Exchange paths for up to the fourth NN interactions in (CuCl)LaNb2O7 and the corresponding coupling constants relative to the strongest AFM interaction
1. Introduction
1.1. Insertion of metal halide array
Topotactic low-temperature reactions such as intercalation, deintercalation and ion-exchange reactions provide a rational design of new structures of non-molecular extended solids which are otherwise not accessible by conventional high-temperature solid-state reactions [1-4]. Among candidate oxide materials used as a precursor of such reactions, the most intensively studied system is the Dion-Jacobson (DJ) type layered perovskite (Figure 1). The chemical formula of the DJ phase is expressed as
In 1999, John B. Wiley

Figure 1.
Ion-exchange reaction involving the insertion of copper halide layer into the interlayer spaces of the Dion-Jacobson type layered perovskites
1.2. A new family of two-dimensional quantum antiferromagets
A simple geometrical consideration reveals that the magnetism of (Cu

Figure 2.
Phase diagram of the
2. Crystal structures and magnetic properties
2.1. Double layered system
2.1.1. (CuCl)LaNb2O7
A polycrystalline sample of (CuCl)LaNb2O7 is typically synthesized by heating a mixture of RbLaNb2O7 and anhydrous CuCl2 at 320 °C for 1 weak. The white specimen becomes light green after the ion-exchange reaction. This color change is due to insertion of Cu2+. The crystal structure of (CuCl)LaNb2O7 was originally assigned as tetragonal (space group
The absence of long-range magnetic order in (CuCl)LaNb2O7 down to low temperatures was demonstrated first by means of magnetic susceptibility and inelastic neutron scattering (INS) experiments [21]. On cooling, the magnetic susceptibility
In general, magnetic excitations in 2D systems with a spin-singlet ground state are highly dispersive along the magnetic plane. However, the spectrum shape in constant
where the second term sin

Figure 3.
Temperature dependence of the magnetic susceptibility in (Cu

Figure 4.
a) Constant-
Figure 5 shows the field dependence of magnetization

Figure 5.
Magnetization curve measured at
For
Figure 6(a) shows the temperature dependence of total specific heat

Figure 6.
a)
When the magnetic field is increased up to 7 T, the broad maximum of

Figure 7.
Phase boundary between spin-singlet state and the BEC state in (CuCl)LaNb2O7 determined from the results of
Nuclear magnetic resonance (NMR) is a useful tool to clarify the local symmetry. It is revealed that none of the Cu, Cl, and La sites have the tetragonal symmetry [31], which is incompatible with the initially reported tetragonal structure with
A single crystal X-ray diffraction is essential to determine the
The crystal structure of (CuCl)LaNb2O7 was refined using single crystal X-ray diffraction and high- resolution powder neutron diffraction data, and Figure 9(b) shows the determined structure [32]. (CuCl)LaNb2O7 adopts the orthorhombic 2

Figure 8.
a, b) Superstructures and (c, d) their corresponding exchange paths for the CuCl layer, suggested by NMR/NQR and TEM experiments. The yellow/orange and blue circles represent the Cl and Cu ions, respectively [
The first principles calculations based on the new structure [32] yielded the superexchange interactions (see Figure 10(a) and
Table 1). Interestingly, the 4th NN interaction,

Figure 9.
a) Photos of single crystals of CsLaNb2O7 (top) and ion-exchanged (CuCl)LaNb2O7 (bottom) [

Figure 10.
a) Exchange interactions in the CuCl layer in (CuCl)LaNb2O7 based on the revised structural model. The lines connecting Cu atoms represent exchange interactions:
path | d (Å) | angle (º) | Js/J4 | |
Cu-Cl-Cu | 3.88548 | 108.9, 75.8 | –0.39 | |
Cu-Cl-Cu | 3.88548 | 80.9 | –0.04 | |
Cu-Cl-Cu | 5.46148 | 156.7 | –0.38 | |
Cu-Cl-Cu | 5.5053 | 170.2 | –0.14 | |
Cu-Cl-Cl-Cu | 8.81262 | 164.9 | 1 | |
Cu-Cl-Cl-Cu | 8.53250 | 150.0 | 0.18 |
Table 1.
The strongest AFM
2.1.2. (CuBr)LaNb2O7
(CuBr)LaNb2O7 is synthesized in a way similar to (CuCl)LaNb2O7, but using CuBr2 [11]. The color of the cupric bromide is brown. The structure of (CuBr)LaNb2O7 has the tetragonal

