1. Introduction
Regulation of nutrient balance by the liver is important to ensure whole body metabolic control. Hepatic expression of genes involved in lipid and glucose metabolism is tightly regulated in response to nutritional cues, such as glucose and insulin. In response to dietary carbohydrates, the liver converts excess glucose into fat for storage through
2. Liver X Receptors (LXR)
2.1. LXR structure and function
LXRα (NR1H3) and LXRβ (NR1H2) are ligand-activated transcription factors belonging to the nuclear receptor (NR) superfamily (Lehmann JM (Lehmann et al., 1997; Willy et al., 1995; Janowski et al., 1996). LXRα is primarily expressed in metabolically active tissues, such as liver, intestine, adipose tissue, kidney and macrophages, whereas LXRβ is ubiquitously expressed(Apfel et al., 1994; Teboul et al., 1995; Teboul et al., 1995). LXRs are intracellular sensors of cholesterol and oxidized cholesterol derivatives (oxysterols) have been identified as their endogenous ligands (Janowski et al., 1996; Lehmann et al., 1997). The two isotypes originates from two different genes on separate chromosomes, but share the same modular structure, which is characteristic of most NRs (Fig. 1).

Figure 1.
Structure of the LXRs
The DNA-binding domain (DBD) and the ligandbinding domain (LBD) are highly structured domains. LXRα and LXRβshare 78 % amino acid sequence identity in these regions, while the N-terminal domain (NTD) and the hinge domain are far more disordered and less conserved. DNA binding requires dimerization with RXR. Transactivation by the LXRs is mediated through the ligand independent activation function (AF1) in NTD and the ligand dependent activation function 2 (AF2) in the LBD. Binding of a ligand to the hydrophobic ligand binding pocket leads to a conformational change that releases corepressors (CR) and exposes binding sites for coactivators (CA), recruiting the general transcription machinery and RNA polymerase II (RNA Pol II) (Fig. 2). This leads to changes in LXR dependent gene expression. The interactions with coregulators can also occur independently ofligand to AF1, however this is far less characterized. Upon activation, LXRs regulate a number of genes involved in lipid, cholesterol and glucose metabolism by binding to LXR response elements (LXREs) in their promoter region. These consist of a direct repeat of the nucleotide hexamer AGGTCA spaced by four nucleotides. Insights into LXR function in metabolism was provided by the generation of LXR mutant mice. These mice accumulate hepatic cholesterol, ultimately causing liver dysfunction(Peet et al., 1998; Ulven et al., 2005). It was found that LXRα controls cholesterol metabolism by conversion of cholesterol to bile acid by induction of the cholesterol 7 alpha-hydroxylase (Cyp7A1) gene, biliary cholesterol excretion and cholesterol efflux via induction of ABCG5/8 and ABCA1/ABCG1, respectively (Lehmann et al., 1997; Chiang et al., 2001; Yu et al., 2003; Repa et al., 2002; Graf et al., 2002; Costet et al., 2000; Sabol et al., 2005; Venkateswaran et al., 2000; Venkateswaran et al., 2000).LXRs are strongly implicated in the development of metabolic disorders and associated pathologies, notably, hyperlipidemia and atherosclerosis (Peet et al., 1998; Calkin & Tontonoz, 2010). Thus, LXRs are key players in maintaining metabolic homeostasis in health and disease by regulating inflammation and lipid/carbohydrate metabolism.

Figure 2.
Activation of LXR by coregulator switching
2.2. Modulation of LXR activity by coregulators and PTMs
The transcriptional activity of LXRs is highly dependent on the presence of coregulators which has been linked to several metabolic processes (Jakobsson et al., 2009; Kim et al., 2003; Huuskonen et al., 2004; Kim et al., 2008; Oberkofler et al., 2003). Coregulators constitutes large multisubunit protein complexes containing chromatin-remodelling and/or –modifying enzymes with intrinsic histone acetylase (HAT)/ deacetylase (HDAC) and histone methylase (HMT)/demethylase (HDM) activities, depending on whether they act as activators or repressors, respectively (Kato et al., 2011). It has been assumed that that the unliganded LXRs are localized in the nucleus and interact with CRs, including nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid receptor (NcoR/SMRT) (Wagner et al., 2003). However, recent chromatin immunoprecipitation (ChIP) studies, including ChIP-sequencing (ChIP-Seq), have challenged this classical model. These studies put forward a more complex view, that ligands, pioneer factors, coregulators and posttranslational modifications (PTMs) play different roles in determining the LXR binding sites and actions
3. LXR in hepatic de novo lipogenesis
3.1. LXR lipogenic target genes
In addition to being central regulators of cholesterol metabolism, the LXRs are involved in induction of fatty acid and triglyceride (TG) biosynthesis in response to feeding.

Figure 3.
Regulation of hepatic lipogenesis by LXR, SREBP1c and ChREBP.
3.2. Putative mechanisms regulating LXR-mediated de novo lipogenesis in response to insulin
Insulin is the most important anabolic hormone in the body, regulating many processes important for cellular growth and energy storage such as glucose uptake and metabolism, glycogen and lipid synthesis, gene transcription and translation. A classic action of insulin is to mediate a metabolic switch from fatty acid oxidation to synthesis and suppress hepatic glycogenolysis and gluconeogenesis in response to carbohydrate excess, a process that is largely regulated at the transcriptional level. In this way, hepatic insulin signaling maintains whole body energy homeostasis. In the insulin-resistant state, only the ability of insulin to suppress hepatic gluconeogenesis is lost, while its ability to activate lipogenesis is retained (Shimomura et al., 2000; Matsumoto et al., 2006; Brown & Goldstein, 2008). This bifurcated insulin resistance can be explained by failure of insulin to inhibit the gluconeogenic transcription factor Forkhead box protein O1 (FoxO1), but maintaining signaling to lipogenic transcriptional regulators including LXR and SREBP1c.
3.2.1. The insulin signaling cascade
The insulin signaling cascade is initiated by the binding of insulin to the extracellular β-subunits of the dimerized IR followed by autophosphorylation on several intracellular tyrosine residues on the IR. Insulin receptor substrate (IRS) is an essential protein docking onto the phosphorylated IR which in turn is phosphorylated itself on multiple tyrosine residues. This creates docking sites for src homology 2 (SH2) domain containing proteins. The best studied SH2 protein that binds to tyrosine phosphorylated IRS proteins is the regulatory subunit of the phosphoinositide 3-kinase (PI3K). PI3K catalyzes the formation of the lipid second messenger phosphatidylinositol (3,4,5) trisphosphate (PIP3), which is necessary to recruit downstream kinases. PIP3 generates a binding site for proteins containing Pleckstrin homology (PH) domains, such as 3’-phosphoinositide-dependent protein kinase (PDK1), the serine/threonine kinase Akt/protein kinase B and possibly also mammalian target of rapamycin complex 2 (mTORC2). PDK and mTORC2 are both necessary for full activation of Akt downstream of the insulin receptor via PDK1-mediated phosphorylation of Akt on threonine 308 and mTORC2-mediated phosphorylation on serine 472 (Saltiel & Kahn, 2001; White, 2003; Jacinto et al., 2006). All these events occur transiently in specific cholesterol rich plasma membrane microdomains called caveolae, generating a specific signaling unit for proper downstream insulin signaling where Akt plays a central role.
