Flagellin glycosylations
1. Introduction
In this chapter, we present the current advances in flagellar glycosylation. Glycosylation is well-known as one of the most frequent posttranslational protein modification. Glycosylation is well studied in eukaryotes as the superficial and secretory proteins are mostly glycosylated in the eukaryotic cell. Protein glycosylation was considered to be a eukaryotic organism specific modification for many years. However, reports of bacterial glycosylation have increased since the discovery of surface layer glycosylation on the cell envelope in archaea and hyperthermophiles in the mid-1970’s (Mescher & Strominger, 1976; Sleytr, 1975; Sleytr & Thorne, 1976).
1.1. Protein glycosylation
Protein glycosylation is largely classified as N-linked or O-linked while C-mannosylation is rarely identified (Furmanek & Hofsteenge, 2000). Glycan structures are enzymatically transferred to amino acid residues where they can covalently conjugate via the amino group of asparagine residues (N-glycosylation) or the hydroxyl group of serine or threonine residues (O-glycosylation). Both linkage types are distributed in eukaryotes and prokaryotes. The N-linkage glycosylation pathway is characterized in all three domains of life (eukarya, archaea, and bacteria) (Calo et al., 2010; Haeuptle & Hennet, 2009; Szymanski & Wren, 2005; Weerapana & Imperiali, 2006). The carbohydrate chain is synthesized at the membrane (endoplasmic reticulum (ER) in eukarya, or on the cytoplasmic side of the plasma membrane in archaea and bacteria) via a specific glycosyltransferase which transfers a nucleotide-activated sugar precursor onto the lipid carrier (dolichol-phosphate in eukarya and archaea, or undecaprenyl-phosphate in bacteria). The synthesized carbohydrate chain (oligosaccharide) is flipped across the membrane using a specific flippase, and is transferred to the asparagine residue in the nascent protein en bloc by an oligosaccharyltransferase (OST), which is composed of nine subunits in eukarya. Archaeal and bacterial OST are encoded by the aglB (Abu-Qarn et al., 2007) or pglB (Wacker et al., 2002) gene to yield a single protein, respectively. In eukarya and archaea, the asparagine residues of the N-linkage glycosylation site are conserved in a sequon, the N-X-S/T motif (where X is any amino acid except proline). Recently, the bacterial N-linkage sequon was characterized from
In eukaryote, glycoproteins typically possess a pentasaccharide core carbohydrate structures which consist of (Man)2-Man-GlcNAc-GlcNAc with one or more glycan chain (N-glycosylation) and di-, or trisaccharide core structure based on GalNAc attached to serine or threonine (O-glycosylation). However, recent reports on
Thus, in prokaryotes many different glycoprotein structures have been observed that display much more variation than those observed in eukaryotes.
Glycoproteins have many biological functions: one example is recognition and adhesion among cells (Varki, 1993). The interactions between cells are mediated by the glycan structures on the cell surfaces. Therefore, the different glycan moieties on the cell surfaces serve as markers for cell recognition events, and modifications of the glycan structures can render several biological functions to the protein in eukarya. In recent years, accumulating studies for glycosylated bacterial proteins indicate that glycan structures mainly participate in the virulence of the mucosal pathogen (Szymanski & Wren, 2005). Most bacterial glycoproteins appear to be associated with the surface of the organism as in pili or flagella. Flagellin is one of the extensively studied glycosylated bacterial proteins and it is suggested that the flagellin glycosylation is responsible for their virulence, adherence, filament assembly, and filament stability (Arora et al., 2005; Goon et al., 2002; Szymanski et al., 2002; Taguchi et al., 2008).
1.2. Flagellar structures
Most bacterial species swim by means of rotating flagella that are powered by the monovalent cation (H+ or Na+) influx. Many bacteria have extracellular flagellar structures and the pattern of flagellar arrangement is an identification tool in bacteria. A variety of flagella structures and swimming patterns have been discussed in previous works (Armitage & Macna, 1987; Bardy et al., 2003; Charon & Goldstein, 2002; Macnab, 1977, McCarter, 2001, 2004; Shigematsu et al., 2005). There are classified in-to four flagella arrangements as follows: multi-flagella are randomly distributed on the overall cell surface (peritrichous; e.g.

Figure 1.
The model structure of the flagellar motor in gram-negative bacteria.
The motor consists of the Mot complex (MotA/B) and rotor (MS- and C-ring). The L- and P- ring do not exist in the gram-positive bacterial flagellar structure. The Mot complex is supposed to function as the force-generating unit via proton conduction while the C-ring functions as the switch. The phosphorylated form of CheY (CheY-P) interacts with FliM and promotes CW rotation. When CheY-P is not bound to it, the motor rotates CCW. Flagellin subunits are transported from the cytoplasm and are delivered into a central channel in the basal body–hook filament structure (the diameter of the central channel is only 2 nm). OM, Outer membrane; PG, peptidoglycan layer; CM, cytoplasmic membrane (Irikura et al., 1993; Mathews et al., 1998).
The most impressive structure of the bacterial flagella motor is an extracellular long helical filament. In general, the flagella filament is composed of 20,000 ~ 30.000 subunits of a single protein called flagellin, and it reaches to more than 10 μm in length (Namba & Vonderviszt, 1997). The flagellar specific export apparatus is located on the inside of the C-ring, and most of the flagellar components proteins are translocated across the cytoplasmic membrane by this apparatus, and then the proteins are diffused in the narrow nascent lumen structure and self-assemble at the distal end of the flagellar structure (Aizawa, 1996).
