Criteria of variant estimation
\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"8240",leadTitle:null,fullTitle:"Geotechnical Engineering - Advances in Soil Mechanics and Foundation Engineering",title:"Geotechnical Engineering",subtitle:"Advances in Soil Mechanics and Foundation Engineering",reviewType:"peer-reviewed",abstract:"This book discusses contemporary issues related to soil mechanics and foundation engineering in earthworks, which are critical components in construction projects and often require detailed management techniques and unique solutions to address failures and implement remedial measures. The geotechnical engineering community continues to improve the classical testing techniques for measuring critical properties of soils and rocks, including stress wave-based non-destructive testing methods as well as methods used to improve shallow and deep foundation design. To minimize failure during construction, contemporary issues and related data may reveal useful lessons to improve project management and minimize economic losses. This book focuses on these aspects using appropriate methods in a rather simple manner. It also touches upon many interesting topics in soil mechanics and modern geotechnical engineering practice such as geotechnical earthquake engineering, principals in foundation design, slope stability analysis, modeling in geomechanics, offshore geotechnics, and geotechnical engineering perspective in the preservation of historical buildings and archeological sites. A total of seven chapters are included in the book.",isbn:"978-1-78984-290-6",printIsbn:"978-1-78984-289-0",pdfIsbn:"978-1-78985-302-5",doi:"10.5772/intechopen.78196",price:119,priceEur:129,priceUsd:155,slug:"geotechnical-engineering-advances-in-soil-mechanics-and-foundation-engineering",numberOfPages:178,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"2a3c20b826fa5a5cf4693e418eb1c909",bookSignature:"Sayed Hemeda and Mehmet Barış Can Ülker",publishedDate:"July 15th 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8240.jpg",numberOfDownloads:6048,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:7,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:10,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 9th 2018",dateEndSecondStepPublish:"October 30th 2018",dateEndThirdStepPublish:"December 29th 2018",dateEndFourthStepPublish:"March 19th 2019",dateEndFifthStepPublish:"May 18th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"258282",title:"Prof.",name:"Sayed",middleName:null,surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda",profilePictureURL:"https://mts.intechopen.com/storage/users/258282/images/system/258282.jpg",biography:"Sayed Hemeda received a Ph.D. in Civil Engineering from Aristotle University of Thessaloniki, Greece. Currently, he is the manager of heritage science programs at the Liberal Arts and Culture Center (LACC) and a professor at the Basic and Applied Science Institute (BAS), Egypt-Japan University of Science and Technology (E-JUST). He is the first professor of Heritage Science and Architectural Preservation of Architectural Heritage, Conservation Department, Faculty of Archaeology, Cairo University, Egypt. He is also the former manager of historic buildings, Conservation Center of Archeology, Cairo University.\nDr. Hemeda is the recipient of many awards from Cairo University including prizes for scientific excellence (2017), the Scientific Encouragement Prize (2014), and the best Ph.D. thesis (2009–2010). He was also awarded the General Union of Arab Archaeologists prize for academic excellence (2019). \nHe has published 85 articles and 29 international books and has been cited 330 times. He has given more than 58 invited lectures in 16 countries. His primary interests are geotechnical engineering for architectural heritage preservation and engineering data analysis including pattern recognition as applied to primarily analytical data from various sources such as objects of cultural significance. \nHe is editor-in-chief of the International Journal of Advances in Geological and Geotechnical Research. He is an editorial board member for many organizations and publications, including the Open Journal of Geology, Progress of Electrical and Electronic Engineering, and Geoscience Journal. He is also a scientific and organization committee member for many international conferences",institutionString:"Cairo University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"237005",title:"Dr.",name:"Mehmet Barış Can",middleName:"Barış Can",surname:"Ülker",slug:"mehmet-baris-can-ulker",fullName:"Mehmet Barış Can Ülker",profilePictureURL:"https://mts.intechopen.com/storage/users/237005/images/system/237005.jpg",biography:"Dr. M.B.C. Ülker graduated from the North Carolina State University Department of Civil, Construction and Environmental\nEngineering with a PhD degree in Civil Engineering in 2009. His\ndoctoral research topic was on the dynamic analysis of saturated\nand nearly saturated porous media with applications to wave-induced seabed response. Following his PhD study, Dr. Ulker\nworked as an instructor at the Missouri University of Science and\nTechnology Department of Civil Engineering in 2010. He then joined the Istanbul\nTechnical University (ITU) Earthquake Engineering and Disaster Management\nInstitute in 2012 and has been a professor at ITU since then. Dr. Ulker’s research\ninterests focus mainly on analytical and computational geomechanics with applications to geotechnical earthquake engineering, coastal and offshore geotechnical\nengineering and unsaturated soil mechanics. He is currently running an externally\nfunded research group at ITU undertaking analytical, numerical, and experimental\nstudies in these fields.",institutionString:"Istanbul Technical University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Istanbul Technical University",institutionURL:null,country:{name:"Turkey"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"708",title:"Geotechnical Engineering",slug:"engineering-civil-engineering-geotechnical-engineering"}],chapters:[{id:"70981",title:"Introductory Chapter: Geotechnical Engineering in a Broad Perspective - New Advances in Emerging Fields",doi:"10.5772/intechopen.91032",slug:"introductory-chapter-geotechnical-engineering-in-a-broad-perspective-new-advances-in-emerging-fields",totalDownloads:627,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Mehmet Barış Can Ülker",downloadPdfUrl:"/chapter/pdf-download/70981",previewPdfUrl:"/chapter/pdf-preview/70981",authors:[{id:"237005",title:"Dr.",name:"Mehmet Barış Can",surname:"Ülker",slug:"mehmet-baris-can-ulker",fullName:"Mehmet Barış Can Ülker"}],corrections:null},{id:"72312",title:"Uniaxial and Triaxial Creep Performance of Calcarenitic and Sandy Oolitic Limestone Formations for Stability Analysis of Roman Rock-Cut Tombs in Alexandria, Egypt",doi:"10.5772/intechopen.91720",slug:"uniaxial-and-triaxial-creep-performance-of-calcarenitic-and-sandy-oolitic-limestone-formations-for-s",totalDownloads:701,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The Greek-Roman rock-cut tombs at Alexandria, Egypt, were excavated mainly in the calcarenitic limestone formations and show varying degrees of damage of rock pillars and ceilings. In order to understand the long-term rock mass behaviour in selected tombs and its impact on past failures and current stability, uniaxial and triaxial Creep tests and rock mass quality assessments had been carried out. Creep behavior of rock plays an important role in underground works, especially for archeological structures subjected to large initial stresses. These conditions yield nonreversible deviatoric creep strains that develop during time at constant stress. In order to describe the time-dependent deformation, various approaches have been established based on analytical, empirical, and numerical methods. Our analyses show that the Roman tombs at Alexandria have been cut into poor quality rock masses. Rock failures of ceilings and pillars were frequently facilitated by local, unfavourably oriented persistent discontinuities, such as tension cracks and joints. Other failures were related to the disintegration of calcarenitic and oolitic limestones. Our data suggest that, in Roman age monumental tomb construction, low-strength rock masses resulted in modifications of the planned tomb design in order to minimise the risk of rock falls and to prevent collapses.",signatures:"Sayed Hemeda",downloadPdfUrl:"/chapter/pdf-download/72312",previewPdfUrl:"/chapter/pdf-preview/72312",authors:[{id:"258282",title:"Prof.",name:"Sayed",surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],corrections:null},{id:"66629",title:"Geotechnical Response Models for Steel Compliant Riser in Deepwater Clays",doi:"10.5772/intechopen.85549",slug:"geotechnical-response-models-for-steel-compliant-riser-in-deepwater-clays",totalDownloads:777,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The touchdown zone (TDZ) often proves to be a spot where cyclic bending stresses are the largest and is therefore a critical location for fatigue. Catenary steel compliant pipelines or risers (SCRs) are subject of much ongoing research, particularly with respect to their fatigue life, which is strongly influenced by seabed soil conditions in the TDZ. This chapter reviews the recent publications that might have an impact on the SCR-seabed interaction. The review starts by looking at the SCR general arrangement. Thereafter, the focus moves to the review of the recent research that studied the interactions between deepwater SCRs and the seabed. In addition, the review went over the analysis techniques of the SCR, including the modelling philosophy and models for geotechnical response. The research gap and the need for future research are identified.",signatures:"Hany Elosta",downloadPdfUrl:"/chapter/pdf-download/66629",previewPdfUrl:"/chapter/pdf-preview/66629",authors:[{id:"202555",title:"Dr.",name:"Hany",surname:"Elosta",slug:"hany-elosta",fullName:"Hany Elosta"}],corrections:null},{id:"68664",title:"Local Scour around a Monopile Foundation for Offshore Wind Turbines and Scour Effects on Structural Responses",doi:"10.5772/intechopen.88591",slug:"local-scour-around-a-monopile-foundation-for-offshore-wind-turbines-and-scour-effects-on-structural-",totalDownloads:1174,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Monopile is the most commonly used foundation type for offshore wind turbines. The local scour at a monopile foundation generated by the incoming shear flow has significant influence on both quasi-static lateral responses and dynamic responses of the monopile. This chapter focuses particularly on characterizing the local scour in both spatial and temporal scales and revealing the scour mechanisms associated with the flow field around a monopile. The predicting methods for the equilibrium scour depth and the time scale of scour are detailed under various representative flow conditions in the marine environment. The scale effect while extrapolating the results of model tests to prototype conditions is highlighted. The local scour imposes significant influence not only on the deformation and stiffness of the monopile foundation, but also on the natural frequency and fatigue life of the structure system. Monopiles with diameters up to 10 m have become a feasible option as the industry is currently advancing into deeper waters. More meticulous considerations for monopile design associated with the scour depth prediction and evaluation of scour effects are still in need to efficiently minimize the cost while remaining safety simultaneously.",signatures:"Wen-Gang Qi and Fu-Ping Gao",downloadPdfUrl:"/chapter/pdf-download/68664",previewPdfUrl:"/chapter/pdf-preview/68664",authors:[{id:"297014",title:"Prof.",name:"Fuping",surname:"Gao",slug:"fuping-gao",fullName:"Fuping Gao"},{id:"297015",title:"Dr.",name:"Wengang",surname:"Qi",slug:"wengang-qi",fullName:"Wengang Qi"}],corrections:null},{id:"66637",title:"Frost Heave Deformation Analysis Model for Microheave Filler",doi:"10.5772/intechopen.82575",slug:"frost-heave-deformation-analysis-model-for-microheave-filler",totalDownloads:782,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"With the rapid development of high-speed railway, high-speed railways pose new requirements on subgrade frost heave deformation control. Microheave in conventional non-frost-heave filler cannot meet the requirements of high-speed railways for high levels of smoothness and stability and threaten high-speed train operation safety. To solve problems of seasonal permafrost region subgrade filler microheave in China, combined laboratory test and theoretical analysis, this research analyzed the physical properties of frost heave influencing factors for microheave filler. The influence of skeleton grain during frost heave formation is revealed. The microheave filler frost heave development mechanism is investigated. On this basis, based on the principle of minimum energy, a frost heave calculation formula for microheave filler is deduced, and a frost heave deformation analysis model for microheave filler is created. In addition, the effectiveness of the model is demonstrated in an indoor test. This study provides a theoretical reference for controlling the frost heaving deformation of railway subgrade.",signatures:"Ye Yangsheng, Du Xiaoyan, Zhang Qianli and Chai Jinfei",downloadPdfUrl:"/chapter/pdf-download/66637",previewPdfUrl:"/chapter/pdf-preview/66637",authors:[{id:"280605",title:"Dr.",name:"Jinfei",surname:"Chai",slug:"jinfei-chai",fullName:"Jinfei Chai"},{id:"280609",title:"Prof.",name:"Yangsheng",surname:"Ye",slug:"yangsheng-ye",fullName:"Yangsheng Ye"},{id:"280815",title:"Dr.",name:"Xiaoyan",surname:"Du",slug:"xiaoyan-du",fullName:"Xiaoyan Du"},{id:"280816",title:"Prof.",name:"Qianli",surname:"Zhang",slug:"qianli-zhang",fullName:"Qianli Zhang"}],corrections:null},{id:"68777",title:"Estimation of Excess Pore Pressure Generation and Nonlinear Site Response of Liquefied Areas",doi:"10.5772/intechopen.88682",slug:"estimation-of-excess-pore-pressure-generation-and-nonlinear-site-response-of-liquefied-areas",totalDownloads:903,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Recent studies about liquefaction initiation are widely encountered in the literature in terms of utilizing the dynamic triaxial tests under harmonic loading and site response of liquefied zones. Sandy-like or clayey-like behavior is important for estimating the liquefaction susceptibility but there are other factors related to cyclic loading characteristics such as frequency content and stress level. Besides, 1-D ground response analyses are employed to understand the behavioral transmission through the soil column in liquefiable areas. The study here focuses on two main aspects of the liquefaction. The first part consists of the estimating of the pore pressure generation under irregular excitations, whereas the second part aims to assess the efficiency of the building codes predicting the nonlinear site response in liquefied prone areas. The laboratory results show that the frequency content has big influence on the liquefaction at varying stress levels. Moreover, literature models have discrepancies to estimate the pore pressure generation under different types of loading. Regarding the site response, it was indicated that equivalent linear approach is incapable of predicting the seismic behavior of soil column; therefore, nonlinear ground response must be run instead, and the IBC is the most effective one to match the nonlinear analysis results.",signatures:"Kamil Bekir Afacan",downloadPdfUrl:"/chapter/pdf-download/68777",previewPdfUrl:"/chapter/pdf-preview/68777",authors:[{id:"304485",title:"Associate Prof.",name:"Kamil",surname:"Afacan",slug:"kamil-afacan",fullName:"Kamil Afacan"}],corrections:null},{id:"67270",title:"Weathered Granite Soils",doi:"10.5772/intechopen.86430",slug:"weathered-granite-soils",totalDownloads:1086,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"A great deal of weathered granite soils are distributed in mountainous areas around the world. With further improvements to the civil engineering, more and more construction infrastructures (roads, railways, dams, etc.) in mountainous areas will be built. Making full use of weathered granite soils, a type of special geomaterial, can alleviate the shortage of building materials in mountainous areas. Weathered granite soil has its own unique physical and mechanical properties, e.g., disintegrative, easy weathering, and particle breakage. In this chapter, a large number of field investigations and laboratory tests (including X-ray diffraction, sieving, heavy compaction, and large-scale triaxial) have been carried out. The process of weathering, the influence factors on particle breakage, and the mechanical properties of compacted weathered granite have been discussed. The results show that particle gradation, mineral content, blows per layer, and stress level have a significant effect on the particle breakage characteristics of weathered granite soils. The experimental results show that the product of the stress ratio at shear failure M\nf and the stress ratio at characteristic state point M\nc is not a constant but a power function of an average main stress p due to particle breakage. Hereby, the constitutive model of weathered granite soils was proposed.",signatures:"Xirong Niu",downloadPdfUrl:"/chapter/pdf-download/67270",previewPdfUrl:"/chapter/pdf-preview/67270",authors:[{id:"280271",title:"Dr.",name:"Xirong",surname:"Niu",slug:"xirong-niu",fullName:"Xirong Niu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"8412",title:"Sustainable Construction and Building Materials",subtitle:null,isOpenForSubmission:!1,hash:"dec13857a884f2b52b887e8751e4c37f",slug:"sustainable-construction-and-building-materials",bookSignature:"Sayed Hemeda",coverURL:"https://cdn.intechopen.com/books/images_new/8412.jpg",editedByType:"Edited by",editors:[{id:"258282",title:"Prof.",name:"Sayed",surname:"Hemeda",slug:"sayed-hemeda",fullName:"Sayed Hemeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3717",title:"Geoscience and Remote Sensing",subtitle:"New Achievements",isOpenForSubmission:!1,hash:null,slug:"geoscience-and-remote-sensing-new-achievements",bookSignature:"Pasquale Imperatore and Daniele Riccio",coverURL:"https://cdn.intechopen.com/books/images_new/3717.jpg",editedByType:"Edited by",editors:[{id:"4222",title:"Dr.",name:"Pasquale",surname:"Imperatore",slug:"pasquale-imperatore",fullName:"Pasquale Imperatore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6532",title:"Drilling",subtitle:null,isOpenForSubmission:!1,hash:"3bb91a4e4eb17b4395091940cf1c36fe",slug:"drilling",bookSignature:"Ariffin Samsuri",coverURL:"https://cdn.intechopen.com/books/images_new/6532.jpg",editedByType:"Edited by",editors:[{id:"120519",title:"Prof.",name:"Ariffin",surname:"Samsuri",slug:"ariffin-samsuri",fullName:"Ariffin Samsuri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8909",title:"Slope Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9be2d5801074590ab1d79845ee5c47e9",slug:"slope-engineering",bookSignature:"Ali Ismet Kanlı",coverURL:"https://cdn.intechopen.com/books/images_new/8909.jpg",editedByType:"Edited by",editors:[{id:"243975",title:"Dr.",name:"Ali Ismet",surname:"Kanlı",slug:"ali-ismet-kanli",fullName:"Ali Ismet Kanlı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"erratum-public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-inter",title:"Erratum - Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68989.pdf",downloadPdfUrl:"/chapter/pdf-download/68989",previewPdfUrl:"/chapter/pdf-preview/68989",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68989",risUrl:"/chapter/ris/68989",chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11601",leadTitle:null,title:"Econometrics - Recent Advances and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tAcademicians and policy-makers are always searching for new econometric methods to answer specific policy questions. More importantly, the advent in the advances of computing power has enabled more advanced econometric techniques to be computed with ease. Econometrics uses statistical methods and real-world data to predict and establish specific trends within economics and other social sciences.