3.2.2. Regulation by mTOR
One of the targets of Akt is mTORC1 (Zoncu et al., 2011). Recent evidence suggests that mTORC1 is involved in LXR-mediated lipogenic gene transcription including induction of SREBP1c, FAS and ACC in liver from mice subjected to a high fat diet (Hwahng et al., 2009). The authors show that the mechanism by which mTORC1 activates LXR is via p70 S6 kinase (S6K)-mediated phosphorylation of LXR. Conversely, in the fasted state, LXR was shown to be inhibited by AMPK-mediated phosphorylation. In agreement with these observations, Li et al (Li et al., 2010) showed that insulin-activated hepatic transcription of SREBP1c, FAS and SCD1is mediated by mTORC1, however independent of S6K. As both LXR and SREBP1c induce lipogenic promoters in response to insulin, this might suggest that activation of LXR in response to insulin/nutrients is mediated, at least in part, by mTORC1 and S6K, whereas insulin-signaling to SREBP1c requires mTORC2 independently of S6K, possibly via Akt-mediated inhibition of glycogen synthase kinase-3 (GSK3) (Hagiwara et al., 2012). In this way, GSK3-mediated phosphorylation and degradation of SREBP1c is prevented by insulin signaling to mTORC2 and Akt. Of note, insulin has primarily been shown to act on the SREBP1c promoter by activating LXRs and not SREBP1c (Chen et al., 2004) and the effect of insulin on SREBP1c is mainly at the posttranslational level. In a recent publication, mTORC1 was shown to phosphorylate a phosphatidic acid phosphatase, Lipin 1, preventing its nuclear entry and subsequent inhibition of SREBP1c-mediated activation of the FAS promoter (Peterson et al., 2011). Furthermore, Yecies JL et al (Yecies et al., 2011)showed that Akt2 independently of mTORC1 downregulate the mRNA expression of insulin induced gene 2 (Insig2a), an inhibitor of SREBP1c. This finding has been debated by Wan M et al (Wan et al., 2011), who could not observe any downregulation of Insig2a by Akt2. They postulate that Akt2 acts independently of mTORC1 and SREBP1c, possibly via posttranslational mechanisms, and that nutrients have a direct role in the liver to promote lipogenesis by a process dependent on both mTORC1 and other insulin-dependent signaling pathways. In light of the above mentioned studies, both mTORC1 and mTORC2 (Soukas et al., 2009; Guertin et al., 2006; Lamming et al., 2012; Hagiwara et al., 2012) appear to play important roles in lipid synthesis and storage in hepatocytes. Further studies will reveal the relative roles of Akt1, Akt2, mTORC1/C2 and S6kinase on activation of LXR and SREBP1c in this regulation under insulin sensitive and insulin resistant conditions and cross-talk with glucose metabolism and signaling (Fig.4).
3.2.3. Regulation by FoxO1
Another mechanism by which insulin may promote LXR-mediated SREBP1c transcription is through the transcription factor FoxO1.FoxO1, generally known as an activator of gluconeogenic genes during fasting, can repress the transactivating ability of LXR and cooperatingtranscription factors SREBP1c and Specificity protein 1 (Sp1) to activate SREBP1c transcription during fasting(Liu et al., 2010; Deng et al., 2012). FoxO1 does not seem to bind directly to the SREBP1c promoter, but appears to act as a repressor through protein-protein interactions, possibly by recruiting CR proteins (Deng et al., 2012). Upon feeding, FoxO1 is inhibited by insulin via PI3-kinase activation and phosphorylation by Akt, which excludes phosphorylated FoxO1 from the nucleus via association with the 14-3-3 protein (reviewed in (Tzivion et al., 2011)). In this way, at least under insulin sensitive conditions, inhibition mediated by FoxO1 and associating CRs is relieved, enabling LXR, Sp1 and SREBP1c to activate the SREBP1c promoter in a cooperative fashion. Of note, an important role for the E-box transcription factor Upstream Stimulatory Factor (USF) in mediating insulin activation of the SREBP1c promoter has also been reported (Wong & Sul, 2010). The relative roles of LXR, SREBP1c and cooperating transcription factors in regulation of the SREBP1c promoter after high-carbohydrate feeding under normal and insulin resistant conditions and the role of FoxO1 in this process in insulin resistance is currently not known. Recently, the role of Akt as a central regulator of both gluconeogenesis, through inhibition of FoxO1, and lipogenesis, through activation of mTORC1/2 in hepatic insulin signaling, was debated as the insulin resistant phenotype of mice lacking hepatic Akt1/2 were normalized in mice with concomitant liver-specific deletion of FoxO1 (Lu et al., 2012). This work suggests that a major role for Akt as a metabolic regulator in response to insulin is largely to restrain FoxO1 activity, at least for suppression ofliver glucose output.
3.2.4. Regulation by insulin-mediated oxysterol production
Considering the bifurcated nature of insulin resistance and the postulated central role of Akt in this process, a very recent work by Wu and Williams (Wu & Williams, 2012), put forward an interesting theory. They suggest that disturbance of a single molecule, NAD(P)H oxidase 4 (NOX4), is sufficient to induce the key harmful features of insulin resistance. NOX4 is activated upon IRactivation, generating a transient burst of superoxide (O2-) and its byproduct H2O2. This enhances signal transduction by disabling enzymes in the protein-tyrosine phosphatase gene family. In this way, essential inhibiting enzymes in the insulin signaling cascade is blocked, notably the PI3K inhibitor PTEN and protein-tyrosine phosphatase-1B (PTP1B)(Wu & Williams, 2012). Intriguingly, NOX4 may also be the link between insulin signaling and production of oxysterol ligand for LXR, as NOX4 through its superoxide producing activity may mediate the production of oxygenated cholesterol. The evidence for this is that pharmacological inhibition of NOX4 blocked insulin-induction of SREBP1c mRNA in rat primary hepatocytes, even though phosphorylations upstream and downstream of mTORC1 remained responsive (Wu & Williams, 2012). Furthermore, NOX4 is transiently localized to caveolae (Han et al., 2012), possibly via recruitment to the IR, placing the enzyme in close proximity to cholesterol-rich areas of the plasma membrane. A complete summary of putative mechanisms of insulin-mediated signaling to LXR, SREBP1c and lipogenesis is depicted in Fig. 4.

Figure 4.
Insulin-mediated regulationof hepatic lipogenesis
4. Lipogenic gene expression in response to glucose metabolism
Hepatic glucose metabolism activates the transcription of various genes encoding enzymes of glycolysis and lipogenesis independently of insulin. However, the initial modification of glucose into Glucose-6-phosphate (G6P) by the enzyme Glucokinase (GK; Hexokinase4) required for transcriptional regulation by glucose is highly dependent on insulin (Bosco et al., 2000), possibly via SREBP1c (Foretz et al., 1999; Kim et al., 2004)in concert withLXR and Peroxisome Proliferator-Activated Receptor gamma (PPARγ) (Kim et al., 2009). Thus the actions of glucose and insulin may be considered interdependent and that regulation of gene expression in response to glucose seems to require active LXR, SREBP1c and/or PPARγ.
