Effects of cholesterol (Chol) supplemented diet for 10 weeks, on lipoprotein levels in apoE KO mice and their WT counterparts. Unpaired Student t
\r\n\tThis book will address the various modern, technical, and practical aspects of smart technology for capturing solar radiation and converting it into different forms of energy, as well as enabling it for renewables integration in energy generation and transformation, built environment, transportation, buildings, and agriculture.
\r\n\r\n\tThe book will cover the most recent developments, innovations and applications concerning the following topics:
\r\n\t• Solar radiation – Smart and enabling technologies for measurement, modelling, and forecasting
\r\n\tHigh-resolution measurement sensor and instrument technology (Pyranometers, Albedometers, Pyrheliometers, UV Radiometers, Sun Trackers, Spectroradiometer, Pyrgeometers, etc.), Artificial intelligence techniques for modelling and forecasting of solar radiation, Solar Irradiance forecast with satellite data, Solar potential analysis, Short-term forecasting of photovoltaic power and solar irradiance prediction with sky imagers.
\r\n\t• Renewable energy integration – Smart solutions for integration of RE in distributed generation, energy storage, and demand-side management.
\r\n\tIntegrated Photovoltaics: Smart technology for vehicle-integrated PV, Building Integrated PV, Agrivoltaics, Road-Integrated PV, Floating PV, Product-integrated PV.
\r\n\tRenewable Energy Applications in Built Environment and mobility: Solar cars, solar-powered electric charging stations, passive solar systems, solar heating, and cooling systems, building-integrated vegetation, multifunctional solar systems, solar pumps, solar lighting, solar shading, Natural lighting, Solar dryer, Greenhouse.
The inflammatory disease atherosclerosis is characterized by plaque formation in the cardiovascular system, which together with thrombosis can lead to obstruction of blood vessels, potentially leading to ischemia, stroke, and heart failure (Libby et al., 2009; Chen et al., 2010; Drake et al., 2011). Atherosclerosis is triggered and sustained by inflammation related cytokines, chemokines, adhesion molecules and by the cellular components of the immune system (Ross, 1999; Epstein et al., 2004). Cholesterol, most of it transported as a low density lipoprotein (LDL) particle in the bloodstream, supports foam cell formation in atherosclerotic plaques. In parallel, cholesterol plays an important role in steroidogenesis and bile production (Lacapere and Papadopoulos, 2003), which have been correlated with mitochondrial 18 kDa Translocator Protein (TSPO) and apolipoprotein E (apoE) expression (Fujimura et al., 2008; Gaemperli et al., 2011). Lipoproteins are lipid transport vehicles that ensure the solubility of lipids within aqueous biological environments. Apolipoproteins stabilize the surface of lipoproteins, serve as cofactors for enzymatic reactions, and present themselves as ligands for lipoprotein receptors. The soluble apolipoprotein gene family, which includes apoE, encodes proteins with amphipathic structures that allow them to exist at the water-lipid interface (Chan, 1989). ApoE is a polymorphic 229-aa, 34-kDa protein, which is present in the cell nucleus and cytosolic compartments (Mahley & Huang, 1999). The human gene, located on chromosome 19, encodes three alleles: apoE2 (frequency in the human population, 5–10%), apoE3 (60–70%), and apoE4 (15–20%). The isoforms differ only at residues 112 and 158 (Cedazo-Minguez & Cowburn, 2001). However, there is only one isoform of apoE in mouse and it behaves like human apoE3 (Strittmatter & Bova Hill, 2002). It is suggested that apoE deficiency in mice mimics the human apoE4 status, which implies reduced apoE3 levels relative to apoE4 levels (Buttini et al., 1999; Sheng et al., 1998).
ApoE is synthesized in several areas of the body, including the liver, where it is produced by hepatic parenchymal cells, and becomes a component in the surface of circulating triglyceride-rich lipoproteins [very low density lipoprotein (VLDL) and chylomicrons, or their remnants], and certain high density lipoprotein (HDL) particles (Mahley, 1988). ApoE plays a major role in the transport of lipids in the bloodstream, where it participates in the delivery and clearance of serum triglycerides, phospholipids, and cholesterol (Mahley, 1988). ApoE is also synthesized in the spleen, lungs, adrenals, ovaries, kidneys, muscle cells, and macrophages (Mahley, 1988). ApoE-containing lipoproteins are bound and internalized via receptor-mediated endocytosis by a number of proteins of the LDL receptor (LDLR) and LDLR-related protein (LRP) families (Davignon et al., 1998). ApoE is considered to be a ligand that binds to 27 clusters of negatively charged cysteine-rich repeats in the extracellular domains of all LDLR gene family members. It has been suggested that apoE made its entrance on the evolutionary stage long after the receptors to which it binds (Beffert et al., 2004). This also indicates that the original primordial functions of the LDLR family did not involve interactions with apoE. The original functions of the LDLR family may have been on the one hand transporting macromolecules between increasingly specialized cells and on the other hand serving as sensors for intercellular communication and environmental conditions (Beffert et al., 2003).
Cholesterol accumulation within atherosclerotic plaque occurs when cholesterol influx into the arterial wall (from apoB-containing lipoproteins) exceeds cholesterol efflux. Early in atherogenesis circulating monocytes are recruited to the arterial sub-endothelium where they differentiate into macrophages, ingest cholesterol, and develop into “foam cells” (Ross, 1973; 1999; Ross et al., 2001). Initially, monocytes adhere to activated endothelium on which up-regulated cell adhesion molecules (CAMs) are displayed, a dynamic process sensitive to inflammatory cytokines, shear stress, and oxidative insults (Chia, 1998). Induction of vascular cell adhesion molecule-1 (VCAM-1), a member of the immunoglobulin superfamily of CAMs, is increasingly described as the key factor in monocyte infiltration (Nakashima et al., 1998; Truskey et al., 1999). ApoE-knockout mice (apoE KO) have been extensively used to study the relation of hypercholesterolemia and lipoprotein oxidation to atherogenesis (Hoen et al., 2003; Yang et al., 2009; Kunitomo et al., 2009). ApoE-deficient mice have elevated VCAM-1 in aortic lesions (Nakashima et al., 1998), which enhances monocyte recruitment and adhesion (Ramos & Partridge, 2005), while apoE expression in the artery wall reduces early foam cell lesion formation (Hasty et al., 1999). These findings imply that apoE may influence early inflammatory responses by suppressing endothelial activation and CAM expression (Stannard et al., 2001). ApoE helps protect against atherosclerosis, in part by mediating hepatic clearance of remnant plasma lipoproteins (Weisgraber et al., 1994). When apoE is absent or dysfunctional, severe hyperlipidemia and atherosclerosis ensue (Kashyap et al., 1995; Linton & Fazio, 1999). ApoE is also abundant in atherosclerotic lesions, secreted by resident cholesterol-loaded macrophages (Linton & Fazio, 1999). This locally produced apoE is atheroprotective by contributing to reverse cholesterol transport and by inhibiting smooth muscle cell proliferation (Mahley et al., 1999; Mahley and Ji, 2006). ApoE exerts several functions regarding lipid and cholesterol transport and metabolism: 1) apoE functions as an important carrier protein in the redistribution of lipids among cells (by incorporation into HDL (as HDL-E); 2) it plays a prominent role in the transport of cholesterol (by incorporating into intestinally synthesized cholymicrons); and 3) it takes part metabolism of plasma cholesterol and triglyceride (by interaction with the LDLR and the receptor binding of apoE lipoproteins (Krul & Tikkanen, 1988; Quinn et al., 2004; Elliott et al., 2007).
ApoE has an established immune modulatory function in the peripheral immune response to bacteria and viruses (Mahley & Rall, 2000). It also modulates inflammatory responses in cell culture models
Recent studies by us and others have indicated that the mitochondrial 18kDa Translocator Protein (TSPO), also known as peripheral-type benzodiazepine receptor (PBR) is present throughout the cardiovascular system and may be involved in cardiovascular disorders including atherosclerosis (Veenman and Gavish, 2006). The primary intracellular location of the TSPO is the outer mitochondrial membrane. Various studies over the course of the last 3 decennia have indicated that mitochondrial TSPO, potentially in relation to cardiovascular disease, is involved in the regulation of cholesterol transport into mitochondria in relation to bile production and steroidogenesis (Krueger and Papadopoulos, 1990; Papadopoulos et al., 2006). In particular, TSPO regulates cholesterol transport from the outer to the inner mitochondrial membrane which is the rate-limiting step in steroid and bile acid biosyntheses (Krueger and Papadopoulos, 1990;\n\t\t\t\t\tLacapère and Papadopoulos, 2003; Veenman et al., 2007). Three-dimensional models of the channel formed by the five α-helices of the TSPO indicate that it can accommodate a cholesterol molecule in the space delineated by the five helices. According to these models, the inner surface of the channel formed by the TSPO molecule would present a hydrophilic but uncharged pathway, allowing amphiphilic cholesterol molecules to cross the outer mitochondrial membrane (Papadopoulos et al., 1997, 2006; Veenman et al., 2007). At cellular levels TSPO is present in virtually all of the cells of the cardiovascular system, where they appear to take part in the responses to various challenges that an organism and its cardiovascular system face (Veenman & Gavish, 2006), including atherosclerosis and accompanying symptoms (Onyimba et al., 2011; Bird et al., 2010; Dimitrova-Shumkovska et al., 2010a,b,c, 2012).