\r\n\r\n\tThis volume attempts to explore the practical aspects of econometrics to economics, and other social sciences that use econometric methods. This volume is expected to cover a broad range of topics that include but are not limited to spatial econometrics, time series, forecasting, and machine learning, This volume hopes to attract dynamic stochastic general equilibrium (DSGE) models which are gaining prominence in applied macroeconomics. This proposed volume could serve as a reference for academicians, researchers, policy-makers, graduate students, and very abled undergraduate students who are seeking current research on the various applications of econometrics as used in research and to answer specific policy questions.
",isbn:"978-1-80356-525-5",printIsbn:"978-1-80356-524-8",pdfIsbn:"978-1-80356-526-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"bc8ab49e2cf436c217a49ca8c12a22eb",bookSignature:"Dr. Brian Sloboda",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",keywords:"Bayesian, Spatial Durbin Models, Spatial Autocorrelation, Spatial Panel Regression, Forecasting Models, Cointegration, Dynamic Factor Modes, State-Space Models, Causality, Clustering, Dynamic Stochastic General Equilibrium (DSGE), Loss Curves",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 9th 2022",dateEndSecondStepPublish:"May 13th 2022",dateEndThirdStepPublish:"July 12th 2022",dateEndFourthStepPublish:"September 30th 2022",dateEndFifthStepPublish:"November 29th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A mission-driven educator with expertise in Applied Econometrics, Regional Economics, and Labor Economics. Also, a skilled communicator who excels at interacting with students and motivating them to achieve their educational and career goals.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"452331",title:"Dr.",name:"Brian",middleName:null,surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda",profilePictureURL:"https://mts.intechopen.com/storage/users/452331/images/system/452331.jpg",biography:"Professional Profile Accredited as an Accredited Professional Statistician™ (PSTAT) by the American Statistical Association (ASA). Reaccredited through Aug.2022.\n\nComputer-proficient researcher skilled in statistical and econometric software, including E-Views, STATA, SPSS, and SAS Studio®. Working knowledge of MATHLAB and Dynare.\n\nResearch Fellow, Global Labor Organization (GLO), Oct.2017 to present\nAcademic and Professional Profiles \nResearch gate Profile:https: // www. researchgate. net/ profile/ Brian_ Sloboda\nORCID:https: // orcid. org/ 0000-0003-0007-1725\nGoogle Scholar Profile https: // scholar. google. com/ citations? user= RSLTrCsAAAAJ&hl= en\nEducation: Ph.D. Economics, Southern Illinois University at Carbondale,1997.\nThesis: The Economic Impact of Southern Illinois University on the State of Illinois: The Human Capital Approach\nM.S. Economics, Southern Illinois University at Carbondale,1992.\nB.A. Economics, Rowan University,1990.Minor: Mathematics.\nFields of Interest: Regional Economics, Economic Growth, Labor Economics, Economic and Statistical Education",institutionString:"University of Maryland, Global Campus",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"40594",title:"Polysaccharides from Larch Biomass",doi:"10.5772/53809",slug:"polysaccharides-from-larch-biomass",body:'There are two species of the genus
This chapter is devoted to polysaccharides contained in the wood and bark of larch, i.e. heteropolysaccharide arabinogalactan (AG) and pectin polysaccharides (pectin substances, PS). The chapter also deals with the development of technologies for the preparation of these polysaccharides and the study of their useful properties. Wood hemicelluloses and cellulose represent a potential source of valuable monosaccharides, namely glucose, which can be readily obtained by hydrolysis transformation of these polysaccharides.
Larch wood contains a high quantity of arabinogalactan, a considerable part of which can be found in the butt of a tree, which frequently enters waste. Arabinogalactan possesses a wide spectrum of biological activity. It shows immunomodulating activity, gastroprotective, membranotropic and prebiotic properties, and can be used in the medical, veterinary, food and cosmetic industries. Arabinogalactan is a perspective matrix for obtaining on its basis metal-, sulpho-, amino- and other derivatives due to the reactive hydroxyl and aldehyde groups contained in its molecule. The ability of arabinogalactan to form water-soluble stable substances with inorganic nanoparticles and low-molecular medical substances (MS) provides serious prospects for the development of materials with unique properties.
In the USA, arabinogalactan has been extracted from the wood of
The bark of larch does not however have industrial application. Annually, wood-processing industries and pulp-and-paper enterprises waste more than 30 million m3 in volume. It has become a serious environmental problem because the bark is badly exposed to biodegradation. At the same time, the chemical compounds of the bark can be a source of valuable biologically active substances, including polysaccharides. The creation of medical, food and other useful products on the basis of polysaccharides is also possible.
Larch bark contains about 7–12% of pectin polysaccharides, based on the weight of absolutely dry raw material. Pectin is acid polysaccharide–glycogalacturonane, and is contained in practically all plants. It is obtained from diverse sources that differ in their chemical structure due to distinctions in the qualitative structure of carbohydrates and their quantitative parities. Pectin substances promote digestive processes, and help organisms to resist many diseases such as atherosclerosis, diabetes, cancer, etc. There are two basic sources of pectin production in Germany and Denmark. However, there is no industrial production of pectin in Russia.
As one of the possible sources of polysaccharides, cellulose–lignin residue can be formed by the extraction of polyphenolic substances from larch wood in the scheme for complex processing of larch biomass. Its chemical processing allows carbohydrate products to be produced, mainly crystalline glucose. Glucose is contained, mainly in the bound form, in considerable amounts of natural products as a constituent of various glycosides and polysaccharides. Taking into consideration that about 40% of the dry substance of plant mass is accounted for by cellulose formed by photosynthesis at a rate of about 70 kg/day per each inhabitant of our the planet, glucose is the most abundant sugar in nature.
All developed technologies are environmentally friendly. They are focused on processing of timber and industrial wood-processing waste, and possess high technical and economic parameters.
Larch wood is distinctive for its high content of water soluble polysaccharide arabinogalactan, reaching up to 35% by weight of dry wood [1]. This valuable substance has been studied since the 1950s [1-6]. The physicochemical and biological properties of AG from the wood of
The AG macromolecule from larch wood has a highly branched structure. Its main chain consists of β-(1→3) linked galactose residues (Figure 2). Approximately one half of the side chains (in
Monosaccharide composition and molecular mass (MM) of AG macromolecules differ among the species and also varies within single species. It has been established that the composition of AG macromolecules is dependent on the conditions under which it is isolated from larch wood and on the purification procedure [9,10] as well as on molecular weight [1,11]. AG macromolecules have low molecular weights (13–20 kDa, according to HPLC data) and a narrow molecular weight distribution (degree of polydispersity 1.1–2.3) [10].
Biological activity of AG in higher plants is directly linked to their structural characteristics, such as length of galactan chain, structure of side chains, molecular weight and ability to form intermolecular associates [12,13]. Larch AG is characterized by low toxicity, showing neither acute poisoning for doses of 5 g/kg nor chronic poisoning for doses of 500 mg/kg per day [14]. Diverse biological activity of AG includes immunomodulatory, prebiotic, hypolipidemic, gastro- and hepatoprotective, mitogenic, antimutagenic and antiviral effects, etc. There are reports on the inhibitory and destructive action of AG against certain types of malignant tumours [6,15-22]. Moreover, it has a good solubility in cold water, uniquely low viscosity of concentrated aqueous solutions, an ability to bind fat and retain liquid and dispersive capacity, etc. All these benefits are in high demand in medicine and veterinary science as well as in food and cosmetic industries [5,6]. There are a number of biologically active food supplements which incorporate AG [23-25]. In medicine, an ophthalmic composition (eye drops/contact lens care solution) has been developed [26]. Membranotropicity caused by galactose fragments and realized through receptor mediated endocytosis makes AG a promising drug carrier to increase absorbability and selectivity of medical substances that are characterized by low bioavailability [27-36]. Applications of AG in photodynamic diagnostics, in oncological disease therapy and in gene therapy (targeted delivery of functional genes) are currently being explored [37-39]. The unique properties of AG are prominent among the known polysaccharide carriers of medical substances [40,41].
Structural fragment of AG macromolecule
Significant interest for medicine is raised by the products of AG modification [6]. Introducing diverse functional groups into the AG macromolecule makes it a manifold synthone to obtain a wide range of new biologically active substances. Oxidation is a promising way to functionalise AG. Methods of selective oxidation developed in classical carbohydrate chemistry [42] have been used to develop functionalized AG products [43,44]. Among others, oxidative destruction with simultaneous introduction of carboxylic groups into the macromolecule under the action of hydrogen peroxide in aqueous medium has been carried out [45]. It has been revealed that oligomeric products show anti-inflammatory and antiulcer activities. Reactions of AG and oxidized AG with some known MS give intermolecular complexes [46-48]. Such complexes of AG with 5-aminosalicylic acid show high antiulcer activity, while complexes incorporating 4-aminosalicylic or isonicotinic acid hydrazide demonstrate an antituberculosis effect. It has been established that conjugates of AG and products of its modification increase the physiological effect of MS and decrease their toxicity [28,46-48]; for instance, a conjugate of AG (9kDa) 9-β-D-arabinofuranosyladenine-5\'-monophosphate was 25-fold more active than the parent compound 9-β-D-arabinofuranosyladenine (araA) in decreasing the amount of hepatitis B virus, and the toxicity of the complex preparation is much lower than araA [28]. To increase reactivity of AG with MS, the synthesis of conjugates proceeds by bromination, phosphorylation, amination, formation of hydrazides or reaction with NaBH4 [27,33,34].
Mechanochemical activation is another promising method of AG modification, in which the target products are obtained in one stage without the use of solvents. Mechanochemical treatment can give rise to numerous physicochemical transformations of AG macromolecules, which are associated, first, with the breaking and formation of valence bonds and, second, with the disturbance and origination of weak intermolecular interactions (disordering, conformational rearrangements, etc.). As a result, the polysaccharide can change its biological activity, toxicity and pharmacological properties. HPLC and quantitative 13C NMR spectroscopy has established [49] that mechanochemical treatment of AG isolated from Siberian larch wood changes its molecular weight distribution, monosaccharide composition and degree of branching due to partial destruction of the macromolecules and subsequent recombination of their fragments. The extent of these changes depends on the activation conditions. The IR and 13C NMR spectra have not shown any functionalization of AG macromolecules in the conditions studied. Toxic-pharmacological study has established that a mechanochemically activated AG sample has the same LD50 (more 5000 mg/kg) than the starting AG. As for the effect of mechanochemically activated AG upon the central nervous system, it has demonstrated anxiolytic activity similar to sibason in a dose of 20 mg/kg tested in laboratory animals. Meanwhile, single intravenous injection of the substance, in a dose of 3.5 mg/kg, slightly but statistically significantly decreases arterial pressure (by 6%) in normotensive rats without affecting electrocardiogram parameters and heart rate. Thus, mechanochemically activated AG is a promising drug carrier [49].
Combined mechanochemical activation of MS with AG (pharmacon clathration) is even more effective in improving safety and bioavailability of drugs [50-53]. Essentially (up to 50 times) increased solubility of MS and dramatically decreased therapeutic doses of the same efficiency are reported for clathrates of poorly soluble anti-inflammatory, psychotropic and hypotensive drugs [51,52]; for instance, clathrates of AG with nifedipine containing a 10 times lower dose than the starting MS show pronounced hypotensive and antiarrhythmic effects [52]. Additionally, the side effects of MS in clathrates are decreased, for instance in the ulcerogenity of nonsteroidal anti-inflammatory drugs. HPLC, 13C NMR and IR spectroscopic studies have shown the absence of any chemical reaction between AG and MS at pharmacon clathration [51,53]. The X-ray phase study and thermal analysis prove the destruction of the crystal structure of MS and its dispersion within the AG matrix. The polysaccharide macromolecules are cleaved similarly to the mechanochemical activation of AG alone [49].
The most recent application of AG as a stabilizing polymer matrix in hybrid nanosized materials is based on iron oxides, cobalt, copper, nickel, ferrites and zero-valence metals such as silver, palladium and platinum [18,55-57]. Metal content in nanocomposite samples depends on synthetic conditions and on the type of metal ion used, varying in the range of 0.1–21.0%. In the case of metal oxide nanocomposites, AG shows properties of a nanostabilizing matrix, while in the composites of noble metals it reduces metal to a zero-valence state and stabilizes the metal nanoparticles formed. Nanocomposites based on AG retain high biological activity. Ferroarabinogalactans show synergy between the pronounced antianaemic activity of the ferric core and the unique membranotropic and immunomodulatory properties of AG. Parenteral administration of ferroarabinogalactan normalizes quantitative and qualitative characteristics of the erythrocyte system and iron depot level in animals (white rats) [18]. The original synthetic method of ferroarabinogalactan retains both membranotropic and immunomodulatory properties of AG. Studies of the natural effects of immunomodulators, together with the investigation of specific immunity to plague, have revealed that ferroarabinogalactan activates peritoneal macrophages in guinea pigs, in comparison with the animals’ cells being immunized only with vital plague vaccine.
Antibiotic resistance of microorganisms has led to a new interest in silver preparations. The most efficient are preparations of ultradispersed silver. Highly dispersed (nanosized) particles increase bactericidal activity. It has been established that silver-containing nanocomposites with AG possess high antimicrobial activity against gram-negative enterobacteria (
Thus, the method for synthesis of nanocomposites with available polysaccharide AG is an easy way to synthesize universal materials. The AG-based nanobiocomposites synergistically combine the properties of the stabilizing natural polysaccharide matrix and the nanocore materials. They are applicable as nanosized water-soluble enantioselective catalysts, magnet-controlled medical substances, materials for coherent and nonlinear optics, high-sensitivity optical markers, universal antimicrobial preparations, etc. The use of AG as a bioactive polysaccharide matrix participating in the processes of receptor-induced endocytosis leads to new approaches to therapy for metal deficiency states and to the development of new biomaterials of target action, which are in high demand in medicine and biology, both as controlled composite materials and as new water-soluble biodegradable metal-containing drugs.
At present, healthy diet is a question of public policy in all developed countries due to the undisputed role of food in public health, working capacity of people, adaptation, child growth and longevity. The increasing popularity of healthy diets has made manufacturers pay more and more attention to functional food, i.e. medically fortified food products. Food supplements and enriched products are becoming increasingly popular. Such products are functionalized by both natural substances (pectin, inulin, gum arabic, etc.) and semi-synthetic compounds (lactulose, polydextrose, resistant starches, chitosan, etc.).
Larch arabinogalactan adds nutrition and function to beverages, snack foods, nutrition bars, and more [6,58]. Not only does AG function as a prebiotic fibre and immunity enhancer, it also retains moisture, enhances mouthfeel and bulk, and improves shelf stability. Because of AG\'s low-viscosity profile and emulsification-enhancing properties, the most immediate applications include refrigerated and non-refrigerated beverages, and beverage mixes. Interest has also been expressed in snack foods, bars, ready-to-eat cereals, yogurt/dairy products and baked goods. Commercially available larch AG-containing products include beverages and nutrition bars.
Not only does AG add nutrition, it also provides functional benefits. An independent food laboratory confirmed that the inclusion of AG improved white pan bread make-up, external symmetry and internal grain scores. Fat-free flour tortillas with AG showed better handling, taste and aroma than the control. AG is a low-calorie additive for artificial sweeteners. It delivers mouthfeel, taste and bulking attributes that are most like sugar.
In confectionery and baked goods, AG lowers water activity and aids flavour and oil retention. AG can be used in browning compositions for uncooked foods, in seasoning powders to improve flow and reduce hygroscopicity, and in starch-containing foods to inhibit swelling.