4.1. Glucose regulation via ChREBP
A majority of hepaticglucose-responsive genes is thought to be regulated by the transcription factor ChREBP(Yamashita et al., 2001; Ishii et al., 2004). ChREBP mediates transcriptional regulation of glycolytic and lipogenic enzymes and is particularly important for the induction of liver-pyruvate kinase (L-PK), one of the rate limiting enzymes of glycolysis, which is exclusively dependent on glucose (Matsuda et al., 1990; Dentin et al., 2004). Furthermore, ChREBP is involved in regulating ACC and FAS in concert with LXR and SREBP1c in response to glucose and insulin, respectively, suggesting its involvement of the conversion of carbohydrates into fat(Joseph et al., 2002; Talukdar & Hillgartner, 2006). Moreover, stimulation by a synthetic LXR ligand, induces hepatic expression and activity of ChREBP (Cha & Repa, 2007). However, ChREBP is apparently not dependent on LXR for its hepatic expression and activity in micefed a high carbohydrate/high fat diet (Denechaud et al., 2008), suggesting that ChREBP activity is reinforced by upstream LXR under certain nutritional conditions.At low glucose concentrations, the ChREBP protein is retained as an inactive phosphoprotein in the cytoplasm (reviewed in (Havula & Hietakangas, 2012)). The mechanisms by which glucose activate ChREBP is not clear, but involves induction of the ChREBP mRNA, dephosphorylation of the protein, shuttling to the nucleus and binding to the ChREBP response element at the promoter of its target genes (Uyeda & Repa, 2006). Early studies pointed to xylose 5-phosphate (Xu5P), an intermediate of the pentose phosphate pathway (PPP), as an activating signal through its ability to activate protein phosphatase 2A (PP2A) and subsequent dephosphorylation of ChREBP (Havula & Hietakangas, 2012). Recently, ChREBP was shown to be activated by fructose 2,6-biphosphate (F2,6BP) in hepatocytes (Arden et al., 2012). The level of F2,6BP is regulated by the bifunctional enzyme 6-phosphofructokinase-2-kinase/fructose-2,6-biphosphatase (PFK2/FBP2). Thus, PFK2 catalyzes the synthesis and degradation of F2,6BP and as a result, the enzyme is involved in both glycolysis and gluconeogenesis. In the fed state, insulin and carbohydrates dephosphorylate PFK2 in the liver making the enzyme kinase dominant. Subsequently, F6P is converted to F2,6BP that activates PFK1, which in turn stimulates glycolysis (Fig. 6). Interestingly, LXRα was recently shown to be a central regulator of hepatic PFK2 mRNA expression (Zhao et al., 2012). Activation of ChREBP in response to glucose appears to depend on multiple glucose metabolites, includingG6P, X5P and F2,6BP. As LXRα is involved in regulation GK- and PFK2-expression in response to insulin, this may suggest that ChREBP is dependent on insulin signaling via LXR for proper substrate availability.
4.2. Glucose metabolism via the hexosamine biosynthetic pathway and O-GlcNAc signaling
Glucose metabolism from F6P can follow the alternative hexosamine biosynthetic pathway (HBP) where the enzyme glutamine fructose-6-phosphate amidotransferase (GFAT) controls the first and rate limiting step (Fig. 5).

Figure 5.
Nutrient flux and O-GlcNAc modification of nucleocytoplasmatic proteins through the HBP
The end product of this pathway is Uridine diphosphate
4.3. O-GlcNAc signaling activates LXR and hepatic lipogenesis
In 2007, glucose was reported as an endogenous ligand for LXR (Mitro et al., 2007). This has, however, been debated considering the hydrophobic nature of the ligand binding pocket (Lazar & Willson, 2007). Instead, we asked the question whether glucose exert its effect via hexosamine signaling and posttranslational O-GlcNAc modification of LXR. In a recent publication, we show that LXR is O-GlcNAc modified in response to high glucose (25 mM) in absence of insulin (cells cultured in 2 % serum, approximately 1-2 pmol/l insulin) and synthetic LXR-ligand in Huh7 cells, a human hepatoma cell line (Anthonisen et al., 2010). By pharmacological inhibition we demonstrated that hexosamine signaling and O-GlcNAc cycling mediates LXR dependent activation of the SREBP1c promoter in response to glucose. Furthermore, we observed increased O-GlcNAc modification of LXR in livers from refed mice and streptozotosin (STZ) treated diabetic mice corresponding with increased SREBP1c mRNA expression. Moreover, general protein O-GlcNAcylation was increased in STZ-treated hyperglycemic mice compared to control mice. Our results suggest that LXR is regulated by O-GlcNAc modification, thereby increasing its lipogenic potential. Whether O-GlcNAc-LXR is able to transactivate other lipogenic genes in addition to SREBP1c, is currently under investigation in our laboratory. Our preliminary studies point to a role for O-GlcNAc-LXR in upregulating ChREBP, FAS, ACC and SCD1 expression (Bindesbøll et al, unpublished). Furthermore, preliminary reChIP experiments in our laboratory (LXR ChIP followed by O-GlcNAc ChIP), show a strong induction of O-GlcNAc-associated LXR binding to LXRE on the promoters of SREBP1c, ChREBP, FAS and SCD1 in response to feeding both in control mice and STZ treated mice. Our study is supported by the observation that the SREBP1c promoter activity and protein levels of SREBP1c are increased in response to elevated glucose concentration in the mouse hepatocyte cell line H2-35 (Hasty et al., 2000). Furthermore, treatment with azaserine, an inhibitor of GFAT, completely suppressed expression of both cytoplasmic and nuclear SREBP1c protein, suggesting that hexosamine-dependent O-GlcNAc signaling indeed is involved in glucose-induced SREBP1c mRNA expression, possibly via activation of LXR and/or cooperating transcription factors/CAs.
In our

Figure 6.
Glucose-mediated regulation of hepatic lipogenesis
5. Cross-talk between O-GlcNAc- and insulin signaling
Studies in

Figure 7.
Glucose-insulin cross-talk in regulation of hepatic lipogenesis
6. Concluding remarks
In mice and humans, hepatic
As LXR is shown also to act anti-inflammatory in liver(Wouters et al., 2008; Venteclef et al., 2010), LXR activation may be an important compensative mechanism in response to excess nutrients to limit liver damage, inflammation and fibrosis. SUMOylation is an important ligand-activated transrepressional PTM of LXR on inflammatory genes (Venteclef et al., 2011) and future studies in our laboratory aim to elucidate a putative cross-talk between OGT and E3 ligases (SUMO conjugating enzymes) in liver in response to excess nutrients, especially high sugar levels (glucose and fructose). The relative roles of LXR, SREBP1c and ChREBP in driving lipogenesis is clearly dependent on both insulin and glucose signaling and cross-talk between these pathways. Both phosphorylation and GlcNAcylation appear instrumental in hepatic lipogenesis and future focus in our laboratory will be to elucidate a possible cross-talk between these PTMs, endogenous LXR ligands and interacting CAs in response to various feeding conditions (high glucose, fructose and/or fatty acids, cholesterol) and the impact on downstream ChREBP, SREBP1c and lipogenic enzyme expression and activity. ChIP and reChIP analysis in combination with loss of function studies have become powerful tools to analyze activation of specific genes by specific transcription factors in response to extracellular stimuli. By these methods, we anticipate that the signaling mechanisms and relative roles of LXR, ChREBP, SREBP1c and cooperating transcription factors in driving hepatic
References
- 1.