TSPO are located in various components of blood vessels, including endothelial cells where TSPO may take part in immunologic and inflammatory responses (Hollingsworth et al., 1985; Bono et al., 1999; Milner et al., 2004; Veenman & Gavish, 2006). To establish a factual correlation between atherogenic challenges and TSPO binding characteristics, we have previously assayed TSPO binding characteristics in different tissues of rats fed a high fat high cholesterol (HFHC) diet, in comparison to rats fed a normal diet (Dimitrova-Shumkovska et al., 2010a). It appeared that enhancement of oxidative stress in the aorta and liver due to the atherogenic HFHC diet was accompanied by significant reductions in TSPO binding density in these organs. Binding levels of the TSPO specific ligand [3H]PK 11195 in heart appeared not to be affected by the HFHC diet in this rat model.
Previous studies have shown that TSPO as well as apoE can be associated with processes such as: cholesterol metabolism, oxidative stress, apoptosis, glial activation, inflammation, and immune responses. As a ligand for cell-surface lipoprotein receptors, apoE can prevent atherosclerosis by clearing cholesterol-rich lipoproteins from plasma (Mahley and Huang, 1999). The TSPO protein has also been shown to be present in the plasma membrane of red blood cells, as well as in the plasma membrane of neutrofils, where it was shown to stimulate NADPH-oxidase activation of these cells. The plasma membrane forms of TSPO may be involved in heme metabolism, calcium channel modulation, cell growth, and immunomodulation. Furthermore, nucleus expulsion in mature erythrocytes is inhibited by excess cellular cholesterol (Fan et al., 2009). However, the involvement of the TSPO in this process has not been investigated. A recent study in cell culture showed that TSPO is important for the regulation of mitochondrial protoporphyrin IX and heme levels (Zeno et al., 2012). Thus, the TSPO appears to take part in various stages of red blood cell formation.
Furthermore, TSPO takes part in the regulation of gene expression for proteins involved in adhesion, which potentially may play a role in platelet aggregation (Bode et al., 2012; Veenman et al., 2012). ApoE has also been found to be involved in platelet aggregation, while TSPO platelet levels have been found to be increased with various neurological disorders, in particular stress related disorders (Veenman and Gavish, 2000, 2006, 2012). It has been suggested that platelet aggregation may be affected by nitric oxide (NO) generation via apoE, while other studies suggest that NO requires the TSPO to induce collapse of the mitochondrial membrane potential (ΔΨm), mitochondrial reactive oxygen species (ROS) generation and cell death (Shargorodsky et al., 2012). Thus, the TSPO may present one pathway whereby NO does affect platelet aggregation. Furthermore, various alteration in TSPO density in the heart as a response to stress have been reported (Gavish et al., 1992; Veenman and Gavish, 2006), suggesting one aspect of involvement of TSPO in cardiovascular diseases, including cardiac ischemia. It has also been shown that apoE is involved in cardiac ischemia (Mahley, 1988).
Apparently as a consequence of its role in steroidogenesis, TSPO typically are very abundant in steroidogenic tissues (Benavides et al., 1983; De Souza et al., 1985). Steroid hormones can affect TSPO levels, while in turn TSPO provides a modulatory function for steroid hormone production by regulation of mitochondrial cholesterol transport (Veenman et al., 2007). It is known that cholesterol affects TSPO function (Falchi et al., 2007). Interestingly, apoE is also well expressed in steroidogenic organs such as adrenal gland, ovary, and testis (Blue et al., 1983; Elshourbagy et al., 1985; Law et al., 1997). Nonetheless, studies by us suggests that elevated cholesterol levels, such as found in apoE KO mice, do not appear to affect TSPO levels in steroidogenic organs (Inbar Roim, M.Sc. Thesis, Technion – Israel Institute of Technology, 2008), even though effects in the cardiovascular system can be observed (Dimitrova-Shumkovska et al., 2010a). As has been reported, TSPO levels can be regulated by steroid hormones, which may be part of an organism’s response to stress and injury (Anholt et al., 1985; Weizman et al., 1992; Gavish & Weizman, 1997; Gavish et al., 1999; Veenman et al., 2007; Mazurika et al., 2009; Veenman and Gavish, 2012). This suggests that TSPO levels may be part of a feedback control system for steroid production (responding to alterations in steroid levels), rather than be regulated by a feed forward signal provided by cholesterol (i.e. TSPO levels in relation to steroidogenesis are not being regulated by cholesterol levels
Various studies have shown the presence of TSPO in all cell types of the immune system, thus proposed functional roles of the TSPO included modulation of stress-induced immunosuppression and immune cell activity (Lenfant et al., 1985; Ruff et al., 1985; Bessier et al., 1992; Marchetti et al., 1996; Bono et al., 1999; Veenman & Gavish, 2006). TSPO are present in platelets, lymphocytes, and mononuclear cells, and are also found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells of the cardiovascular system (Veenman & Gavish, 2006). TSPO in the cardiovascular system appears to play roles in several aspects of the immune response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and immunoglobulin A (Veenman & Gavish, 2006). Mast cells are considered to be important for immune response to pathogens (Marshall, 2004) and they have also been implicated in the regulation of thrombosis and inflammation and cardiovascular disease processes such as atherosclerosis as well as in neoplastic conditions (Wojta et al., 2003). Studies have shown that benzodiazepines’ inhibition of serotonin release in mast cells could reduce blood brain barrier permeability, influence pain levels, and decrease vascular smooth muscle contractions (Veenman and Gavish, 2006). Benzodiazepines have been found to bind to specific receptors constituted by the TSPO on macrophages and to modulate
Anti-inflammatory properties of TSPO ligands have been demonstrated in various tissues. TSPO ligands have been shown to reduce inflammation in animal models of rheumatoid arthritis (Waterfield et al., 1999), carrageenan-induced pleurisy (Torres et al., 2000), and pulmonary inflammation (Bribes et al., 2003). Taupin et al. (1993) have also demonstrated
Atherosclerotic plaques may appear early in life and might progress into severe, symptomatic plaques many decades later, dependent on the coexistence of risk factors such as age, genetic background, gender, hypercholesterolemia, hypertension, smoking, diabetes, etc. (Ross, 1999; Whitman, 2004). Rupture of lipid-rich coronary plaques can trigger an atherothrombotic event and probably is the most important mechanism inducing acute coronary syndrome (ACS) (Vilahuer et al., 2011).
Plaque rupture presents a major factor in ischemic processes associated with atherosclerosis (Zhao et al., 2008; Cheng et al., 2009; Gaemerli et al., 2011). Plaque rupture in the human condition, including the cardiovascular processes and events leading up to it, presently is virtually inaccessible for research. Therefore, animal models have been developed to study atherosclerosis, including plaque rupture and thrombus formation, and also how to take measures to prevent these from happening. Nonetheless, more sophisticated models need to be developed and tested to be able to better mimic the human condition. This is so, as mice and rats, for example, do not develop atherosclerosis without genetic manipulation, because they have a lipid physiology that is radically different from that in humans, as most of the cholesterol is being transported in HDL-like particles (Whitman, 2004; Singh et al., 2009; Vilahur et al., 2011). Furthermore, all of the existing animal models, including biological and mechanical triggering of atherogenesis, e.g., the Watanabe heritable hyperlipidemic (WHHL) rabbit model, the apolipoprotein E (ApoE) mouse model, and the LDL-receptor mouse model) suffer the drawback of lacking an end-stage atherosclerosis that would show plaque rupture accompanied by platelet and fibrin-rich occlusive thrombus at the rupture site (Singh et al., 2009). Another restriction of current models for cardiovascular disorders is that most of the studies explore only male mice to avoid effects of estrogens to the extent of lesion development and diminishing LDL oxidation (Caligiuri et al., 1999; Yang et al., 2004). As cardiovascular disorders also occur in women, it would be valuable to also study female animal research subjects. Furthermore, it would give direction to research relating hormonal conditions to atherosclerosis.