Flagellar-based motility is also common to archaea, but its structural features are quite distinct from bacteria. Archaeal flagella are closely related to bacterial type IV pili in their structure and assembly and the origin of bacterial flagella is considered to be a type III secretion system (Bardy et al., 2004). In bacteria, the flagellar filament is composed of a single flagellin subunit, in contrast, two or more distinct flagellin subunits are require for production of the flagellar filament. The other notable differences include that archaeal flagella rotation is powered by ATP, the flagellin subunit has a signal peptide which is cleaved by a specific peptidase for the secret matured flagellin subunit from the cell, and the flagella is grown from the proximal end of the cell surface by the addition of subunits to the base.
1.3. Flagellin glycosylations
Although flagella structures from both eubacteria and archaea are different, flagellin glycosylation is reported in both organisms. Eubacterial flagellin glycosylations are classified as either N- or O-linkage in a single subunit, and to date, most reports are about O-linkages. The O-linked glycan positions of bacterial flagellin proteins appear to be limited to the central region of the primary flagellin structure. The amino acid sequence alignment indicates that flagellin proteins are well conserved in the N- and C-terminal regions, while the central region is highly variable (Beatson et al., 2006). Although the intensively studied peritrichous flagella from

Figure 2.
Bacterial flagellar filament.
Flagellar filament structure and complete flagellin 3D model of

Figure 3.
O-linked glycosylation sites of bacterial flagellin.
In contrast with eubacteria, three archaeal flagellin glycosylations are reported as N-linkage (Chaban et al., 2007; Voisin et al., 2005; Wieland & Sumper, 1985). Work on the most extensively studied flagellin from
2. Flagellar glycosylation
There have been many reports on flagella glycosylation since it was discovered about 20 years ago. Flagellin glycosylation is mainly found in gram-negative pathogenic bacterial species, and has been identified in about 30 microorganism strains including the archaea and gram-positive species (Logan, 2006). The distribution of flagellin glycosylation among several species is shown in Table 1, and a gene cluster which is potentially involved in the posttranslational modification of flagellin glycosylation is shown in Figure 4.

Figure 4.
Organization of the glycosylation island located around the flagellin gene.
The location of glycosylation islands was not restricted to directly upstream or downstream of the flagellin gene, and the component genes were highly-diverse. A glycosyltransferase, which is responsible for the glycan attachment to a flagellin protein is usually included in the proximal glycosylation island of a flagellin gene, whereas, it was not identified to date in this region in
linkage type | Glycan characterization | Function | GTase*5(OST) | Reference | |
O | Pse5Ac7Ac | Motility | n.d. | Tabei et al., (2009) | |
O | Pse5Ac7Ac8Ac | n.d. | n.d. | Schirm et al., (2005) | |
n.d.*1 | PAS*2 | n.d. | n.d. | Rabaan et al., (2001) | |
n.d. | PAS | n.d. | n.d. | Deakin wt al., (1999) | |
O | β-elimination*3 | Adsorption | n.d. | Moens et al., (1995) | |
O | Pse5Ac7Ac, PseAm, Pse8OAc PseAmGlnAc | Assembly | n.d. | Thibault et al., (2001)Schirm et al., (2005) | |
O | Leg5Am7Ac, Leg5AmNMe7Ac | n.d. | n.d. | Zampronio et al., (2011) | |
O | Pse5Ac7Ac, PseAm, Pse/PseAm-deoxypentose, Leg5Ac7Ac, Leg5Am7Ac, Leg5AmNMe7Ac | Assembly | n.d. | Logan et al., (2002) | |
n.d. | SDS-PAGE*4 | Adherence Stability | n.d. | Faulds et al., (2011) Johnson et al., (1983) | |
O | Pse5Ac7Ac | Assembly | n.d. | Schirm et al., (2003) | |
n.d. | SDS-PAGE | n.d. | n.d. | Josenhans et al., (1999) | |
O | Rha-(2-7 variable oligosaccharide chain)-deoxyhexosamine (dhexN)-deoxyhexose (dHex) | Virulence | FgtA | Schirm et al., (2004a) | |
O | dHex(PO4)-192Da | Virulence | FgtA | Verma et al., (2006) | |
O | Rhamnose | n.d. | n.d. | Schirm et al., (2004a) | |
O | β-D-Quip4N(3-hydroxy-1-oxobutyl) 2Me-(1-3)-α-L-Rhap-(1-2)-α-L-Rhap | VirulenceStability | Fgt1 | Takeuchi et al., (2007) | |
O | 291 Da carbohydrate | Motility | n.d. | Scott et al., (2011) | |
O | acetylated hexuronic acid | n.d. | n.d. | Scott et al., (2011) | |
O | n.d. | epitope recognition in rice | Fgt | Che et al., (2000)Hirai et al., (2011) | |
N | SNA, GNA lectin binding | n.d. | n.d. | Ge et al., (1998) | |
N | SDS-PAGE | n.d. | n.d. | Li et al., (1993) | |
n.d. | Lectin binding | n.d. | n.d. | Brahamsha & Greenberg, (1988) | |
n.d. | PAS | n.d. | n.d. | Wyss, (1998) | |
n.d. | n.d. | Motility | n.d. | Wu et al., (2011) | |
Marine magnetotactic ovoid bacterium MO-1 | n.d. | n.d. | filamentlubricant? | n.d. | Zhang et al., (2012) |
O | n.d. | Virulence | Sun et al., (2009) | ||
N | N-glycosydase F sensitive | n.d. | n.d. | Papaneophytou et al., (2012) | |
n.d. | β-elimination | n.d. | n.d. | Bedouet et al., (1998) | |
O | PAS | n.d. | n.d. | Lyristis et al., (2000) | |
O | HexNAc | Assembly | n.d. | Twine et al., (2009) | |
O | αLeg5GluNMe7Ac | n.d. | n.d. | Twine et al., (2008) | |
n.d. | PAS | n.d. | n.d. | Kalmokoff et al., (2000) | |
O | N-acetylglucosamine (GlcNAc) | n.d. | GmaR | Shen et al., (2006) | |
O | PAS, β-elimination | Assembly | n.d. | Hayakawa et al., (2009a) | |
O | PAS, β-elimination | Assembly | n.d. | Hayakawa et al., (2009a) | |
N | Glc(4-1)GlcASO4(4-1)GlcASO4(4-1)GlcASO4 | Stability | n.d. | Wieland et al., (1985) | |
N | β-ManpNAcA6Thr-(1-4)-β-GlcpNAc3NAcA-(1-3)-β-GlcpNAc | Assembly | AglA(OST) | Voisin et al., (2005) | |
N | Sug-4-β-ManNAc3NAmA6Thr-4-β-GlcNAc3NAcA-3-β-GalNAc | Motility | AglB (OST) | VanDyke et al., (2009) |
Table 1.