Figure 11.
High-field magnetization for (CuBr)LaNb2O7 at 1.3 K [
2.1.3. Cu(Cl, Br)La(Nb, Ta)2O7
Two kinds of solid solutions have been investigated, against Br-for-Cl [38, 39] and Ta-for-Nb [39, 40] substitution. For (CuCl1−

Figure 12.
a) Magnetic susceptibilities of (CuCl1–

Figure 13.
ZF-
Muon spin relaxation (
Contrasting behaviors are observed in the Nb-site substituted system, (CuCl)La(Nb1–

Figure 14.
Magnetic phase diagram as a function of temperature and concentration. P, S and CAF stand for the paramagnetic state, the spin-singlet state, and the collinear type AFM state, respectively [
The difference in magnetic behaviors between
2.2. Triple layered system
2.2.1. (CuBr)Sr2Nb3O10
(CuBr)Sr2Nb3O10 is a triple-layered compound, prepared by the ion-exchange reaction of RbSr2Nb3O10 with CuBr2 at 350 °C for 1 week. The crystal structure of (CuBr)Sr2Nb3O10 at room temperature is tetragonal (

Figure 15.
a) Temperature dependence of the (inverse) magnetic susceptibility for (CuBr)Sr2Nb3O10 measured at 0.1 T [
Figure 15(a) shows the temperature dependence of the magnetic susceptibility for (CuBr)Sr2Nb3O10 measured at
The most prominent observation in (CuBr)Sr2Nb3O10 is a 1/3 magnetization plateau in the magnetization curve (see Figure 17). The plateau becomes obscured with increasing

Figure 16.

Figure 17.
a) High-field magnetization curves for (CuBr)Sr2Nb3O10 [
The 1/3 magnetization plateau has been theoretically predicted for various triangle-based lattices. Experimentally, triangular- and diamond-lattice antiferromagnets such as Cs2CuBr4 [48] and Cu3(CO3)2(OH)2 [49] exhibit the 1/3 plateau. However, for commensurability reasons, 1/2 and 1/4 plateaus are naturally expected for the square-based systems [50]. The exception is found in SrCu2(BO3)2 with the Shastry-Sutherland lattice, which is due to the stronger 2nd NN interdimer interaction than the NN interdimer one [27]. Oshikawa
In order to observe the magnetic structure at zero field and at the 1/3 plateau, the neutron powder diffraction experiments were carried out at ILL in Grenoble [52]. Figure 18 shows the magnetic diffraction patterns without magnetic field at 8 K and 2 K after subtraction of the 26 K nuclear data. The magnetic Bragg reflections were discernible below

Figure 18.
The low angle region of the magnetic diffraction patterns for (CuBr)Sr2Nb3O10 at 8 and 2 K after subtraction of the 26 K nuclear pattern [
The observed helical AFM structure is incompatible with those expected from the simple

Figure 19.
The magnetic structure of (CuBr)Sr2Nb3O10 in zero field [
2.2.2. (CuBr)A2B3O10 (A = Ca, Sr, Ba, Pb; B = Nb, Ta)
A series of triple layered copper bromides, (CuBr)
The

Figure 20.
a)-(d) Magnetization curves measured for (CuBr)
The 1/3 plateau phase can be tuned not only by the
2.3. Quadruple layered system
2.3.1. (CuCl)Ca2NaNb4O13
A quadruple layered compound, (CuCl)Ca2NaNb4O13 [58], was prepared by the reaction of RbCa2NaNb4O13 [59] and CuCl2 at 320 °C for 1 week. Laboratory XRD patterns of both RbCa2NaNb4O13 and (CuCl)Ca2NaNb4O13 at room temperature could be indexed in the tetragonal cell with the lattice parameters

Figure 21.
Electron diffraction patterns of (CuCl)Ca2NaNb4O13 at room temperature obtained along the [
The temperature dependence of magnetic susceptibility for (CuCl)Ca2NaNb4O13 did not show an anomaly associated with magnetic ordering, which is also supported by