Cholesterol lowering by diet is associated with a reduction in DNA damage, at least in animal models (Singh et al., 2009). In general, modification of atherosclerotic risk factors by lipid lowering therapies, cessation of smoking, weight loss, and improved glucose control reduces circulating markers of inflammation. These and other findings suggest that inflammation is a primary process for atherosclerosis (Ziccardi et al., 2002; Rodriguez-Moran et al., 2003). Although high dietary intake of the anti-oxidant vitamin E and C has been associated with reduced risk of cardiovascular disease (CVD), well powered clinical trials in atherosclerosis-related CVD have indicated that supplements with vitamin C or vitamin E alone do not provide sufficient benefit, in comparison to, for example, statins (Kunitomo et al., 2009). Furthermore, specific antioxidants scavenge or metabolize some, but not all of the relevant oxidized molecules (Stocker and Keaney, 2004). Stocker and Keaney (2005) conclude that whenever a physiological process goes unchecked in case of disease, treatment strategies cannot simply rely on scavenging ROS. Nonetheless, drugs that have been proven to alter plaque progression have also been shown to alter vascular oxidative stress. For example, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA) inhibitors (Statins) reduce NAD(P)H oxidase activation and superoxide production
As apoE deficiency may increase cholesterol levels and induce NO generation, which in turn may affect TSPO function, we were interested to study whether TSPO binding characteristics may be affected in heart and aorta of apoE-knockout (B6.129P2-apoE
At 16 weeks of age, animals were randomized into experimental groups: i) Two control groups (WT mice, n = 10) and (apoE KO mice, n = 10), both these control groups received standard feed for a additional period of 10 weeks; ii) Two experimental groups receiving the same feed for the same 10 weeks but supplemented with 1% cholesterol (1% WT mice, n = 10) and (1% apoE KO mice, n= 10); and iii) Two experimental groups received the same feed for the same 10 weeks but supplemented with 3% cholesterol (3% WT mice, n = 10) and (3% apoE KO mice, n = 10). After these 10 weeks, animals were sacrificed by cardiac puncture, under ketamine/xylazine anaesthesia, followed by the appropriated storage until application or procedures required for assays of TSPO binding characteristics, ROS parameters, and histopathology, as described in detail previously (Dimitrova-Shumkovska et al., 2010 a, b, c, 2012). Tissue homogenates of aorta and heart were prepared for our various assays. For TSPO binding assays, tissue homogenates were prepared in 50 mM PBS on ice with a Kinematika Polytron (Luzerne, Switzerland), as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c). To prepare homogenates for assays of oxidative stress parameters, we used an Ultrasonic Homogenizer (Cole-Parmer Instrument Co., Chicago, IL) as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c). For advanced oxidation protein products (AOPPs, Witko-Sarsat et al., 1996), tissue homogenates were prepared in 50 mM PBS at + 4 ºC, as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c). For the other assays of oxidative stress (see below), tissue homogenates were prepared in 1.12 % KCl at + 4 ºC, as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c). These later parameters of oxidative injury included: lipid peroxidation products [TBARs] (Draper and Hadley, 1990); protein carbonylation, PC (Shacter, 2000); superoxide dismutase activity (SOD assay kit, RA20408, Fluka, Biochemika, Steinheim, Germany), glutathione (GSH assay kit CS0260, Sigma-Aldrich, Steinheim, Germany), glutathione reductase (GSSG-Red), GRSA 114K4000, Sigma-Aldrich, Steinheim, Germany], Finally, aortas were prepared for anatomical observation and histopathology as described previously (Dimitrova-Shumkovska et al., 2010 a, b, c).
Effects of cholesterol supplements to the apoE KO mice on plaque formation in the aorta are shown in Figure 1. No atherosclerotic formation was found in WT mice regardless of diet (Figure 1A). Control aortas of apoE KO mice having access to standard feed are characterized by the presence of thin fibrous tissue caps i.e. encapsulations of collagen rich fibrous tissue without a necrotic core that showed only superficial accumulation of foam cells (Figure 1B). Cholesterol diet accelerated atherosclerosis in apoE KO mice, increasing the total surface area of plaque formation significantly over the intimal area (Figure 1C) compared to apoE mice receiving standard feed. In 1% cholesterol fed apoE KO mice, expansion of the necrotic core presenting an important pathogenic process contributing to plaque vulnerability was observed in comparison to standard fed apoE mice (Figure 1C). After administration of 3% cholesterol diet to apoE KO mice even more advanced lesions have developed. Initial xanthoma formation, cartilage tissue, and calcified nodules with an underlying fibrocalcific plaque with minimal or absence of necrosis occurred (Figure 1D). Furthermore, plaques become more progressive and lesions show luminal stenosis with pathologic intimal thickening. These observations are in line with other research data, where plague rupture was seen in apoE KO mice especially when exposed to western type diet (Davignon et al., 1999; Johnson et al., 2005). ApoE KO mice can also develop interplaque hemorrhage and features of plaque instability that are accelerated by feeding westernized diet (Rosenfeld et al., 2000). “Western type diets for mice” typically utilize just one ingredient (milk fat or lard) as the primary source of energy from fat.
Representative cross-sections of mice aortas. A) No atherosclerotic lesions were found in wild-type mice regardless of the diet; B) atherosclerotic plaque (outlined)characterized by a thin fibrous tissue cap (elbow black arrow), particularly ssuperficial accumulation of foam cells (green arrow) without a necrotic core and encapsulated by collagen rich fibrous tissue in apoE KO mice given standard feed; C) accelerated atherosclerosis and deposition of cholesterol crystals (black arrow) in the endothelium of the aorta wall in 1% apoE KO; D) advanced lesions are developed in 3% apoE mice. Initial xanthoma formation, cartilage tissue (asterix) and calcified nodules (yellow arrow) with an underlying fibrocalcific plaque with minimal or absence of necrosis occur (H&E staining, microscopic magnification applied x 100).
Effects of cholesterol (Chol) supplemented diet for 10 weeks, on lipoprotein levels in apoE KO mice and their WT counterparts. Unpaired Student t
Changes in the serum levels of total cholesterol, triglycerides and HDL-cholesterol in each group are shown in Table 1. Corroborating previous studies (Davignon et al., 1999; Seo et al., 2005; Zhao et al., 2008) at 16 weeks of age, even before application of the cholesterol enriched diets, apoE KO mice, already displayed approximately 5 times higher levels of total cholesterol in comparison with WT mice. At this time point, no significant differences in triglycerides (TAG) levels were observed between WT mice and apoE KO mice. However, 3% diet regimes, caused significant increases in total cholesterol level in apoE KO mice (by 44%, p < 0.001), compared to standard feed. The enhanced total cholesterol levels, included an almost 90% representation of non HDL – cholesterol (calculated from Friedewald formula; Friedewald et al., 1972). In contrast, 3% WT mice, showed significantly higher cholesterol levels (by 62%, p < 0.01), including an almost 70% representation of HDL-lipoproteins. Supplement of 3% cholesterol also provoked significantly higher triglycerides levels: by 35 % (p < 0.01) in apoE mice and by 36% (p < 0.01) in WT mice. Supplement of 1% cholesterol, resulted in slight increases in total cholesterol in apoE mice (by 20%, p < 0.05), but did not significantly affect the triglycerides levels. The same type of diet did not affect lipoprotein levels in WT mice.
In the aorta, 3% cholesterol diet supplement, caused significant increases in “steady-state” levels of lipid peroxides (TBARs) and oxidized proteins in WT as well as apoE KO mice (Table 2). In detail, regarding lipid peroxidation, TBARs production was significantly increased by 2 fold in WT and apoE KO mice subjected to 3% cholesterol supplemented diet (+100%, p < 0.01 for WT mice, and +125%, p < 0.001 for ApoE KO mice). In parallel, protein oxidation products levels (AOPP) were also significantly higher (+135%, p < 0.01 in 3% WT mice and +177%, p < 0.001, in 3% apoE KO mice). Protein carbonyls (PC) showed a slight but non-significant increase in 3% cholesterol fed WT and apoE KO mice, compared to their controls. In contrast to the 3% diet regime, 1% cholesterol supplemented diet did not affect ROS parameters in aortic tissue in both WT and apoE KO mice.
Effects of cholesterol (Chol) supplemented diet for 10 weeks on aorta oxidative stress parameters in apoE KO mice and their WT counterparts. 1-way ANOVA followed by application of the Tukey test to assess the significance of specific intergroup differences. Data are expressed as mean ± SD; * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
The capacity of glutathione as an electron donor to regenerate the most important antioxidants (vitamin E, glutathione peroxidase (GPx), lipid hydroperoxides), is linked with the redox state of the glutathione disulfide – glutathione couple GSSG/2GSH (Schafer and Buettner, 2001). This in turn, has a high impact on the overall redox environment in the cell. Concerning antioxidant activities in aorta tissue due to 3% cholesterol supplemented feed, significantly reduced activity of superoxide dismutase (SOD) was measured in 3% apoE KO mice compared to standard feed mice (- 41%, Table 3). The results also suggest a significant reverse interaction between glutathione level (GSH) and glutathione peroxidase (GPx) activity in aorta tissue. In particular, the analyzed results indicated that the glutathione content in aorta of 3% apoE animals was significantly decreased (-32%), with simultaneous slight, but significant enhancement achieved in activity of glutathione peroxidase (+10%), as compared to standard feed control (p < 0.05). In parallel, glutathione content in aorta was also significantly reduced in 3% WT mice for 70% (p < 0.01), without affecting GPx levels. Feeding the mice diet supplemented with 1% cholesterol, resulted in significantly reduced activity in SOD in apoE KO mice (by 33% p < 0.05) and in WT mice (by 47% p < 0.05).
