1. Introduction
Glycosylation is an important and highly regulated mechanism of secondary protein processing within cells. It plays a critical role in determining protein structure, function and stability. Structurally, glycosylation is known to affect the three dimensional configuration of proteins. This is of particular importance when considering protein-protein interactions such as those that occur between protein ligands and their cognate receptors or in the creation of other large macromolecular complexes. Many secreted proteins, such as hormones or cytokines, are glycosylated and this has been shown to impact in determining their activity when bound to receptors. Changes in these complexes result in alterations in how they recruit, interact and activate signaling proteins (e.g. G proteins). Additionally, signaling proteins are also glycosylated and this has distinct effects on their function. Ultimately, these effects help determine which signaling pathways are activated within the cell (Figure 1). Thus, glycosylation plays a key role in determining the cellular response to exogenous factors. This chapter will provide an overview of how glycosylation of ligands, their receptors,and signaling proteins affects signal transduction in mammalian cells by discussing specific examples of how receptor signaling is regulated by glycosylation.
2. Role of glycosylation in protein function
Although carbohydrates added to proteins are known to be highly flexible and mobile within the constraints of the glycoprotein, they are known to provide a key stabilizing force for proteins within their microenvironments. Of particular importance is the role that carbohydrates play in achieving the proper three dimensional conformation of glycoproteins [1, 2]. As the carbohydrates are added to the nascent protein within the endoplasmic reticulum, carbohydrates (monosaccharides) are added to the protein on specific amino acid residues. Glycosylation has been reported on 8 different amino acids with the most common residue for carbohydrate addition being asparagine (N-glycosylation). This process can aid in the final protein product folding correctly into its three dimensional, biologically active conformation. However, this is not the case for all glycoproteins although it has been noted for a significant number [2]. Interestingly the mechanism of adding these sugar residues is complex and not fully understood but is known to require several enzymes and is physiologically regulated. This suggests that glycosylation, as well as other secondary protein processing, is vital to the biological function of these proteins.
In addition to its effects on driving correct folding of glycoproteins, glycosylation also has other effects on the physicochemical properties of these proteins. These effects help to determine the glycoprotein’s overall energy and this can affect many of the biological functions that the protein performs (for a more detailed review see [3]). For example, glycosylation is well known to play a role in modulating thermostability of proteins as well as the overall charge. Of particular interest to the development of new therapies is the role that glycosylation plays in affecting protein-protein interactions. Intermolecular association that occur between protein ligands and their cognate receptors or between activated receptors and their intracellular signaling machinery have been shown to be modulated by the presence of glycosylation [4]. Many examples exist that suggest that glycosylation of either a receptor or its ligand aids in determining the resulting biological responses. The primary mechanism for these effects lies in the ability of carbohydrates to modulate the overall energy state of the protein [2, 3].
In terms of thermostability, studies of various glycoproteins have focused on the thermodynamics of select placement or displacement of glycosylation on proteins [2]. These studies have revealed that addition of even a single monosaccharide to a protein can significantly impact the fluctuation of that protein between folded and unfolded states [3]. Through detailed NMR evaluation and use of statistical tools it has been found that certain commonalities exist for the placement of carbohydrates on protein and predict a functional role for these sites in stabilization of protein structures. One such study has found that glycosylation can occur on almost any part of a protein’s structure but that bends or turns in the structure are preferred. Similarly, it has been found that glycosylation of proteins has a greater impact at less structured regions of a protein highly suggest that glycosylation plays a key role in protein stabilization [2, 3]. In addition to aiding the stablization of proteins in a microenvironment, glycosylation has also been found to play a key role in stabilizing glycoproteins in the macroenvironment through alteration in half-life. There are numerous reports that the presence of polysaccharides added as secondary protein processing prolongs the half-life of these proteins including antibodies, hormones and cytokines [5].
3. Role of glycosylation in receptor function
3.1. Viral coat proteins
One of the best studied glycoproteins is the HIV viral coat protein, GP120. The description of the role of viral glycoproteins in host-virus interactions have been studied extensively and reviewed in detail elsewhere [5]. However, this important interaction deserves mention. The GP120 protein is integral to the initiation of contact between the HIV virus particle and its host cell by mediating the adhesion of the viral particle to the host cell surface. It is a heavily glycosylated protein owing nearly half of its mass to the presence 27 glycosylated residues [5]. This protein acts as part of a co-receptor complex with the host cell CD4 protein. Association between CD4 and GP120 leads to conformational changes in these proteins that ultimately lead to membrane fusion between the host cell and the virus particle. The presence of this glycosylation acts as a natural barrier to defending immune cells and antibodies such that it is difficult for the natural immune system to recognize and target the HIV virus for elimination.