Recent clinical investigations of AG have demonstrated not only benefits to gastrointestinal health and immunity, but also a significant reduction in serum cholesterol, glucose and insulin levels [58,59]. This opens the door to potential heart health label claims and provides an option for consumers looking for foods that are beneficial in terms of body weight, blood glucose or blood insulin control.
AG benefits, as determined by human and animal clinical trials, have been observed as low as 1.5 g/day, or more specifically 20 mg/kg of body weight. AG has been found to be totally safe as a food ingredient. On average, finished products containing a minimum of 60 mg/kg of body weight or about 4.5 g/day is recommended for foods [58]. Using arabinogalactan additives isolated from Siberian larch, the authors of one study [60] examined the soft wheat flour quality and quantity of gluten, physical properties of the dough, and quality of finished bread, depending on the quantity of the added polysaccharide. The addition of 1% of arabinogalactan to flour causes a significant improvement in the qualitative indices of bread. In this case, AG is totally consumed in the course of bread making because it is utilized by yeast. It is recommended that bread quality can be improved when the flour incorporates 1% mass of AG. When 2–3% of AG is added to flour, the AG content decreases. An excess of AG inhibits yeast growth, which leads to a decrease in bread quality.
The optimum compositions for AG-enriched bakery goods and pastry have been proposed [61,62]. It has been shown that when AG is added to flour in proportions of 1–5% by weight, bakery products are rich in dietary fibre of prebiotic and immunostimulating action, while their energy density is lower due to the decreased amount of sugar in the recipes. The AG-enriched bakery and pastry products have a medical effect [59]. Production technology for AG-enriched prebiotic cultured milk products has been developed [63]. The efficiency of AG in veterinary medicine has been proven [64-67].
The only regular production of AG is realized in the USA where the raw materials are derived from
We propose a beneficial, economically and ecologically sound method to obtain dry 95–97% AG [17,73]. There are two main stages: first, extraction and purification of the extract, and second, dry product isolation. Every stage has been carefully studied and theoretically rationalized.
Study of extraction process kinetics is primarily aimed at determining duration of contact between the phases to give the target degree of isolation. Extraction kinetics data determine the geometry of the apparatus. AG water extraction proceeds in two stages, the first of which is fast and the second is slow (Figure 3).
AG yield (% of absolutely dry wood, a.d.w.), showing dependence on particle size
The extraction process is determined by AG diffusion and penetration of extracting solution into wood pores as well as by hydrodynamic conditions. Thirty minutes is sufficient to isolate almost the total amount of AG from sawdust, while, in the same conditions, wood chips need several days to yield the major fraction of AG. The quality of AG and other water-soluble components is not affected by wood reduction range.
On the basis of the experimental data, we calculated diffusion constants, mass-transfer coefficients and the Biot diffusion criterion (
where
where
According to substance balance data,
where
where
The right side of the equation (3) determines the fraction of the substance transferred from the solid into the solution during the time interval from the moment under consideration until the end of the experiment. The left side determines the increase of the solution concentration during the interval mentioned. Substituting (
where Bn = bAn.
For a regular mode of extraction, the first member of the series in equation (5) is sufficient.
Figure 4 graphs the dependence of
Extrapolating the straight line (Figure 4)\n\t\t\t\t\t
and
where
Solving the characteristic equation (6) regarding μ1 gives, according to equation (7), the diffusion constant
These data on mass transfer were used to calculate the AG extraction process from larch wood particles in similar hydrodynamic conditions. The value of the diffusion constant
Graph of regular mode of AG extraction. Particle sizes, mm: 1 - 0.056; 2 - 0.86; 3 - 2.61; 4 - 3.24; 5 - 5.37
Based on the experimental data, a mathematical model was developed, material balance was calculated, and the optimal parameters of the extraction process were determined [75]. The model was used to optimize the technological process and production algorithm.
According to the method developed, firstly DHQ and other phenolic extractive substances were isolated from larch wood particles by organic solvent, and then were exposed to extraction by circulating water at 60–80 ºС for 2–3 h. The extract obtained was treated with a cationic flocculant solution to remove mechanical and colloidal impurities. Decolourized extract was ready for being concentrated and further purified by ultrafiltration.
Concentrations of AG water extracts were decolourized by flocculation, which was achieved by ultrafiltration using UAM-150P cellulose acetate membranes (Russia) [76]. Filtration rate decreased with time due to an increase in solution concentrations, viscosities and sedimentation of high-molecular particles on the membrane surface. Initial productivity decreased as initial AG solution concentration increased. However, initial productivity increased with increasing pressure gradient. At the final stage of ultrafiltration, when the process rate approaches a constant level, the higher the pressure gradient the lower the productivity, due to the higher rate of concentration at high pressure during equal time intervals.
Studies have been made of the influence of pressure upon the ultrafiltration process. The maximum degree of concentration is reached at the pressure gradient ΔР = 0.4 МPа. However, the optimal ratio between productivity and degree of concentration is at ΔР = 0.2 МPа.
Ultrafiltration results in simultaneous concentration of AG extracts and their purification by almost entirely filtering out low-molecular phenolic impurities. Purification efficiency depends on composition of the extract, membrane characteristics and conditions of filtration as well as a degree of concentration.
According to the IR spectroscopy and HPLC data, filtrate contains, together with phenolic substances, an oligomeric fraction of AG. Atomic absorption and X-ray fluorescence analyses have shown that ultrafiltration purifies AG from metal cations [76]. The total content of dry substances in filtrates is not more than 1–2.5%.
To increase productivity of the ultrafiltration module, we also tested the UAM-500P membrane (Russia). Ultrafiltration dynamics of decolourized AG extracts have shown that filtration rate is in an inverse ratio to initial extract concentration. The use of a macroporous membrane allows ultrafiltration without pre-treatment of AG extracts by a flocculating agent. It has been proven experimentally that productivity of this process is comparable to that of extract decolourized by flocculation. Thus, for the UAM-500P membrane, pore blocking at the initial stage is not a limiting factor, unlike the case for UAM-150P. The optimal conditions of ultrafiltration have been determined to make the technology profitable.
After ultrafiltration, the concentrate was dried in a drying unit. The known methods of dry product isolation, by precipitation in alcohol or acetone [6], are disadvantageous for industrial use from a technological, economical and ecological point of view. The filtrate, without additional treatment, was mixed with fresh water and reused for DHQ extraction.
The method proposed, as compared to known methods, enables the following improvements:
AG extraction from larch wood is realized after the isolation of DHQ and resin substances, giving a rather high purity of the extract
the process is simple, energy-efficient and economically viable
no expensive sorbents are needed and no toxic or combustible organic solvents are involved
concentrates of dry substance content of up to 40% can be produced
the closed water cycle allows water consumption and the amount of waste water to be decreased.
Additional AG purification from high-molecular phenolic impurities was realized by treatment of the water extracts with ecologically harmless oxidant (hydrogen peroxide) [17]. The optimal conditions were found to oxidize impurities without affecting the polysaccharide macromolecule.
For final product isolation from the concentrate, spray drying, lyophilic drying or fluid bed drying can be used.
The experiments showed that spray drying is technically and economically optimal. In a manufacturing pilot, different modes of AG spray drying were tested by varying the starting concentration of AG solution, air temperature at the drier input, air temperature at the drier output and pressure of compressed air at spraying. The temperature of the drying gas (air) was the most technologically relevant. The required humidity of the final product (less than 7%) was reached at an air temperature higher than 100 ºС. The optimal process conditions produced AG of high quality.
On the basis of our study, a technological scheme for isolating high purity AG was developed, involving:
Flocculation of AG solution (FR)
Oxidation of impurities in the AG solution (ОR)
Microfiltration of the AG solution (MF)
Concentration of the AG solution by ultrafiltration (UF)
Spray drying of the concentrate (SD).
The manufacturing pilot revealed drawbacks to the proposed scheme: low productivity and high time consumption per product unit. Thus, the scheme was optimized.
The most reasonable sequence of steps was determined using a decision tree [77-79] with limited operation sequence combinations: spray drying was always the last step and, thus, was excluded from the decision tree; microfiltration and oxidation always followed flocculation. The decision tree, taking into account the limitations mentioned, is shown in Figure 5.
Decision tree
The variants were ranged from 1 to 7 according to these criteria:
productivity
material and reagent consumption
steel intensity (investment)
laboriousness (timetable)
manufacturability.
The optimal variant is UF-FR-OR-MF (see Table 1), which has a four times higher productivity and a two times lower investment in comparison with the initial scheme.
An optimized technological scheme of arabinogalactan production was implemented at an experimental–industrial scale.
Criteria | Possible algorithms | |||||||
FR-UF- OR-MF | FR-UF- MF | FR-OR- UF-MF | FR-OR- MF-UF | FR-MF- UF-OR | FR-MF- OR-UF | UF-FR- OR-MF | UF-FR- MF-OR | |
Productivity | 1 | 1 | 1 | 1 | 1 | 1 | 7 | |
Material and reagent consumption | 3 | 3 | 3 | 3 | 3 | 3 | 1 | |
Steel intensity | 1 | 1 | 1 | 1 | 1 | 1 | 7 | |
Laboriousness | 3 | 5 | 3 | 5 | 7 | 7 | 1 | |
Manufacturability | 2 | 1 | 2 | 5 | 7 | 6 | 4 | |
Criteria of variant estimation
Pectin substances are present in the majority of land and water plants, and in some freshwater algae [80]. Being an important component of cell walls, they are involved in ion exchange, water metabolism and cell wall structure formation. They stimulate seed germination and germ growth, provide turgor, etc.
The unique physicochemical properties of pectin make it indispensable in medical, food and cosmetic industries as a gelling agent, thickener, stabilizer and dietary fibre. Recently, it has become widely used as a matrix carrier for biologically active components in drugs. Pectins have physiological activities of their own (immunomodulating, hepatoprotective, anticarcinogenic, antimetastatic, etc.) making them applicable as medical preparations and biologically active food supplements.
Industrial demand for pectins in Russia is estimated at 2000 t/year, of which 10% is for the fragrance and cosmetic industries, 15% goes to medicine and pharmaceuticals, and 75% is for the food industry [81]. However, this demand is generally met by imported production. There are recent innovative Russian developments that are ecologically harmless and economically viable (there is no need to utilize aggressive acid media and to support treatment facilities), therefore having a low cost price. The raw material for pectin is the marc of citrus fruit, apple, sugar beet and sunflower head pith. There are proposals for using other plants as raw materials, such as amaranth, small mallow, duckweed, silene, coffee beans, etc. [82-86].
The bark of
There are a number of methods to isolate pectin polysaccharides from plant tissues, including hydrolysis extraction of dry raw material particles of certain sizes [87] using hot water, organic and inorganic acid solutions as well as salts, alkali or their mixtures as extracting solutions. Basic parameters of the pectin isolation process, such as raw material pre-processing, hydromodulus, temperature, extraction duration, medium рН and precipitator used, can all be varied depending on characteristics of the raw material [88]. We studied the influence of the following combinations of the basic parameters upon yield and product quality:
Experiment 1: 0.5% ammonium oxalate solution (hydromodulus 1:5)Experiment 2: 0.5% oxalic acid solution (1:5) Experiment 3: equimolar mixture of 0.5% oxalic acid and 0.5% ammonium oxalate solutions (1: 5) Experiment 4: 0.25% sodium hydroxide solution (1:5) Experiment 5: similar to experiment 3 (1:7) Experiment 6: similar to experiment 3 (1:10)
In all the experiments, extraction process were the same (at 80 °С for 2 h of constant stirring).
The pectin samples obtained were white or light cream-coloured powders, tasteless and with no smell (Figure 6).
A laboratory sample of larch bark PS
Table 2 sets out the yield (% of weight of absolutely dry bark, a.d.b.) and composition data of pectin substances obtained in experiments 1–6.
The highest yields were observed with a weak alkali solution, but the ash content was too high (16.66%), which affected gelling ability [89]. The lowest ash content was found in the preparations isolated using an equimolar mixture of ammonium oxalate and oxalic acid (5–5.6%).
Experiment | Yield, % of a.d.b. | Medium рН | Composition, % | ||
С | Н | Ash | |||
1 | 0.77 | 6.95 | 30.28 | 6.66 | 7.89 |
2 | 0.97 | 1.90 | 31.17 | 5.75 | 8.34 |
3 | 1.64 | 3.90 | 32.05 | 5.42 | 5.58 |
4 | 5.81 | 11.97 | 36.55 | 4.51 | 16.66 |
5 | 2.71 | 2.86 | 34.24 | 6.30 | 5.20 |
6 | 2.93 | 2.84 | 31.48 | 6.82 | 5.08 |
Yield and elemental composition of pectin substances in larch bark
The optimal hydromodulus was observed in experiments 1–4 (hydromodulus 1:5) with yield increasing by 1.5 times. Hydromodulus provides insufficient penetration of extracting agent, lower than 1: 5. A 1:10 rise of hydromodulus (experiment 6) had no essential effect upon the yield and qualities of the product. Thus, the equimolar mixture of ammonium oxalate and oxalic acid used as an extracting solution at hydromodulus 1:7 (experiment 5) was the most effective in isolating pectin substances from larch bark, leading to a 2.7% yield of absolutely dry bark mass with ash content of 5.2%.
Raw material pre-processing by solvents of increasing polarity (hexane, ethyl acetate and water) resulted in both enzyme deactivation and elimination of the impurities, therefore increasing the extracting solution’s ability to access the plant cell walls. Notably, the pre-extracted substances are valuable for medicine [90] and the leather industry [91].
We experimentally compared the yields of pectins isolated with and without raw material pre-processing in the conditions described above (see Figure 7). It was shown that prior elimination of impurities leads to higher yield of the product (about 1.5 times), clearly due to higher availability of pectin substances.
PS yield dependence on: a) raw material pre-processing, and b) extraction temperature
The PS yield increased as the extraction temperature rose, reaching a maximum at 80 °С. The data obtained were in good correspondence with the literature on classic pectin isolation [89]: raising temperature causes partial hydrolysis of protopectin. Thus, pectin yield increases while at temperatures higher than 80 °С the superstructure of pectin substances is broken. This is also confirmed by the dependence of the molecular weights of the resulting pectins on extraction temperatures (see Figure 8.).
Kinetic studies, particularly those concerning the pectin hydrolysis extraction process, have a particular interest. Pectin yields vs. extraction times are charted in Figure 9. A major part of PS is transferred into the extract within 1 h of extraction, after which there is no significant increase of yield.
PS molecular weight (M.W.) dependence on extraction temperature
Dependence of PS yield on extraction time
We also studied the influence of type of precipitator used upon the yield and qualities of the product. For this purpose, pectin extract was prepared from larch bark by treating it with an equimolar mixture of 0.5% ammonium oxalate and 0.5% oxalic acid (hydromodulus 1:7) at 80 °С for 2 h. The extract was concentrated in a circulation vacuum evaporator until it reached one third of its original volume. One half of the concentrate was precipitated with acetone and the other half with ethanol. Precipitators were added in equal quantity, dropwise while continuous stirring was applied. The precipitate was vacuum-filtered, dissolved in 100 ml of distilled water by heating to 40–50 °С when necessary, and then again precipitated and filtered. The final precipitates were washed with the same precipitator and then with diethyl ether, dried in the air and then in a drier at 50 °С, cooled to room temperature in a desiccator and measured to determine yield. It is noteworthy that the dropwise addition of precipitator into the extract increased yield by 0.5% compared to the usual precipitation procedure. We established that acetone is less selective, and ethanol therefore gives a purer product. Purity of the pectin preparation obtained can also be estimated based on galacturonic acid content [92]: for larch bark pectins precipitated by acetone and ethanol, the result was 69.77 and 78.12%, respectively.
Thus, the optimal procedure for isolating pectin substances from larch bark involves pre-treatment by hexane, ethyl acetate and water, extraction by an equimolar mixture of 0.5% oxalic acid and ammonium oxalate solutions at hydromodulus 1:7 and an extraction temperature of 80 °С for 1 h, and precipitation by ethanol. The method has been patented [93] and used for preparing the samples for physicochemical and application studies.
Pectinase enzyme hydrolysis of PS samples isolated from larch bark by the above method, and further analysis of hydrolysis products by paper chromatography (PC), have shown an essential destruction of PS with formation of free D-galacturonic acid.
Table 3 sets out the main maxima of absorption bands in the IR spectra of PS and their assignment, proving the PS pectin nature of the samples [94].