Figure 22.
Magnetization curve of (CuCl)Ca2NaNb4O13 at 1.3 K [
n | compounds | space group | magnetic features | TN (K) | Δ/kB (K) | θ (K) | Ref. |
2 | (CuCl)LaNb2O7 | (2 | Spin-singlet state | 26.7 | –9.6 | 32 | |
11 | |||||||
(CuCl1–xBr | CAF order | 7 ( | − | 38, 39 | |||
(CuCl)La(Nb1–yTa | Coexistence of spin ordered and disordered states | 7 (0.2 ≤ | 23.2 ( | –5.6 ( | 39, 40 | ||
(CuCl)LaTa2O7 | CAF order | 7 | –1.2 | 39, 40 | |||
3 | (CuBr)(Ca1–xSr | AFM order | 13 ( | 4.6 ( | 45 | ||
(CuBr)(Ca1–xSr | Helical AFM order, 1/3 magnetization plateau | 7.5 ( | 20.9 ( | 44, 45 | |||
(CuBr)Pb2Nb3O10 | AFM order, 1/3 magnetization plateau | ~ 6 | 17.4 | 45 | |||
(CuBr)Ba2Nb3O10 | AFM order | 5 | 14.9 | 45 | |||
(CuBr)Ca2Ta3O10 | AFM order | 16.6 | 3.2 | 45 | |||
(CuBr)Sr2Ta3O10 | AFM order | 11 | 13.2 | 45 | |||
(CuBr)Ba2Ta3O10 | AFM order, 1/3 magnetization plateau | 5 | 14.7 | 45 | |||
4 | (CuCl)Ca2NaNb4O13 | (2a2ac) | Paramagnetic state | − | 22.4 | 58 |
Table 2.
Space group, magnetic features, Neel temperature,
3. Conclusion
We have demonstrated that the ion-exchange reaction using the DJ phase that involves the simultaneous co-exchange of metal cations and halide anions is effective approach to design a new class of two-dimensional quantum spin antiferromagnets, with tuned in-plane magnetic interactions and a variety of quantum phases. A series of (Cu
References
- 1.
Chimie Douce Approaches to the Synthesis of Metastable Oxide Materials. Chem. Mater.Gopalakrishnan J. 1995 7 1265 - 2.
Superconductivity in Two-Dimensional CoO2 Layers. NatureTakada K. Sakurai H. Takayama-Muromachi E. Izumi F. Dilanian A. Sasaki T. 2003 422 53 - 3.
Choy J-H, Kwon S-J, Park G-S. High Tc Superconductors in the Two-Dimensional Limit: [(Py-CnH2n+1)2HgI4]-BiSr2Cam-1CumOy (m = 1 and 2). Science1998 280 1589 - 4.
Infinite-Layer Iron Oxide with a Square-Planar Coordination.Tsujimoto Y. Tassel C. Hayashi N. Watanabe T. Kageyama H. Yoshimura K. Takano M. Ceretti M. Ritter C. Paulus W. Infinite 2007 450 1062 - 5.
Chem. Mater.Schaak R. Mallouk T. E. Perovskites by. Design A. Toolbox of. Solid-State Reactions. 2002 14 1455 - 6.
Topochemical Manipulation of Perovskites: Low-Temperature Reaction Strategies for Directing Structure and Properties. Adv. Mater.Sanjaya Ranmohotti. K. G. Josepha E. Choi J. Zhang J. Wiley J. B. 2011 23 442 - 7.
Restacked Perovskite Nanosheets and Their Pt-loaded Materials as Photocatalysis. Chem. Mater.Ebina Y. Sasaki T. Harada M. Watanabe M. 2002 14 4390 - 8.
Photocatalytic Property and Electronic Structure of Triple-Layered Perovskite Tantalates, MCa2Ta3O10 (M = Cs, Na, H, and C6H13NH3). J. Phys. Chem. BMachida M. Mitsuyama T. Ikeue K. Matsushima S. Arai M. 2005 109 7801 - 9.
Synthesis and Ionic Conductivity of New Layered Perovskite Compound, Ag2La2Ti3O10. Solid State IonicsToda K. Watanabe J. Sato M. 1996 90 15 - 10.