3.2. Interleukins
Interleukins are secreted glycoproteins of the immune system that communicate both positive and negative regulatory signals to the various cellular and components that make up the innate and acquired immune responses. Interleukins and other cytokines exert their actions on their target cells through interactions with specific receptors. Most cytokines like interleukins are found in their mature state as glycosylated proteins. In the case of these important glycoprotein modulators, both N-linked and O-linked glycosylation has been described [6]. The role of glycosylation in affecting cytokine function has been of interest from both the protein ligand and the receptor perspectives. Due to the large number of different cytokines, for the purposes of this chapter we will focus on Interleukin 5 (IL5).
IL5 is an important immune cytokine that is released from T-cells and induces activated B-cells into antibody producing cells. In addition, IL5 also acts as a differentiating factor for eosinophils. From a clinical perspective, the role of IL5 is important for immune diseases that involve hyperproliferation and invasion of eosinophils, such as in asthma [7]. IL5 works as a homodimer that binds specifically to its membrane-bound receptor (IL5R). In the case of IL5, chemical digestion of either the N-linked or O-linked sugar residues on recombinant hIL5 had profound effects on the biological activity of the cytokine in terms of its ability to stimulate release of IgM from BCL1 cells [8]. Removal of the N-linked glycosylation on IL5 improved potency of the cytokine by approximately 3 fold. Interestingly, removal of the O-linked sugars led to an approximate 10 fold improvement in potency of IL5 which was equivalent to fully deglycosylated IL5 [8]. In this same study, the authors also demonstrate that the N-linked glycosylation but not the O-linked glycosylation significantly improved the thermostability of IL5
The IL5R is composed of two subunits, the IL5R and βc subunits. Mechanistic studies have revealed that IL5 induces biological activity through a two step process in which IL5 binds to the IL5 subunit leading to interaction with the preformed βc subunit [9, 10]. The βc then induces the signaling cascade within the target cell through activation of a kinase cascade by way of associated JAK kinases. The IL5 subunit is highly glycosylated having 4 N-glycosylation sites (Asn15, Asn111, Asn196 and Asn224) in the extracellular region [11, 12]. Complete removal of the glycosylation of IL5leads to a loss of ligand binding. More detailed studies of the contributions of the N-glycosylation sites on IL5 revealed that Asn196 is required for ligand binding [9]. Loss of the other three sites by mutation had no effect on IL5 affinity and biological activity (B-cell proliferation assay). Interestingly, mutation of Asn196 led to a complete loss of binding and biological activity, suggesting that glycosylation of that residue is absolutely required for IL5 recognition [9].
IL5R βc subunit is also glycosylated. This protein interacts with a number of cytokine receptors including IL5, interleukin 3 (IL3) and granulocyte-macrophage colony- stimulating factor (GM-CSF). Therefore, the βc protein is a common signal transducing partner to many cytokine receptors. The βc protein contains an N-linked glycosylation site at Asn328. Conflicting reports have been published suggesting that glycosylation of Asn328 is either required for signaling activity of the βc subunit or not required. However, a recent publication by Murphy et al, suggests strongly that glycosylation at Asn328 does not play a role in either ligand binding or receptor activation.
3.3. Glycoprotein hormone family
The reproductive hormones called gonadotropins (luteininzing hormone (LH) and follicle-stimulating hormone (FSH)) are important to proper regulation of reproduction. These proteins are found in the circulation as alpha subunit and beta subunit heterodimers that contain multiple glycosylation sites on both subunits [13, 14]. Along with the thyroid-stimulating hormone (TSH), they comprise the glycoprotein hormone family. Interestingly, the degree of glycosylation added to these hormones varies depending upon the physiological state and therefore, they are found in the plasma as a series of isoforms that vary in glycosylation complexity.