To determine TSPO binding characteristics in this paradigm we applied binding assays with the TSPO specific ligand [3H] PK 11195. The present study sought to determine whether cholesterol supplementation affects TSPO binding characteristics in aorta and heart of apoE KO mice in association with parameters for oxidative stress. Binding assays of the heart and
Effects of cholesterol (Chol) supplemented diet for 10 weeks on aorta antioxidant parameters in apoE KO mice and their WT counterparts. Unpaired Student t
aorta with the TSPO specific ligand [3H]PK 11195 were done to determine potential effects of cholesterol supplementation on TSPO binding characteristics, according to methods described previously (Dimitrova-Shumkovska et al., 2010 a,b,c). For representative examples, see Figure 2. In heart, only in WT mice significant decreases in the Bmax of TSPO (- 42%, p < 0.001) was determined with [3H]PK 11195 binding as a consequence of both cholesterol 1% and 3% supplemented diets, compared to control standard fed WT mice. Regarding the apoE KO mice, cholesterol supplemented diet did not induce differences in the TSPO binding characteristics in the heart (Table 4). Regarding heart tissues, both in the apoE KO groups and WT groups, Kd values determined with [3H] PK 11195 binding were in the nM range (0.6 – 1.6 nM) showing no significant differences between experimental and control groups.
Regarding the aorta, feeding the mice with standard feed was not accompanied by significant differences in the TSPO binding characteristics of the aorta of apoE KO mice versus WT mice (Table 4). Interestingly, these mouse aortas showed very TSPO binding levels, comparable to those observed in the adrenal of rats (Gavish et al., 1999). To date, the adrenal of rats is the tissue with one of highest demonstrated Bmax for TSPO ligand binding (Gavish et al., 1999). The 1% cholesterol supplemented diet significantly reduced TSPO binding capacity in aorta in both WT and apoE KO mice. In particular, reductions by 49% in WT mice and by 32% in apoE KO mice (p < 0.001 and p < 0.01, respectively) compared to their standard feed controls were observed (Table 4). The 3% cholesterol diet also provoked a reduction in TSPO binding density by 58% in the aorta (p < 0.01), but only in WT mice. In the aortas of both groups, apoE KO mice and WT mice, Kd values determined with [3H] PK 11195 binding were in the nM range (1.5 – 2.6 nM), showing no significant differences between the groups.
Representative examples of saturation curves (A, C, E, G) and their Scatchard plots (B, D, F, H) of [3H]PK 11195 binding to membrane homogenates of aorta, respectively of WT mice (A, B, C, D) and apoE KO mice (E, F, G, H). Abbreviations: apoE KO = apolipoprotein deficient mice; WT- wild type mice; B: bound; B/F: bound over free.
As the effects on TSPO binding density in heart and aorta due to intake of cholesterol supplemented diet take place primarily in the WT groups, and especially not in the 3% cholesterol diet fed apoE KO mice, these data suggest that decreases of TSPO binding density in heart and aorta may serve to counteract processes typically leading to cardiovascular damage, including atherosclerosis, as explained in more detail in the Discussion.
Average Bmax values fmoles / mg protein and Kd values (nM) of [3H]PK 11195 binding to TSPO in aorta and heart homogenates of WT (Bb-Control) and apoE KO mice, fed with standard feed, and feed supplemented with 1% and 3% cholesterol (Chol). One-way analysis of variance ANOVA was used, with Mann-Whitney as the post-hoc, non-parametric test. Data are expressed as mean ± SD; * = p < 0.05, ** = p < 0.01, *** = p < 0.001 vs. control.
There is strong evidence that accumulation of plasma derived lipoproteins in the arterial wall launches specific cell reactions that account for atherosclerosis process: enhanced NO production, amplification of the inflammatory response, apoptosis, endothelial function impairment, enhanced smooth muscle cell migration and proliferation, and macrophage foam cell formation (Steinberg et al., 2002; Whitman, 2004; Zhao et al., 2008; Singh et al., 2009). Mice lacking apoE have a substantial delay in the metabolism of lipoproteins, particularly VLDL, even fed with a regular standard chow feed (Hoen et al., 2003; Kato et al., 2009). Lesions in apoE-deficient mouse have many features in common with human atherosclerosis, even that the progression can be advantageous in many experimental situations (Dansky et al, 1999). At 26 weeks, atherosclerotic lesions are in the early stages of development, characterized by lipoprotein accumulation, leukocyte gathering, and foam cell formation. This model develops atherosclerotic lesions which progress to occlusion of coronary artery by 8th to 11 months after regular feeding (Piedrahita et al., 1992; Whitman, 2004). Aged (42-54 weeks) apoE KO mice develop intraplaque hemorrhage and plaque instability features, accelerated by feeding westernized diets (Seo et al., 2005; Singh et al., 2009). We found, similar to previous observations, advanced fibrous plaque development accompanying prolonged cholesterol feeding (Figure 1C) in apoE mice but not in WT mice. Another study by Molnar et al. (2005) showed that although high fat feeding induced endothelial cell dysfunction in WT mice, it did not enhance neointimal formation in WT mice. Also in WT rats, a high fat, high cholesterol diet does not appear to lead to atherosclerosis, although modest morphological alterations in the aortic wall could be observed (Dimitrova-Shumkovska et al., 2010a)
We also checked in blood plasma of apoE KO and WT mice the levels of total cholesterol, including triglycerides, high-density lipoprotein and low-density lipoprotein, since it can increase the risk of heart disease and atherosclerosis (Steinberg, 2002; Stocker and Keany, 2004, 2005). Mice naturally have high levels of HDL and low levels of LDL, lacking the cholesterol ester transfer protein, an enzyme responsible for trafficking cholesterol from HDL to VLDL and LDL. As reported also by others previously, we found clear cut differences in abundance of cholesterol related particles between apoE KO mice and WT mice (Table 1), (Hoen et al., 2003; Kato et al., 2009). In particular, each group of apoE KO mice had five times more plasma cholesterol than their WT counterparts. The apoE KO mice also always had higher TAG levels. HDL levels in apoE KO mice supplied with standard feed and 1% cholesterol supplemented diet was also twice as high than in WT mice. Interestingly, 3% cholesterol supplemented diet resulted in a reversal, meaning that HDL levels (i.e. “good” HDL-lipoproteins) in WT mice became twice as high as in apoE KO mice (Table 1). The generally low LDL cholesterol levels in WT mice even with cholesterol supplemented diet may be due to the capability of WT mice to efficiently suppress the percentage of dietary cholesterol absorption by increasing the excretion of gallbladder biliary cholesterol concentration (Sehayek et al., 2000).
We used this model, of apoE KO mice fed with cholesterol supplemented diet that shows well developed atherosclerosis, to assess oxidative stress in the aorta in correlation with TSPO binding density and atherosclerosis. For this purpose, homogenates of the aorta were used for ROS analysis and antioxidant enzymes activities. As accumulation of proatherogenic lipid affects all cell types present within the vascular wall, the response of the entire tissue vs. isolated cells to the hyperlipidemic conditions is relevant as an indication of vascular defense as a whole. The increase in plasma cholesterol levels was paralleled by changes in oxidative stress parameters in WT mice and ApoE KO mice, as discussed in detail below.
An indicator of cellular defence capacity against oxidative stress is the presence of reduced GSH, which we determined in the aorta homogenates after application of feed with cholesterol supplements. As seen in table 3, a reduction of GSH content in was evident compared to the corresponding controls, when 3% cholesterol diet was administered to WT as well as apoE mice. This shows that cholesterol diet regime indeed constitutes an elevated risk factor for ROS formation, due to a reduction in GSH levels in this model. It has been reported that ROS induce vascular cells to express cell adhesion molecules that trigger adhesion of leukocytes to the endothelium, which is part of the initiation atherosclerosis (Yang et al., 2009). Interestingly, it was also found that TSPO expression correlates positively with expression of adhesion molecules (Bode et al., 2012; Veenman et al., 2012). This may suggest that the reduction in TSPO levels seen in this study may counteract adhesion of leukocytes to the endothelium, and thereby prevent initiation atherosclerosis in particular in WT mice.
In accord with the observations of Hoen et al. (2003) that the mRNA levels of many antioxidant enzymes in apoE KO mice are higher (1.5 -5 fold) in the age of 6-15 weeks, compared to aged-matched wild type mice, we also saw that SOD activity were higher in aorta homogenates of apoE mice than those in age-matched WT mice (Table 3). Their hypothesis is that the aorta compensates for the oxidative stress induced by atherogenic stimuli, by stimulating the expression of antioxidant enzymes, thereby delaying the process of atheroma plaque formation. The latter was supported by Yang et al. (2004, 2009) providing evidence that over expression of catalase and superoxide dismutase delayed the development of atherosclerosis in apoE KO mice.
To determine the potential involvement of the TSPO in effects of apoE dysregulation, we studied TSPO binding density in heart and aorta of apoE KO mice (B6.129P2-apoE
Also in a previous study, enhanced plasma lipid levels due to HFHC diet supplied to rats, enhanced oxidative stress parameters and decreased indicators for antioxidant activity in the aorta, which were associated with reduced TSPO density in this organ (Dimitrova-Shumkovska et al., 2010a). Notably, wild type rats are not prone to develop atherosclerosis even when subjected to HFHC diet (Dimitrova-Shumkovska et al., 2010a). We have shown that reduction of TSPO expression by genetic manipulation in vitro in cell culture reduces mitochondrial ROS generation (Veenman et al., 2008, 2012; Zeno et al., 2009). We have discussed previously that the reduced TSPO levels accompanying atherogenic challenges may be a compensatory mechanism to counteract oxidative stress in the aorta and liver (Dimitrova-Shumkovska et al., 2010 a, b, c). This would be in effect similar to increased levels of SOD observed, which also counteract oxidative stress (see above). Our present study suggests that reduced TSPO binding density as observed in WT mice subjected to cholesterol supplemented diet may counteract oxidative stress as one mechanism to attenuate the development of atherosclerosis. As TSPO binding density is not affected in apoE mice subjected to cholesterol supplemented diet mentioned TSPO dependent mechanism is not available for apoE KO mice to counteract development of atherosclerosis. Presently, it is not known which components of the vascular wall, i.e. mast cells, smooth muscular, or dermal vascular endothelial cells, would be important for the potential correlation between TSPO expression, oxidative stress, and atherosclerosis (Stoebner et al., 1999; 2001; Morgan et al., 2004; Veenman and Gavish, 2006; Dimitrova-Shumkovska et al., 2010 a, b, c).