2.1. Gram-negative
2.1.1. Pseudomonas spp.
2.1.2. Campylobacter spp.
2.1.3. Helicobacter pylori
2.1.4. Burkholderia spp.
2.2. Gram-positive
2.2.1. Clostridium
2.2.2. Listeria monocytogenes
2.2.3. Thermophilic Bacillus spp.
Thermophilic
2.3. Archaea
Archaeal flagellin glycosylation was first identified in
3. Glycosylation pathway
The complete pathway of bacterial flagellin glycosylation is still not clarified. There are two reviews which provide an overview of the O-linked flagellin glycosylation pathway (Logan et al., 2006; Nothaft & Szymanski, 2010). Bacterial flagella assembly occurs at the distal end of the basal body. The nascent flagellin protein is transported across the cytoplasmic membrane by a type three secretion system, and then proceeds through the narrow central channel of the flagella structure. Finally, the flagellin subunit associates with the tip of the filament structure which is elongated and reaches a length of about ten micrometers. In contrast to the archaeal flagellin export pathway, bacterial flagellin protein is not exposed outside of the inner membrane containing the periplasmic space until assembled into the filament. In other words, if flagellin glycosylation occurred extracellularly, it must be achieved far away from the cell. Therefore, it is reasonable to assume that the flagellin glycosylation machinery is located in the vicinity of the flagella basal body. Recently, the
4. Amino acid substitutions of flagellin protein
Many attempts have been carried out to obtain insight into the significance of flagellin glycosylation. One of the most visible experiments is the disruption of glycosyltransferase activity which allows the evaluation of the flagella assembly, filament morphology, motility, and virulence (see above). In this section, we focus on the effects of amino acid substitution in glycosylated flagellin proteins.
4.1. Influence of loss of glycosylation to the motility and virulence
4.1.1. Campylobacter jejuni 81-176
The major flagellin of
4.1.2. Pseudomonas syringae pv. tabaci
Flagellin glycosylation of
4.2. Restoration of filament formation without glycosylation
Flagellin glycosylation of a thermophilic bacillus species was recently reported for
5. Conclusions
Glycosylation is no longer a rare event regardless of whether bacteria or eukaryote are considered. Complete genomic information for several bacteria is now available and bioinformatic analyses demonstrated that bacterial flagellin glycosylation is widely spread over several genera. Many speculative functions of flagella glycosylation have been demonstrated, for example filament assembly (including flagellin export), filament stability, motility, virulence, gene regulation and mimicry with host-cell surface glycan structure. These glycosylation functions are similar regardless of the variety of eukaryote. In addition, the bacterial glycosylation pathway is becoming better defined; many genes which participate in flagellin glycosylation have been identified, but their number and loci are diverse in each bacterial species. Rapid increases in the knowledge of glycosyltransferases and glycan biosynthesis gene clusters will undoubtedly be achieved through glycoengineering with an aim to design a bacterial flagella motor for the development of a novel vaccine or drug-delivery-system.
Acknowledgement
The authors acknowledge In-Tech-Open Access Publisher for the kind invitation to contribute this chapter. This work was supported in part by Chuo University Grant for Special Research to M. I.
References
- 1.
Abu-Qarn M. Yurist-Doutsch S. Giordano A. Trauner A. Morris H. R. Hitchen P. Medalia O. Dell A. Eichler J. J. 2007 Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer. Journal of Molecular Biology,374 5 1224 1236 0022-2836 - 2.
Aizawa S-I. 1996 Flagellar assembly in Salmonella typhimurium. Molecular Microbiology,19 1 1 5 0095-0382 X - 3.
Allison J. S. Dawson M. Drake D. Montie T. C. 1985 Electrophoretic separation and molecular weight characterization of Pseudomonas aeruginosa H-antigen flagellins. Infection and immunity,49 3 770 774 0019-9567 - 4.
Armitage J. P. Macnab R. M. 1987 Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides. Journal of Bacteriology,169 2 514 518 0021-9193 - 5.
Arnold F. Bédouet L. Batina P. Robreau G. Talbot F. Lécher P. Malcoste R. 1998 Biochemical and immunological analyses of the flagellin of Clostridium tyrobutyricum ATCC 25755. Microbiology and immunology,42 1 23 31 0385-5600 - 6.