Historically, it has been accepted that glycosylation complexity has an impact on the overall acidity of each isoform with more complex variants (higher degree of terminal sialylation and sulfation) possessing more acidic isoelectric points (pI) [15, 16] with less terminally sialylated /sulfonated isoforms more basic in pI. Chromoatofocusing has been used as a way of purifying these differently glycosylated isoforms. Recently though, Bousfield has generated data demonstrating that chromatofocusing does not separate isoforms on the basis of glycan structure suggesting that the isoelectric point of gonadotropins is not completely determined by the glycosylation structure [17]. Nevertheless, the physiological significance of these glycosylated variants is suggested by data demonstrating that the degree of glycosylation that occurs within the anterior pituitary synthetic cells is regulated by exogenous factors including ovarian steroids [18, 19]. Tight regulation of this secondary protein processing of glycoprotein hormones suggests an important physiological role for the presence of glycosylated variants of TSH, LH and FSH. Numerous reports have detailed the effects of partial or complete deglycosylation on action of these hormones [14, 20, 21]. The data in this area are varying with some noting no effects on binding [14, 22-24] and others noting increased binding affinity [21, 25]. However, recent work in this area using more sophisticated separation techniques strongly suggest that hormone glycosylation does play a significant role in receptor binding [25]. There is a significant effect on signaling. Indeed, using a baculovirus expression system to create partially glycosylated isoforms of FSH has shown that glycosylation can change the pharmacological properties of the hormone
The glycoprotein hormone receptors are G protein-coupled receptors (GPCR) [26]. These receptors are characterized by long amino-terminal extracellular domains (>300 aa) that are required for binding of ligand, seven lipophilic, membrane-spanning domains and relatively short, cytoplasmic carboxy-terminal tails [27, 28]. The extracellular domains of the glycoprotein hormones are characterized by numerous leucine rich repeats (LRR) that have been shown to be important to binding of the receptors to their respective ligands [27]. Similar to their hormone ligands, glycoprotein hormone receptors also contain sugar residues on their extracellular domains. Studies of the contribution of this glycosylation
4. Glycosylation of signaling proteins
4.1. Adenylate cyclase
In addition, to determining ligand-receptor interactions in some systems, glycosylation can also play a role in regulating intracellular signaling proteins. Adenylate cyclase is a key enzyme that produces the second messenger cAMP from ATP. It is best described for its ability to be stimulated or inhibited by activation of heterotrimeric GTP binding proteins (G-proteins) following G-protein-coupled receptor (GPCR) binding to agonist. There are nine recognized adenylate cyclase isoforms and three general classes of membrane bound adenylate cyclases: the calcium activated family (AC1, AC3 and AC8), the calcium-inhibited family (AC5 and AC6) and the G-protein activated family (AC2, AC4 and AC7) [33]. All nine adenylate cyclases are regulated by Gs and magnesium. The calcium activated family members respond to calcium in a calmodulin-dependent manner [33]. The calcium-inhibited adenylate cyclases are inhibited by calcium at less than micromolar concentrations. The G-protein activated family responds to activation by G βγ subunits following GPCR agonist binding [33]. In addition, splice variants of some forms of adenylate cyclases have been noted [34]. Generally speaking, adenylate cyclases tend to be clustered together within cell membranes with other signaling components such as receptors and G-proteins in lipid rich domains such as those formed by the scaffolding protein caveolin-1[35].
Several types of post-translational modifications to adenylate cyclases have been found to affect their activity; including nitrosylation, phosphorylation and glycosylation [36]. In terms of glycosylation, regulation of several adenylate cyclase family members has been reported. N-linked glycosylation has been observed on the extracellular domains of some adenylate cyclases and for this reason there had been some controversy concerning the functional role it played in enzyme activity. This was mainly due to the fact that adenylate cyclase interacts with its protein partners within domains found on the cytoplasmic side of the enzyme. However, deglycosylation using metabolic inhibitors or site-directed mutants have revealed a critical role for glycosylation in adenylate cyclase activity.
Glycosylation of Type 8 adenylate cyclase (AC8) has been found on two of its three isoforms [34]. These glycosylation sites are found the extracellular surface of two of these isoforms (AC8-A and AC8-C) but not on the AC8-B isoform. This is presumably due the excision of a portion of the extracellular domain between transmembrane spans 9 and 10 in this isoform that contains the N-linked glycosylation site. Recent studies of the role of these glycosylation sites in AC8 have shown that they are critical to localization of the enzyme to the lipid rich rafts in membranes [37]. Thus, potentially determining function of AC8 in cells where it is expressed. This would imply a differential localization and functional role for AC8-B.
