bortel W, Trung HD, Coosemans M, Manguin S. Review of the Minimus Complex of Anopheles , main malaria vector in Southeast Asia: from taxonomic issues to vector control strategies. Trop Med Int Health. 2006 Jan;11(1):102-14. - 161.
Rongnoparut P, Ugsang DM, Baimai V, Honda K, Sithiprasasna R. Use of a remote sensing-based geographic information system in the characterizing spatial patterns for Anopheles minimus A and C breeding habitats in western Thailand. Southeast Asian J Trop Med Public Health. 2005 Sep;36(5):1145-52. - 162.
Rattanarithikul R, Green CA, Panyim S, Noigamol C, Chanaimongkol S, Mahapibul P. Larval habitats of malaria vectors and other Anopheles mosquitoes around a transmission focus in northwestern Thailand. J Am Mosq Control Assoc. 1995;11(4):428-33. - 163.
Khan SA, Handique R, Tewari SC, Dutta P, Narain K, Mahanta J. Larval ecology and mosquito fauna of upper Brahmaputra valley, northeast India. Indian J Malariol. 1998;35(3):131-45. - 164.
Harrison BA. Medical entomology studies - XIII. The Myzomyia Series of Anopheles (Cellia ) in Thailand, with emphasis on intra-interspecific variations (Diptera: Culicidae). Contrib Am Entomol Inst (Ann Arbor). 1980;17:1-195. - 165.
Dev V. Anopheles minimus : its bionomics and role in the transmission of malaria in Assam, India. Bull World Health Organ. 1996;74(1):61-6. - 166.
Van Bortel W, Trung HD, Manh ND, Roelants P, Verle P, Coosemans M. Identification of two species within the Anopheles minimus complex in northern Vietnam and their behavioural divergences. Trop Med Int Health. 1999;4(4):257-65. - 167.
Dev V, Bhattacharyya PC, Talukdar Rupjyoti. Transmission of malaria and its control in the northeastern region of India. J Assoc Physicians India. 2003;51:1073-6. - 168.
Chareonviriyaphap T, Prabaripai A, Bangs MJ, Aum-Aung B. Seasonal abundance and blood feeding activity of Anopheles minimus Theobald (Diptera: Culicidae) in Thailand. J Med Entomol. 2003;40(6):876-81. - 169.
Suthas N, Phorn S, Udom C, Cullen JE. The behaviour of Anopheles minimus Theobald (Diptera: Culicidae) subjected to different levels of DDT selection pressure in northern Thailand. Bull Entomol Res. 1986;76:303-12. - 170.
Ismail IA, Notananda V, Schepens J. Studies on malaria and responses of Anopheles balabacensis balabacensis andAnopheles minimus to DDT residual spraying in Thailand. I. Pre-spraying observations. Acta Trop. 1974;31(2):129-64. - 171.
Garros C, Marchand RP, Quang NT, Hai NS, Manguin S. First record of Anopheles minimus C and significant decrease ofAn. minimus A in central Vietnam. J Am Mosq Control Assoc. 2005 Jun;21(2):139-43. - 172.
Van Bortel W, Trung HD, Sochantha T, Keokenchan K, Roelants P, Backeljau T, Coosemans M. Eco-ethological heterogeneity of the members of the Anopheles minimus complex (Diptera: Culicidae) in Southeast Asia and its consequences for vector control. J Med Entomol. 2004 May;41(3):366-74. - 173.
Sungvornyothin S, Muenvorn V, Garros C, Manguin S, Prabaripai A, Bangs MJ, Chareonvirlyaphap T. Trophic behavior and biting activity of the two sibling species of the Anopheles minimus complex in western Thailand. J Vector Ecol. 2006 Dec;31(2):252-61. - 174.
Cooper RD, Waterson DG, Frances SP, Beebe NW, Sweeney AW. Speciation and distribution of the members of the Anopheles punctulatus (Diptera: Culicidae) group in Papua New Guinea. J Med Entomol. 2002;39(1):16-27. - 175.
Cooper RD, Waterson DG, Frances SP, Beebe NW, Pluess B, Sweeney AW. Malaria vectors of Papua New Guinea. Int J Parasitol. 2009 Jun 5;39(13):1495-501. - 176.
Bugoro H, Cooper RD, Butafa C, Iro'ofa C, Mackenzie DO, Chen CC, Russell TL. Bionomics of the malaria vector Anopheles farauti in Temotu Province, Solomon Islands: issues for malaria elimination. Malar J. 2011;10:133. - 177.
Ebsworth P, Bryan JH, Foley DH. Ecological distribution of mosquito larvae of the Anopheles punctulatus group on Niolam (Lihir) Island, Papua New Guinea. J Am Mosq Control Assoc. 2001;17(3):181-5. - 178.
Cooper RD, Frances SP. Malaria vectors on Buka and Bougainville Islands, Papua New Guinea. J Am Mosq Control Assoc. 2002;18(2):100-6. - 179.
Beebe NW, Bakote'e B, Ellis JT, Cooper RD. Differential ecology of Anopheles punctulatus and three members of theAnopheles farauti complex of mosquitoes on Guadalcanal, Solomon Islands, identified by PCR-RFLP analysis. Med Vet Entomol. 2000;14(3):308-12. - 180.
Charlwood JD, Graves PM, Alpers MP. The ecology of the Anopheles punctulatus group of mosquitoes from Papua New Guinea: a review of recent work. P N G Med J. 1986;29(1):19-26. - 181.
Charlwood JD. The influence of larval habitat on the ecology and behavior of females of the Punctulatus Group of Anopheles mosquitoes from Papua New Guinea. In: Lounibos LP, Rey JR, Frank JH, editors. Ecology of mosquitoes: Proceedings of a workshop. Vero Beach: Florida Medical Entomology Laboratory; 1985. p. 399-406. - 182.
Beebe NW, Cooper RD, Morrison DA, Ellis JT. A phylogenetic study of the Anopheles punctulatus group of malaria vectors comparing rDNA sequence alignments derived from the mitochondrial and nuclear small ribosomal subunits. Mol Phylogenet Evol. 2000 Dec;17(3):430-6. - 183.
Lee DJ, Hicks MM, Griffiths M, Debenham ML, Bryan JH, Russell RC, Geary M, Marks EN. The Culicidae of the Australasian Region. Volume 5. Nomenclature, synonymy, literature, distribution, biology and relation to disease. Genus Anopheles . SubgeneraAnopheles ,Cellia . Canberra: Australian Government Publishing Service; 1987. - 184.
Charlwood JD. A differential response to mosquito nets by Anopheles andCulex mosquitoes from Papua New Guinea. Trans R Soc Trop Med Hyg. 1986;80(6):958-60. - 185.
Spenser T, Spenser M, Venters D. Malaria vectors of Papua New Guinea. P N G Med J. 1974;17(1):22-30. - 186.
Bangs MJ, Subianto DB. El Nińo and associated outbreaks of severe malaria in highland populations in Irian Jaya, Indonesia: a review and epidemiological perspective. Southeast Asian J Trop Med Public Health. 1999 Dec;30(4):608-19. - 187.
De'ath G. Boosted trees for ecological modeling and prediction. Ecology. 2007 Jan;88(1):243-51. - 188.
Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 2008 Jul;77(4):802-13.