Arora S. K. Bangera M. Lory S. Ramphal R. 2001 A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation. Proceedings of the National Academy of Sciences of the United States of America,98 16 9342 9347 0027-8424 - 7.
Arora S. K. Neely A. N. Blair B. Lory S. Ramphal R. 2005 Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infection and immunity,73 7 4395 4398 0019-9567 - 8.
Asakura H. Churin Y. Bauer B. Boettcher J. P. Bartfeld S. Hashii N. Kawasaki N. Mollenkopf H. J. Jungblut P. R. Brinkmann V. Meyer T. F. 2010 Helicobacter pylori HP0518 affects flagellin glycosylation to alter bacterial motility. Molecular microbiology,78 5 1130 1144 0095-0382 X - 9.
Bardy S. L. Ng S. Y. Jarrell K. F. 2003 Prokaryotic motility structures. Microbiology,149 2 295 304 1350-0872 - 10.
Bardy S. L. Ng S. Y. Jarrell K. F. 2004 Recent advances in the structure and assembly of the archaeal flagellum. Journal of Molecular Microbiology and biotechnology,7 1-2 41 51 1464-1801 - 11.
Beatson S. A. Minamino T. Pallen M. J. 2006 Variation in bacterial flagellins: from sequence to structure. Trends in Microbiology,14 4 151 155 0096-6842 X - 12.
Bédouet L. Arnold F. Robreau G. Batina P. Talbot F. Binet A. 1998 Evidence for an heterogeneous glycosylation of the Clostridium tyrobutyricum ATCC 25755 flagellin. Microbios,94 379 183 192 0026-2633 - 13.
Brahamsha B. Greenberg E. P. 1988 Biochemical and cytological analysis of the complex periplasmic flagella from Spirochaeta aurantia. Journal of Bacteriology,170 9 4023 4032 0021-9193 - 14.
Burch A. Y. Shimada B. K. Mullin S. W. Dunlap C. A. Bowman M. J. Lindow S. E. 2012 Pseudomonas syringae coordinates production of a motility-enabling surfactant with flagellar assembly. Journal of Bacteriology,194 6 1287 1298 0021-9193 - 15.
Calo D. Kaminski L. Eichler J. 2010 Protein glycosylation in Archaea: sweet and extreme. Glycobiology,20 9 1065 1076 0959-6658 - 16.
Chaban B. Ng S. Y. Kanbe M. Saltzman I. Nimmo G. Aizawa S. Jarrell K. F. 2007 Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis. Molecular Microbiology,66 3 596 609 0095-0382 X - 17.
Charon N. W. Goldstein S. F. 2002 Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annual Review of Genetics,36 47 73 0066-4197 - 18.
Che F. S. Nakajima Y. Tanaka N. Iwano M. Yoshida T. Takayama S. Kadota I. Isogai A. 2000 Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. The Journal of biological chemistry,275 41 32347 32356 0021-9258 - 19.
Chiku K. Ishii T. Ono H. Yoshida M. Ichinose Y. 2011 Identification of genes involved in the glycosylation of modified viosamine of flagellins in Pseudomonas syringae by mass spectrometry. Genes,2 4 788 803 2073-4425 - 20.
Deakin W. J. Parker V. E. Wright E. L. Ashcroft K. J. Loake G. J. Shaw C. H. 1999 Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology,145 No. Pt 6,1397 1407 1350-0872 - 21.
De Pamphilis M. L. Adler J. 1971 Fine Structure and Isolation of the Hook-Basal Body Complex of Flagella from Escherichia coli and Bacillus subtilis. Journal of Bacteriology,105 1 384 395 0021-9193 - 22.
Ewing C. P. Andreishcheva E. Guerry P. 2009 Functional characterization of flagellin glycosylation in Campylobacter jejuni 81-176. Journal of Bacteriology,191 22 7086 7093 0021-9193 - 23.
Faulds-Pain A. Birchall C. Aldridge C. Smith W. D. Grimaldi G. Nakamura S. Miyata T. Gray J. Li G. Tang J. X. Namba K. Minamino T. Aldridge P. D. 2011 Flagellin redundancy in Caulobacter crescentus and its implications for flagellar filament assembly. Journal of Bacteriology,193 11 2695 2707 0021-9193 - 24.
Francis N. R. Sosinsky G. E. Thomas D. De Rosier D. J. 1994 Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. Journal of Molecular Biology,235 2 1261 1270 0022-2836 - 25.
Furmanek A. Hofsteenge J. 2000 Protein C-mannosylation: facts and questions. Acta biochimica Polonica,47 3 781 789 0000-1527 X - 26.
Ge Y. Li C. Corum L. Slaughter C. A. Charon N. W. 1998 Structure and expression of the FlaA periplasmic flagellar protein of Borrelia burgdorferi. Journal of Bacteriology,180 9 2418 2425 0021-9193 - 27.
Goon S. Kelly J. F. Logan S. M. Ewing C. P. Guerry P. 2003 Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Molecular Microbiology,50 2 659 671 0095-0382 X - 28.
Gross J. Grass S. Davis A. E. Gilmore-Erdmann P. Townsend R. R. St Geme. J. W. 3rd 2008 The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. The Journal of biological chemistry,283 38 26010 26015 0021-9258 - 29.
Guerry P. 2007 Campylobacter flagella: not just for motility. Trends in Microbiology,15 10 456 461 0096-6842 X - 30.