Glycosylation of AC6 is required for response to several stimulators of AC activity since mutagenesis or glycosylation inhibitors affect AC6 response to forskolin and G-proteins [38]. The other member of the calcium-inhibited ACs, AC5, has two putative glycosylation sites but it is still unclear as to whether these sites are glycosylated [36].
The other member of the adenylate cyclase family of enzymes is adenylate cyclase 9 (AC9). This particular adenylate cyclase is the most divergent in terms of sequence from the other known ACs. AC9 activity is regulated by G-proteins and by protein kinase C. Gs stimulates activation of AC9, while Gi and PKC have been shown to negatively regulate AC9. AC9 is glycosylated on two sites; removal of the N-linked glycosylation on these sites by site directed mutagenesis did not affect the stimulation of AC9 by forskolin [39]. However, removal of the glycosylation sites on AC9 did affect Gs -mediated stimulation of AC9 in HEK cells [39].
Taken together, these data reveal an integral role for glycosylation in determining and modulating adenylate cyclase localization, protein-protein interactions and function.
4.2. Insulin receptor signaling
The insulin receptor is a hetero-tetrameric receptor tyrosine kinase that is well known for its regulation of glucose metabolism. The insulin receptor contains numerous glycosylation sites that include both O- and N-linked glycosylation. The glycosylation of the insulin receptor is metabolically regulated since glucose deprivation has been shown to preferentially affect O-linked but not N-linked glycosylation of the receptor. Since insulin is a master metabolic regulator, this suggests that glycosylation plays a significant physiological/pathophysiological role in insulin action [40]. Indeed, mutational analysis of the potential O-glycosylation sites on the insulin receptor has revealed significant effects on functioning of the receptor. This may be due to the fact that these sites tend to be near phosphorylation sites on the receptor important to regulation of the receptor activity [41]. Removal of glycosylation on the receptor does not affect receptor binding but partial loss of glycosylation leads to a constitutively active kinase activity of the receptor. In pancreatic β-cells, an increase in O-linked glycosylation results in an increased β-cell apoptosis [42]. Downstream of the insulin receptor, an increase in O-linked glycosylation leads to decreased phosphorylation of key insulin signaling molecules, insulin receptor substrate 1 (IRS1) and 2 (IRS2), Akt and FOXO1a [42]. These data demonstrate that glycosylation is a key regulator of insulin receptor function. Taken together with the observation that the glycemic state of the cell can modulate the pattern of glycosylation of the receptor [40, 43], these data suggest that insulin receptor activity is dynamically regulated within insulin target cells and is sensitive to the metabolic state of the cell.
In addition to the insulin receptor, insulin signaling molecules have been found to be regulated by glycosylation. Specifically, IRS-1 and β-catenin, two important downstream effectors of insulin receptor activation, are known to be glycosylated. Furthermore, it is thought that shunting of glucose metabolism through the hexosamine biosynthetic pathway leads to a general increase in O-linked glycosylation of nuclear and cytoplasmic proteins through increased substrate for O-linked N-acetylglucosamine transferase [41]. Increased glycosylation of IRS and β-catenin and insulin receptor have been linked with decreased phosphorylation and activity of these key metabolic enzymes. The end result of this process is loss of cellular insulin sensitivity [41].
5. Glycosylation in receptor pharmacology
5.1. Gonadotropins
It is now well documented that most GPCRs have the capability of signaling
The molecular basis for biased agonism lies in the stabilization of conformation(s) of the receptor which increases the affinity of the biased agonist-receptor complex for a distinct and specific signaling pathway over another [44]. Since GPCRs primarily utilize G proteins as signal transducers, biased agonism would imply ligand-dependent preference of the ligand-receptor complex for a specific G-protein over another. Since GPCR signaling is not exclusive
For many years, FSH has been used as a model to understand the role of glycosylation in determining glycoprotein hormone function. Several years ago, we noted that differently glycosylated variants of hFSH could induce activation of both the Gs and Gi signaling pathways [24, 47]. The phenomenon appeared as a bell-shaped concentration-response curve in
Acknowledgement
This chapter is dedicated to my father, James, my first and most important mentor.
References
- 1.