Frequency (ν, cm-1) | Assignment |
3460 | ν(он), ν(Н2О) |
3260 | ν(NН) |
2962, 2872 | ν(СН3) |
2573 | ν(он), |
1730 | ν(С=О) в СООН |
1640 | δ(ОН)λ |
1540 | δ(NН) |
1380–1450 | δ(С-СН3), ν(С-О) pyranose rings |
1331 | δ(ОН) in pyranose rings |
1265 | ν(С-О) in esters |
1150 | ν(С-О-С) |
1095 | ν(С-С) |
1027 | ν(С-ОН) |
890 | δ(С1-Н) in glucopyranose ring |
766, 629, 528 | pulse vibrations of pyranose ring |
Absorption band maxima in IR spectra of PS and their assignments
Thus, enzyme hydrolysis and IR spectroscopy data prove that the polysaccharide isolated from larch bark refers to the pectin group.
The monosaccharide composition of PS was determined by total acid hydrolysis with trifluoroacetic acid (TFA). Monosaccharide identification of PS was performed using gas–liquid chromatography (GLC) and the sample was shown to consist of galacturonic acid, protein compounds and monosaccharides of arabinose, galactose, rhamnose, glucose, mannose and (in minor quantities) xylose. Dominant monosaccharides were galactose and arabinose, in a ratio of 2.7: 1.
The degree of homogeneity for PS was determined by ion exchange chromatography on DEAE cellulose with sodium chloride aqueous solutions. Four fractions were detected (Table 4). In the fractions PS-1 and PS-2, arabinose and galactose were predominant (18.26/52.96% and 11.65/30.83%, respectively); thus, they refer to acidic arabinogalactans. The acidic nature of PS was developed with D
Sample* | Yield, % | Content, % | |||||||
Gal | Protein | Monosaccharides | |||||||
Rha | Ara | Xyl | Man | Glu | Gal | ||||
PS-1 | 12.1 | 5.67 | 6.9 | 18.26 | 1.54 | 2.53 | 5.95 | 52.92 | |
PS-2 | 5.9 | 29.12 | 7.3 | 0.53 | 11.65 | 1.02 | 2.71 | 8.81 | 30.83 |
PS-3 | 17.0 | 65.93 | 5.7 | 1.91 | 4.45 | 0.75 | 1.18 | 1.12 | 9.42 |
PS-4 | 37.0 | 79.87 | 3.6 | 0.35 | 0.93 | 0.18 | 0.24 | 0.21 | 1.06 |
Chemical characterization of PS sample after DEAE-cellulose fractioning
The amino acid composition of PS proteins was studied. The major components of PS were glutamic acid (6%) and aspartic acid (2.8%), while total content of amino acids with aliphatic side chains (glycine, alanine, valine, isoleucine, leucine) was 9% (Figure 10).
Amino acid composition of PS proteins
Thus, we isolated PS from the bark of
Acid hydrolysis of PS by 2М TFA results in galacturonan PVG-1. The high value and positive sign of the rotation angle of +245.3º (
Values of chemical shifts (CS) of carbon atoms in the 13С NMR spectrum of PVG-1 (Table 5), compared to other data, [95] corresponded to those for carbon atoms in D-galacturonic acid residues in pyranose form which compose the linear fragment of pectin molecules (pectin core). The presence of an anomeric carbon atom signal at 101.9 ppm indicated both (1→4)-bonding between D-galacturonic acid residues and α-configuration of С-1 anomeric atoms. Signals at 176.2 ppm were assigned to the С-6 atom and indicated a free carboxyl group in D-galacturonic acid residue. Additionally, there were galacturonic acid residues esterified by methoxyl in the PVG-1 molecule, according to signals with CS at 172.2 ppm (С-6-ОСН3) and 54.4 ppm (-ОСН3). The ratio of the integrated signal intensity of carbon atoms observed in methoxyl and carboxyl groups suggests a high degree of galacturonan methoxylation. The 13С NMR spectrum also showed signals at δ 76.1 and 74.9 referring to the С-3 carbon atom substitute in (…→4)-α-D-GalрA-(1→…) galacturonic acid residue in the galacturonan molecule (the non-substituted atom has CS at 72.1 ppm).
Residue | С-1 | С-2 | С-3 | С-4 | С-5 | С-6 | С-6-(ОСН3) | -ОСН3 |
→4)-α-D-GalрA-(1→ | 100.9 | 68.9 | 70.1 76.1 74.9 | 79.2 | 73.4 | 176.2 | 172.2 | 54.4 |
Chemical shifts of signals of galacturonic acid carbon atoms in 13С NMR spectrum of PVG-1
Thus, according to spectral and chromatographic data, linear polysaccharide from larch bark has a structure of homogalacturonan consisting of (…→4)-α-D-GalрA-(1→…)-linked fragments D-galacturonic acid has partially etherified by methoxyl groups with branching points at С-3 atom of galacturonopyranosyl residue.
Partial acid hydrolysis of PS with 0.01М TFA for 3 h resulted in galacturonan PVG-2. According to 13С NMR data, it was a pectin polysaccharide. The spectrum contained both typical signals of galacturonic acid residues, namely pronounced signals of anomeric carbon atoms at 100.4 and 104.4 ppm, and signals of carboxyl carbon atoms at 171.4, 166.5 and 53.7 ppm, the latter two being signals of carbon atoms in uronic acid residues methoxylated by the C-2 and/or C-3 atoms (Table 6).. Intensities and spectral positions of signals at 68.9, 70.8, 78.9 and 72.2 ppm corresponded to data in the literature for α-D-GalрA residues connected by 1→4 bonds. There is a ratio of 1:5 between integral signal intensities of carboxyl and methoxyl carbon atoms, which suggests a high degree of PS methoxylation.
Residue | С1 | С2 | С3 | С4 | С5 | С6 | -ОСН3 (СН3-) |
→4)-α-D-GalрA-(1→ | 100.4 | 68.9 | 70.8 | 78.9 | 72.2 | 171.4 | - |
2-МеO-α-D-GalрA-(1→ | 100.9 | 166.5 | 69.6 | 78.9 | 73.8 | 171.4 | 53.7 |
3-МеO-α-D-GalрA-(1→ | 100.9 | 68.9 | 166.5 | 78.9 | 73.8 | 171.4 | 53.7 |
β-D-Galр-(1→ | 104.64 | 71.7 | 74.1 | 69.6 | 76.1 | 62.0 | - |
→6)-β-D-Galр-(1→ | 104.38 | 71.7 | 73.8 | 69.6 | 74.3 | 70.8 | - |
→3,6)-β-D-Galр-(1→ | 104.64 | 71.7 | 82.5 | 69.57 | 74.1 | 71.4 | - |
α-L-Araf-(1→ | 108.6 | 80.7 | 78.9 | 84.9 | 62.0 | - | - |
β-L-Arap-(1→ | 101.1 | 69.6 | - | - | - | - | - |
→3,5)-α-L-Araf-(1→ | 108.6 | 80.7 | 84.9 | 83.2 | 67.8 | - | - |
→2,5)-α-L-Araf-(1→ | 108.0 | 84.9 | 77.6 | 83.2 | 67.8 | - | - |
Chemical shifts in signals of carbon atoms in the 13С NMR spectrum of PVG-2
In the 13С NMR spectrum of PVG-2 samples there were upfield signals at 17.9 and 18.13 ppm belonging to C-6 atoms in terminal rhamnose residues and in polysaccharide chains, respectively. The integral intensities of these signals and those of C-2 and/or C-3 and C-6 carbon atoms for galacturonan residues at 166.5 and 171.4 ppm were found to have a ratio 1:5. The total integral intensity of signals for anomeric С-1 atoms for rhamnose and the total integral intensity of signals of anomeric atoms of galacturonan residues were equal to each other,
Thus, according to 13С NMR spectral data, linear fragments of pectin polysaccharide isolated from larch bark are rhamnogalacturonans where D-galacturonic acid residues in pyranose form with an α-configuration of their anomeric centre are connected 1–4 by glycosidic bonds. One fifth of galacturonan residues associated with the С-6 atom were esterified by methoxyl groups. The ratio between 2,4-substituted rhamnopyranosyl and galacturonosyl residues (1:5), thus, the main chain structure of the pectin polysaccharide was highly branched at the С-4 atoms of rhamnopyranosyl residues.
Further 13С NMR spectrum analysis of the PVG-2 sample showed that arabinogalactan fragments are present in rhamnogalacturonan as side chains. Concerning signals of anomeric carbon atoms, the 13С NMR spectrum of the PVG-2 sample showed that there are signals at 101.1, 104.38, 104.64 and 108.6 ppm, as well as signals of anomeric carbon atoms in galacturonopyranosyl residues of the galactan core. According to [9], intensities and values of CS can be assigned to signals of anomeric carbon atoms in β-L-Arap, α-L-Araf and β-D-Galр residues. The most upfield of the signals mentioned (δ 101.1 ppm) belong to terminal β-L-Arap residues. Signals at 104.38 and 104.64 ppm belong to С-1 in β-D-Galр residues while CS values of С-2, С-3, С-4, С-5 and С-6 atom signals are calculated according to the official data for β-D-galactopyranosyl residues. Bonding at the С-3 and С-6 positions of β-D-galactopyranose was proven by downfield shifts of these signals at 8.7 and 8.8-9.4 ppm, respectively, due to glycosylation of these atoms as compared to their positions in non-substituted 1→3,6 linked β-D-Galр residues. Signals at δ 108.6 ppm, like those at 80.7, 78.9, 84.9 and 62.0 ppm, are terminal α-L-arabinofuranose. The anomeric atoms of arabinose and galactose are monosaccharides integrated at a ratio of 1:2.
Hence, according to spectral data for the PVG-2 fragment of the pectin polysaccharide from larch bark, highly branched arabinogalactan was detected as side chains consisting of linear chains with →3,6)-β-D-Galр-(1→ residues with branching at С-6 atoms. Side chains of arabinogalactan fragments contain terminal arabinose, both in pyranose and in furanose form, as well as →2,5)-α-L-Araf-(1→ and →3,5)-α-L-Araf-(1→ residues as intermediate fragments.
It has been determined that larch bark pectin substances possess immunomodulatory, antineoplastic, gastroprotective and antitoxic action [96-98]. In order to understand larch bark pectin’s physiological and pharmacological action, we have started research focussed on examining its membrane-acting action. The vacuoles of isolated cell plants and their membranes were found to be an appropriate object for our research. The influence of pectin on membranes and the peculiarities of their barriers were estimated according to the change of destruction dynamics in isolated vacuoles in comparison with the control. The results are depicted in Figure 11. It has been established that implementation of pectin aqueous solutions leads to their protective action on vacuolar membranes, exceeding the control threefold. Thereby, the experiments proved that larch bark pectin possesses a membrane stabilizing activity.
Influence of pectin upon isolated vacuole half-lives (Т1/2)
In order to broaden larch bark pectin implementation fields, we carried out research into its implementation as a reducer and stabilizer of noble metal particles in nanosized state. Supramolecular structure peculiarities, optical activity, carboxyl and abundance of hydroxyl groups, and polymeric pectin molecule stabilizing effect provided significant potential in nanobiocomposite formation processes in metals with a polysaccharide matrix ("pectin – metal (0)").
Synthesis of nanobiocomposites was carried out using the redox reactions of PS with silver nitrate. Nanobiocomposite samples 0.5 “pectin – Ag(0)” up to 72% content of silver were obtained in different reaction conditions. It was discovered that the effectiveness of the reaction to create a silver nanoparticle flow depends on medium spectrum pH. The spectra of the mixtures of pectin and silver nitrate water solutions versus time reaction are depicted in Figure 12a. It was determined that, with a reduction of pH to 3.5, the Ag(I) reaction proceeds very slowly. This is demonstrated by the appearance of a link in the absorption spectrum in the range of λ 280–470 nm only 24 h after the beginning of the reaction (Fig. 12a). The wide maximum low intensity link was indicated by the formation of silver metal primary centres. Despite this, the reaction speed of the reduction was so slow that even 96 h was not enough to create fully recovered Ag(0) centres. With pectin and Ag(I) interactions in reaction mixtures beginning at a pH of 7, a symmetric bond at λmax 420 nm can be observed in the electron spectra at the start of reaction by proving the formation of Ag(0) nanoparticles (Fig.12b, line 2). Even so, it takes about 24 h for the full silver cation conversion which was experimentally evaluated according to the absorption bond intensity growth. Ag(I) reduction with pectin at pH 11–12 proceeded swiftly immediately after mixing of the components (Figure 12b, line 4 and Figure 12c line 1) and finished within 30 min. Reduction under these conditions was also accompanied by variations in the particle size of Ag(0), as shown by the shift in the Plasmon pick position into the short-wave region at 10 nm (Figure 12c).
Absorption spectra of mixtures of aqueous solutions of pectin (0.5%) and silver nitrate (0.1%) in a ratio of 1:1 depending on: а) reaction duration: 1 min (1), 24 h (2), 48 h (3), 72 h (4), 96 h (5); b) medium рН: 3.5 (1), 7 (2), 9.7 (3), 11.5 (4); c) reaction duration at рН 11.5: 1 min (1), 30 min (2), 60 min (3), 180 min (4), 24 h (5)
Radiographic phase analysis of obtained nanobiocomposites of “pectin-Ag(0)” demonstrated it to be a mixture of radioamorphous and crystalline phases. There was a wide halo with maximum intensity at d ~ 0.46 nm in 2θ angle intervals from 8 to 60E (Figure13a) in a radioamorphous phase diffraction pattern typical of a pectin source. There were quite intensive but broadened lines typical of metallic silver (Figure 13b) during silver loading in the diffraction patterns of reaction products against a background of pectin reflection. The calculation of silver unit-cell parameters showed that in their quantity in the provided samples was lower than for massive silver and changed from 0.4036 to 0.4050 nm (∀0.0008 nm). Moreover, the average size of the coherent-scattering region (CSR) was calculated according to Selyakov–Sherarar’s formula [99] to be in the range of 3 nm. The data obtained demonstrated that, in the samples of Ag (0), the persistence of nanosized particles was stabilized by an amorphous phase with pectin.
Diffraction patterns of pectin sample (a) and of the "pectin-Ag(0)" nanobiocomposite sample (b)
“Pectin – Ag (0)” nanobiocomposite scanning electron microscopy (Figure 14) showed that the analysed samples contain particles considerably smaller than 100 μm.
Electron microphotography of “pectin – Ag(0)” sample
Microphotography analysis of nanobiocomposites, obtained by the use of transmission electron microscopy, demonstrated that there are isolated silver particles of null valency in globular form (Figure 15a), of a size within the range from 4 to 17 nm (predominance (up to 80%) at 6–7 nm, Figure 15b).
Transmission electron microphotography, a), and size distribution graph of "pectin-Ag(0)" nanobiocomposite sample, b)
Thereby, “pectin-Ag(0)” nanobiocomposite formation takes place as a result of the interaction of pectin water solutions with Ag(I). Process speed increases significantly with variation within the alkaline pH range of the medium. The initial component proportion influences the results of the reaction: the more Ag(I) that falls per 1g of pectin, the less the quantity of Ag(0) particles that is created in a nanosized condition. Using pectin implements reduction and stabilizing functions, and also adjusts the sizes of obtained Ag(0) nanoparticles.
The cellolignin residue is formed during the chemical processing of larch wood using the technology for obtaining dihydroquercetin and arabinogalactan [100]. CR represents larch wood chips initially extracted by ethyl acetate and hot water. The larch wood chip basically consists of cellulose, hemicellulose, and lignin. The polysaccharide content in larch wood chips is 65–75% of the mass of its absolutely dry wood (a.d.w.) [101], and the content of water-soluble substances is 10–16% (in some samples up to 30%) [102]. The content of holocellulose in CR (without water-soluble substances) is about 54% of its a.d.w. weight, whereas the content of holocellulose in the original larch wood is about 40% of its a.d.w. (also without water-soluble substances). The gain in the relative content of polysaccharides per mass of a.d.w. is about 13%, which permits one to consider the CR as a polysaccharide-“enriched” raw material from which it is possible to obtain sugar and other products by hydrolysis. Hemicellulose polysaccharides in the CR of larch wood are mainly represented by the water-soluble polysaccharide arabinogalactan and 4-O-methylglucuronoaraboxylans and galactoglucomannans [103], which are associated to differing degrees with cellulose. The yield of arabinogalactan from larch wood using dihydroquercetin production technology in which it is isolated as a by-product (without special optimization) accounts for 67% of its total content in the original raw material; therefore, the content of water-soluble substances in CR remains rather high, at 8.9%.
The data on the group composition of the components of CR were reported in [104]. The acid hydrolysis of hemicelluloses results in the formation of mono- and oligosaccharides, the presence of which substantially impairs the quality of hydrolysates and hinders the crystallization of glucose from these syrups. Therefore, it is necessary to purify CR from hemicelluloses. Hemicelluloses are commonly removed (to a particular limit) from the raw material, either by hot water extraction or by hydrolysis with diluted acid at elevated temperature.