Guerry P. Ewing C. P. Schirm M. Lorenzo M. Kelly J. Pattarini D. Majam G. Thibault P. Logan S. 2006 Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Molecular Microbiology,60 2 299 311 0095-0382 X - 31.
Gugolya Z. Muskotál A. Sebestyén A. Diószeghy Z. Vonderviszt F. 2003 Interaction of FliS flagellar chaperone with flagellin. FEBS letters,535 1-3 66 70 0014-5793 - 32.
Haeuptle M. A. Hennet T. 2009 Congenital disorders of glycosylation: an update on defects affecting the biosynthesis of dolichol-linked oligosaccharides. Human mutation,30 12 1628 1641 1059-7794 - 33.
Hayakawa J. Kambe T. Ishizuka M. 2009b Amino acid substitutions and intragenic duplications of Bacillus sp. PS3 flagellin cause complementation of the Bacillus subtilis flagellin deletion mutant. Bioscience, biotechnology, and biochemistry,73 10 2348 5231 0916-8451 - 34.
Hayakawa J. Kondoh Y. Ishizuka M. 2009a Cloning and characterization of flagellin genes and identification of flagellin glycosylation from thermophilic Bacillus species. Bioscience, biotechnology, and biochemistry,73 6 1450 1452 0916-8451 - 35.
Hirai H. Takai R. Iwano M. Nakai M. Kondo M. Takayama S. Isogai A. Che F. S. 2011 Glycosylation regulates specific induction of rice immune responses by Acidovorax avenae flagellin. The Journal of biological chemistry,286 29 25519 25530 0021-9258 - 36.
Ielmini M. V. Feldman M. F. 2011 Desulfovibrio desulfuricans PglB homolog possesses oligosaccharyltransferase activity with relaxed glycan specificity and distinct protein acceptor sequence requirements. Glycobiology,21 6 734 742 0959-6658 - 37.
Irikura V. M. Kihara M. Yamaguchi S. Sockett H. Macnab R. M. 1993 Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. Journal of Bacteriology,175 3 802 810 0021-9193 - 38.
Jarrell K. F. Jones G. M. Kandiba L. Nair D. B. Eichler J. 2010 S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. Archaea,2010 1472-3646 - 39.
Johnson R. C. Ferber D. M. Ely B. 1983 Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants. Journal of Bacteriology,154 3 1137 1144 0021-9193 - 40.
Jones G. M. Wu J. Ding Y. Uchida K. Aizawa S. I. Robotham A. Logan S. M. Kelly J. Jarrell K. F. 2012 Identification of Genes Involved in the Acetamidino Group Modification of the Flagellin N-linked Glycan of Methanococcus maripaludis. Journal of Bacteriology,0021-9193 0021 9193 - 41.
Josenhans C. Ferrero R. L. Labigne A. Suerbaum S. 1999 Cloning and allelic exchange mutagenesis of two flagellin genes of Helicobacter felis. Molecular microbiology,33 2 350 362 0095-0382 X - 42.
Josenhans C. Vossebein L. Friedrich S. Suerbaum S. 2002 The neuA/flmD gene cluster of Helicobacter pylori is involved in flagellar biosynthesis and flagellin glycosylation. FEMS Microbiology Letters,210 2 165 172 0378-1097 - 43.
Kalmokoff M. L. Allard S. Austin J. W. Whitford M. F. Hefford M. A. Teather R. M. 2000 Biochemical and genetic characterization of the flagellar filaments from the rumen anaerobe Butyrivibrio fibrisolvens OR77. Anaerobe,6 93 109 1075-9964 - 44.
Kelly J. Logan S. M. Jarrell K. F. Van Dyke D. J. Vinogradov E. 2009 A novel N-linked flagellar glycan from Methanococcus maripaludis. Carbohydrate research,344 5 648 653 0008-6215 - 45.
Analysis of a FliM-FliN flagellar switch fusion mutant of Salmonella typhimurium. Journal of Bacteriology,Kihara M. Francis N. R. De Rosier D. J. Macnab R. M. 178 15 4582 4589 0021-9193 - 46.
Kowarik M. Young N. M. Numao S. Schulz B. L. Hug I. Callewaert N. Mills D. C. Watson D. C. Hernandez M. Kelly J. F. Wacker M. Aebi M. 2006 Definition of the bacterial N-glycosylation site consensus sequence. The EMBO journal,25 9 1957 1966 0261-4189 - 47.
Lányi B. 1970 Serological properties of Pseudomonas aeruginosa. II. Type-specific thermolabile (flagellar) antigens. Acta microbiologica Academiae Scientiarum Hungaricae,17 1 35 48 0001-6187 - 48.
Lefèvre C. T. Santini C. L. Bernadac A. Zhang W. J. Li Y. Wu L. F. 2010 Calcium ion-mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium. Molecular microbiology,78 5 1304 1312 0095-0382 X - 49.
Li Z. Dumas F. Dubreuil D. Jacques M. 1993 A species-specific periplasmic flagellar protein of Serpulina (Treponema) hyodysenteriae. Journal of Bacteriology,175 No.8000 8007 0021-9193 - 50.
Logan S. M. 2006 Flagellar glycosylation- a new component of the motility repertoire? Microbiology,152 5 1249 1262 1350-0872 - 51.
Logan S. M. Kelly J. F. Thibault P. Ewing C. P. Guerry P. 2002 Structural heterogeneity of carbohydrate modifications affects serospecificity of Campylobacter flagellins. Molecular Microbiology,46 2 587 597 0095-0382 X - 52.