Anthonisen E. H. Berven L. Holm S. Nygard M. Nebb H. I. Gronning-Wang L. M. (2010 2010 Nuclear receptor liver X receptor is O-GlcNAc-modified in response to glucose.J.Biol.Chem.,285 3 1607 1615 PM:19933273 - 2.
Apfel R. Benbrook D. Lernhardt E. Ortiz M. A. Salbert G. Pfahl M. (1994 1994 A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily.Mol.Cell Biol.,14 10 7025 7035 PM:7935418 - 3.
Arden C. Tudhope S. J. Petrie J. L. Al-Oanzi Z. H. Cullen K. S. Lange A. J. Towle H. C. Agius L. (2012 2012 Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes.Biochem.J.,443 1 111 123 PM:22214556 - 4.
Arias E. B. Kim J. Cartee G. D. (2004 2004 Prolonged incubation in PUGNAc results in increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle.Diabetes,53 4 921 930 PM:15047606 - 5.
Benhamed F. Denechaud P. D. Lemoine M. Robichon C. Moldes M. Bertrand-Michel J. Ratziu V. Serfaty L. Housset C. Capeau J. Girard J. Guillou H. Postic C. (2012 2012 The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans.J.Clin.Invest,122 6 2176 2194 PM:22546860 - 6.
Boergesen M. Pedersen T. A. Gross B. van Heeringen S. J. Hagenbeek D. Bindesboll C. Caron S. Lalloyer F. Steffensen K. R. Nebb H. I. Gustafsson J. A. Stunnenberg H. G. Staels B. Mandrup S. (2012 2012 Genome-wide profiling of liver X receptor, retinoid X receptor, and peroxisome proliferator-activated receptor alpha in mouse liver reveals extensive sharing of binding sites.Mol.Cell Biol.,32 4 852 867 PM:22158963 - 7.
Bosco D. Meda P. Iynedjian P. B. (2000 2000 Glucokinase and glucokinase regulatory protein: mutual dependence for nuclear localization.Biochem.J.,348 Pt 1, No.215 222 PM:10794734 - 8.
Brown M. S. Goldstein J. L. (2008 2008 Selective versus total insulin resistance: a pathogenic paradox.Cell Metab,7 2 95 96 PM:18249166 - 9.
Calkin A. C. Tontonoz P. (2010 2010 Liver x receptor signaling pathways and atherosclerosis.Arterioscler.Thromb.Vasc.Biol.,30 8 1513 1518 PM:20631351 - 10.
Carrillo L. D. Froemming J. A. Mahal L. K. (2011 2011 Targeted in vivo O-GlcNAc sensors reveal discrete compartment-specific dynamics during signal transduction.J.Biol.Chem.,286 8 6650 6658 PM:21138847 - 11.
Cha J. Y. Repa J. J. (2007 2007 The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR.J.Biol.Chem.,282 1 743 751 PM:17107947 - 12.
Chen G. Liang G. Ou J. Goldstein J. L. Brown M. S. (2004 2004 Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver.Proc.Natl.Acad.Sci.U.S.A,101 31 11245 11250 PM:15266058 - 13.
Chen M. Bradley M. N. Beaven S. W. Tontonoz P. (2006 2006 Phosphorylation of the liver X receptors.FEBS Lett.,580 20 4835 4841 PM:16904112 - 14.
Chiang J. Y. Kimmel R. Stroup D. (2001 2001 Regulation of cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription by the liver orphan receptor (LXRalpha).Gene,262 1-2 257 265 PM:11179691 - 15.
Choi S. S. Diehl A. M. (2008 2008 Hepatic triglyceride synthesis and nonalcoholic fatty liver disease.Curr.Opin.Lipidol.,19 3 295 300 PM:18460922 - 16.
Chu K. Miyazaki M. Man W. C. Ntambi J. M. (2006 2006 Stearoyl-coenzyme A desaturase 1 deficiency protects against hypertriglyceridemia and increases plasma high-density lipoprotein cholesterol induced by liver X receptor activation.Mol.Cell Biol.,26 18 6786 6798 PM:16943421 - 17.
Cohen J. C. Horton J. D. Hobbs H. H. (2011 2011 Human fatty liver disease: old questions and new insights.Science,332 6037 1519 1523 PM:21700865 - 18.
Costet P. Luo Y. Wang N. Tall A. R. (2000 2000 Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/retinoid X receptor.J.Biol.Chem.,275 36 28240 28245 PM:10858438 - 19.
Denechaud P. D. Bossard P. Lobaccaro J. M. Millatt L. Staels B. Girard J. Postic C. (2008 Ch R. E. B. 2008 ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver.J.Clin.Invest,118 3 956 964 PM:18292813 - 20.
Deng X. Zhang W. Sullivan I. Williams J. B. Dong Q. Park E. A. Raghow R. Unterman T. G. Elam M. B. (2012 Fox 2012 FoxO1 Inhibits Sterol Regulatory Element-binding Protein-1c (SREBP-1c) Gene Expression via Transcription Factors Sp1 and SREBP-1c.J.Biol.Chem.,287 24 20132 20143 PM:22511764 - 21.
Dentin R. Hedrick S. Xie J. Yates J. I. I. I. Montminy M. (2008 2008 Hepatic glucose sensing via the CREB coactivator CRTC2.Science,319 5868 1402 1405 PM:18323454 - 22.
Dentin R. Pegorier J. P. Benhamed F. Foufelle F. Ferre P. Fauveau V. Magnuson M. A. Girard J. Postic C. (2004 2004 Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression.J.Biol.Chem.,279 19 20314 20326 PM:14985368 - 23.
Farese R. V. Jr Zechner R. Newgard C. B. Walther T. C. (2012 2012 The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance.Cell Metab,15 5 570 573 PM:22560209 - 24.
Foretz M. Pacot C. Dugail I. Lemarchand P. Guichard C. Le Liepvre X. Berthelier-Lubrano C. Spiegelman B. Kim J. B. Ferre P. Foufelle F. (1999 A. D. D. S. R. E. B. 1999 ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose.Molecular and Cellular Biology,19 5 3760 3768 ISI:000079821100052 - 25.
Forsythe M. E. Love D. C. Lazarus B. D. Kim E. J. Prinz W. A. Ashwell G. Krause M. W. Hanover J. A. (2006 2006 Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer.Proc.Natl.Acad.Sci.U.S.A,103 32 11952 11957 PM:16882729 - 26.
Fujiki R. Chikanishi T. Hashiba W. Ito H. Takada I. Roeder R. G. Kitagawa H. Kato S. (2009 Glc N. 2009 GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis.Nature,459 7245 455 459 PM:19377461 - 27.