In experiments with water hydrolysis of larch wood chips in laboratory autoclaves, the parameters of hydrolysis, i.e., temperature, hydromodulus, duration and the number of hydrolysis steps, were varied. The maximum total yield of water-soluble substances (18%) was attained based on four-step hydrolysis. However, it is economically more attractive to perform one-step hydrolysis, with the conditions specified for obtaining a maximum yield of sugars with this hydrolysis method being as follows: a gradual increase in temperature from 25 °C for 1 h and 160 °C for 1 h with a hydromodulus of 1:6. The yield of substances was 15%. As indicated by paper chromatography (PC) and thin layer chromatography (TLC), the pre-hydrolysate contained arabinose, galactose, xylose, mannose and trace amounts of glucose [105].
Mild hydrolysis of hemicelluloses of CR was performed using 1–5% sulphuric or hydrochloric acids at the boiling temperature of the solution (100–105 °C). By choosing the optimal hydrolysis conditions, a maximum yield of reducing substances (RS) in hydrolysate, 1.1%, was achieved with the use of 5% sulphuric acid, which corresponded to a 23% content of hemicelluloses or noncellulose polysaccharides in CR. The hexose content in the prehydrolysate was 33.9% of total sugars, as determined from the content of RS, and that of pentoses was 62.1%; arabinose, galactose, xylose, mannose, and glucose were identified qualitatively. Significantly less amounts of polysaccharides were hydrolyzed with the use of 2% hydrochloric acid under the same hydrolysis conditions - 9.6%.
Aqueous and acidic sugar solutions obtained during the pre-hydrolysis of CR (technological sugar solutions) contained greater amounts of fermentable sugars compared to other conifers and can be used in the production of feed for animals [106, 107] and other products.
To obtain pure glucose syrups, two alternative variants of acid hydrolysis of cellulose were considered: hydrolysis of CR and of cellulose itself after delignification of CR. Using the first variant, we studied the hydrolysis of CR by diluted (1.0–5.0%) hydrochloric acid at high temperatures (160–170 °C) and by concentrated (50–85%) sulphuric acid at room temperature to compare the crystallization properties of glucose syrups obtained by the two methods. A high temperature hydrolysis of the raw material by diluted acid was carried out in laboratory autoclaves in four steps. As the acid concentration was increased from 1 to 5%, a gain in the sugar content of the hydrolysates was observed. Thus, the mass portion of RS relative to the mass of a.d.w. during hydrolysis of sawdust was 5.4% using 1% H2SO4, 7.9% with 2% H2SO4, 9.2% with 3% H2SO4, and 11.6% with 5% H2SO4. However, simultaneously to an increase in the acid concentration, the quality of the hydrolysate was markedly impaired; an intensive dark colour appeared due to the formation of sugar degradation products, and the content of colloidal impurities in syrups at later stages caused severe problems. Conversely, the low temperature hydrolysis of CR (of the same raw material) by concentrated sulphuric acid made it possible to obtain a high yield of sugar in hydrolysates with a minimum content of degradation products. The maximum yield of RS was 64% using 70% sulphuric acid at the hydromodulus (1:5) and a hydrolysis time of 5 h, and 62.6% using 80% sulphuric acid at the hydromodulus (1:5) and hydrolysis time of 2 h. Hydrolysates contained no pentoses. These characteristics meet the requirements imposed upon hydrolysates from which crystalline glucose is isolated.
Thus, the use of concentrated sulphuric acid in the concentration range of 65–80% makes it possible to obtain hydrolysates with a maximum content of RS (up to 64%) [108]. After additional hydrolysis (the inversion stage), the hydrolysate has a pH value close to 2. On further evaporation of this hydrolysate, the acid is concentrated, which leads to further degradation of sugar; as a result, the yield of glucose decreases, and the syrup is contaminated with stained products.
Sulphuric acid was neutralized using barium acetate, sodium hydroxide and calcium hydroxide, and the contribution of each compound to formation of the mineral ash component in syrups was determined. The lowest ash content in the hydrolysate (0.2%) was achieved by applying barium acetate. However, because of the toxicity of barium and its salts, the use of barium was abandoned. Upon neutralization of sulphuric acid by calcium hydroxide the ash content in the hydrolysate was initially as high as 10%; nevertheless, preference was given to this compound alone since it is nontoxic, readily available, and convenient in operation. According to the “Glucose, crystalline hydrated” GOST 97588 Regulations [109], the ash content in the final product must not exceed 0.06–0.07%, calculated for dry substance; therefore, it was necessary to provide neutralization conditions to decrease the ash content in hydrolysates. For neutralizing sulphuric acid, pH value was brought to 4–4.5 at a temperature no higher than 80 °C. The amount of calcium hydroxide was calculated according to the sulphuric acid neutralization reaction so as to exclude the over-alkalization of the solution [110]. The resulting dihydrate gypsum crystals were filtered off. The ash content in hydrolysate decreased by up to 0.5%. In addition to glucose and mineral contaminations, the hydrolysate contained, dependent on hydrolysis conditions, the products of partial hydrolysis of the lignocarbohydrate complex of wood—mono-, di-, tri-, and oligosaccharides—as well as impurities belonging to different classes of organic compounds: acid-soluble lignin, furfurol, oxymethylfurfurol, a lignohumic complex, colloids, levulinic acid, and other organic acids [106]. At the next stage, we assessed the nature of substances by determining the colour of hydrolysates and selected how to remove them from sugar solutions [111]. It was possible to assign some impurities, that by their nature are associated with lignin, to substances based on their colouring. First of all, this was acid-soluble lignin. According to the published data, 2–3% of total lignins are dissolved in the hydrolysis of coniferous wood by a solution of 72% sulphuric acid [103].
In addition, coloured substances are formed during sugar degradation: hexosans form high molecular weight substances of brown colour, which partially precipitate from solution, and pentosans form furfurol, which imparts a yellow colour to hydrolysate. Under acidic conditions, lignin and sugar degradation products, i.e., furfurol and oxymethylfurfurol, form condensed products in small amounts, and insoluble humic compounds; and the products of incomplete hydrolysis of polysaccharides, oligosaccharides, can be partially adsorbed by acid-insoluble lignin [106]. Hydrolysates were clarified using activated carbon BAU (Russia). The UV spectrum of a neutralisate from CR shows an absorption band at 280 nm, which disappears after treatment of the neutralisate by activated carbon. Treating the hydrolysate with dichloroethane followed by IR analysis of the concentrated extract made it possible to identify it as acid-soluble lignin. Thus, the treatment of hydrolysates with activated carbon significantly reduces the content of acid-soluble lignin in hydrolysates (from 1.4 to 0.3%).
The scheme of the acid–hydrolytic transformation of cellulose to glucose with preliminary delignification of lignocellulose raw material by industrial methods [112] is the second variant, which also makes it possible to obtain high purity glucose syrups. Its main advantage is that it enables glucose syrups to be obtained with a factor of merit of no less than 85%, which are not contaminated with colouring impurities of ligno-carbohydrate origin and ash components. It is known that, during the low temperature hydrolysis of cellulose by concentrated acids, partial destruction of cellulose with the formation of water-soluble products occurs [113]. Under optimized conditions, concentrated sulphuric acid almost completely dissolves cellulose, and the cleavage of glycoside bonds proceeds in a homogeneous medium. As a result of hydrolysis, a mixture of products differing by the polymerization degree (PD) is formed: from comparatively high molecular weight cellulose and cellodextrins (PD from 7 to 50–60) to oligosaccharides (mainly di- and trisaccharides) and glucose. The composition of the mixture and the ratio of the products in the hydrolysate depend on the hydrolysis conditions. These products also vary in water solubility. Thus, cellodextrins, oligosaccharides, cellobioses and monosaccharides are water-soluble, and part of the cellulose itself, mainly its crystalline moiety, and hydrocellulose do not dissolve in water.
Thus, the hydrolysis of cellulose enables firstly the isolatation of intermediate water-soluble hydrolysis products with simultaneous removal of sulphuric acid without its chemical neutralization, which in turns prevents the entry of mineral impurities into syrups; and, secondly, obtaining of the required monomeric sugar, i.e., glucose, in one stage, by subsequent additional hydrolysis of the intermediate product. The hydrolysis of industrial cellulose was carried out by 72% sulphuric acid at room temperature for 1 h with regular stirring of the hydrolysate mass; in this case, cellulose had completely dissolved within the first 15 min. Increasing the hydrolysis duration up to 2 and 3 h did not significantly affect the final yield of the product, which was 80–90% of the weight of absolutely dry cellulose (a.d.c.) [114].
We arbitrarily called this product the inverted polysaccharide (IPS) since this name reflects its position in the technological scheme. Dried IPS is a white or pale cream powder. The product is partially soluble in water (the insoluble fraction accounts for 43% of the weight of IPS), is soluble in aqueous alkaline solutions, and exhibits a lower PD than the starting cellulose (150; PD for starting cellulose, 573). The content of cellulose in an aqueous IPS solution was estimated, using HPLC, to be 2% of the a.d.c. A comparative analysis of IR spectra of the starting cellulose and IPS indicated that IPS is cellulose with a high degree of amorphism [94]. In particular, this is evidenced by strong changes in the IR spectrum of IPS in the region of 600–1500 cm–1, which accompanies changes in the polysaccharide hypomolecular structure, and smoothing of the intensity of so-called crystallinity bands at 1100, 1140, 1190, 1250, 1360, and 1420 cm–1 [115]. The IR spectrum of the product contained no absorption bands at 1112 and 1162 cm–1, which are typical of the spectra of a highly ordered cellulose structure. The residual sulphuric acid content in an aqueous IPS solution was 0.2%, indicating that 98% of the acid taken for hydrolysis is removed simultaneously with the isolation of IPS (without chemical neutralization).
In order to convert IPS to the monomeric form of sugar (glucose), an inversion was carried out at high temperature using a diluted acid. We studied the kinetics of the IPS inversion using diluted (0.075–1.5%) hydrochloric acid [116]. The choice of this acid was primarily dictated by the fact that sodium chloride formed during the neutralization of the acid by NaOH is a part of the complex composite (CC) of glucose with the formula (C6H12O6)2∙NaCl∙H2O, the decomposition of which results in the release of crystalline glucose. Considering that the potential yield of glucose, on inversion by 5% sulphuric acid at 100 °C for 5 h, is 1.5% in the hydrolysate, which corresponds to a glucose yield equal to 82% of the weight of a.d.c., the acid concentration of 0.125% and temperature of 170 °C represent the optimum inversion conditions under which the yield of RS in the invertion is at its maximum; the time taken for attaining the maximum yield in these conditions is minimal. Thus, during the hydrolysis of cellulose and the subsequent inversion of IPS, the main glucose content in the inverted solution is about 70% of the mass of RS; i.e., the real yield of glucose is 35–45% of a.d.c.
It should be noted that these glucose syrups are transparent, of a light yellow colour, and are distinguished by a high factor of merit (85–90% and more) (Figure 16). In comparison, the yield of glucose from CR (the first variant of hydrolysis) is 23–25%. CG is isolated from glucose solutions either by direct or salt crystallization [117]. We studied the crystallization properties of glucose syrups obtained by hydrolysis of CR and cellulose using both the direct and salt methods. As mentioned above, the factor of merit of starting syrups must be no less than 85% for the successful crystallization of glucose using the direct method. Glucose syrups obtained by hydrolysis of cellulose completely meet this requirement. The application of activated carbon increased the quality of the syrup since direct crystallization occurred only in clarified syrups.
In order to perform direct crystallization, cellulose hydrolysis was used to obtain a hydrolysate with a RS content of 1%, pH 4.4, and a factor of merit of 94%, which was allowed to stand at room temperature for spontaneous crystallization. After two weeks, the onset of crystallization was visually observed. Crystallization by itself, without the creation of special temperature conditions, progresses slowly (taking a month and more). The method of salt crystallization of glucose has some advantages over direct crystallization. It does not require a deep purification of hydrolysates, the crystallization process is shorter and simpler (there is no need for a multiple recrystallization), and the yield of glucose increases.
Glucose syrup from larch wood CR
We studied the crystallization conditions of glucose using its CC with sodium chloride (C6H12O6)2∙NaCl∙H2O and examined CC crystals obtained from model mixtures of glucose, sodium chloride and water, as well as from experimental glucose syrups obtained by the hydrolysis of CR and cellulose [118].
The crystallization of CC was studied using artificial mixtures in which the NaCl content varied from 15% to a twofold excess relative to the glucose content. In all cases, a crystalline phase formed. The composition of the crystalline phase was determined by elemental analysis. We determined that the range of NaCl:glucose ratios from 0.2:1 to 0.7:1 (parts by weight) is optimal for the formation of CC. Similarly, we determined the crystallization conditions for CC in hydrolysates of CR and cellulose. CC crystals were isolated from hydrolysates; the artificial mixtures were colourless and transparent and had well-defined facets. According to the chemical analysis data, they have a composition close to being stoichiometric: C – 32.5%, H – 5.9% and Cl – 9.7%. Theoretically, CC with the general formula (C6H12O6)2∙NaCl∙H2O contains C – 33%, H – 6%, and O – l8.13%.
According to X-ray phase analysis, CC monocrystals synthesized from pure solutions have the unit cell parameters a = b = 16.8, c = 17.0 Å and β = 120°, and represent a hexagonal prism. Based on the symmetry of lauegrams and weissenbergograms, they belong to the diffraction class P
The set of diffraction maxima obtained by X-ray phase analysis of CC crystals and the reference indicates that, under the experimental conditions used, glucose in the presence of sodium chloride crystallizes as CC with the formula (C6H12O6)2∙NaCl∙H2O.
Thus, when studying the crystallization properties of glucose syrups produced by acid hydrolysis of the crystalline glucose of larch wood, we obtained CC glucose crystals with sodium chloride, upon decomposition of which D-glucose is released in crystalline form. In addition, glucose can be directly crystallized from glucose syrups produced by the hydrolysis of cellulose with a high factor of merit (more than 85%).
The ways in which the efficiency of hydrolysis of polysaccharides from wood CR can be increased are of a great interest. One method is the steam explosion hydrolysis of cellulose containing raw material, which makes possible the efficient and completely ecologically safe decomposition of lignocellulose material into its constituents: lignin, hemicellulose, and cellulose.
We studied the steam explosion hydrolysis of CR from larch wood, and showed that this method can be used for effective prehydrolysis processing of larch wood CR [119].
Hence, a laboratory scheme has been developed which will be used as the technological basis for obtaining crystalline glucose from the CR in larch wood [120].
Arabinogalactan was extracted using technology from
IR spectra were registered in KBr tablets on a “Specord 75IR” spectrophotometer with a 500–4000 cm-1 interval. UV spectra were registered with a “Specord UV-vis” spectrophotometer (10 mm layer thickness). NMR 13C spectra of AG samples were registered with a “Varian VXR 500S” spectrometer with a 125.1 Hz operating frequency; D2O was used as solvent. Deuteroaceton was used as an internal standard. The correlation of galactose and arabinose chains, composed of AG macromolecules, were calculated according to the correlation between integral intensities of carbon galactose anomeral atomic signals and arabinose. The ratio of galactose to arabinose units in AG macromolecules was calculated from the ratio of the intensities of signals from anomeric carbon atoms of glactose and arabinose [10].
Pectin polysaccharides (PS) were extracted from the bark of
PS (50 mg) was dissolved in 20 ml of water. Pektinaza (2 mg; Sigma, USA) water solution was added. The mixture was temperature-controlled at 37 o C for 3 h. Then, a reaction mixture was heated for 5 min in a water bath at 100 oC. Coagulated protein was separated by centrifugation. The obtained supernatant was concentrated and up to 5 ml 96% ethyl alcohol was added (4 volumes). Deposition was separated with centrifugation. Alcoholic supernatant was concentrated and analysed with the help of PC.
Galacturonic acid content in PS was defined according to the reaction with 3,5-dimethyl phenol in the presence of concentrated H2SO4, protein using the Lowry method [121] and based on the calibrating schedule for a bovine serum albumin 80000 Da. Paper chromatography was carried out on “Filtrak FN-13” paper with a descending method in a n-butanol-pyridine-water system (volume correlations 6:4:3, respectively). To define carbohydrates, aniline phthalate was poured on the paper and heated at 105 oC. Gas–liquid chromatography was carried out using a Hewlett-Packard 4890A (USA) chromatograph equipped with a flame-ionization detector, RTX-1 (0.25 mm x 30 m) capillary column, argon carrier gas, and 1:60 dumping. Temperature rate: 175 oC (1 min)–250 oC (2 min), ∆ 3o/min.