Lyristis M. Boynton Z. L. Petersen D. Kan Z. Bennett G. N. Rudolph F. B. 2000 Cloning, sequencing and characterization of the gene encoding flagellin, flaC and the posttranslational modification of flagellin, FlaC from Clostridium acetobutylicum ATCC824. Anaerobe,6 69 79 1075-9964 - 53.
Macnab R. M. 1977 Bacterial flagella rotating in bundles: a study in helical geometry. Proceedings of the National Academy of Sciences of the United States of America,74 1 221 225 0027-8424 - 54.
Malapaka R. R. Adebayo L. O. Tripp B. C. 2007 A deletion variant study of the functional role of the Salmonella flagellin hypervariable domain region in motility. Journal of Molecular Biology,365 4 1102 1116 0022-2836 - 55.
Mathews M. A. Tang H. L. Blair D. F. 1998 Domain Analysis of the FliM Protein of Escherichia coli. Journal of Bacteriology,180 21 5580 5590 0021-9193 - 56.
Mc Carter L. L. 2001 Polar flagellar motility of the Vibrionaceae. Microbiology and Molecular Biology Reviews,65 3 445 462 1092-2172 - 57.
Mc Carter L. L. 2004 Dual flagellar systems enable motility under different circumstances. Journal of Molecular Microbiology and Biotechnology,7 1-2 18 29 1464-1801 - 58.
Mc Nally D. J. Aubry A. J. Hui J. P. Khieu N. H. Whitfield D. Ewing C. P. Guerry P. Brisson J. R. Logan S. M. Soo E. C. 2007 Targeted metabolomics analysis of Campylobacter coli VC167 reveals legionaminic acid derivatives as novel flagellar glycans. The Journal of biological chemistry,282 19 14463 14475 0021-9258 - 59.
Mescher M. F. Strominger J. L. 1976 Purification and characterization of a prokaryotic glucoprotein from the cell envelope of Halobacterium salinarium. The Journal of biological chemistry,251 7 2005 2014 0021-9258 - 60.
Moens S. Michiels K. Keijers V. Van -Leuven F. Vanderleyden J. 1995 Cloning, sequencing, and phenotypic analysis of laf1, encoding the flagellin of the lateral flagella of Azospirillum brasilense Sp7. Journal of Bacteriology,177 19 5419 5426 0021-9193 - 61.
Montie T. C. Doyle-Huntzinger D. Craven R. C. Holder I. A. 1982 Loss of virulence associated with absence of flagellum in an isogenic mutant of Pseudomonas aeruginosa in the burned-mouse model. Infection and immunity,38 3 1296 1298 0019-9567 - 62.
Namba K. Vonderviszt F. 1997 Molecular architecture of bacterial flagellum. Quarterly Reviews of Biophysics,30 1 1 65 0033-5835 - 63.
Nguyen L. C. Yamamoto M. Ohnishi-Kameyama M. Andi S. Taguchi F. Iwaki M. Yoshida M. Ishii T. Konishi T. Tsunemi K. Ichinose Y. 2009 Genetic analysis of genes involved in synthesis of modified 4-amino-4,6-dideoxyglucose in flagellin of Pseudomonas syringae pv. tabaci. Molecular genetics and genomics,282 6 595 605 1617-4615 - 64.
Nothaft H. Szymanski C. M. 2010 Protein glycosylation in bacteria: sweeter than ever. Nature reviews. Microbiology,8 11 765 778 1740-1526 - 65.
Novotny R. Schäffer C. Strauss J. Messner P. 2004 S-layer glycan-specific loci on the chromosome of Geobacillus stearothermophilus NRS 2004/3a and dTDP-L-rhamnose biosynthesis potential of G. stearothermophilus strains. Microbiology,150 No. Pt 4,953 965 1350-0872 - 66.
Papaneophytou C. P. Papi R. M. Pantazaki A. A. Kyriakidis D. A. 2012 Flagellin gene (fliC) of Thermus thermophilus HB8: characterization of its product and involvement to flagella assembly and microbial motility. Applied Microbiology and biotechnology,0175-7598 0175 7598 - 67.
Rabaan A. A. Gryllos I. Tomás J. M. Shaw J. G. 2001 Motility and the polar flagellum are required for Aeromonas caviae adherence toHEp-2 cells. Infection and immunity,69 7 4257 4267 0019-9567 - 68.
Reid S. D. Selander R. K. Whittam T. S. 1999 Sequence diversity of flagellin (fliC) alleles in pathogenic Escherichia coli. Journal of Bacteriology,181 1 153 160 0021-9193 - 69.
Samatey F. A. Imada K. Nagashima S. Vonderviszt F. Kumasaka T. Yamamoto M. Namba K. 2001 Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature,410 6826 331 337 0028-0836 - 70.
Schirm M. Arora S. K. Verma A. Vinogradov E. Thibault P. Ramphal R. Logan S. M. 2004a Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa. Journal of Bacteriology,186 9 2523 2531 0021-9193 - 71.
Schirm M. Kalmokoff M. Aubry A. Thibault P. Sandoz M. Logan S. M. 2004b Flagellin from Listeria monocytogenes is glycosylated with beta-O-linked N-acetylglucosamine. Journal of Bacteriology,186 20 6721 6727 0021-9193 - 72.
Schirm M. Schoenhofen I. C. Logan S. M. Waldron K. C. Thibault P. 2005 Identification of unusual bacterial glycosylation by tandem mass spectrometry analyses of intact proteins. Analytical chemistry,77 23 7774 7782 0003-2700 - 73.