Synthesis and Superconducting Properties of Li-Intercalated Niobium Oxide LixAB2Nb3O10. Solid State IonicsNagai I. Abe Y. Kato M. Koike Y. Kakihana M. 2002 151 265 - 11.
Assembly of Metal-Anion Arrays within a Perovskite Host. Low-Temperature Synthesis of New Layered Copper-Oxyhalides, (CuX)LaNb2O7, X = Cl, Br. J. Am. Chem. Soc.Kodenkandath T. A. Lalena J. N. Zhou W. L. Capenter E. E. Sangregorio C. Falster A. U. Simmons W. B. O’Connor C. J. Wiley J. B. 1999 121 10743 - 12.
Construction of Copper Halide Networks within Layered Perovskites. Synthesis and Characterization of New-Temperature Copper Oxyhalides. Inorg. Chem.Kodenkandath T. A. Kumbhar A. Zhou W. L. Wiley J. B. 2001 40 710 - 13.
The Resonating Valence Bond state in La2CuO4 and Superconductivity. ScienceAnderson P. W. 2012 235 1196 - 14.
Valence-Bond and Spin-Peierls Ground States of Low-Dimensional Quantum Antiferromagnets. Phys. Rev. Lett.Read N. Sachdev S. Valence 1989 62 1694 - 15.
Zero-Temperature Ordering in Two-Dimensional Frustrated Quantum Heisenberg Antiferromagnets. Phys. Rev. BGelfand M. Singh R. R. P. Huse D. A. Zero 1989 40 10801 - 16.
Peiers-Like Transition Induced by Frustration in a Two-Dimensional Antiferromagnet. Phys. Rev. Lett.Becca F. Mila F. Peiers 2002 - 17.
Finite Temperature Properties and Frustrated Ferromagnetism in a Square Lattice Heisenberg Model. Eur. Phys. J. BShannon N. Schmidt B. Penc K. Thalmeier P. 2004 38 599 - 18.
Nematic Order in Square Lattice Frustrated Ferromagnets. Phys. Rev. Lett.Shannon N. Momoi T. Sindzingre P. 2006 - 19.
Phys. Rev. Lett.Melzi R. Carretta P. Lascialfari A. Mambrini M. Troyer M. Millet P. Mila F. Li V. O. Si Ge. O. Prototype a. of a. Two-Dimensional Frustrated. Quantum Heisenberg. Antiferromaget 2000 85 1318 - 20.
Phys. Rev. BNath R. Furukawa Y. Borsa F. Kaul E. E. Baenitz M. Geibel C. Johnston D. C. Single-Crystal . Studies P. N. M. R. of the. Frustrated-Lattice Square. Compound Pb. V. O. P. O4) 2009 - 21.
Spin-Singlet Ground State in Two-Dimensional S = 1/2 Frustrated Square Lattice: (CuCl)LaNb2O7. J. Phys. Soc. Jpn.Kageyama H. Kitano T. Oba N. Nishi M. Nagai S. Hirota K. Viciu L. Wiley J. B. Yasuda J. Baba Y. Ajiro Y. Yoshimura K. Spin 2005 74 1702 - 22.
Neutron Diffraction Study of the Oxychloride Layered Perovskite, (CuCl)LaNb2O7. Mat. Res. Bull.Caruntu G. Kodenkandath T. A. Wiley J. B. 2002 37 593 - 23.
Dimerized Ground State and Magnetic Excitations in CaCuGe2O6. Phys. Rev. BZheludev A. Shirane G. Sasago Y. Hase M. Uchinokura K. 1996 53 11642 - 24.
Direct Evidence for the Localized Single-Triplet Excitations and the Dispersive Multitriplet Excitations in SrCu2(BO3)2. Phys. Rev. Lett.Kageyama H. Nishi M. Aso N. Onizuka K. Yoshihama T. Nukui K. Kodama K. Kakurai K. Ueda Y. 2000 84 5876 - 25.