A full acid hydrolysis PS (5 mg) was carried out for the implementation of 2M trifluoroacetic acid (2 ml) which contained
Ion-exchange chromatography PS (100 mg) was carried out on a DEAE-cellulose (25x2 cm) column. NaCl solutions were used as an eluent with increasing concentrations (0.01M–1M, 60 ml/h elution speed, fractions selection by 12 ml). Pick correspondent fractions at the output bents were combined, dialysed and lyophilized. As a result, we obtained PS 1-4 fractions. The monosaccharide composition of each fraction was defined with GLC in acetate polyol after preliminary hydrolysis.
In order to obtain acetate polyol, each PS 1-4 fraction was dissolved in a 1M ammonia solution (1 ml) and 5 mg of NaBH4 was added. The mixture was kept for one day at a room temperature. Then, NaBH4 was eliminated by adding 2–3 drops of concentrated acetic acid; 0.2 ml of dry pyridine and acetic anhydride were added to the dry residue. The mixture was acetilized at 100 oC for 1 h. The solution was dry-evaporated until pyridine and acetic anhydride were removed, first by adding 1 ml of toluene and then 1 ml of methanol. The obtained acetate mixture of PS 1-4 polyol fractions was dissolved in 0.2 ml of dry chloroform and moved quantitatively to Appendorf tubes, concentrated up to 0.1–0.2 ml and analysed with the GLC method.
PS (5 mg) partial acidic hydrolysis was carried out using 0.01M TFA (2 ml), which contained
After extraction of dihydroquercetin, arabinogalactan and resin, the larch chip presented as a cellolignin residue. The chip had the following dimensions: 25x15x5mm, and sawdust fraction, 1x2x2 mm.
Bleached pulp from Baikal Pulp Mill was used for hydrolysis: polymerization degree 573, ash 1.1%, humidity 3%. Cellulose hydrolysis was carried out using 72% sulphuric acid and water in a ratio of 1:3 at room temperature for 1 h. Hydrolysis products—inverted polysaccharides—were precipitated with a five-fold ethanol volume. The precipitate was filtered and washed with alcohol the last washed portion achieved a neutral reaction. The product was dried in the air at up to 6% humidity. Acid content of inverted polysaccharides was defined using 1N HCl titration. Inversion of IPS was carried out in 0.75–1.50% solutions, hydromodulus 1:30, at 100–170 oC, for 0.25–3.0 h inversion duration. The potential content of reducing substances in hydrolyzates was defined by inversion of water-soluble polysaccharides with 5% sulphuric acid. 20% NaOH was used to neutralize the hydrochloric acid. Glucose quantitative content in neutralisate (pH 4–5) was defined by HPLC methodology.
Extraction scheme of pectin substances from larch bark
Larch cellolignin timber residue with particles having dimensions of 25x15x5 mm was used for explosive autohydrolysis. Autoexplosive hydrolysis was carried out in a special 200 ml capacity autoclave, which allowed us to conduct a quick decompression of the reactor (steam explosion). Hydrolysis conditions were: 200 and 220 oC, duration 2 and 5min.
The laboratory scheme for obtaining crystalline glucose is depicted in Figure 18.
Laboratory scheme for obtaining crystalline glucose
This chapter therefore summarizes studies on polysaccharides in the context of the development of technology for 100% processing of larch wood and bark as forestry waste in order to provide new medicines, veterinary drugs, dietary supplements and valuable materials for the cosmetics and agricultural industries. There are data on larch wood and bark extraction by the two-phase solvent system, namely the kinetic study of extraction processes, diffusion constants, mass-transfer coefficients, mechanisms and physicochemical characterization of the transfer process, its mathematical modelling and structural characteristics of the samples isolated. This work aims to support the development of economically and ecologically viable production technology for high-demand products on the basis of renewable raw materials with a 15–20% increase of forestry efficiency due to waste processing. The technology will provide new medicines and food supplements, as well as cheaper, by 40–50%, analogues, to those currently known.
This project has been supported by a State Contract with the Department of Industry, Science and Technology of the Russian Federation №43.044.1.1.26.38(2002–2004); by a State Contract with the Agricultural Department of the Government of Irkutsk Oblast №02-66 (2010–2011); and by RAS and SB RAS Grants (2005–2012). The authors are grateful to all their colleagues at the Laboratory of Wood Chemistry of A.E. Favorsky Irkutsk Institute of Chemistry who have contributed to this project.
Across the globe, data security is becoming more regulated. For example, in the European Union, the General Data Protection Regulation (GDPR) protects its citizens [1]. In China, the Cybersecurity Law of 2017 was one of the first well known laws passed to protect the data and communications of its citizens [2]. In the United States of America, medical entities in the country’s critical infrastructure are covered under Federal laws to protect patient information. Specifically, the Health Insurance Portability and Accountability Act (HIPAA) [3] and Health Information Technology for Economic and Clinical Health Act (HITECH) [4] are Federal-level regulations for covered entities that secure patient-protected health information (PHI). PHI covers a gamut of different identifiers and includes patient names, birthdays, social security numbers, medical record numbers, license plate numbers, biometric data, among a few others. The digital form of PHI is electronic PHI or ePHI. In the United States, vendors and services which are not covered under HIPAA (perhaps because they do not bill patients for services rendered) are regulated by the Federal Trade Commission (FTC) and must self-report health data breaches to the FTC [5]. Furthermore, the European Commission officially ratified the final version of the GDPR to include notification from a breached supervisory authority to be made within 72 hours (or provide reasons for a delay) [1].
In the United States, both HIPAA-covered and non-covered entities may also be under other legal requirements, such as non-disclosure, confidentiality restrictions, or other security requirements, for other organizational, research, or employee data.
The management within covered groups has historically remained siloed intra-organization where different components of the organizational risk are being managed and decisions made by different units within the organizations without a standardized and well-connected systematic methodology. For example, the legal, audit, budget, health informatics, security, privacy, medical, and information systems teams may all be disjointly managed, causing frustrations in adequately quantifying and coordinating the organizational risks. In such disjoint cases, an exception to an organizational policy may result in unidentified operational risk if the different departments are not consistently coordinated and periodically reviewing, perhaps updating, the associated risks.
This chapter begins by describing data breach risks in HIPAA-covered entities as reported to the United States government that cause patients higher risks for identity theft. Then it integrates current research into building a standardized risk assessment library that enables both inter- and intra-organizational risk coordination. This design facilitates standardizing and communicating risks as well as reasonable internal statistics related to technical and administrative limitations, organizational policy exceptions, and federal legal requirements to inform the business, auditors, insurance companies, and business associates of risks.
In the United States, citizens are protected by federal, state, and potentially smaller sub-state regulations. Each industry sector are potentially under unique legal and other sector-specific requirements. In fact, today most, if not all, states have different personally identifying information (PII) legislation. Historically, these laws are not well understood and are written in most cases by non-technical writers. As such, the legal and technical specifications have gaps both in understanding and in the feasibility of current technological constraints.
HIPAA requires at least three covered groups, referred to by the law as Covered Entities, to protect health information. Examples of covered entities are: healthcare providers, health Plans, and business associates. Healthcare providers transmit electronic patient information in connection with a Health and Human Services (HHS)-adopted standard transaction. Health plans include insurance companies, health maintenance organizations (HMOs), corporate health plans, and government programs. Business associates are external groups/organizations that perform activities or services on ePHI on behalf of another group covered under HIPAA. Figure 1 [6] shows one year of reports by covered entity to the Office of Civil Rights (OCR).
OCR-covered entities investigated.
Research at large has studied risk management of medical information [7, 8, 9, 10], but not specifically as related by different HIPAA-covered domains. Recent research [6, 7, 11] explores potential concerns for each legally covered segment based on self-report to the US Government as required by the HITECH Act. In the sector-specific threat probability-specific research [6, 7, 11] over a one-year interval, the research showed that different the different domains may indeed have different sources of concerns and issues. For example, healthcare providers and business associates have reportedly different higher probability of concerns to alleviate than health plan entities, as shown in Figure 2 [6]. This indicates that the different domains may need to manage their threats differently by perhaps investing more heavily in different mitigating controls.
OCR-covered entities risk sources.
The HHS unauthorized data release portal provides the number of affected individuals from the cybersecurity events for each self-reported or discovered data release. Figure 3 [6] shows states across the USA with the most reported individuals, whom are now at risk from the leaking of their patient data. In any given one-year interval, each state may be equally likely to have higher counts depending on the released data size. Further research is needed to determine state likelihood.
OCR breached individuals by state.
Another element tracked on the HHS portal is the presence of business associate agreements (BAA). A provider enters into a BAA with an outside party when an outside party receives access to the provider’s ePHI. A properly written BAA somewhat “protects” the provider if the outside party breaches the ePHI. Figure 4 [6] shows state BAA presence notated with by the HHS portal with either a “yes” or “no.” The portal reports are not described, so the research below shows the categorical data as posted to the portal.
OCR-covered entities investigated BAA by state.
Risk management has been slowly moving into industry. In the United States, HIPAA mandates risk assessment be in place prior to new technology’s being integrated into an organization.
Recently, in October 2020, Eddy and Perlrotha [12] reported on a cyber-attack that resulted in a patient death. The attack occurred when “ransomware invaded 30 servers at University Hospital Düsseldorf [,…] crashing systems and forcing the hospital to turn away emergency patients.” This is one of the first ransomware-attack-related suspected deaths reported publicly. In such a high-profile and morbid case, we can see the essential importance for having a standardized language for discussing cyber-risks.
The United States National Institute of Standards and Technologies (NIST) has produced many Special Publications on Risk Assessments [13]. Figures 5 and 6 [14] show NIST’s generic risk model and risk assessment process respectively. In fact, many organizations around the world are following the NIST Risk Assessment frameworks.
NIST’s generic risk model with key risk factors.
NIST risk assessment process.
Risk assessment automation has been proposed in the form of automated penetration testing frameworks [9, 10, 11, 13, 14, 15, 16, 17, 18, 19]. Testing frameworks and automated tools are extremely useful for detecting known bugs and vulnerabilities. However, in general, these tools do not report on the larger risk-assessment picture. Specifically, they may not accurately report on legal requirements or help an organization prepare for prospective data-breach-associated costs. In addition, there is limited (if any) language standardization on risk findings to enable intra- and inter-organizational risk communication, which is essential for subsequent auditing and legal ramifications.
In addition to developing a standardized framework, NIST and MITRE.org have worked tirelessly to produce a standardized dictionary for attack and malware. For example, they have produced the
As risk management is still clearly its own type of innovation phase within the technology adoption life-cycle, risk researchers are finding a need to communicate risk through standardized language. For example, let us consider a penetration test report. Historically, there is none of the following: (1) a fixed template, (2) a fixed-strategy, or (3) fixed-finding language. Such non-standardization is subject to extreme bias and misrepresentation. In fact, if every internal or external penetration test is written differently, how can any organization fully understand their own risks? Similarly, if every employee in an organization spoke their own verbal language, how could anything be communicated? Historically, industry has focused on standardizing software vulnerabilities and malicious code patterns. A major gap still exists for risk management components, including budgeting for financial penalties and legal ramifications.
Research on risk-assessment education has primarily focused on learning penetration testing techniques [25]. The curriculums discussed in this research neither considers the meta-organizational risk nor risks specifically associated with the medical sector. Schmeelk [26] fills a literature gap by emphasizing that all the risk components should be strategically aligned in terms of standardization.
Managing the risk in a medical setting is unique because of specific regulations that come with significant potential financial fines and corrective actions. For example, outside and inside risk management strategies may not properly align. Also, many organizations, especially in healthcare, are employing a task-based ticketing system to track internal processes. These ticketing systems enable the Information System silos and other organizational risk components to entirely misalign and improperly manage risk by using neither standardized nor repeatable language.
Schmeelk [26] reports that the following five subsections should be included in identifying organizational components. As a centralized library has yet to be created, a working group should focus on exactly what to include in a standardized public-risk-assessment language dictionary. Important historical components are: legal, training, vendor, and system security requirements, as well as organizational controls. A standardized risk-finding library encourages cross-organizational collaboration, communication, auditing, and legal consistency if a case ever goes to court.
Regulatory requirements encompass a wide range of organizational responsibilities, which can be actual governmental laws and/or industry-specific requirements. Let us discuss both.
In the United States, medical critical infrastructure entities have both sector-specific regulatory requirements as well as other requirements, such as Payment Card Industry (PCI)-compliance, to consider in risk management [27]. If an organization does not pass PCI (re)compliance auditing, then they are at risk of losing the use of credit cards, among other payment sources under PCI regulations. In the past, organizations would consider themselves a cash-only facility if they lost PCI (re)compliance. Today, with the birth of cryptocurrencies and alternative payment methods not under PCI, losing the use of credit cards might not be as drastic as it has been historically. Other regulations include compliance with those from the International Standards Organization (ISO). Globally, there are many industry-specific regulations that are not necessarily enforceable laws.
Medical-covered entities under HIPAA/HITECH are subject to audits by the United States Health and Human Services (HHS) Office of Civil Rights (OCR). The OCR manages many civil rights across the United States in addition to HIPAA. Organizational breaches of patient electronic health information of over 500 individuals must be reported to the OCR as ruled in HITECH. Such breaches are both subject to federal fines and corrective actions. The OCR also can audit covered entities at any point in time. HIPAA is a very well-organized law. It has specific mandates for electronic health data requirements, which should be consistently mapped during a risk assessment to appropriately manage organizational risk. HHS lists many documents for guidance on their website, including mappings between NIST frameworks for cybersecurity and HIPAA requirements. These are extremely useful resources for practitioners.
Security education and training awareness (SETA) needs may occur at the vendor level or as federal, state, or city regulations. They are not only legally mandated in many instances for legal responsibilities, but also are ethical mitigations. For example, employing staff who have not been properly trained on data security and then holding them responsible for data security mistakes is unethical. In fact, in such a case, labor laws may also be violated. Also, in New York State, the loss of employee Social Security Numbers (SSN) through any sort of data breach is a crime subject to legal penalties [28].
Different regulations require different levels of SETA. In the credit card industry, organizations using alternatives to cash which are highly-corporately regulated must protect the data by complying with the Payment Card Industry (PCI) regulation. The PCI Data Security Standard (DSS) requires software developers for services using credit cards to be properly trained to code such systems. In addition, federal laws such as HIPAA also have specific training requirements. Lastly, little work on cybersecurity training is being done at state or city levels; however, proper awareness could be suddenly mandated at these local levels. If an organization or their accepted vendors are missing any of these training requirements, the organization may be financially liable.
Training based on current best practices is hard to assess because best practices in cybersecurity mean different things to different people and organizations. Training based on best practices is really subjective. Typically in the USA, organizations follow NIST and the Open Web Application Security Project (OWASP) guidance [14, 29]; however, still no industry-wide standards exist for exactly what best practices entail.
Service providers and vendors may be subject to different potential cybersecurity risk requirements than the actual provider or covered entity. If a covered entity works with a service provider, it should have proper agreements and risk mitigations in place. Two major sources of such agreements are: business associate agreements (BAAs) and other agreements, such as non-disclosure agreements. Let us examine both in the following subsections.
Historically, services providers (or business associates) working with a covered entity’s sensitive patient data should have properly formed BAAs in place prior to releasing sensitive data or have a well-formed written legal justification as to why no such BAAs exist. Many HIPAA-covered entities still report breaches where a properly formed BAA was not in place. In such cases, all parties may be considered responsible for the breach by the HHS OCR in the USA.
Business partners may negotiate many different types of agreements and/or partner requirements for their data and products. One popular agreement in healthcare and healthcare research is non-disclosure agreements (NDA). Such agreements require parties not to release information without prior approval. In such a case, malware that makes NDA-protected data public by releasing it on a popular web application du jour, as well as its actual authors, could be faulted to violate the NDA. Cases that fall into this category can have many different negative outcomes, such as legal ramifications, reputational damage, among others.
In addition to NDAs, other Federal or organizational legal regulations may require risk assessments and other services or service-level agreements (SLAs). Similarly, the GDPR requires entities exposed to unauthorized access to notify affected breached individuals within a short timeframe. Violations to such agreements can have extremely negative consequences to the healthcare entities.
Application and system security are typically measured through certifications (e.g., International Organization for Standardization or other sources) or from internal tests prior to product release. HIPAA requires security assessments for systems and applications managing ePHI. Organizations can either develop their own methodologies to communicate risk that are acceptable by covered entities, or the entities themselves can ask to perform such probability assessments for adverse events. When the covered entity is performing the assessment, they must carefully obtain legal authorization to do so in most cases. In general, Information System silos prevent considering a full-threat landscape for the technical component with the legal, budget, and business use cases. Additionally, digital assessments may be filed for HHS OCR audits into the Integrated Risk Management (IRM) system without updates to the overall business threat mitigations. Periodically, teams must carefully reassess and update the stored organizational predicted levels. In such cases, the assessments are more of a risk “impression” rather than an informed, reproducible, scientific informing on the true likelihood and impact of adverse events. Figure 7 [30] provides a high-level overview of different technical security controls reported by NIST. The following subsections identify eight subcategories potentially employed during a risk assessment.