Schirm M. Soo E. C. Aubry A. J. Austin J. Thibault P. Logan S. M. 2003 Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Molecular Microbiology,48 6 1579 1592 0095-0382 X - 74.
Schoenhofen I. C. Vinogradov E. Whitfield D. M. Brisson J. R. Logan S. M. 2009 The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology,19 7 715 725 0959-6658 - 75.
Scott A. E. Twine S. M. Fulton K. M. Titball R. W. Essex-Lopresti A. E. Atkins T. P. Prior J. L. 2011 Flagellar glycosylation in Burkholderia pseudomallei and Burkholderia thailandensis. Journal of Bacteriology,193 14 3577 3587 0021-9193 - 76.
Sebaihia M. Peck M. W. Minton N. P. Thomson N. R. Holden M. T. Mitchell W. J. Carter A. T. Bentley S. D. Mason D. R. Crossman L. Paul C. J. Ivens A. Wells-Bennik M. H. Davis I. J. Cerdeño-Tárraga A. M. Churcher C. Quail M. A. Chillingworth T. Feltwell T. Fraser A. Goodhead I. Hance Z. Jagels K. Larke N. Maddison M. Moule S. Mungall K. Norbertczak H. Rabbinowitsch E. Sanders M. Simmonds M. White B. Whithead S. Parkhill J. 2007 Genome sequence of a proteolytic (Group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome research,17 7 1082 1092 0088-9051 - 77.
Shen A. Kamp H. D. Gründling A. Higgins D. E. 2006 A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes and development,20 23 3283 3295 0890-9369 - 78.
Shigematsu M. Meno Y. Misumi H. Amako K. 1995 The measurement of swimming velocity of Vibrio cholerae and Pseudomonas aeruginosa using the video tracking methods. Microbiology and immunology,39 10 741 744 0385-5600 - 79.
Sleytr U. B. Thorne K. J. 1976 Chemical characterization of the regularly arranged surface layers of Clostridium thermosaccharolyticum and Clostridium thermohydrosulfuricum. Journal of Bacteriology,126 1 377 383 0021-9193 - 80.
Sleytr U. B. 1975 Heterologous reattachment of regular arrays of glycoproteins on bacterial surfaces. Nature,257 5525 400 402 0028-0836 - 81.
Sockett H. Yamaguchi S. Kihara M. Irikura V. M. Macnab R. M. 1992 Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. Journal of Bacteriology,174 3 793 806 0021-9193 - 82.
Steine K. Novotny R. Patel K. Vinogradov E. Whitfield C. Valvano M. A. Messner P. Schäffer C. 2007 Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a. Journal of Bacteriology,189 7 2590 2598 0021-9193 - 83.
Sun Y. Wen J. Wu M. Chen H. He C. 2009 Deletion mutation of rbfCxoo, encoding a putative glycosyltransferase in Xanthomonas oryzae pv. oryzae leads to enhanced virulence expression. Acta microbiologica Sinica,49 6 740 745 0001-6209 - 84.
Szymanski C. M. Wren B. W. 2005 Protein glycosylation in bacterial mucosal pathogens. Nature reviews. Microbiology,3 3 225 237 1740-1526 - 85.
Szymanski C. M. Burr D. H. Guerry P. 2002 Campylobacter protein glycosylation affects host cell interactions. Infection and immunity,70 4 2242 2244 0019-9567 - 86.
Tabei S. M. Hitchen P. G. Day-Williams M. J. Merino S. Vart R. Pang P. C. Horsburgh G. J. Viches S. Wilhelms M. Tomás J. M. Dell A. Shaw J. G. 2009 An Aeromonas caviae genomic island is required for both O-antigen lipopolysaccharide biosynthesis and flagellin glycosylation. Journal of Bacteriology,191 8 2851 2863 0021-9193 - 87.
Taguchi F. Shibata S. Suzuki T. Ogawa Y. Aizawa S. Takeuchi K. Ichinose Y. 2008 Effects of glycosylation on swimming ability and flagellar polymorphic transformation in Pseudomonas syringae pv. tabaci 6605. Journal of Bacteriology,190 2 764 768 0021-9193 - 88.
Taguchi F. Shimizu R. Inagaki Y. Toyoda K. Shiraishi T. Ichinose Y. 2003 Post-translational modification of flagellin determines the specificity of HR induction. Plant and cell physiology,44 3 342 349 0032-0781 - 89.
Taguchi F. Takeuchi K. Katoh E. Murata K. Suzuki T. Marutani M. Kawasaki T. Eguchi M. Katoh S. Kaku H. Yasuda C. Inagaki Y. Toyoda K. Shiraishi T. Ichinose Y. 2006 Identification of glycosylation genes and glycosylated amino acids of flagellin in Pseudomonas syringae pv. tabaci. Cellular Microbiology,8 6 923 938 1462-5814 - 90.
Taguchi F. Yamamoto M. Ohnishi-Kameyama M. Iwaki M. Yoshida M. Ishii T. Konishi T. Ichinose Y. 2010 Defects in flagellin glycosylation affect the virulence of Pseudomonas syringae pv. tabaci 6605. Microbiology,156 No. Pt 1,72 80 1350-0872 - 91.
Takeuchi K. Ono H. Yoshida M. Ishii T. Katoh E. Taguchi F. Miki R. Murata K. Kaku H. Ichinose Y. 2007 Flagellin glycans from two pathovars of Pseudomonas syringae contain rhamnose in D and L configurations in different ratios and modified 4-amino-4,6-dideoxyglucose. Journal of Bacteriology,189 19 6945 6956 0021-9193 - 92.