Fujiki R. Hashiba W. Sekine H. Yokoyama A. Chikanishi T. Ito S. Imai Y. Kim J. He H. H. Igarashi K. Kanno J. Ohtake F. Kitagawa H. Roeder R. G. Brown M. Kato S. (2011 Glc N. 2011 GlcNAcylation of histone H2B facilitates its monoubiquitination.Nature,480 7378 557 560 PM:22121020 - 28.
Ghisletti S. Huang W. Ogawa S. Pascual G. Lin M. E. Willson T. M. Rosenfeld M. G. Glass C. K. (2007 2007 Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma.Mol.Cell,25 1 57 70 PM:17218271 - 29.
Graf G. A. Li W. P. Gerard R. D. Gelissen I. White A. Cohen J. C. Hobbs H. H. (2002 2002 Coexpression of ATP-binding cassette proteins ABCG5 and ABCG8 permits their transport to the apical surface.J.Clin.Invest,110 5 659 669 PM:12208867 - 30.
Guertin D. A. Stevens D. M. Thoreen C. C. Burds A. A. Kalaany N. Y. Moffat J. Brown M. Fitzgerald K. J. Sabatini D. M. (2006 2006 Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1.Dev.Cell,11 6 859 871 PM:17141160 - 31.
Guinez C. Filhoulaud G. Rayah-Benhamed F. Marmier S. Dubuquoy C. Dentin R. Moldes M. Burnol A. F. Yang X. Lefebvre T. Girard J. Postic C. (2011 -Glc O. N. 2011 O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver.Diabetes,60 5 1399 1413 PM:21471514 - 32.
Haas J. T. Miao J. Chanda D. Wang Y. Zhao E. Haas M. E. Hirschey M. Vaitheesvaran B. Farese R. V. Jr Kurland I. J. Graham M. Crooke R. Foufelle F. Biddinger S. B. (2012 2012 Hepatic Insulin Signaling Is Required for Obesity-Dependent Expression of SREBP-1c mRNA but Not for Feeding-Dependent Expression.Cell Metab,15 6 873 884 PM:22682225 - 33.
Hagiwara A. Cornu M. Cybulski N. Polak P. Betz C. Trapani F. Terracciano L. Heim M. H. Ruegg M. A. Hall M. N. (2012 2012 Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c.Cell Metab,15 5 725 738 PM:22521878 - 34.
Han C. Y. Umemoto T. Omer M. Den Hartigh. L. J. Chiba T. Le Boeuf R. Buller C. L. Sweet I. R. Pennathur S. Abel E. D. Chait A. (2012 N. A. D. P. 2012 NADPH oxidase-derived reactive oxygen species increases expression of monocyte chemotactic factor genes in cultured adipocytes.J.Biol.Chem.,287 13 10379 10393 PM:22287546 - 35.
Hanover J. A. Krause M. W. Love D. C. (2010 2010 The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine.Biochim.Biophys.Acta,1800 2 80 95 PM:19647043 - 36.
Hanover J. A. Krause M. W. Love D. C. (2012 2012 Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation.Nat.Rev.Mol.Cell Biol.,13 5 312 321 PM:22522719 - 37.
Hart G. W. Housley M. P. Slawson C. (2007 2007 Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins.Nature,446 7139 1017 1022 PM:17460662 - 38.
Hart G. W. Slawson C. Ramirez-Correa G. Lagerlof O. (2011 2011 Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease.Annu.Rev.Biochem.,80 No.825 858 PM:21391816 - 39.
Hasty A. H. Shimano H. Yahagi N. Amemiya-Kudo M. Perrey S. Yoshikawa T. Osuga J. Okazaki H. Tamura Y. Iizuka Y. Shionoiri F. Ohashi K. Harada K. Gotoda T. Nagai R. Ishibashi S. Yamada N. (2000 2000 Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level.J.Biol.Chem.,275 40 31069 31077 PM:10913129 - 40.
Havula E. Hietakangas V. (2012 2012 Glucose sensing by ChREBP/MondoA-Mlx transcription factors.Semin.Cell Dev.Biol., PM:22406740 - 41.
Heinz S. Benner C. Spann N. Bertolino E. Lin Y. C. Laslo P. Cheng J. X. Murre C. Singh H. Glass C. K. (2010 2010 Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.Mol.Cell,38 4 576 589 PM:20513432 - 42.
Herzog B. Hallberg M. Seth A. Woods A. White R. Parker M. G. (2007 2007 The nuclear receptor cofactor, receptor-interacting protein 140, is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor.Mol.Endocrinol.,21 11 2687 2697 PM:17684114 - 43.
Hirahatake K. M. Meissen J. K. Fiehn O. Adams S. H. (2011 2011 Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells.PLoS.One.,6 11 e26583 PM:22096489 - 44.
Hooper A. J. Adams L. A. Burnett J. R. (2011 2011 Genetic determinants of hepatic steatosis in man.J.Lipid Res.,52 4 593 617 PM:21245030 - 45.
Housley M. P. Rodgers J. T. Udeshi N. D. Kelly T. J. Shabanowitz J. Hunt D. F. Puigserver P. Hart G. W. (2008 -Glc O. N. 2008 O-GlcNAc regulates FoxO activation in response to glucose.J.Biol.Chem.,283 24 16283 16292 PM:18420577 - 46.
Housley M. P. Udeshi N. D. Rodgers J. T. Shabanowitz J. Puigserver P. Hunt D. F. Hart G. W. (2009 2009 A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose.J.Biol.Chem.,284 8 5148 5157 PM:19103600 - 47.
Huuskonen J. Fielding P. E. Fielding C. J. (2004 2004 Role of p160 coactivator complex in the activation of liver X receptor.Arterioscler.Thromb.Vasc.Biol.,24 4 703 708 PM:14764426 - 48.
Hwahng S. H. Ki S. H. Bae E. J. Kim H. E. Kim S. G. (2009 2009 Role of adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway in repression of liver X receptor-alpha-dependent lipogenic gene induction and hepatic steatosis by a novel class of dithiolethiones.Hepatology,49 6 1913 1925 PM:19378344 - 49.
Ishii S. Iizuka K. Miller B. C. Uyeda K. (2004 2004 Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription.Proc.Natl.Acad.Sci.U.S.A,101 44 15597 15602 PM:15496471 - 50.
Jacinto E. Facchinetti V. Liu D. Soto N. Wei S. Jung S. Y. Huang Q. Qin J. Su B. (2006 S. I. N. M. I. 2006 SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.Cell,127 1 125 137 PM:16962653 - 51.
Jakobsson T. Venteclef N. Toresson G. Damdimopoulos A. E. Ehrlund A. Lou X. Sanyal S. Steffensen K. R. Gustafsson J. A. Treuter E. (2009 G. P. 2009 GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus.Mol.Cell,34 4 510 518 PM:19481530 - 52.
Janowski B. A. Willy P. J. Devi T. R. Falck J. R. Mangelsdorf D. J. (1996 1996 An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha.Nature,383 6602 728 731 PM:8878485 - 53.
Joseph S. B. Laffitte B. A. Patel P. H. Watson M. A. Matsukuma K. E. Walczak R. Collins J. L. Osborne T. F. Tontonoz P. (2002 2002 Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors.J.Biol.Chem.,277 13 11019 11025 PM:11790787 - 54.