Ruddon R. W. Bedows E. 1997 Assisted protein folding. J Biol Chem272 3125 3128 - 2.
Shental-Bechor D. Levy Y. 2009 Folding of glycoproteins: toward understanding the biophysics of the glycosylation code. Curr Opin Struct Biol19 524 533 - 3.
Shental-Bechor D. Levy Y. 2008 Effect of glycosylation on protein folding: A close look at thermodynamic stabilization. PNAS105 8256 8261 - 4.
Arey BJ, Lopez FJ 2011 Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications. Rev Endocr Metab Disorders - 5.
Meyer B. Moller H. 2007 Conformation of glycopeptides and glycoproteins. Topics Curr Chem267 187 251 - 6.
Chamorey-L A. Magne N. Pivot X. Milano G. 2002 Impact of glycosylation on the effect of cytokines. A special focus on oncology. Eur Cytokine Net13 154 160 - 7.
Foster P. Hogan S. Ramsay A. Matthaei K. Young I. 1996 Interleukin-5 deficiency abolishes eosiniphilia, airways hyperreactivity and lung damage in a mouse asthma model. J Exp Med183 195 201 - 8.
Kodama S. Tsulimoto M. Tsuruoka N. Suko T. Edno T. Kobata A. 1993 Role of sugar chains in the in vitro activity of recombinant interleukin 5. Eur J Biochem211 903 908 - 9.
Ishino T. Economou N. J. Mc Fadden K. Zaks-Zilberman M. Jost M. Baxter S. Contarino M. R. Harrington A. E. Loll P. J. Pasut G. Lievens S. Tavernier J. Chaiken I. 2011 A protein engineering approach differentiates the functional importance of carbohydrate moieties of interleukin-5 receptor. Biochemistry50 7546 7556 - 10.
Ishino T. Harrington A. E. Zaks-Zilberman M. Scibek J. J. Chaiken I. 2008 Slow dissociation effect of common signaling subunit bc on IL5 and GM-CSF receptor assembly. Cytokine42 179 190 - 11.
Cornelius S. Plaetinck G. Devos R. Van der Heyden J. Tavernier J. Sanderson C. Guisez Y. Fiers W. 1995 Detailed analysis of the IL-5-IL5Ra interaction: Characterization of crucial residues on the ligand and the receptor. EMBO J14 3395 3402 - 12.
Ishino T. Pasut G. Scibek J. Chaiken I. 2004 Kinetic interaction analysis of human interleukin 5 receptor mutants reveals a unique binding topology and charge distribution for cytokine recognition. J Biol Chem279 9547 9556 - 13.
Ulloa-Aguirre A. Timossi C. Barrios-de-Tomasi J. Maldonado A. Nayudu P. 2003 Impact of carbohydrate heterogeneity in function of follicle-stimulating hormone: studies derived from in vitro and in vivo models. Biol Reprod69 379 389 - 14.
Ulloa-Aguirre A. Midgley A. R. Jr Beitins I. Z. Padmanabhan V. 1995 Follicle-stimulating isohormones: characterization and physiological relevance. Endocr Rev16 765 787 - 15.
Chappel S. C. Ulloa-Aguirre A. Ramaley J. A. 1983 Sexual maturation in female rats: time-related changes in the isoelectric focusing pattern of anterior pituitary follicle-stimulating hormone. Biol Reprod28 196 205 - 16.
Ulloa-Aguirre A. Coutifaris C. S. C. C. 1983 Multiple species of FSH are present within hamster anterior pituitary cells cultured in vitro. Acta Endocrinol Copen102 343 350 - 17.
Bousfield G. R. Butnev V. Y. Bidart J. M. Dalpathado D. Irungu J. Desaire H. 2008 Chromatofocusing fails To separate hFSH isoforms on the basis of glycan structure. Biochemistry47 1708 1720 - 18.
Chappell SC, Bethea CL, Spies HG 1984 Existence of multiple forms of follicle-stimulating hormone within anterior pituitaries of cynomolgus monkeys. J Primatol14 177 194 - 19.
Ulloa-Aguirre A. Espinoza R. Damian-Matsumura P. Larrea F. Flores A. Morales L. Dominguez R. 1988 Studies on the microheterogeneity of anterior pituitary follicle-stimulating hormone in the female rat: isoelectric focusing throughout the estrous cycle. Biol Reprod38 70 78 - 20.