Technical security controls.
According to NIST [30], authentication is the process or action of proving or showing something to be valid. Specifically, “The authentication control provides the means of verifying the identity of a subject to ensure that a claimed identity is valid.” The OWASP Application Testing Guide [31] currently gives ten best-practice tests to perform for authentication: “Testing for Credentials Transported over an Encrypted Channel, Testing for Default Credentials, Testing for Weak Lock Out Mechanism, Testing for Bypassing Authentication Schema, Testing for Vulnerable Remember Password, Testing for Browser Cache Weaknesses, Testing for Weak Password Policy, Testing for Weak Security Question Answer, Testing for Weak Password Change or Reset Functionalities, and Testing for Weaker Authentication in Alternative Channel.” It is important to realize that any best-practice guide at-large lists
Session management is the data flow between endpoints—typically following a client and server model. A web session is a series of requests and response transactions created by a client after authentication. In most cases, the endpoints communicate with a special identifier to limit re-authentications. Current best practices in session management include session flags, random token generation, and timeout intervals. The OWASP Application Testing Guide [31] currently lists the following eight session management tests: “Testing for Session Management Schema, Testing for Cookies Attributes, Testing for Session Fixation, Testing for Exposed Session Variables, Testing for Cross Site Request Forgery, Testing for Logout Functionality, Testing Session Timeout, and Testing for Session Puzzling.”
The protection of sensitive information is fundamental to risk management. Data-in-motion is the transfer of material between endpoints. This category changes frequently and includes industry best practices in how to transmit the information, such as confidentiality controls and integrity controls during message transmission. Once information is stored on a system, it is referred to as data-at-rest. Lastly, data-in-use refers to messages in memory. Historically, a concern of data-in-use is that processes and other virtualized components could have improper access to the information.
Authorization policies define access capabilities for groups and entities. Access controls, sometimes referred to as permissions or privileges, are mitigating controls to enforce authorization. As such, access controls speak to lowering probabilities against unauthorized access, which could cause loss to data integrity, confidentiality, and availability. The effectiveness and the strength of unauthorized access reduction depend on the correctness of the admittance control decisions and the strength of entry control enforcement. The current OWASP Testing Framework [31] promotes the testing of four key elements in this security area: “Testing Directory Traversal File Include, Testing for Bypassing Authorization Schema, Testing for Privilege Escalation, Testing for Insecure Direct Object References.”
Systems and applications should create records for auditing and monitoring. Specifically, archives should be generated before and after critical functions take place. These logs are stored in the system/server backend for regulatory requirements, performance indicators and other analytics. Different components are typically checked during risk management.
Injections and input vulnerabilities enable maliciously crafted code to change the underlying intended behavior of a system or application. The OWASP Testing Guide [31] currently lists eighteen common best practice tests, including SQL/NoSQL injection, Cross Site Scripting (XSS), and HTTP injection attacks, among others.
At the organizational-level, controls such as policies, procedures, physical security and financial budgeting should be considered during an assessment. However, these components of risk management can be managed by entirely different entities.
Organizations should have policies in place [32] at technical, physical, and administrative levels, which are repetitively and consistently followed to avoid different legal ramifications (e.g., from valid discrimination cases to data breaches). Standard operating procedures (SOPs) should also be in place and specifically in writing [32]. Specific procedures, which must be in place at the federal level, include business continuity and disaster recovery plans.
This component describes the physical and environmental security aspects of the system, if any, which are requirements in the United States Federal HIPAA laws. Physical security encompasses the physical environment to lower the probability of a threat occurring in spaces such as public, private, and shared. It also includes ways to protect organizations from fire and other environmental concerns affecting risk.
Risk assessment traditionally includes developing a budget for adverse effects, such as in the Factor Analysis of Information Risk (FAIR) quantitative uncertainty analysis model. Many organizations are not storing-up financial resources in accordance with the uncertain probability being generated to pay for patient identity protections. Digital Guardian [33] has various reports on current costs per record; the costs vary with time. Simply indicating that a system is vulnerable to CSRF may really have no budgetary ramification under certain other conditions. Thus, probability of cost concerns inform on the overall organizational probability of concerns and insurance.
The HHS has historically been responsible for enforcing the Privacy and Security Rules of HIPAA [34]. For most HIPAA covered entities, the HHS OCR enforcement of the Privacy Rule began April 14, 2003, and the Security Rule began on April 20, 2005. The web portal currently lists government corrective action plans detailing the causes of potential violations of the HIPAA Privacy and Security Rules. Notably, in October 2020, the OCR posted four announcements, most with either sub-cases or multi-breaches, of case settlement with potential corrective action plans for violations to the HIPAA Privacy and Security Rules.
Schmeelk [26] contributed a new open source risk assessment library example to enable researchers, penetration testers, risk assessment managers and institutions to further expand on a consistent risk-assessment findings library with their policies, procedures, organizational controls and legal requirements. As noted in the research bug libraries, dictionaries are being maintained by large organizations but do not include risk-assessment findings, thus complicating risk-management methods. As cited, during experience with internal audits risk assessment, language made analysis next to impossible. For example, modern natural language processing methods would need to take place on penetration tests to evaluate assessment reports among different assessors, each applying different methodologies and terminologies.
Currently, assessment frameworks are entirely intra-organization. In addition, accessing patient databases is impossible—luckily—in the USA due to HIPAA. That said, NIST has guidance on developing an actual risk-assessment process [14]. However, NIST 800–30, as seen in Figure 5, does not actually specify threat source, threat event, actual vulnerabilities, or impact. The actual language used to describe these components is entirely left up to each organization to develop. Even worse, each risk assessor on the team may, in fact, describe these components differently (i.e., use entirely different words). In such cases, making any kind of accurate meta-analysis about the organizational risk is entirely impossible. Therefore, we argue that risk assessment frameworks need a standardized library to describe the identified risk.
An open-source library example from Schmeelk [26] is seen in Figure 8 applying an example-consistent risk language. The library needs to be expanded from industry working groups, similarly to MITER’s CWE and NIST’s BF.
Risk assessment library prototype.
Some important elements for language specification and risk clarification are seen in Figure 8 [26]; they are the following: vulnerability short descriptive name, vulnerability expanded description, techniques to remediate or mitigate the vulnerability, estimated likelihood factors, estimated impact factors, related organizational policies/standards, related NIST Controls, related HIPAA regulatory requirements, other related legal requirements such as non-disclosure agreements, and estimated breach cost factors for insurance and related required patient identity-theft protection costs/notifications.
These categories listed in the prototype can arguably be expanded or removed. Historically, vulnerability standardization libraries [20, 21, 22] are maintained by major organizations (e.g. MITER) and/or government entities (e.g. NIST). Based on healthcare operation needs, we developed the following descriptions of the prototype categories.
The
The
Historically, organizations should develop policies and standards to help the organization frame their own cybersecurity stance. The NIST Cybersecurity Framework [35] (the NIST CSF Tool is seen in Figure 9) is one useful guide for developing an organizational cybersecurity posture and policies/standards.
NIST cybersecurity framework reference tool [
The category in Figure 8, risk assessment library for the NIST controls, is relevant to mapping mitigating controls to well-known NIST vendor agnostic controls. NIST regularly updates the NIST SP 800–30 [14] to account for industry trends.
As Security and Privacy Rules of HIPAA are major and enforceable regulatory legislation in the United States, the related column in the library connects the findings to potential HIPAA regulations. This mapping informs the risk-management process when required regulatory elements are entirely missing or are in jeopardy.
Other regulations, such as PCI compliance [27], The Sarbanes-Oxley Act (SOX) of 2002 [36], FTC requirements, service-level agreements (SLAs), state data breach laws [29], and research non-disclosure agreements, can also play their roles in risk management. For example, SOX “is mandatory. ALL organizations, large and small, MUST comply [36].” Organizations allowing customers to pay with credit cards may directly or indirectly be under PCI compliance. The column
The column on
There do exist libraries for software development concerns and known vulnerabilities such as the NIST NVD, NIST Bug Framework, and MITER’s CWE. They assess their performance. MITER provides an analysis of how the library can be used by stakeholders; however, no formal assessment methodologies exist. Assessing a library framework for performance would be like trying to assess the performance of a spoken language. MITER [38] currently lists the following stakeholders of their weakness enumeration (i.e., framework or library): assessment vendors and customers, software developers and, customers, academic researchers, applied vulnerability researchers, refined vulnerability information (RVI) providers, educators, and specialized communities.
According to Schmeelk [26], the library is currently prototyped as a spreadsheet, similarly to the NIST Cybersecurity Framework Reference Tool spreadsheet representation [35]. Currently, each sheet of the spreadsheet refers to specific domains of findings that can be identified during a risk-assessment process. For example, weakness in the physical, technical, or administrative security requirements would each fall on different spreadsheet pages. In addition, each of these three domains can be further broken into subdomains.
Currently organizations are developing their own personal language for describing risk. In fact, many risk assessors within the organizations can actually employ their own personal language. When third-party audits and internal audits transpire, there is no way to assess the risk across the risk-assessment reports. For example, one risk-assessor employee could identify a vulnerability as cross-site scripting; whereas, another may document an XSS vulnerability. If the risk has been described differently by all employees, it becomes impossible to identify how many cross-site scripting vulnerabilities really exist within the organization. Hence, the meta-analysis of risk is entirely flawed. As such, it will be improperly conveyed to insurance companies and third-party auditors. Currently, the only way to develop a unified understanding of the risk is to first develop ontologies of potential words used to describe the risk. Then, perhaps aggregate meta-statistics about the organization can be developed by using natural language processing methods on the written reports. For example, modern natural language processing methods would need to take place on penetration tests to evaluate assessment reports among different assessors, each applying different methodologies and terminologies. As such, most insurance companies and third-party auditors are taking large chances on organizations who really do not understand their own cybersecurity concerns.
Currently, there are no other relevant approaches where the risk language is standardized other than the vulnerability language frameworks of MITER and NIST. This lack of standardized risk language remains a major gap in risk analysis. Schmeelk [26] reports on an analysis for the prototype risk library and connects the library to New York State (NYS) Information Technology Security (ITS) Policies [39]. Standardizing the language used during risk assessments is essential for both internal and external factors. First, if a risk-related case ever goes to court, the phrasing of the risk could play a role in the court verdict. For example, if a business chooses to accept a finding where “unauthorized access” was identified during a risk assessment, the organization may be responsible for accepting the risk. Second, when an organization whose assessments have been written using any plethora of words is trying to collect internal metrics, characterizing the current state of cybersecurity within the organization is nearly impossible. This would be a useful application for Natural Language Processing (NLP), trying to characterize quantitatively exact numbers of password violations, XSS, SQL injection, and other findings. Without standardization, knowing at any time an organizational stance on cybersecurity becomes next to impossible. In addition, remediation efforts and risk mitigation efforts are significantly hindered by text-based risk assessments which do not conform to standards. Lastly, if every organization’s employees compose/compile/develop their own libraries, there will be no way to properly coordinate with insurance companies for breach budgeting. Sadly, without any standardization or proper planning, organizations may learn “the hard way” that they are entirely financially responsible for cleaning up a major data breach or ransomware attack.
The United States and the world are adopting, either explicitly or implicitly, technology-related risk at an unprecedented rate. In addition, regulations are being adopted across the world at an equally unprecedented rate. In fact, each of the 50 United States and “the District of Columbia, Guam, Puerto Rico and the Virgin Islands have enacted legislation requiring private or governmental entities to notify individuals of security breaches of information involving personally identifiable information [29].” Each state law is potentially different from the other state laws, further complicating situations involving out-of-state patients. Most organizations have adopted Integrated Risk Management (IRM) solutions, but many of these solutions require extreme customization from clients. In addition, not everyone in the organization has an overall “view” of the organizational risks. Since Information Systems (IS) trends remain in silos [40], coordinating risk among the different healthcare departments and all the IS sectors is difficult. In addition, entities within an organization that sign off on risk, typically referred to as system owners, may find an imbalance on the risk they must accept on the behalf of the business. Then, as system owners leave or retire from an organization, subsequent new hires may not fully understand the risks inherited with their positions. In fact, new hires in security high-level positions often ask the organization for audits prior to taking, or during the first year of, a new job. That way they can benchmark the inherited risks.