It can be assumed from the present study, that oxidative stress parameters do not absolutely correlate with the development of atherosclerotic lesions (because supplementation with 1% of cholesterol to the diet does not affect oxidative stress), but the absolute levels of cholesterol do correlate with atherosclerotic development. Nonetheless, enhancement of cholesterol percentage from 1% to 3% in the diet resulted in significant increases in ROS parameters of WT and apoE KO mice in comparison to their control groups, and also provoked advanced lesion formation in aortic intimae in apoE KO mice fed a 3% cholesterol supplemented diet (but not in WT mice). TSPO binding density is reduced due to cholesterol intake in particular in WT mice and such changes in TSPO binding density in WT mice are in negative correlation with oxidative stress measured in heart and aorta. We believe the reductions in TSPO binding density in WT mice are compensatory for oxidative stress and atherosclerotic development. Thus, the lack of a significant decrease in TSPO binding density in the aorta of 3% cholesterol fed apoE KO mice may actually correlate with the enhanced atherosclerosis in this model. The capability of apoE KO mice fed with 1% cholesterol to reduce TSPO binding density in the aorta may present a rudimentary anti-atherosclerosis protective capacity. In conclusion, this study is in accord with previous studies suggesting that reductions in arterial TSPO binding density are part of a mechanism counteracting the development of atherosclerosis. A question is how the presence of apoE, in combination with enhanced dietary cholesterol levels, can result in suppression of TSPO binding density. It is also important to find out how in a mechanistic sense a reduction in TSPO levels can contribute to self protection against the development of atherosclerosis.
Robotics courses, after-school programs, and teams are highly sought-after by school districts and parents who wish to provide their students with science, technology, engineering, and math (STEM) instruction to cultivate a foothold for children in future STEM majors and careers [1, 2, 3]. Acquiring physical robotic kits, tools, building and testing space, storage units, computer equipment, and software can be an expensive and time-consuming proposition. Funding for this scope of sustained classroom robotics ranges from well-organized parent-teacher committees [4], business sponsors in return for advertisements on t-shirts [5], and grants from non-profit robot competition entities such as Vex Robotics Education Competition Foundation [6].
The ratio of student-to-robot varies as children enroll in a class, program, or team. A small classroom bundle of robots, such as the Vex IQ, provides five kits, a 12-tile playfield, 18 generic game objects, storage bins, five “pin tools,” and costs approximately $2250 [7]. In a classroom, club, or team of 20 students, this kit provides a 4:1 ratio of students to a robot. Classrooms and clubs can implement a generic “build” such as the Vex IQ Clawbot robot to practice fundamental robotics. Competitions, which change every year, require a custom build to enact the unique game established as a challenge by non-profit organizations such as Vex or FIRST Robotics. A team wishing to practice-to-win with their uniquely engineered robot could invest in a competition-size playfield and purchase the new game pieces each year.
With the physical requirements of robotics established, this still leaves teachers and parents with the imperative to provide all students with the opportunity to plan, engineer, build, program, and test a robot. Every physical robotic platform is a synthesis of hardware, software, and firmware. The definition of each of these terms is as follows:
Hardware is the collection of the physical components of the robot. The robot’s brain, sometimes called a brick, contains ports that connect to motors and sensors using cables of varying lengths and memory boards to house software instructions downloaded from the students’ shared computer.
Software is a general term that describes computer programs. The programs include the operating system that resides in the robot’s brain to communicate with the programs we write in C, C++, or Python to instruct the robot to move and sense its surroundings.
Firmware is the collection of instructions in the brain, motors, and sensors that allow the hardware to communicate and enact our programs.
Teachers, parents, and coaches are frequently at a loss of where to begin. This chapter delineates the implementation of virtual robotics as an on-ramp to familiarize educators and their stakeholders with the fundamentals of programming a robot to navigate a virtual world through a simulated physics algorithm. Virtual reality (VR) is a technology that immerses the user into a coded environment that employs visual output to depict different surroundings other than the real world. VR is typically associated with a headset such as Google Cardboard [8] or Merge VR headsets [9] that the user wears to block out the real world and experience new visual input. Vex VR and Robot Virtual Worlds are examples of virtual worlds that depict robots in a computer-generated environment without the use of goggles or headsets. The user observes the robot in an environment on their computer screen.
Virtual robotics provides educators, parents, and coaches with a 1:1 learner to robot ratio. Adults supporting robots in the classrooms, clubs, and competitions should understand the world of robots before making a substantial financial and time investment in physical kits, dedicated building & testing space, and the logistics to field a competition-ready team.
The following sections employ the technological pedagogical and content knowledge (TPACK) framework [10] that delineates the necessary knowledgebase to understand the
Diagram of the intersections of the TPACK framework.
Using TPACK as a framework, the remaining sections of this chapter discuss the following virtual robotics platforms and supporting applications:
Vex VR [11], a no-cost, browser-based virtual robotic platform.
Robot Virtual Worlds [12], a licensed software package that includes a customizable virtual world called Level Builder.
Tinkercad [13] – a computer-aided design (CAD) 3D modeling program offered by Autocad where students create objects to upload “.stl” files to Robot Virtual Worlds’ [12] Level Builder.
Merge Cube [14] – an augmented reality mobile application program that facilitates viewing student-designed 3D objects to “see” their creation before uploading to Level Builder or printing on a 3D printer.
This chapter concludes with a summary of virtual robotics and suggested transitions using a hybrid approach to virtual and physical robotics.
Vex VR is a browser-based virtual robot platform provided by the Vex Robotics Education & Competition (REC) Foundation. This platform is an ideal place to introduce students, teachers, parents, and coaches to the world of robotics. Educators can consider the VR Vex platform as a tool to use with students in face-to-face and synchronous or asynchronous online environments. The goal is to provide
With the hybrid “classroom” organization established, let us define programming. By this author’s definition, programming is writing instructions to cause an object made of plastic, glass, rare metals, and electricity to solve logical and mathematical statements repetitively.
There are several ground rules for every programmer to consider as they journey into this fantastic field of coding and robotics. First and foremost, the program is doing what it is doing because that is what you told it to do. Programmers must think of how the computer interprets our instructions, not how we believe the code should work. Next, concise code is best. Programming is not a competition to write the most lines of code. Concise lines of instructions take up less of the computer’s memory and will run faster. Persistent programmers write great programs. Finish a job. Be proud of your product. Finally, share what you know. Robotics communities have robust collaborative forums and videos on social media. Share techniques to help up-and-coming teams.
This section addresses the technical knowledge in the TPACK framework (Figure 1) necessary to implement the fundamentals of Vex VR. Since Vex VR is browser-based, there is no need to download software to each student’s computer. A
This section addresses the science and math content knowledge in the TPACK framework (Figure 1) that underpin the natural forces and numeracy at work. Robotics is the glue that holds STEM together. The science topic of ultrasonic soundwaves correlates to the distance sensors on robots. The Vex VR software simulates the use of ultrasonic sound waves through a physics algorithm to measure the distance from an object in the robot’s virtual environment. Educators can connect to the echolocation of bats and dolphins as an activity to explore the properties of ultrasound
Kindly refer to
VR vex platform. VR vex is a product of the Robotics Education & Competition (REC) foundation.
This section elaborates on the intersections of technical and content knowledge (Figure 1) necessary to understand Vex VR. Students who have prior knowledge of programming on the Scratch platform [19], or other websites that use block coding, will recognize the structure of the Vex VR integrated development environment (IDE). Like Scratch programming [19], the code blocks are drag and drop puzzle pieces that join together in the large white work area that dominates the right two-thirds of the screen (Figure 3). Vex VR organizes the blocks into 10 categories: Drivetrain, Magnet, Looks, Events, Control, Sensing, Operators, Variables, My Blocks, and Comments. Vex VR provides you with the “when started” block. The programmer subsequently connects additional blocks based on planning strategies.
VR vex work area, block categories, and resources. VR vex is a product of the Robotics Education & Competition (REC) foundation.
To learn more about each block, the programmer can click on the question mark in the upper right-hand corner of the screen (Figure 2) and then click on a block in the column that contains the puzzle pieces on the left of the screen. The “Help” column will populate with information about the selected block. To learn more about topics such as “Driving Forward and Backward” or “Turning,” click on the “Tutorials” button under the lightbulb icon in the top blue “ribbon” of the screen. Vex VR provides a robust Level 1 Blocks Course collection to get the students started.