Kato S. Yokoyama A. Fujiki R. (2011 2011 Nuclear receptor coregulators merge transcriptional coregulation with epigenetic regulation.Trends Biochem.Sci.,36 5 272 281 PM:21315607 - 55.
Kebede M. Ferdaoussi M. Mancini A. Alquier T. Kulkarni R. N. Walker M. D. Poitout V. (2012 2012 Glucose activates free fatty acid receptor 1 gene transcription via phosphatidylinositol-3-kinase-dependent O-GlcNAcylation of pancreas-duodenum homeobox-1.Proc.Natl.Acad.Sci.U.S.A,109 7 2376 2381 PM:22308370 - 56.
Kim K. Kim K. H. Kim H. H. Cheong J. (2008 2008 Hepatitis B virus X protein induces lipogenic transcription factor SREBP1 and fatty acid synthase through the activation of nuclear receptor LXRalpha.Biochem.J.,416 2 219 230 PM:18782084 - 57.
Kim S. W. Park K. Kwak E. Choi E. Lee S. Ham J. Kang H. Kim J. M. Hwang S. Y. Kong Y. Y. Lee K. Lee J. W. (2003 2003 Activating signal cointegrator 2 required for liver lipid metabolism mediated by liver X receptors in mice.Mol.Cell Biol.,23 10 3583 3592 PM:12724417 - 58.
Kim S. Y. Kim H. I. Kim T. H. Im S. S. Park S. K. Lee I. K. Kim K. S. Ahn Y. H. (2004 S. R. E. B. 2004 SREBP-1c mediates the insulin-dependent hepatic glucokinase expression.J.Biol.Chem.,279 29 30823 30829 PM:15123649 - 59.
Kim T. H. Kim H. Park J. M. Im S. S. Bae J. S. Kim M. Y. Yoon H. G. Cha J. Y. Kim K. S. Ahn Y. H. (2009 2009 Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver.J.Biol.Chem.,284 22 15071 15083 PM:19366697 - 60.
Koo H. Y. Miyashita M. Cho B. H. Nakamura M. T. (2009 2009 Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus.Biochem.Biophys.Res.Commun.,390 2 285 289 PM:19799862 - 61.
Korach-Andre M. Archer A. Gabbi C. Barros R. P. Pedrelli M. Steffensen K. R. Pettersson A. T. Laurencikiene J. Parini P. Gustafsson J. A. (2011 2011 Liver X receptors regulate de novo lipogenesis in a tissue-specific manner in C57BL/6 female mice.Am.J.Physiol Endocrinol.Metab,301 1 E210 E222 PM:21521718 - 62.
Kuo M. Zilberfarb V. Gangneux N. Christeff N. Issad T. (2008 2008 O-glycosylation of FoxO1 increases its transcriptional activity towards the glucose 6-phosphatase gene.FEBS Lett.,582 5 829 834 PM:18280254 - 63.
Lamming D. W. Ye L. Katajisto P. Goncalves M. D. Saitoh M. Stevens D. M. Davis J. G. Salmon A. B. Richardson A. Ahima R. S. Guertin D. A. Sabatini D. M. Baur J. A. (2012 2012 Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.Science,335 6076 1638 1643 PM:22461615 - 64.
Lazar M. A. Willson T. M. (2007 2007 Sweet dreams for LXR.Cell Metab,5 3 159 161 PM:17339022 - 65.
Lee J. H. Park S. M. Kim O. S. Lee C. S. Woo J. H. Park S. J. Joe E. H. Jou I. (2009 2009 Differential SUMOylation of LXRalpha and LXRbeta mediates transrepression of STAT1 inflammatory signaling in IFN-gamma-stimulated brain astrocytes.Mol.Cell,35 6 806 817 PM:19782030 - 66.
Lehmann J. M. Kliewer S. A. Moore L. B. Smith-Oliver T. A. Oliver B. B. Su J. L. Sundseth S. S. Winegar D. A. Blanchard D. E. Spencer T. A. Willson T. M. (1997 1997 Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway.J.Biol.Chem.,272 6 3137 3140 PM:9013544 - 67.
Li S. Brown M. S. Goldstein J. L. (2010 2010 Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis.Proc.Natl.Acad.Sci.U.S.A,107 8 3441 3446 PM:20133650 - 68.
Li X. Zhang S. Blander G. Tse J. G. Krieger M. Guarente L. (2007 S. I. R. 2007 SIRT1 deacetylates and positively regulates the nuclear receptor LXR.Mol.Cell,28 1 91 106 PM:17936707 - 69.
Li Z. Z. Berk M. Mc Intyre T. M. Feldstein A. E. (2009 2009 Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase.J.Biol.Chem.,284 9 5637 5644 PM:19119140 - 70.
Liang G. S. Yang J. Horton J. D. Hammer R. E. Goldstein J. L. Brown M. S. (2002 2002 Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c.Journal of Biological Chemistry,277 11 9520 9528 ISI:000174400600105 - 71.
Liu X. Qiao A. Ke Y. Kong X. Liang J. Wang R. Ouyang X. Zuo J. Chang Y. Fang F. (2010 Fox 2010 FoxO1 represses LXRalpha-mediated transcriptional activity of SREBP-1c promoter in HepG2 cells.FEBS Lett.,584 20 4330 4334 PM:20868688 - 72.
Love D. C. Ghosh S. Mondoux M. A. Fukushige T. Wang P. Wilson M. A. Iser W. B. Wolkow C. A. Krause M. W. Hanover J. A. (2010a 2010a Dynamic O-GlcNAc cycling at promoters of Caenorhabditis elegans genes regulating longevity, stress, and immunity.Proc.Natl.Acad.Sci.U.S.A,107 16 7413 7418 PM:20368426 - 73.
Love D. C. Krause M. W. Hanover J. A. (2010b -Glc O. N. 2010b O-GlcNAc cycling: emerging roles in development and epigenetics.Semin.Cell Dev.Biol.,21 6 646 654 PM:20488252 - 74.
Love D. C.a H. J. A. (2005 2005 The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code".Sci.STKE,312 re13 1 14 - 75.
Lu M. Wan M. Leavens K. F. Chu Q. Monks B. R. Fernandez S. Ahima R. S. Ueki K. Kahn C. R. Birnbaum M. J. (2012 2012 Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1.Nat.Med.,18 3 388 395 PM:22344295 - 76.
Matsuda T. Noguchi T. Yamada K. Takenaka M. Tanaka T. (1990 1990 Regulation of the gene expression of glucokinase and L-type pyruvate kinase in primary cultures of rat hepatocytes by hormones and carbohydrates.J.Biochem.,108 5 778 784 PM:1964454 - 77.
Matsumoto M. Han S. Kitamura T. Accili D. (2006 2006 Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism.J.Clin.Invest,116 9 2464 2472 PM:16906224 - 78.
Matsuzaka T. Shimano H. Yahagi N. Amemiya-Kudo M. Okazaki H. Tamura Y. Iizuka Y. Ohashi K. Tomita S. Sekiya M. Hasty A. Nakagawa Y. Sone H. Toyoshima H. Ishibashi S. Osuga J. Yamada N. (2004 2004 Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice.Diabetes,53 3 560 569 PM:14988238 - 79.