Takeuchi K. Taguchi F. Inagaki Y. Toyoda K. Shiraishi T. Ichinose Y. 2003 Flagellin glycosylation island in Pseudomonas syringae pv. glycinea and its role in host specificity. Journal of Bacteriology,185 22 6658 6665 0021-9193 - 93.
Thibault P. Logan S. M. Kelly J. F. Brisson J. R. Ewing C. P. Trust T. J. Guerry P. 2001 Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. The Journal of biological chemistry,276 37 34862 34870 0021-9258 - 94.
Twine S. M. Reid C. W. Aubry A. Mc Mullin D. R. Fulton K. M. Austin J. Logan . S. M. 2009 Motility and flagellar glycosylation in Clostridium difficile. Journal of Bacteriology,191 22 7050 7062 0000-0021 - 95.
Twine S. M. Paul C. J. Vinogradov E. Mc Nally D. J. Brisson J. R. Mullen J. A. Mc Mullin D. R. Jarrell H. C. Austin J. W. Kelly J. F. Logan S. M. 2008 Flagellar glycosylation in Clostridium botulinum. The FEBS journal,275 17 4428 4444 0074-2464 X - 96.
Van Dyke D. J. Wu J. Logan S. M. Kelly J. F. Mizuno S. Aizawa S. Jarrell K. F. 2009 Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis. Molecular Microbiology,72 3 633 644 0095-0382 X - 97.
Varki A. 1993 Biological roles of oligosaccharides: all of the theories are correct. Glycobiology,3 2 97 130 0959-6658 - 98.
Verma A. Schirm M. Arora S. K. Thibault P. Logan S. M. Ramphal R. 2006 Glycosylation of b-Type flagellin of Pseudomonas aeruginosa: structural and genetic basis. Journal of Bacteriology,188 12 4395 4403 0021-9193 - 99.
Voisin S. Houliston R. S. Kelly J. Brisson J. R. Watson D. Bardy S. L. Jarrell K. F. . Logan S. M. 2005 Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae. The Journal of biological chemistry,280 17 16586 16593 0021-9258 - 100.
Wacker M. Linton D. Hitchen P. G. Nita-Lazar M. Haslam S. M. North S. J. Panico M. Morris H. R. Dell A. Wren B. W. Aebi M. 2002 N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science,298 5599 1790 1793 0036-8075 - 101.
Weerapana E. Imperiali B. 2006 Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology,16 9 91R 101R 0959-6658 - 102.
Westerlund-Wikström B. 2000 Peptide display on bacterial flagella: principles and applications. International journal of medical Microbiology,290 3 223 230 1438-4221 - 103.
Wieland F. Paul G. Sumper M. 1985 Halobacterial flagellins are sulfated glycoproteins. The Journal of biological chemistry,260 28 15180 15185 0021-9258 - 104.
Woods R. D. Takahashi N. Aslam A. Pleass R. J. Aizawa S. I. Sockett R. E. 2007 Bifunctional nanotube scaffolds for diverse ligands are purified simply from Escherichia coli strains coexpressing two functionalized flagellar genes. Nano letters,7 6 1809 1816 1530-6984 - 105.
Wu L. Wang J. Tang P. Chen H. Gao H. 2011 Genetic and molecular characterization of flagellar assembly in Shewanella oneidensis. PloS one,6 6 e21479 1932-6203 - 106.
Wyss C. 1998 Flagellins, but not endoflagellar sheath proteins, of Treponema pallidum and of pathogen-related oral spirochetes are glycosylated. Infection and immunity,66 12 5751 5754 0019-9567 - 107.
Xu J. Platt T. G. Fuqua C. 2012 Regulatory linkages between flagella and surfactant during swarming behavior: lubricating the flagellar propeller? Journal of Bacteriology,194 6 1283 1286 0021-9193 - 108.
Yonekura K. Maki-Yonekura S. Namba K. 2005 Building the atomic model for the bacterial flagellar filament by electron cryomicroscopy and image analysis. Structure,13 3 407 412 0969-2126 - 109.
Yonekura K. Maki-Yonekura S. Namba K. 2003 Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature,424 6949 643 650 0028-0836 - 110.
Yoshioka K. Aizawa-I S. Yamaguchi S. 1995 Flagellar filament structure and cell motility of Salmonella typhimurium mutants lacking part of the outer domain of flagellin. Journal of Bacteriology,177 4 1090 1093 0021-9193 - 111.
Young N. M. Brisson J. R. Kelly J. Watson D. C. Tessier L. Lanthier P. H. Jarrell H. C. Cadotte N. St Michael. F. Aberg E. Szymanski C. M. 2002 Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. The Journal of biological chemistry.277 45 42530 43549 0021-9258 - 112.
Zampronio C. G. Blackwell G. Penn C. W. Cooper H. J. 2011 Novel glycosylation sites localized in Campylobacter jejuni flagellin FlaA by liquid chromatography electron capture dissociation tandem mass spectrometry. Journal of proteome research,10 3 1238 1245 1535-3893 - 113.
Zhang W. J. Santini C. L. Bernadac A. Ruan J. Zhang S. D. Kato T. Li Y. Namba K. Wu L. F. 2012 Complex spatial organization and flagellin composition of flagellar propeller from marine magnetotactic ovoid strain MO-1. Journal of molecular biology,416 4 558 570 0022-2836