This section introduces the pedagogical, teaching methods, knowledge (Figure 1) necessary to instruct virtual robotics. Computational thinking is a mindset that is not limited to programming and computer science. It is a set of skills and attitudes that support students’ creative solutions. Educators new to STEM might consider problem-solving as the only component of computational thinking. However, there are two additional skills: abstraction and algorithmic thinking [20]. Educators must emphasize that a computational thinking methodology is an
Skill | Sub-skill | Example |
---|---|---|
Problem solving | Decomposition | Student evaluates the Wall Maze to break down the entire maze (large problem) into smaller problems to navigate obstacles from start to finish. |
Redefine Problems | Student examines available code blocks and robot sensors. | |
Strategic Decision Making | Student develops several possible solutions and decides which blocks and sensors to employ. | |
Abstraction | Modeling | Beginner programmer: Student programs a solution using multiple instances of the same blocks to navigate the maze. This can create a very long, concatenated grouping of code. |
Pattern Recognition | Intermediate programmer: Student recognizes that the same blocks are used repetitively. | |
Modularity | Advanced programmer: Student identifies generalizable modules using the “My Blocks” feature that consolidates the movements of the robot into recognizing walls with the distance sensor, the bumper switch, left, and right turns. | |
Algorithmic Thinking | Algorithmic Design | Student develops a step-by-step strategy to call the “My Blocks” modules to create concise code (Figure 3). |
Incremental Design and Evaluation | Student designs, test, and revises code in an iterative approach to solve the maze. |
Summary of three computational thinking skills.
This section addresses the intersection of pedagogy and content knowledge. Pedagogy is an art, especially when teaching technology. The methods of pedagogy seek multiple entry points to introduce content and provide all students with the opportunity to practice, make mistakes, revise, and reveal understanding. Giving guidance to each student is crucial to advance their knowledge of programming. Feedback, however, is only one of three components that comprise formative assessments. Hattie and Temperly [21] provide a tri-directional model of helpful feedback: feed up, feedback, and feed forward. Table 2 elaborates on the three directions of formative assessments.
Feed Up | “Where am I going?” – Does the student’s developing project exhibit an understanding of the goal of the assignment? Check the student’s understanding before they potentially progress too far in the wrong direction. |
---|---|
Feedback | “How am I going? – As students and educators, we are familiar with the prevailing direction of feedback that answers the questions, “What progress has the student made toward the goal?” With feedback, educators give students input to the overarching question, “How am I going?” that informs students about the trajectory of their work toward the goal. Students frequently ask, “Am I on the right track?” |
Feed Forward | “Where to next?” – Offer substantive suggestions to inform students about specific activities that they need to undertake to make progress toward the goal. |
Hattie and Temperly’s tri-direction model [21].
Hattie and Temperly’s Tri-Direction Model [21].
This section discusses the intersections of pedagogy and technology to offer supporting applications to provide feed up, feedback, and feed forward guidance. There are several applications that assist teachers to provide impactful information to students. The categories are audio, screen recording with voiceover, and image annotation (Table 3). These tools work in face-to-face and online synchronous or asynchronous classwork.
Application | Modality | Examples |
---|---|---|
Mote [22] | Audio Notes | Install the Chrome Mote extension on your computer. Share a worksheet in Google Docs with each student. Use the Mote audio feature in a new comment. |
Loom [23] | Screen recording with voiceover and optional on-camera speaker. | Install the Chrome Loom extension on your computer. Download code from your student’s Google folder and upload the “.vrblocks” file to the VR Vex in your browser. Review the program to formulate suggested revisions. Click on the Loom extension in your Chrome toolbar and screen record your feedback to your student. Click the Loom checkmark at the bottom of the screen to generate a URL to your feedback. Send the URL to the student via email. |
Small-skill videos | It is helpful to produce small skill videos ( | |
Skitch [26] | Image Annotation | Skitch is part of the Evernote application. Download Skitch to your computer. Take a screenshot of your student’s work with the Skitch application. Use the annotation and text tools to point out the areas of the program or assignment to revise. Figures 2 and 3 are examples of Skitch annotations. |
Feed up, feedback, and feed forward tools for educators.
The successful deployment of the Vex VR platform in a hybrid learning environment with face-to-face, synchronous, and asynchronous entry points compels teachers, coaches, and parents to understand the intersections of technology, pedagogy, and content knowledge. The on-ramp of the browser-based, virtual robotics, Vex VR platform transitions well to the next section that delineates Robomatter’s Robot Virtual Worlds platform [12].
The Robot Virtual Worlds (RVW) product, offered by Robomatter, Inc., provides a powerful virtual robot platform [27] that gives programmers an option to run their code on a virtual
To facilitate students working from home, RVW offers homework pack licenses [12] to install on students’ home computers running the Windows operating system. If a student owns a Mac or Chrome computer, the cost to the student for the partition software is approximately $80. Each student should download the free Level Builder software to facilitate “play” challenges or “build” custom activities. The following sections describe the RVW Vex IQ virtual robot.
This section addresses the technical knowledge in the TPACK framework (Figure 1) necessary to implement the fundamentals of the RVW RobotC programming software focusing on a Vex IQ virtual robot. The “C” programming language is an industry standard to program robots [29]. RVW provides a graphical user interface (GUI) with drag and drop blocks similar to VR Vex. Once installed on a computer, RVW provides a desktop icon named ROBOTC for Vex Robotics. Double click on this icon to invoke ROBOTC. Kindly refer to
Task | Location in top gray row of the robotC Screen | Notes |
---|---|---|
Establish licenses | Help – Manage Licenses – Add License | One per computer. |
RVW Package Manager to Install Level Builder | Help – Manage RVW Packages – Checkmark all Packages – Click Install/Update Selected | This is where you install Level Builder. One can also install the Vex IQ Competition Challenges [30] in virtual format here. |
Review the Help Page | Help – (Choose language) | Review the extensive library of this user manual as needed. |
Select the Virtual Robot | Robot – Compiler Target – Virtual Worlds | This will download your programs to the virtual robot. When one builds a Vex IQ, select Physical Robot and attach the Vex IQ with the USB cord. |
Select the Platform Type | Robot – Platform Type – Vex IQ | This example describes the Vex IQ virtual robot. The Vex Cortex virtual robot is also an option. |
Select Virtual World to Use | Window – Select Virtual World to Use – RVW Level Builder | This menu option contains a “Download More Packages” option. |
Select Menu Level | Window – Menu Level – Super User | The Super User options shows all available blocks. |
Open a sample program | File – Open Sample Program | Select Moving Forward Rotations |
Compile the Program | Click the Compile Program button at the top of the screen. | One must compile the program each time you make a change. |
Download to the Virtual Robot | Click the Download to Robot button at the top of the screen | One must download the program each time you make a change. Click Play to reveal the Clawbot IQ page. |
Select the Level | Select the Turning Challenge as a good beginner activity. | Click “Start Level” to reveal the virtual robot on the playfield. Notice the “play” button to the left of the robot. Click play to enact your program, click the rewind to return to the Start tile, click the “home” icon to return to the Select Level option. |
Suggested sequence to establish RVW.
This section addresses the engineering and geometry content knowledge in the TPACK framework (Figure 1) that underpin the robot’s build and associated properties of circle geometry at work. The RVW Vex IQ virtual robot has the same construction and sensors as the physical kit’s “Clawbot” build. A
Sensor | (P)urpose and (V)alues | Example |
---|---|---|
Bumper Switch | P: detect an obstacle V: pressed = 1 released = 0 | &$$$; [29] This loop of code will move the robot forward one rotation at half power until the bumper switch is pressed indicating that it drove into an object. |
Distance Sensor | P: Detects an obstacle with ultrasonic soundwaves V: Measures distance from 50 mm to 1 m | &$$$; [29] This loop of code will move the robot backward one rotation at half power until the distance sensor detects that an object is less than 300 millimeters away. Note: the virtual robot has its distance sensor on the back bumper. Hence, one must turn the robot to face the distance sensor toward the object that you wish to detect |
Gyro Sensor | P: Measure the turn rate and calculates the direction of the robot. V: based on 360 degrees of a circle. | &$$$; [29] Always reset the gyro sensor (to 0) before turning the robot |
A gyro turning counterclockwise will increase its values. A gyro turning clockwise will decrease its values. | ||
This loop of code turns the robot to the left by setting the speed of the robot’s left motor to −50 and the right motor to 50 until the gyro value is greater than 90 degrees. | ||
Touch LED | P: In virtual robotics, set the LED to color to denote that a section of code is being enacted V: For example, colorRed, colorGreen. | &$$$; [29] For example, set the touch LED sensor to a different color for each section of code for a visual indication that a section of code is currently running. |
Color Sensor | P: Detects the color of obstacles. V: Returns a color name or value of red, green, and blue in 256 levels. | &$$$; [29] |
Smart Motors | P: Using an encoder within the motor, it measures speed, direction, time, revolutions, and degrees of turn. V: See example. | &$$$; [29] This block moves the robot forward for three rotations of the wheel at half power. |
Robot sensors with examples.