Mc Clain D. A. (2002 2002 Hexosamines as mediators of nutrient sensing and regulation in diabetes.Journal of Diabetes and Its Complications,16 1 72 80 ISI:000174300400016 - 80.
Mitro N. Mak P. A. Vargas L. Godio C. Hampton E. Molteni V. Kreusch A. Saez E. (2007 2007 The nuclear receptor LXR is a glucose sensor.Nature,445 7124 219 223 PM:17187055 - 81.
Mondoux M. A. Love D. C. Ghosh S. K. Fukushige T. Bond M. Weerasinghe G. R. Hanover J. A. Krause M. W. (2011 O-linked 2011 O-linked-N-acetylglucosamine cycling and insulin signaling are required for the glucose stress response in Caenorhabditis elegans.Genetics,188 2 369 382 PM:21441213 - 82.
Oberkofler H. Schraml E. Krempler F. Patsch W. (2003 2003 Potentiation of liver X receptor transcriptional activity by peroxisome-proliferator-activated receptor gamma co-activator 1 alpha.Biochem.J.,371 No. Pt 1,89 96 PM:12470296 - 83.
Okada M. Ye K. (2009 2009 Nuclear phosphoinositide signaling regulates messenger RNA export.RNA.Biol.,6 1 12 16 PM:19106628 - 84.
Ozcan S. Andrali S. S. Cantrell J. E. (2010 2010 Modulation of transcription factor function by O-GlcNAc modification.Biochim.Biophys.Acta,1799 5-6 353 364 PM:20202486 - 85.
Peet D. J. Turley S. D. Ma W. Janowski B. A. Lobaccaro J. M. Hammer R. E. Mangelsdorf D. J. (1998 1998 Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha.Cell,93 5 693 704 PM:9630215 - 86.
Pehkonen P. Welter-Stahl L. Diwo J. Ryynanen J. Wienecke-Baldacchino A. Heikkinen S. Treuter E. Steffensen K. R. Carlberg C. (2012 2012 Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages.BMC.Genomics,13 No.50 PM:22292898 - 87.
Peterson T. R. Sengupta S. S. Harris T. E. Carmack A. E. Kang S. A. Balderas E. Guertin D. A. Madden K. L. Carpenter A. E. Finck B. N. Sabatini D. M. (2011).m T. O. 2011 mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway.Cell,146 3 408 420 PM:21816276 - 88.
Radhakrishnan A. Ikeda Y. Kwon H. J. Brown M. S. Goldstein J. L. (2007 2007 Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig.Proc.Natl.Acad.Sci.U.S.A,104 16 6511 6518 PM:17428920 - 89.
Repa J. J. Berge K. E. Pomajzl C. Richardson J. A. Hobbs H. Mangelsdorf D. J. (2002 2002 Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta.J.Biol.Chem.,277 21 18793 18800 PM:11901146 - 90.
Repa J. J. Liang G. Ou J. Bashmakov Y. Lobaccaro J. M. Shimomura I. Shan B. Brown M. S. Goldstein J. L. Mangelsdorf D. J. (2000 2000 Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta.Genes Dev.,14 22 2819 2830 PM:11090130 - 91.
Rosenfeld M. G. Lunyak V. V. Glass C. K. (2006 2006 Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response.Genes Dev.,20 11 1405 1428 PM:16751179 - 92.
Sabol S. L. Brewer H. B. Jr Santamarina-Fojo S. (2005 2005 The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver.J.Lipid Res.,46 10 2151 2167 PM:16024918 - 93.
Sakabe K. Wang Z. Hart G. W. (2010 Beta 2010 Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code.Proc.Natl.Acad.Sci.U.S.A,107 46 19915 19920 PM:21045127 - 94.
Saltiel A. R. Kahn C. R. (2001 2001 Insulin signalling and the regulation of glucose and lipid metabolism.Nature,414 6865 799 806 PM:11742412 - 95.
Schwarz J. M. Linfoot P. Dare D. Aghajanian K. (2003 2003 Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets.Am.J.Clin.Nutr.,77 1 43 50 PM:12499321 - 96.
Schwarz J. M. Neese R. A. Turner S. Dare D. Hellerstein M. K. (1995 1995 Short-term alterations in carbohydrate energy intake in humans. Striking effects on hepatic glucose production, de novo lipogenesis, lipolysis, and whole-body fuel selection.J.Clin.Invest,96 6 2735 2743 PM:8675642 - 97.
Scorletti E. Calder P. C. Byrne C. D. (2011 2011 Non-alcoholic fatty liver disease and cardiovascular risk: metabolic aspects and novel treatments.Endocrine.,40 3 332 343 PM:21894514 - 98.
Shafi R. Iyer S. P. Ellies L. G. O’Donnell N. Marek K. W. Chui D. Hart G. W. Marth J. D. (2000 2000 The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny.Proc.Natl.Acad.Sci.U.S.A,97 11 5735 5739 PM:10801981 - 99.
Shimano H. (2001 2001 Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes.Prog.Lipid Res.,40 6 439 452 PM:11591434 - 100.
Shimomura I. Matsuda M. Hammer R. E. Bashmakov Y. Brown M. S. Goldstein J. L. (2000 2000 Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice.Mol.Cell,6 1 77 86 PM:10949029 - 101.
Soukas A. A. Kane E. A. Carr C. E. Melo J. A. Ruvkun G. (2009 Rictor T. O. R. 2009 Rictor/TORC2 regulates fat metabolism, feeding, growth, and life span in Caenorhabditis elegans.Genes Dev.,23 4 496 511 PM:19240135 - 102.
Talukdar S. Hillgartner F. B. (2006 2006 The mechanism mediating the activation of acetyl-coenzyme A carboxylase-alpha gene transcription by the liver X receptor agonist T0-901317.J.Lipid Res.,47 11 2451 2461 PM:16931873 - 103.
Teboul M. Enmark E. Li Q. Wikstrom A. C. Pelto-Huikko M. Gustafsson J. A. (1995 O. 1995 OR-1, a member of the nuclear receptor superfamily that interacts with the 9-cis-retinoic acid receptor.Proc.Natl.Acad.Sci.U.S.A,92 6 2096 2100 PM:7892230 - 104.
Tobin K. A. Ulven S. M. Schuster G. U. Steineger H. H. Andresen S. M. Gustafsson J. A. Nebb H. I. (2002 2002 Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis.J.Biol.Chem.,277 12 10691 10697 PM:11781314 - 105.
Torra I. P. Ismaili N. Feig J. E. Xu C. F. Cavasotto C. Pancratov R. Rogatsky I. Neubert T. A. Fisher E. A. Garabedian M. J. (2008 2008 Phosphorylation of liver X receptor alpha selectively regulates target gene expression in macrophages.Mol.Cell Biol.,28 8 2626 2636 PM:18250151 - 106.
Tzivion G. Dobson M. Ramakrishnan G. (2011 Fox 2011 FoxO transcription factors; Regulation by AKT and 14-3-3 proteins.Biochim.Biophys.Acta,1813 11 1938 1945 PM:21708191 - 107.