Anomalous Magnetization of Two-Dimensional S = 1/2 Frustrated Square-Lattice Antiferromagnet (CuCl)LaNb2O7. J. Phys. Soc. Jpn.Kageyama H. Yasuda J. Kitano T. Totsuka K. Narumi Y. Hagiwara M. Kindo K. Baba Y. Ajiro Y. Yoshimura K. 2005 74 3155 - 26.
Exact Dimer Ground State and Quantized Magnetization Plateaus in the Two-Dimensional Spin Sytem SrCu2(BO3)2. Phys. Rev. Lett.Kageyama H. Yoshimura K. Stern R. Mushnikov N. V. Onizuka K. Kato M. Kosuge K. Slichter C. P. Goto T. Ueda Y. 1999 82 3168 - 27.
J. Phys. Soc. Jpn.Onizuka K. Kageyama H. Narumi Y. Kindo K. Ueda Y. Goto T. 1. Magnetization Plateau. in Sr Cu. O3) B. Stripe Order. of Excited. Triplets 2000 64 1016 - 28.
Magnetization Plateaus in NH4CuCl3. J. Phys. Soc. Jpn.Shiramura W. Takatsu K. Kurniawan B. Tanaka H. Uekusa H. Ohashi Y. Takizawa K. Mitamura H. Goto T. 1998 67 1548 - 29.
Bose-Einstein Condensation of Quasi-Two-Dimensional Frustrated Quantum Magnet (CuCl)LaNb2O7. J. Phys. Soc. Jpn.Kitada A. Hiroi Z. Tsujimoto Y. Kitano T. Kageyama H. Ajiro Y. Yoshimura K. Bose 2007 - 30.
Bose-Einstein Condensation of Dilute Magnons in TlCuCl3. Phys. Rev. Lett.Nikuni T. Oshikawa M. Oosawa A. Tanaka H. Bose 2000 84 5868 - 31.
Magnetic and Structural Studies of the Quasi-Two-Dimensional Spin-Gap System (CuCl)LaNb2O7. J. Phys. Soc. Jpn.Yoshida M. Ogata N. Takigawa M. Yamaura J. Ichihara M. Kitano T. Kageyama H. Ajiro Y. Yoshimura K. 2007 - 32.
Ferromagnetically Coupled Shastry-Sutherland Quantum Spin Singlets in (CuCl)LaNb2O7. Phys. Rev. Lett.Tassel C. Kang J. Lee C. Hernandez O. Qiu Y. Paulus W. Collet E. Lake B. Guidi T. Whangbo M. Ritter H. Kageyama C. Lee H. S. H. 2010 - 33.
First Single-Crystal Synthesis and Low-Temperature Structural Determination of the Quasi-2D Quantum Spin Compound (CuCl)LaNb2O7. Dalton Trans.Hernandez O. J. Tassel C. Nakano K. Paulus W. Ritter C. Collet E. Kitada A. Yoshimura K. Kageyama H. 2011 40 4605 - 34.
Kumada N. Kinomura N. Sleight A. W. Cs La Nb. O. Acta Crystallogr. Sect C. Cryst Struct. Commun 199. 1996 C52 1063 - 35.
Exact Ground State of a Quantum Mechanical Antiferromagnet. Physica BShastry B. S. Sutherland B. 1981 108 1069 - 36.
Antiferromagnetic Nuclear Resonance in the Quasi-Two-Dimensional (CuBr)LaNb2O7. J. Phys. Soc. Jpn.Yoshida M. Ogata N. Takigawa M. Kitano T. Kageyama H. Ajiro Y. Yoshimura K. 2008 - 37.
Collinear Order in Frustrated Quantum Antiferromagnet on Square Lattice (CuBr)LaNb2O7. J. Phys. Soc. Jpn.Oba N. Kageyama H. Kitano T. Yasuda J. Baba Y. Nishi M. Hirota K. Narumi Y. Hagiwara M. Kindo K. Saito T. Ajiro Y. Yoshimura K. 2006 - 38.
Synthesis Structural and Magnetic Properties of the Soild Solution (CuClTsujimoto Y. Kitada A. Kageyama H. Nishi M. Narumi Y. Kindo K. Kiuchi Y. Ueda Y. Uemura Y. J. Ajiro Y. Yoshimura K. 1 xBrx)LaNb2O7. J. Phys. Soc. Jpn.2010 - 39.