As risk management evolves, so do the needs for risk communication and risk articulation. Healthcare entities need to know, in advance, exactly what their insurance covers involving privacy and security risks. Patients need to be aware of identity theft concerns if their personal identifying information (PII) is breached and sold in alternative marketplaces. Technology in the healthcare-related infrastructure is here to stay; ultimately, society will need to standardize how they deal with and respond to privacy and cybersecurity risks. The sooner we adopt a framework of actual privacy and security violations and corrections, the better industry will be able to communicate and mitigate risks—especially in healthcare where human life is at ultimately at risk.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11660},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",subtitle:null,isOpenForSubmission:!0,hash:"727e7eb3d4ba529ec5eb4f150e078523",slug:null,bookSignature:"Dr. Ana M.M. Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"27c1a2a053cb1d83de903c5b969bc3a2",slug:null,bookSignature:"Dr. Abhay Soni and Dr. Prabhat Jain",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11668",title:"Mercury Pollution",subtitle:null,isOpenForSubmission:!0,hash:"0bd111f57835089cad4a9741326dbab7",slug:null,bookSignature:"Dr. Ahmed Abdelhafez and Dr. Mohamed Abbas",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",editedByType:null,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12130",title:"Sustainable Built Environment",subtitle:null,isOpenForSubmission:!0,hash:"ed1dbae71b967e06efb049208f0c1068",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12130.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12131",title:"Climate Change and Fires",subtitle:null,isOpenForSubmission:!0,hash:"ea0858f07a3e87aaf9e5eaa75b4b44bd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12131.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12180",title:"Wetlands",subtitle:null,isOpenForSubmission:!0,hash:"8957c5c2baaed32223f911a6d4aa5a03",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12180.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12221",title:"Air Pollution",subtitle:null,isOpenForSubmission:!0,hash:"439a018ee0c4960560cb798601f2a372",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12221.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12222",title:"Advances and Challenges in Microplastics",subtitle:null,isOpenForSubmission:!0,hash:"a36734a551e0997d2255f6ce99eff818",slug:null,bookSignature:"Prof. El-Sayed Salama",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",editedByType:null,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12223",title:"Sustainable Management of Natural Resources",subtitle:null,isOpenForSubmission:!0,hash:"1881a08bbd8f5dc1102c5cb7c635bc35",slug:null,bookSignature:"Dr. Mohd Nazip Suratman and Dr. Engku Azlin Rahayu Engku Ariff",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",editedByType:null,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:9},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editors:[{id:"12051",title:"Prof.",name:"Emilson",middleName:null,surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"1770",title:"Gel Electrophoresis",subtitle:"Principles and Basics",isOpenForSubmission:!1,hash:"279701f6c802cf02deef45103e0611ff",slug:"gel-electrophoresis-principles-and-basics",bookSignature:"Sameh Magdeldin",coverURL:"https://cdn.intechopen.com/books/images_new/1770.jpg",editors:[{id:"123648",title:"Dr.",name:"Sameh",middleName:null,surname:"Magdeldin",slug:"sameh-magdeldin",fullName:"Sameh Magdeldin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4797},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7175,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1981,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2308,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1473,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318571,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271836,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",publishedDate:"July 1st 2013",numberOfDownloads:243450,editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1582,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2082,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",publishedDate:"October 17th 2012",numberOfDownloads:256294,editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1003",title:"Trichology",slug:"trichology",parent:{id:"175",title:"Dermatology",slug:"dermatology"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:63,numberOfWosCitations:44,numberOfCrossrefCitations:33,numberOfDimensionsCitations:58,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1003",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6961",title:"Alopecia",subtitle:null,isOpenForSubmission:!1,hash:"211055d552abe032133f7281ea2b13dd",slug:"alopecia",bookSignature:"Muhammad Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/6961.jpg",editedByType:"Edited by",editors:[{id:"204257",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ahmad",slug:"muhammad-ahmad",fullName:"Muhammad Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5461",title:"Hair and Scalp Disorders",subtitle:null,isOpenForSubmission:!1,hash:"87c272cade1ee498e1b4d6051aa8d41e",slug:"hair-and-scalp-disorders",bookSignature:"Zekayi Kutlubay and Server Serdaroglu",coverURL:"https://cdn.intechopen.com/books/images_new/5461.jpg",editedByType:"Edited by",editors:[{id:"64792",title:"Dr.",name:"Zekayi",middleName:null,surname:"Kutlubay",slug:"zekayi-kutlubay",fullName:"Zekayi Kutlubay"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3038",title:"Current Genetics in Dermatology",subtitle:null,isOpenForSubmission:!1,hash:"384a276072f522c3aea68f9d2a0dbfd8",slug:"current-genetics-in-dermatology",bookSignature:"Naoki Oiso",coverURL:"https://cdn.intechopen.com/books/images_new/3038.jpg",editedByType:"Edited by",editors:[{id:"32053",title:"Dr.",name:"Naoki",middleName:null,surname:"Oiso",slug:"naoki-oiso",fullName:"Naoki Oiso"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"53880",doi:"10.5772/67269",title:"Anatomy and Physiology of Hair",slug:"anatomy-and-physiology-of-hair",totalDownloads:7840,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Hair is one of the characteristic features of mammals and has various functions such as protection against external factors; producing sebum, apocrine sweat and pheromones; impact on social and sexual interactions; thermoregulation and being a resource for stem cells. Hair is a derivative of the epidermis and consists of two distinct parts: the follicle and the hair shaft. The follicle is the essential unit for the generation of hair. The hair shaft consists of a cortex and cuticle cells, and a medulla for some types of hairs. Hair follicle has a continuous growth and rest sequence named hair cycle. The duration of growth and rest cycles is coordinated by many endocrine, vascular and neural stimuli and depends not only on localization of the hair but also on various factors, like age and nutritional habits. Distinctive anatomy and physiology of hair follicle are presented in this chapter. Extensive knowledge on anatomical and physiological aspects of hair can contribute to understand and heal different hair disorders.",book:{id:"5461",slug:"hair-and-scalp-disorders",title:"Hair and Scalp Disorders",fullTitle:"Hair and Scalp Disorders"},signatures:"Bilgen Erdoğan",authors:[{id:"193661",title:"Dr.",name:"Bilgen",middleName:null,surname:"Erdoğan",slug:"bilgen-erdogan",fullName:"Bilgen Erdoğan"}]},{id:"42520",doi:"10.5772/55026",title:"Discovery and Delineation of Dermatan 4-O-Sulfotransferase-1 (D4ST1)-Deficient Ehlers-Danlos Syndrome",slug:"discovery-and-delineation-of-dermatan-4-o-sulfotransferase-1-d4st1-deficient-ehlers-danlos-syndrome",totalDownloads:2844,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"3038",slug:"current-genetics-in-dermatology",title:"Current Genetics in Dermatology",fullTitle:"Current Genetics in Dermatology"},signatures:"Tomoki Kosho",authors:[{id:"153541",title:"Dr.",name:"Tomoki",middleName:null,surname:"Kosho",slug:"tomoki-kosho",fullName:"Tomoki Kosho"}]},{id:"52801",doi:"10.5772/66156",title:"Psychosocial Aspects of Hair Loss",slug:"psychosocial-aspects-of-hair-loss",totalDownloads:2558,totalCrossrefCites:6,totalDimensionsCites:7,abstract:"Hair loss (alopecia) is a common dermatological condition that affects men and women of all ages. It can be due to a wide variety of causes including scarring and non-scarring diseases. Although alopecia is not a life-threatening condition, it has significant psychological impact on the quality of life. Mental disorders such as anxiety, depression, social phobia, posttraumatic stress disorder, and suicidal thoughts are increased among alopecia patients. On the other hand, alopecia frequency increases during the course of psychological disorders. In this chapter, psychosocial aspects of hair loss and the relationship between alopecia and psychological disorders are reviewed.",book:{id:"5461",slug:"hair-and-scalp-disorders",title:"Hair and Scalp Disorders",fullTitle:"Hair and Scalp Disorders"},signatures:"Hilal Gokalp",authors:[{id:"193580",title:"M.D.",name:"Hilal",middleName:null,surname:"Gokalp",slug:"hilal-gokalp",fullName:"Hilal Gokalp"}]},{id:"62733",doi:"10.5772/intechopen.79807",title:"Ethosomes: An Exciting and Promising Alcoholic Carrier System for Treating Androgenic Alopecia",slug:"ethosomes-an-exciting-and-promising-alcoholic-carrier-system-for-treating-androgenic-alopecia",totalDownloads:1091,totalCrossrefCites:1,totalDimensionsCites:5,abstract:"Androgenetic alopecia (male-pattern hair loss) is characterized by the deposition of dihydrotestosterone at the pilosebaceous unit of the scalp. Oral administration of drugs (like finasteride) which can reverse androgenic alopecia causes undesired effects to the body. Targeting these drugs directly to the pilosebaceous unit of the scalp will enhance the pharmacological response at the desired site by reducing undesired systemic side effects. This chapter discusses about ethosomes, a specially tailored ethanolic vesicular carriers which can efficiently deliver various drugs with different physicochemical properties to and through the skin. The unique characteristics of the ethosomal carriers, their composition, preparation methods, and the mechanism of permeation, safety, and practical experience (finasteride and herbal extracts) have been discussed in detail.",book:{id:"6961",slug:"alopecia",title:"Alopecia",fullTitle:"Alopecia"},signatures:"Veintramuthu Sankar, Santhanam Ramesh and Karthik Siram",authors:[{id:"254541",title:"Prof.",name:"Sankar",middleName:null,surname:"Veintramuthu",slug:"sankar-veintramuthu",fullName:"Sankar Veintramuthu"},{id:"260986",title:"Mr.",name:"Karthik",middleName:null,surname:"Siram",slug:"karthik-siram",fullName:"Karthik Siram"},{id:"260991",title:"Dr.",name:"Santhanam",middleName:null,surname:"Ramesh",slug:"santhanam-ramesh",fullName:"Santhanam Ramesh"}]},{id:"63066",doi:"10.5772/intechopen.79656",title:"Pharmacological Treatment of Alopecia",slug:"pharmacological-treatment-of-alopecia",totalDownloads:1462,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"In this chapter, we will explore non-surgical treatments of alopecia. Unlike many other areas of medicine, pharmacological treatments for alopecia are relatively new. There are only two treatments which are approved by the Food and Drug Administration (FDA); the rest are drugs developed for other indications which have gained popular off-label use to promote hair growth. The reasons for this are many, including the designation of alopecia by the FDA as a cosmetic disease. This designation has restricted alopecia development programs to compounds with virtually no side effects. Unfortunately, it has also led to off-label use of far more dangerous compounds as alopecia treatments, without the benefit of controlled trials. There is a growing recognition that alopecia, particularly alopecia areata and chemotherapy-induced alopecia, are disorders which significantly alter the quality of life, similar to acne vulgaris and psoriasis, and merit treatment accordingly. There have also been several recent advances in our understanding of the hair cycle, revealing new targets for developing alopecia therapies. As a result, there is a more robust slate of programs for developing new pharmacological treatments for alopecia. In this chapter, we will review current pharmacological treatments for alopecia and selected treatments under development (i.e., those with significant preclinical or clinical data which have appeared in the published literature).",book:{id:"6961",slug:"alopecia",title:"Alopecia",fullTitle:"Alopecia"},signatures:"Robert Gensure",authors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}]}],mostDownloadedChaptersLast30Days:[{id:"53880",title:"Anatomy and Physiology of Hair",slug:"anatomy-and-physiology-of-hair",totalDownloads:7836,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Hair is one of the characteristic features of mammals and has various functions such as protection against external factors; producing sebum, apocrine sweat and pheromones; impact on social and sexual interactions; thermoregulation and being a resource for stem cells. Hair is a derivative of the epidermis and consists of two distinct parts: the follicle and the hair shaft. The follicle is the essential unit for the generation of hair. The hair shaft consists of a cortex and cuticle cells, and a medulla for some types of hairs. Hair follicle has a continuous growth and rest sequence named hair cycle. The duration of growth and rest cycles is coordinated by many endocrine, vascular and neural stimuli and depends not only on localization of the hair but also on various factors, like age and nutritional habits. Distinctive anatomy and physiology of hair follicle are presented in this chapter. Extensive knowledge on anatomical and physiological aspects of hair can contribute to understand and heal different hair disorders.",book:{id:"5461",slug:"hair-and-scalp-disorders",title:"Hair and Scalp Disorders",fullTitle:"Hair and Scalp Disorders"},signatures:"Bilgen Erdoğan",authors:[{id:"193661",title:"Dr.",name:"Bilgen",middleName:null,surname:"Erdoğan",slug:"bilgen-erdogan",fullName:"Bilgen Erdoğan"}]},{id:"53947",title:"Infections, Infestations and Neoplasms of the Scalp",slug:"infections-infestations-and-neoplasms-of-the-scalp",totalDownloads:3547,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter reviews common cutaneous infections, infestations, and neoplasms of the scalp. Infections of the scalp are subdivided into three major groups. The most seen are: (1) Bacterial: Folliculitis, folliculitis decalvans, tufted hair folliculitis and acne keloidalis nuchae. (2) Fungal: Tinea capitis, favus and kerion celsi. (3) Protozoal: Syphilitic alopecia. Pediculosis capitis is the most common worldwide infestation of the scalp. The neoplasms of the scalp are large group of different diseases due to arising different origin. In the following section, trichilemmal cyst, proliferating trichilemmal cyst, nevus sebaceous and cylindroma are discussed in detail.",book:{id:"5461",slug:"hair-and-scalp-disorders",title:"Hair and Scalp Disorders",fullTitle:"Hair and Scalp Disorders"},signatures:"Filiz Canpolat",authors:[{id:"191617",title:"Associate Prof.",name:"Filiz",middleName:null,surname:"Canpolat",slug:"filiz-canpolat",fullName:"Filiz Canpolat"}]},{id:"53525",title:"Trichoscopy and Trichogram",slug:"trichoscopy-and-trichogram",totalDownloads:2633,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Hair and scalp examination techniques can be classified into three categories: noninvasive methods (clinical history, general examination, photography, hair count, weighing shed hair, pull test, global hair counts, dermoscopy, electron microscopy, laser scanning microscopy, etc.); semi‐invasive methods (the trichogram, unit areatrichogram); and invasive methods (biopsies in cicatritial alopecia). Scalp dermoscopy or trichoscopy is one of thenoninvasive techniques for the evaluation of patients with hair loss that allows for magnified visualization of the hair and scalp skin. It may be performed with a manual dermoscope (10× magnification) or a videodermoscope (up to 1000× magnification). This method is simple, quick, and easy to perform, is well‐accepted by patients, and is useful for monitoring treatment, determining severity of the disease and follow‐up. It is a simple, minimally invasive and rapid technique for measuring hair follicle activity. Trichogram represents a semi‐invasive technique for the evaluation of patients with hair loss that allows the microscopic examination of hairs plucked from the scalp and provides information about the state of the proximal end of the hair shaft and the distal end. The trichogram is a useful complementary tool for clinical evaluation, diagnosis, and the monitoring of treatment response.",book:{id:"5461",slug:"hair-and-scalp-disorders",title:"Hair and Scalp Disorders",fullTitle:"Hair and Scalp Disorders"},signatures:"Melike Kibar",authors:[{id:"189899",title:"Dr.",name:"Melike",middleName:null,surname:"Kibar Ozturk",slug:"melike-kibar-ozturk",fullName:"Melike Kibar Ozturk"}]},{id:"42524",title:"Hereditary Palmoplantar Keratosis",slug:"hereditary-palmoplantar-keratosis",totalDownloads:4592,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3038",slug:"current-genetics-in-dermatology",title:"Current Genetics in Dermatology",fullTitle:"Current Genetics in Dermatology"},signatures:"Tamihiro Kawakami",authors:[{id:"155091",title:"Associate Prof.",name:"Tamihiro",middleName:null,surname:"Kawakami",slug:"tamihiro-kawakami",fullName:"Tamihiro Kawakami"}]},{id:"63066",title:"Pharmacological Treatment of Alopecia",slug:"pharmacological-treatment-of-alopecia",totalDownloads:1460,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"In this chapter, we will explore non-surgical treatments of alopecia. Unlike many other areas of medicine, pharmacological treatments for alopecia are relatively new. There are only two treatments which are approved by the Food and Drug Administration (FDA); the rest are drugs developed for other indications which have gained popular off-label use to promote hair growth. The reasons for this are many, including the designation of alopecia by the FDA as a cosmetic disease. This designation has restricted alopecia development programs to compounds with virtually no side effects. Unfortunately, it has also led to off-label use of far more dangerous compounds as alopecia treatments, without the benefit of controlled trials. There is a growing recognition that alopecia, particularly alopecia areata and chemotherapy-induced alopecia, are disorders which significantly alter the quality of life, similar to acne vulgaris and psoriasis, and merit treatment accordingly. There have also been several recent advances in our understanding of the hair cycle, revealing new targets for developing alopecia therapies. As a result, there is a more robust slate of programs for developing new pharmacological treatments for alopecia. In this chapter, we will review current pharmacological treatments for alopecia and selected treatments under development (i.e., those with significant preclinical or clinical data which have appeared in the published literature).",book:{id:"6961",slug:"alopecia",title:"Alopecia",fullTitle:"Alopecia"},signatures:"Robert Gensure",authors:[{id:"16515",title:"Dr.",name:"Robert",middleName:null,surname:"Gensure",slug:"robert-gensure",fullName:"Robert Gensure"}]}],onlineFirstChaptersFilter:{topicId:"1003",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},overviewPagePublishedBooks:{paginationCount:33,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:{name:"Kobe College",institutionURL:null,country:{name:"Japan"}}}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:'"Politechnica" University Timişoara',institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Computational Neuroscience",value:23,count:1},{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:{name:"Association for Computing Machinery",country:{name:"United States of America"}}},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:'"Politechnica" University Timişoara',institution:null},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"426586",title:"Dr.",name:"Oladunni A.",middleName:null,surname:"Daramola",slug:"oladunni-a.-daramola",fullName:"Oladunni A. Daramola",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Federal University of Technology",country:{name:"Nigeria"}}},{id:"357014",title:"Prof.",name:"Leon",middleName:null,surname:"Bobrowski",slug:"leon-bobrowski",fullName:"Leon Bobrowski",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Bialystok University of Technology",country:{name:"Poland"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"354126",title:"Dr.",name:"Setiawan",middleName:null,surname:"Hadi",slug:"setiawan-hadi",fullName:"Setiawan Hadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Padjadjaran University",country:{name:"Indonesia"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"332603",title:"Prof.",name:"Kumar S.",middleName:null,surname:"Ray",slug:"kumar-s.-ray",fullName:"Kumar S. Ray",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Statistical Institute",country:{name:"India"}}},{id:"415409",title:"Prof.",name:"Maghsoud",middleName:null,surname:"Amiri",slug:"maghsoud-amiri",fullName:"Maghsoud Amiri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Allameh Tabataba'i University",country:{name:"Iran"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}}]}},subseries:{item:{id:"17",type:"subseries",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},onlineFirstChapters:{paginationCount:7,paginationItems:[{id:"82777",title:"Sustainability and Social Investment: Community Microhydropower Systems in the Dominican Republic",doi:"10.5772/intechopen.105995",signatures:"Michela Izzo, Alberto Sánchez and Rafael Fonseca",slug:"sustainability-and-social-investment-community-microhydropower-systems-in-the-dominican-republic",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81920",title:"Rethinking an Approach for Sustainable Globalization",doi:"10.5772/intechopen.105141",signatures:"Parakram Pyakurel",slug:"rethinking-an-approach-for-sustainable-globalization",totalDownloads:29,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10897",title:"Food Systems Resilience",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",slug:"food-systems-resilience",publishedDate:"July 13th 2022",editedByType:"Edited by",bookSignature:"Ana I. Ribeiro-Barros, Daniel S. Tevera, Luís F. Goulao and Lucas D. Tivana",hash:"ae9dd92f53433e4607f1db188dc649b4",volumeInSeries:1,fullTitle:"Food Systems Resilience",editors:[{id:"171036",title:"Dr.",name:"Ana I.",middleName:null,surname:"Ribeiro-Barros",slug:"ana-i.-ribeiro-barros",fullName:"Ana I. Ribeiro-Barros",profilePictureURL:"https://mts.intechopen.com/storage/users/171036/images/system/171036.jpg",institutionString:"University of Lisbon",institution:{name:"University of Lisbon",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:140,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:123,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:22,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"7",title:"Bioinformatics and Medical Informatics",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine"},{id:"8",title:"Bioinspired Technology and Biomechanics",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation"},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Biomedical Engineering",id:"7"},selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/40594",hash:"",query:{},params:{id:"40594"},fullPath:"/chapters/40594",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()