Ulven S. M. Dalen K. T. Gustafsson J. A. Nebb H. I. (2005 L. X. 2005 LXR is crucial in lipid metabolism.Prostaglandins Leukot.Essent.Fatty Acids,73 1 59 63 PM:15913974 - 108.
Uyeda K. Repa J. J. (2006 2006 Carbohydrate response element binding protein, ChREBP, a transcription factor coupling hepatic glucose utilization and lipid synthesis.Cell Metab,4 2 107 110 PM:16890538 - 109.
Venkateswaran A. Laffitte B. A. Joseph S. B. Mak P. A. Wilpitz D. C. Edwards P. A. Tontonoz P. (2000 2000 Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha.Proc.Natl.Acad.Sci.U.S.A,97 22 12097 12102 PM:11035776 - 110.
Venteclef N. Jakobsson T. Ehrlund A. Damdimopoulos A. Mikkonen L. Ellis E. Nilsson L. M. Parini P. Janne O. A. Gustafsson J. A. Steffensen K. R. Treuter E. (2010 G. P. 2010 GPS2-dependent corepressor/SUMO pathways govern anti-inflammatory actions of LRH-1 and LXRbeta in the hepatic acute phase response.Genes Dev.,24 4 381 395 PM:20159957 - 111.
Venteclef N. Jakobsson T. Steffensen K. R. Treuter E. (2011 2011 Metabolic nuclear receptor signaling and the inflammatory acute phase response.Trends Endocrinol.Metab,22 8 333 343 PM:21646028 - 112.
Viiri K. Maki M. Lohi O. (2012 2012 Phosphoinositides as regulators of protein-chromatin interactions.Sci.Signal.,5 222 e19 PM:22550339 - 113.
Vosseller K. Wells L. Lane M. D. Hart G. W. (2002 2002 Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes.Proc.Natl.Acad.Sci.U.S.A,99 8 5313 5318 PM:11959983 - 114.
Wagner B. L. Valledor A. F. Shao G. Daige C. L. Bischoff E. D. Petrowski M. Jepsen K. Baek S. H. Heyman R. A. Rosenfeld M. G. Schulman I. G. Glass C. K. (2003 2003 Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression.Mol.Cell Biol.,23 16 5780 5789 PM:12897148 - 115.
Wan M. Leavens K. F. Saleh D. Easton R. M. Guertin D. A. Peterson T. R. Kaestner K. H. Sabatini D. M. Birnbaum M. J. (2011 2011 Postprandial hepatic lipid metabolism requires signaling through Akt2 independent of the transcription factors FoxA2, FoxO1, and SREBP1c.Cell Metab,14 4 516 527 PM:21982711 - 116.
Whelan S. A. Dias W. B. Thiruneelakantapillai L. Lane M. D. Hart G. W. (2010 2010 Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-Linked beta-N-acetylglucosamine in 3T3-L1 adipocytes.J.Biol.Chem.,285 8 5204 5211 PM:20018868 - 117.
Whelan S. A. Lane M. D. Hart G. W. (2008 2008 Regulation of the O-linked beta-N-acetylglucosamine transferase by insulin signaling.J.Biol.Chem.,283 31 21411 21417 PM:18519567 - 118.
White M. F. (2003 2003 Insulin signaling in health and disease.Science,302 5651 1710 1711 PM:14657487 - 119.
Willy P. J. Umesono K. Ong E. S. Evans R. M. Heyman R. A. Mangelsdorf D. J. (1995 L. X. 1995 LXR, a nuclear receptor that defines a distinct retinoid response pathway.Genes Dev.,9 9 1033 1045 PM:7744246 - 120.
Wong R. H. Sul H. S. (2010 2010 Insulin signaling in fatty acid and fat synthesis: a transcriptional perspective.Curr.Opin.Pharmacol.,10 6 684 691 PM:20817607 - 121.
Wouters K. van Gorp P. J. Bieghs V. Gijbels M. J. Duimel H. Lutjohann D. Kerksiek A. van K. R. Maeda N. Staels B. van B. M. Shiri-Sverdlov R. Hofker M. H. (2008 2008 Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis.Hepatology,48 2 474 486 PM:18666236 - 122.
Wu X. Williams K. J. (2012 N. O. 2012 NOX4 pathway as a source of selective insulin resistance and responsiveness.Arterioscler.Thromb.Vasc.Biol.,32 5 1236 1245 PM:22328777 - 123.
Yamamoto T. Shimano H. Inoue N. Nakagawa Y. Matsuzaka T. Takahashi A. Yahagi N. Sone H. Suzuki H. Toyoshima H. Yamada N. (2007 2007 Protein kinase A suppresses sterol regulatory element-binding protein-1C expression via phosphorylation of liver X receptor in the liver.J.Biol.Chem.,282 16 11687 11695 PM:17296605 - 124.
Yamashita H. Takenoshita M. Sakurai M. Bruick R. K. Henzel W. J. Shillinglaw W. Arnot D. Uyeda K. (2001 2001 A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver.Proc.Natl.Acad.Sci.U.S.A,98 16 9116 9121 PM:11470916 - 125.
Yang X. Ongusaha P. P. Miles P. D. Havstad J. C. Zhang F. So W. V. Kudlow J. E. Michell R. H. Olefsky J. M. Field S. J. Evans R. M. (2008 2008 Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance.Nature,451 7181 964 969 PM:18288188 - 126.
Yecies J. L. Zhang H. H. Menon S. Liu S. Yecies D. Lipovsky A. I. Gorgun C. Kwiatkowski D. J. Hotamisligil G. S. Lee C. H. Manning B. D. (2011 2011 Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways.Cell Metab,14 1 21 32 PM:21723501 - 127.
Yoshikawa T. Shimano H. Yahagi N. Ide T. Amemiya-Kudo M. Matsuzaka T. Nakakuki M. Tomita S. Okazaki H. Tamura Y. Iizuka Y. Ohashi K. Takahashi A. Sone H. Osuga J. Gotoda T. Ishibashi S. Yamada N. (2002 2002 Polyunsaturated fatty acids suppress sterol regulatory element-binding protein 1c promoter activity by inhibition of liver X receptor (LXR) binding to LXR response elements.Journal of Biological Chemistry,277 3 1705 1711 ISI:000173421300013 - 128.
Yu L. York J. von B. K. Lutjohann D. Cohen J. C. Hobbs H. H. (2003 2003 Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8.J.Biol.Chem.,278 18 15565 15570 PM:12601003 - 129.
Zhao L. F. Iwasaki Y. Nishiyama M. Taguchi T. Tsugita M. Okazaki M. Nakayama S. Kambayashi M. Fujimoto S. Hashimoto K. Murao K. Terada Y. (2012 2012 Liver X receptor alpha is involved in the transcriptional regulation of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene.Diabetes,61 5 1062 1071 PM:22415873 - 130.
Zoncu R. Efeyan A. Sabatini D. M. (2011).m T. O. 2011 mTOR: from growth signal integration to cancer, diabetes and ageing.Nat.Rev.Mol.Cell Biol.,12 1 21 35 PM:21157483