Smith P. L. Kaetzel D. Nilson J. Baenziger J. U. 1990 The sialylated oligosaccharides of recombinant bovine lutropin modulate hormone bioactivity. J Biol Chem265 874 881 - 21.
Grossmann M. Szkudlinski M. W. Tropea J. E. Bishop L. A. Thotakura N. R. Schofield P. R. BD Weintraub 1995 Expression of human thyrotropin in cell lines with different glycosylation patterns combined with mutagenesis of specific glycosylation sites. J Biol Chem270 29378 29385 - 22.
MM Matzuk Keene. J. L. Boime I. 1989 Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem264 2409 2414 - 23.
Bishop L. A. Robertson D. M. Cahir N. Schofield P. R. 1994 Specific roles for the asparagine-linked carbohydrate residues of recombinant human follicle stimulating hormone in receptor binding and signal transduction. Mol Endocrinol8 722 731 - 24.
Arey BJ, Stevis PE, Lopez FJ 1997 Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol Endocrinol 11:517 - 25.
Bousfield G. R. Butnev V. Y. Butnev V. Y. Nguyen V. T. Gray C. M. Dias J. A. Mac Coll. R. Eisele L. Harvey D. J. 2004 Differential effects of subunit asparagine56 oligosaccharide structure on equine lutropin and follitropin hybrid conformation and receptor-binding activity. Biochemistry43 10817 10833 - 26.
Foord S. M. Bonner T. I. Neubig R. R. Rosser E. M. Pin-P J. Davenport A. P. Spedding M. Harmar A. J. 2005 International Union of Pharmacology. XLVI. G Protein-Coupled Receptor List. Pharmacol Rev57 279 288 - 27.
Heckert LL, Daley IJ, Griswold MD 1992 Structural organization of the follicle-stimulating hormone receptor gene. Mol Endocrinol6 70 80 - 28.
Sprengel R. Braun T. Nikolics K. Segaloff D. L. Seeburg P. H. 1990 The testicular receptor for follicle stimulating hormone: structure and functional expression of cloned cDNA. Mol Endocrinol4 525 530 - 29.
Davis D. Liu X. Segaloff D. L. 1995 Identification of the sites of N-linked glycosylation on the follicle- stimulating hormone (FSH) receptor and assessment of their role in FSH receptor function. Mol Endocrinol9 159 170 - 30.
Davis D. P. Rozell T. G. Liu X. Segaloff D. L. 1997 The six N-linked carbohydrates of the lutropin/choriogonadotropin receptor are not absolutely required for correct folding, cell surface expression, hormone binding, or signal transduction. Mol Endocrinol11 550 562 - 31.
In: Methods in Enzymol Academic Press;2002 N Davis D. P. Segaloff D. L. Ravi Iyengar. John D. H. 20 N-linked carbohydrates. on G. protein-coupled receptors. mapping sites. of attachment. determining functional. roles 200 212 - 32.
Ascoli M. Fanelli F. Segaloff D. L. 2002 The lutropin/choriogonadotropin receptor, a 2002 perspective. Endocr Rev23 141 174 - 33.
Hanoune J. Defer N. 2001 Regulation and role of adenylyl cyclase isoforms. Ann Rev of Pharmacol Toxicol41 145 174 - 34.
Cali J. J. Parekh R. S. Krupinski J. 1996 Splice variants of type VIII adenylyl cyclase. J Biol Chem271 1089 1095 - 35.
Insel PA, Head BP, Ostrom RS, Patel HH, Swaney JS, Tang C-M, Roth DM 2005 Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Annals New York Acad Sci1047 166 172 - 36.
Beazely MA, Watts VJ 2006 Regulatory properties of adenylate cyclases type 5 and 6: a progress report. Eur J Pharmacol535 1 12 - 37.
Pagano M. MA Clynes Masada. N. Cirulea A. Ayling-J L. Wachten S. Cooper D. M. F. 2009 Insights into the residence in lipid rafts of adenylyl cyclase AC8 and its regulation by capacitative calcium entry. Am J Physiol 296:C607 C619 - 38.
J Biol Chem2001 N Wu-C G. Lai-L H. Lin-W Y. Chu-T Y. Chern Y. 20 -Glycosylation N. residues Asn8. Asn8 are involved. in the. functional properties. of type. V. I. adenylyl cyclase. 276 35450 35457 - 39.