Muon Spin Relaxation of the Frustrated Quasi-Two-Dimensional Square-Lattice Spin System Cu(Cl, Br)La(Nb, Ta)2O7: Evolution From Spin-Gap to Antiferromagnetic State. Phys. Rev. BUemura Y. J. Aczel A. A. Ajiro Y. Carlo J. P. Goko T. Goldfield D. A. Kitada A. Luku G. M. Mac Dougall. G. J. Mihailescu I. G. Rodriquez J. A. Russo P. L. Tsujimoto Y. Wiebe C. R. Williams T. J. Yamamoto T. Yoshimura K. Kageyama H. 2009 - 40.
Quantum Phase Transition in (CuCl)La(NbKitada A. Tsujimoto Y. Kageyama H. Ajiro Y. Nishi M. Narumi Y. Kindo K. Ichihara M. Ueda Y. Uemura Y. J. Yoshimura K. 1 xTax)2O7. Phys. Rev. B2009 - 41.
Muon-Spin Relaxation in AuFe and CuMn Spin Glasses. Phys. Rev. BUemura Y. J. Yamazaki T. Harshman D. R. Senba M. Ansaldo E. J. Muon 1985 31 546 - 42.
Antiferromagnetic Order with Spatially Inhomogeneous Ordered Moment Size of Zn- and Si-Doped CuGeO3. Phys. Rev. Lett.Kojima K. M. Fudamoto Y. Larkin M. Luke G. M. Merrin J. Nachumi B. Uemura Y. J. Hase M. Sasago Y. Uchinokura K. Ajiro Y. Revcolevschi A. Renard J. P. 1997 79 503 - 43.
Impurity-Induced Staggered Polarization and Antiferromagnetic Order in Spin-1/2 Heisenberg Two-Leg Ladder Compound SrCu2O3: Extensive Cu NMR and NQR Studies. Phys. Rev. BOhsugi S. Tokunaga Y. Ishida K. Kitaoka Y. Azuma M. Fujishiro Y. Takano M. Impurity 1999 60 4181 - 44.
J. Phys. Soc. Jpn.Tsujimoto Y. Baba Y. Oba N. Kageyama H. Fukui T. Narumi Y. Kindo K. Saito T. Takano M. Ajiro Y. Yoshimura K. 1. Magnetization Plateau. in Spin-1. Square Lattice. Antiferromagnet . Cu Br. Sr Nb O1. 2007 - 45.
Synthesis Structure and Magnetic Properties of the Two-Dimensional Quantum Antiferromagnets (CuBr)A2B3O10 (A = Ca, Sr, Ba, Pb; B = Nb, Ta) with the 1/3 Magnetization Plateau. Phys. Rev. BTsujimoto Y. Kageyama H. Baba Y. Kitada A. Yamamoto T. Narumi Y. Kindo K. Nishi M. Carlo J. P. Aczel A. A. Williams T. J. Goko T. Luke G. M. Uemura Y. J. Ueda Y. Yoshimura K. 2008 - 46.
Collins M. F. Petrenko O. A. Triangular Antiferromagnets. Can J. Phys 1997 75 605 - 47.
Field-Induced Effects of Anisotropic Magnetic Interactions in SrCu2(BO3)2. J. Phys.: Condens. MatterKodama K. Miyahara S. Takigawa M. Horvatic M. Berthier C. Mila F. Kageyama H. Ueda Y. Field 2005 L61 L68. - 48.
Magnetization Plateau in the Frustrated Quantum Spin System Cs2CuBr4. Phys. Rev. BOno T. Tanaka H. Aruga Katori. H. Ishikawa F. Mitamura H. Goto T. 2003 - 49.
Experimental Observation of the 1/3 Magnetization Plateau in the Diamond-Chain Compound Cu3(CO3)2(OH)2. Phys. Rev. Lett.Kikuchi H. Fujii Y. Chiba M. Mitsudo S. Idehara T. Tonegawa T. Okamoto K. Sakai T. Kuwai T. Ohta H. 2005 - 50.
Lanczos Study of the S = 1/2 Frustrated Square-Lattice Antiferromagnet in a Magnetic Field. Can. J. Phys.Honecker A. 2001 79 1557 - 51.
Magnetization Plateaus in Spin Chains: ‘‘Haldane Gap’’ for Half-Integer Spins. Phys. Rev. Lett.Oshikawa M. Yamanaka M. Affleck I. 1997 78 1984 - 52.