It is necessary to understand circle geometry to employ the 360° properties of a circle to calculate the turns of the robot using the gyro. Additionally, students can arrive at the circumference of the robot’s wheel to determine the distance in millimeters that the device travels in one rotation. Notice the length of the radius of the Clawbot IQ wheels on the start page of the Level Builder virtual robot (
This section elaborates on the intersections of technical and content knowledge (Figure 1) necessary to understand Robot Virtual Worlds. Similar to the drag and drop code blocks described in Section 2.3, RVW is a robust platform that provides RobotC programming in 12 graphical functions categories (Table 6).
Graphical Function | Use |
---|---|
Program Flow | Contains blocks that the programmer to evaluate the data coming in from the sensors as the robot travels in an environment. The program flow blocks contain three components: the name of the sensor, a comparison symbol such as less than < or greater than >, and a threshold value such as a number, a color, or a Boolean value such as true or false. |
&$$$; [29] This program flow block evaluates the gyro sensor data and will turn the robot to the right until the value is less than −89. | |
Variables | The variable blocks allow the programmer to create a named location in the memory of the brain to store a value to use in a programming block. |
&$$$; [29] The programmer established the variable MyPower, set the value to 100, and then used the variable in the forward block. Using a variable in this manner standardizes the power. The programmer changes the value in one place and recompiles to change the speed of the robot throughout the program. | |
Simple Behaviors | Contains backward, forward, moveMotor, turnLeft, and turnRight commands. Use the Help – Command Library Vex IQ – Graphical – Simple Behaviors user manual to learn more. |
Motor Commands | Contains blocks that address the encoder properties of the motor sensors. Use the Help – Command Library Vex IQ – Graphical – Motor Commands user manual to learn more. |
Remote Control | Contains blocks to program the handheld controller that communicates via radio in |
Timing | Contains blocks to time or delay the program. |
Line Tracking | Contains blocks to follow the edge of a line with the color sensor. |
Datalog | Creates a graph of data from a selected sensor. |
Display | Used to reveal controller, motor, or sensor values on the screen of the brain. |
TouchLed | Changes the color on the TouchLED sensor |
Distance and Gyro Sensor | Contains blocks to reset the distance and gyro sensors. |
Robot virtual worlds 12 graphical function categories.
This section suggests a pedagogical method (Figure 1) to make real world connections to robotics as students program their virtual robot. The Mars Perseverance Rover is a robot launched by NASA in July of 2020 and deployed on Mars on February 18, 2021 [31]. The Perseverance mission team engineered the rover to utilize a sophisticated collection of cameras and sensors to navigate the environment of Mars [32]. However, one simple calculation correlates directly to the students’ virtual robot and circle geometry. The mission team calculated the distance that Perseverance travels in one rotation of the wheels, with no slippage on the rocky terrain of Mars, as 1.65 meters [33] using the same formula for the circumference of a circle demonstrated in Section 3.2 of this chapter. Educational philosopher John Dewey asserted that, “We do not learn from experience. We learn from reflecting on experience” [34]. Take the time to have the students pause and reflect on the rover on Mars to appreciate the skills that they are learning as actionable in future STEM careers.
To achieve the intersections of pedagogy and content knowledge, teachers, coaches, and parents can reflect on the three types of problems delineated by Kirkley in the Principles for Teaching Problem Solving [35]. The students enacting virtual robotics will solve ill-structured problems without one solution. For every student in a class or on a team, they can develop a unique solution that solves the successful navigation of the virtual robot around the selected challenge. Table 7 reveals three types of problems and the implications for instructing virtual robotics.
Type | Definition | Example | Pedagogy |
---|---|---|---|
Well-structured problem | The same step by step solution with one right answer. | Calculating the circumference of the wheel of a robot using Π * Diameter | Learner memorizes formula. |
Encourage reflection to real world contexts such as the Perseverance Rover. | |||
Moderately structured problem | More than one acceptable solution with one right answer. | Turn the robot 90° to the right to navigate a maze. The learner can use the gyro sensor and setMotor blocks in a repeatUntil loop or a simple behavior of turnRight. Both solutions will turn the robot 90° to the right. | Learner selects a strategy to turn the robot to the right 90°. The solution using the gyro requires more analysis and abstract reasoning. |
Encourage students using the simple behavior to develop a solution to employ the gyro and motors. | |||
Ill-structured problem | This is an open-ended problem with many correct solutions. | Challenge the students to move around a maze using all available sensors in their solution. | Students must plan the direction of the rover to move forward to use the bumper switch, backward to use the distance sensor, motor encoders to calculate distance traveled to navigate the robot to the finish block. |
Three types of problems [35].
This section discusses the intersections of pedagogy and technology to offer supporting applications for students to develop their strategies to solve ill-structured problems. Students who complete the challenges provided within the RVW Level Builder software, such as the Turning Challenge, will be ready to create their own virtual environment. As previously demonstrated (
Robot virtual worlds level builder – build option.
Students can customize their virtual Level Builder environment by dragging and dropping objects provided by RVW onto the playfield and saving their unique environment for continued development (Figure 4). Most exciting is that the student can create 3D objects using free online platforms such as Tinkercad [13] offered by Autodesk [Autodesk], export the resulting “.stl” file to the download folder of their computer, and import this file to Level Builder (
Thus far, this chapter discussed the Vex VR and Robot Virtual Worlds virtual reality applications where the user observes a robot navigating a coded environment on a computer screen. Augmented Reality (AR) is a technology that overlays digital information into a user’s real surroundings. Learners use a mobile phone or tablet running an application such as Merge Object Viewer [36] to facilitate the projection of objects onto a Merge Cube [14] into their current environment. This type of AR application is useful to students who designed a 3D object using Tinkercad and wish to view the object in their current environment before uploading it to Level Builder (
If the teacher, coach, or parent wants to print the student’s custom 3D object, companies such as MakeXYZ [37] offer services to upload the.stl file, select inexpensive materials, and ship the resulting 3D object to you. The object can be used later with a Vex IQ robot on a physical playfield. Printing services provide several benefits to teachers, coaches, and parents who do not have access to a 3D printer and raw materials. Printing in 3D requires a large block of time, often overnight for one object. The extruder of the printer that melts the raw material filament can be approximately 280° C or 536° F [38], which requires adult supervision. If the roll of filament becomes jammed during printing, it can pull the extruder off the printer and ruin the printed object. Printing services provide access to 3D objects for students in face-to-face, synchronous, or asynchronous learning environments.
The RVW package provides
Teachers, coaches, and parents who shepherd learners through the world of virtual robotics will be well-positioned to take the leap into physical robotics. The RVW package has a compiler target for a virtual or a physical robot. The students can compile and download the same program that they developed to navigate their custom Lebel Builder world to a physical Vex robot via a computer-to-robot USB cord. Obstacles crafted from recycled materials and placed on the floor of a classroom, community center, or home provides a workable test environment. It is helpful to create a “game” to have teams of students develop a scenario to have the robot gain “points” as the it navigates a custom, physical playfield. Example of games that this author’s students developed included a home base for astronauts on the Moon and a distribution center for clean water in the aftermath of a natural disaster. Each time the robot accomplished a task using its sensors, the team gained points. It is important to note that teams can share the same physical robots by downloading their program to the robot brain. Sharing the same robots requires teams’ agreement on the “build” of the robot to agree upon the location of the sensors.
Virtual robotics provides teachers, coaches, parents, and students with a unique opportunity to achieve a one-to-one ratio of robot to student. Vex VR and Robot Virtual Worlds provide students in face-to-face, asynchronous and synchronous settings with the opportunity to build upon their programming expertise while navigating a virtual robot in packaged and customized challenges.
IntechOpen books are published online and are accessible for free.
\r\n\r\nHowever, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through FREE DHL Express delivery.
\r\n\r\nFor a quote or assistance please contact us directly at orders@intechopen.com The quote will be sent to you within 1-2 business days.
\r\n\r\nOur entire portfolio of over 5,500 books is also available through Amazon.
',metaTitle:"Order and delivery",metaDescription:"Our books are published online and are accessible for free. However, if you are interested in ordering your hardcover copy, you can do so by contacting our Print Sales Department at orders@intechopen.com. All IntechOpen books are printed on demand in full-colour and delivered in signature packaging through free DHL Express delivery. A selection of our books in soft cover is also available through Amazon.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\\n\\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\\n\\nIntechOpen books retail price range is:
\\n\\n100 - 159 GBP ex. VAT (available in USD and EUR)
\\n\\nDiscounts available:
\\n\\nBulk discounts are granted for orders of 10 copies and more.
\\n\\nThere is no minimum or maximum threshold on the quantity of book orders.
\\n\\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\\n\\nWe currently accept the following payment options:
\\n\\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\nIn accordance with the best security practice, we do not accept card orders via email.
\\n\\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\\n\\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\\n\\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\\n\\nP.O. Boxes cannot be used as a Ship-To Address.
\\n\\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\\n\\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\\n\\nRestricted Ship-to Countries:
\\n\\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\\n\\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\\n\\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\\n\\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\\n\\nBooks International
\\n\\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\\n\\nChina Publishers Services Ltd - CPS
\\n\\nRepresentative for: China, Taiwan, Hong Kong
\\n\\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\\n\\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\\n\\nLSR Libros Servicios y Representaciones S.A. de C.V
\\n\\nRepresentative for Mexico, Chile and Colombia
\\n\\nMissing Link Versandbuchhandlung eG
\\n\\nRepresentative for: Germany, Austria, Switzerland
\\n\\nKuba Libri, s.r.o.