Cumbay MG, Watts VJ 2004 Novel regulatory properties of human type 9 adenylate cyclase. J Pharmacol Exp Ther310 108 115 - 40.
Nature MedOhtsubo K. Chen M. Z. Olefsky J. M. JD Marth Pathway. to diabetes. through attenuation. of pancreatic. beta cell. glycosylation glucose transport. 17 1067 1075 - 41.
Wells L. Vosseller K. Hart G. W. 2001 Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science291 2376 2378 - 42.
D’Alessandris C. Andreozzi F. Federici M. Cardellini M. Brunetti A. Ranalli M. Del Guerra S. Lauro D. Del Prato S. Marchetti P. Lauro R. Sesti G. 2004 Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic β-cells. FASEB J - 43.
Maggi D. Andraghetti G. Carpentier-L J. Renzo C. 1998 Cys860 in the extracellular domain of insulin receptor b-subunit is critical for internalization and signal transduction. Endocrinology139 496 504 - 44.
Kenakin T. 2007 Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol72 1393 1401 - 45.
Grewal N. Nagpal S. Chavali G. B. Majumdar S. S. Pal R. Salunke D. M. 1997 Ligand-induced receptor dimerization may be critical for signal transduction by choriogonadotropin. Biophys J73 1190 1197 - 46.
Bousfield G. R. Butnev V. Y. Butnev V. Y. Nguyen V. T. Gray C. M. Dias J. A. Mac Coll. R. Eisele L. Harvey D. J. 2004 Differential effects of a subunit asparagine56 oligosaccharide structure on equine lutropin and follitropin hybrid conformation and receptor-binding activity. Biochemistry43 10817 10833 - 47.
Arey B. 2008 Allosteric modulators of glycoprotein hormone receptors: discovery and therapeutic potential. Endocrine34 1 10 - 48.
Munshi R. Linden J. 1989 Co-purification of A1 adenosine receptors and guanine nucleotide-binding proteins from bovine brain. J Biol Chem264 14853 14859 - 49.
Kimura K. White B. H. Sidhu A. 1995 Coupling of human D-1 dopamine receptors to different guanine nucleotide binding proteins: evidence that D-1 dopamine receptors can couple to both Gs and G(o). J Biol Chem270 14672 14678 - 50.
Arey B. J. Yanofsky S. D. Claudia Perez. M. CP Holmes Wrobel. J. Gopalsamy A. Stevis P. E. Lopez F. J. Winneker R. C. 2008 Differing pharmacological activities of thiazolidinone analogs at the FSH receptor. Biochem Biophys Res Comm368 723 728 - 51.
Logsdon N. J. Jones B. C. Allman J. C. Izotova L. Schwartz B. Pestka S. Walter M. R. 2004 The IL-10R2 binding hot spot on IL-22 is located on the N-terminal helix and is dependent on N-linked glycosylation. J Molec Biol342 503 514 - 52.
Saremba S. Nickel J. Seher A. Kotzsch A. Sebald W. Mueller T. D. 2008 Type I receptor binding of bone morphogenetic protein 6 is dependent on N-glycosylation of the ligand. FEBS J275 172 183 - 53.
Nguyen V. T. Singh V. Butnev V. Y. Gray C. M. Westfall S. Davis J. S. Dias J. A. Bousfield G. R. 2003 Inositol phosphate stimulation by LH requires the entire a Asn56 oligosaccharide. Mol Cell Endocrinol199 73 86 - 54.
MM Matzuk Keene. J. L. Boime I. 1989 Site specificity of the chorionic gonadotropin N-linked oligosaccharides in signal transduction. J Biol Chem264 2409 2414 - 55.
Roess D. A. Horvat R. D. Munnelly H. Barisas B. G. 2000 Luteinizing Hormone Receptors Are Self-Associated in the Plasma Membrane. Endocrinology141 4518 4523 - 56.
Darling R. J. Kuchibhotla U. Glaesner W. Micanovic R. Witcher D. R. Beals J. M. 2002 Glycosylation of Erythropoietin Affects Receptor Binding Kinetics:  Role of Electrostatic Interactions. Biochemistry41 14524 14531 - 57.
Kenakin T. Miller L. J. 2010 Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery Pharmacol Rev62 265 304