Magnetic Correlation in the Square-Lattice Spin System (CuBr)Sr2Nb3O10: A Neutron Diffraction Study. Phys. Rev. BYusuf S. M. Bera A. K. Ritter C. Tsujimoto Y. Ajiro Y. Kageyama H. Attfield J. P. 2011 - 53.
Ferromagnetic Frustrated Spin Systems on the Square Lattice: Schwinger Boson Study. Phys. Rev. BFeldner H. Cabra D. C. Rossini G. L. 2011 - 54.
Phys. Rev. BSindzingre P. Spin-1 Frustrated Antiferromagnet. on a. Spatially Anisotropic. Square Lattice. Contribution of. Exact Diagonalization. 2004 - 55.
Phase Diagram of the Spin-1/2 JSindzingre P. Seabra L. Shannon Momoi. T. 1 J2-J3 Heisenberg Model on the Square Lattice with Ferromagnetic J1. J. Phys.: Conf. Ser.2009 - 56.
Ferromagnetically Coupled Dimers on the Distorted Shastry-Sutherland Lattice: Application to (CuCl)LaNb2O7. Phys. Rev. BFurukawa S. Dodds T. Kim Y. B. 2011 - 57.
Crystallographic Features and Tetragonal Phase Stability of PbVO3, a New Member of PbTiO3 Family. Chem. Mater.Belik A. A. Azuma M. Saito T. Shimakawa Y. Takano M. 2005 17 269 - 58.
Kitada A. Tsujimoto Y. Yamamoto T. Kobayashi Y. Narumi Y. Kindo K. Aczel A. A. Luke G. M. Uemura Y. J. Kiuchi Y. Ueda Y. Yoshimura K. Ajiro Y. Kageyama H. Quadruple-Layered Perovskite. . Cu Cl. Ca Na Nb. O1 Solid J. State Chem. 2012 185 10 - 59.
Synthesis and Structures of Reduced Niobates with Four Perovskite-like Layers and Their Semiconducting Properties. J. Solid State Chem.Sugimoto W. Ohkawa H. Naito M. Sugawara Y. Kuroda K. 1999 148 508 - 60.
Structural Phase Transitions in Layered Perovskitelike Crystals. Crystallography ReportsAleksandrov K. S. 1995 40 251 - 61.
The Classification of Tilted Octahedra in Pervskites. Acta Crystallogr. BGlazer A. M. 1972 28 3384 - 62.
Formation of Metal-Anion Arrays within Layered Perovsktie Hosts. Preparation of a Series of New Metastable Transition-Metal Oxyhalides, (MCl)LaNb2O7 (M = Cr, Mn, Fe, Co). Inorg. Chem.Viciu L. Caruntu G. Royant N. Koenig J. Zhou W. L. Kodenkandath T. A. Wiley J. B. 2002 41 3385 - 63.
J. B. Structural, Thermal and Magnetic Characterization of the Manganese Oxyhalide Layered Perovskite, (MnCl)LaNb2O7. J. Solid State Chem.Viciu L. Golub V. O. Wiley J. B. Structural Thermal. Magnetic Characterization. of the. Manganese Oxyhalide. Layered Perovskite. . Mn Cl. La Nb O. 2003 175 88 - 64.
Insertion of a Two-Dimensional Iron-Chloride Network between Perovskite Blocks. Synthesis and Characterization of the Layered Oxyhalide, (FeCl)LaNb2O7. Chem. Mater.Viciu L. Koenig J. Spinu L. Zhou W. L. Wiely J. B. 2003 15 1480 - 65.
Two-dimensional Frustrated Antiferromagnets (MCl)LaNb2O7 (M = Mn, Co, Cr). J. Phys.: Conf. SeriesKitada A. Tsujimoto Y. Yajima T. Yoshimura K. Ajiro Y. Kobayashi Y. Kageyama H. 2011 - 66.
Tsujimoto Y. Kitada A. Uemura Y. J. Goko T. Aczel A. A. Williams T. J. Luke G. M. Narumi Y. Kindo K. Nishi M. Ajiro Y. Yoshimura K. Kageyama H. Two-Dimensional S. =. . Quantum Antiferromagnet. . Ni Cl. Sr Ta O1. Chem Mater. 2010 22 4625