\\n\\nRepresentative for: Czech Republic
\\n\\nFor partnership opportunities, please contact orders@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Our books are available hardcover, printed in full colour and produced to the highest standards on PEFC™ and FSC certified paper, complying with principles of responsible forestry worldwide. The paper size is 180 x 260 mm (7 x 10.2 inches).
\n\nIntechOpen works with award winning print-houses and we hold to the fact that all of our printed products are of the highest quality.
\n\nIntechOpen books retail price range is:
\n\n100 - 159 GBP ex. VAT (available in USD and EUR)
\n\nDiscounts available:
\n\nBulk discounts are granted for orders of 10 copies and more.
\n\nThere is no minimum or maximum threshold on the quantity of book orders.
\n\nOrders have to be paid in advance and before printing. We accept payment in GBP, EUR and USD.
\n\nWe currently accept the following payment options:
\n\nWhen paying with a credit card, you will be redirected to the PayPal.com online payment portal.
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\nIn accordance with the best security practice, we do not accept card orders via email.
\n\nThe combined printing and delivery time for orders vary from 7-15 business days, depending on the printed quantity and destination. This period does not include any customs clearance difficulties that may arise and that are beyond our control. Once your order has been printed and shipped, you will receive a confirmation email that includes your DHL tracking number. You can then track your order at www.dhl.com.
\n\nIf you do not receive your order within 30 days from the date your order is shipped, please contact us to inquire about the shipping status at orders@intechopen.com.
\n\nTax: Residents of European Union countries need to add a Book Value-Added Tax Rate based on their country of residence. Institutions and companies, registered as VAT taxable entities in their own EU member state, will not pay VAT by providing IntechOpen with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nCustoms: free shipping does not include any duties, taxes or clearing charges levied by the destination country. These charges are the responsibility of the customer and will vary from country to country.
\n\nP.O. Boxes cannot be used as a Ship-To Address.
\n\nIntechOpen partners do not provide shipping service from Europe to the countries listed below. Please refrain from mailing items addressed to the countries listed below, until further notice.
\n\nWhen ordering our books from the countries listed below, please provide an alternative mailing address. For any further assistance, please contact us at orders@intechopen.com.
\n\nRestricted Ship-to Countries:
\n\nPOD products are non-returnable and non-refundable, except in the event of poor print quality or an error in quantity. If we delivered the item to you in error or the item is faulty, please contact us.
\n\nInspect your order carefully when it arrives. Any problems should be immediately reported to orders@intechopen.com.
\n\nPrint copies of our publications are most often purchased by universities, libraries, institutions and academia personnel, hence increasing the visibility and outreach of our authors' published work among science communities and institutions.
\n\nOur books are available at our direct Print Sales Department and through selected representatives throughout the world.
\n\nBooks International
\n\nRepresentative for: Brunei, Cambodia, Indonesia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam (ASEAN)
\n\nChina Publishers Services Ltd - CPS
\n\nRepresentative for: China, Taiwan, Hong Kong
\n\nIndia - CBS Publishers & Distributors Pvt. Ltd.
\n\nRepresentative for: India, Bangladesh, Pakistan, Sri Lanka, Bhutan, Nepal, Maldives, Iran, Algeria, Bahrain, Egypt, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Malta, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunis, United Arab Emirates and Yemen
\n\nLSR Libros Servicios y Representaciones S.A. de C.V
\n\nRepresentative for Mexico, Chile and Colombia
\n\nMissing Link Versandbuchhandlung eG
\n\nRepresentative for: Germany, Austria, Switzerland
\n\nKuba Libri, s.r.o.
\n\nRepresentative for: Czech Republic
\n\nFor partnership opportunities, please contact orders@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6585},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2382},{group:"region",caption:"Asia",value:4,count:12514},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17531}],offset:12,limit:12,total:132506},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",src:"N-T-0-T1-NW"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12007",title:"Updates in Volcanology - Linking Active Volcanism and the Geological Record",subtitle:null,isOpenForSubmission:!0,hash:"a55d00d84b7616824cc783586c092525",slug:null,bookSignature:"Dr. Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/12007.jpg",editedByType:null,editors:[{id:"51162",title:"Dr.",name:"Károly",surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12009",title:"Soil Moisture",subtitle:null,isOpenForSubmission:!0,hash:"9d683c1c4b137c5de03d7e6f141256f1",slug:null,bookSignature:"Dr. Rahul Datta, Dr. Mohammad Javed Ansari, Dr. Shah Fahad and Dr. Subhan Danish",coverURL:"https://cdn.intechopen.com/books/images_new/12009.jpg",editedByType:null,editors:[{id:"313525",title:"Dr.",name:"Rahul",surname:"Datta",slug:"rahul-datta",fullName:"Rahul Datta"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12063",title:"Critical Infrastructure - Modern Approach and New Developments",subtitle:null,isOpenForSubmission:!0,hash:"a88b0006f3a58c0a60f89e06efb31102",slug:null,bookSignature:"Dr. Antonio Di Pietro and Dr. José R. Martí",coverURL:"https://cdn.intechopen.com/books/images_new/12063.jpg",editedByType:null,editors:[{id:"284589",title:"Dr.",name:"Antonio",surname:"Di Pietro",slug:"antonio-di-pietro",fullName:"Antonio Di Pietro"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12173",title:"Dairy Processing - From Basics to Advances",subtitle:null,isOpenForSubmission:!0,hash:"420e687768b56ca7b3238d77f63f1302",slug:null,bookSignature:"Dr. Neelam Upadhyay",coverURL:"https://cdn.intechopen.com/books/images_new/12173.jpg",editedByType:null,editors:[{id:"269538",title:"Dr.",name:"Neelam",surname:"Upadhyay",slug:"neelam-upadhyay",fullName:"Neelam Upadhyay"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12176",title:"Oligonucleotides - Overview and Applications",subtitle:null,isOpenForSubmission:!0,hash:"365b4a84e87d26bcb24b7183814fba04",slug:null,bookSignature:"Dr. Arghya Sett",coverURL:"https://cdn.intechopen.com/books/images_new/12176.jpg",editedByType:null,editors:[{id:"301899",title:"Dr.",name:"Arghya",surname:"Sett",slug:"arghya-sett",fullName:"Arghya Sett"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11599",title:"Leukemia - From Biology to Diagnosis and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"30b431385424f0b84aee499d839f46cc",slug:null,bookSignature:"Prof. Margarita Guenova and Prof. Gueorgui Balatzenko",coverURL:"https://cdn.intechopen.com/books/images_new/11599.jpg",editedByType:null,editors:[{id:"52938",title:"Prof.",name:"Margarita",surname:"Guenova",slug:"margarita-guenova",fullName:"Margarita Guenova"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12202",title:"Sexual Violence - Issues in Prevention, Treatment, and Policy",subtitle:null,isOpenForSubmission:!0,hash:"d3d39a00095ec14f7f869ed5b5211527",slug:null,bookSignature:"Dr. Kathleen Monahan",coverURL:"https://cdn.intechopen.com/books/images_new/12202.jpg",editedByType:null,editors:[{id:"463306",title:"Dr.",name:"Kathleen",surname:"Monahan",slug:"kathleen-monahan",fullName:"Kathleen Monahan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11651",title:"Bone Tumors - Recent Updates",subtitle:null,isOpenForSubmission:!0,hash:"cf7dd688b160a1ba07e3179613684f16",slug:null,bookSignature:"Dr. Hiran Wimal Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/11651.jpg",editedByType:null,editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11830",title:"Rubber Materials",subtitle:null,isOpenForSubmission:!0,hash:"6cf0b844f6881c758c61cca10dc8b134",slug:null,bookSignature:"Associate Prof. Gülşen Akın Evingür and Dr. Önder Pekcan",coverURL:"https://cdn.intechopen.com/books/images_new/11830.jpg",editedByType:null,editors:[{id:"180256",title:"Associate Prof.",name:"Gülşen",surname:"Akın Evingür",slug:"gulsen-akin-evingur",fullName:"Gülşen Akın Evingür"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11947",title:"Power Converter Technology - Recent Advances, Design and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1f5c85b127faa05e07e46c646dcb4540",slug:null,bookSignature:"Dr. Raul Gregor",coverURL:"https://cdn.intechopen.com/books/images_new/11947.jpg",editedByType:null,editors:[{id:"175676",title:"Dr.",name:"Raul",surname:"Gregor",slug:"raul-gregor",fullName:"Raul Gregor"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11499",title:"Nonlinear Systems - Recent Developments and Advances",subtitle:null,isOpenForSubmission:!0,hash:"22a4fb880337aaa9899a7bddcdde52eb",slug:null,bookSignature:"Dr. Bo Yang",coverURL:"https://cdn.intechopen.com/books/images_new/11499.jpg",editedByType:null,editors:[{id:"234525",title:"Dr.",name:"Bo",surname:"Yang",slug:"bo-yang",fullName:"Bo Yang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:59},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:412},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4385},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterConte