Types of postures used in the proposed system.
\r\n\tAdvances in mathematics, models, computational techniques, dynamic analysis, etc. are employed in Principal Component Analysis, where this book presents the more important.
\r\n\r\n\tComputational techniques, dynamic analysis, probabilistic methods, and mathematical optimization techniques are expertly blended to support the analysis of Principal Component Analysis with defined constraints and requirements.
\r\n\tThe book is focused on graduate students and professionals in industrial engineering, business administration, industrial organization, operations management, applied microeconomics, and the decisions sciences, either studying maintenance, or who are required to solve large, specific, and complex maintenance management problems as part of their jobs. The work will also be of interest to researchers from academia.
Tropical cyclones (here after TCs) are intense atmospheric vortices that form over warm ocean waters. Strong TCs (called hurricanes in the North Atlantic basin, or typhoons in the western north Pacific basin) can cause significant loss of lives and property when making landfall due to destructive winds, torrential rainfall, and powerful storm surges. In order to warn people of hazards from incoming TCs, forecasters must make predictions of the future position and intensity of the TC. In order to make these forecasts, a forecaster uses a wide suite of tools ranging from his or her subjective assessment of the situation based on experience, the climatology and persistence characteristics of the storm, and most importantly,
TCs are predicted using both global and regional numerical prediction models. Global models simulate the atmospheric state variables on the sphere, while regional model simulate the variables in a specific region, and thus have lateral boundaries. Due to smaller domains of interest, regional models can generally be run at much higher horizontal resolution than global models, and thus they are more useful for predicting tropical cyclone intensity and structure. As an example of how well TC track and intensity has historically been predicted, Fig. 1 shows the average track and intensity errors from official forecasts from the National Hurricane Center from 1990-2009. While there has been a steady improvement in the ability to predict track (left panel), there has been little to no improvement in this time period in the prediction of TC intensity (right panel). Currently there is a large effort to improve intensity forecasts: the National Oceanic and Atmospheric Administration (NOAA) Hurricane Forecast Improvement Project (HFIP).
\n\t\t\tAverage mean absolute errors for official TC track (left panel) and intensity (right panel) predictions at various lead times in the North Atlantic basin from 1990-2009. Data is courtesy of the National Hurricane Center in Miami, FL, and plot is courtesy of Jon Moskaitis, Naval Research Laboratory, Monterey, CA.
Errors in the future prediction of TC track, intensity and structure in numerical prediction systems arise from imperfect initial conditions, the numerical discretization and approximation to the continuous equations, model physical parameterizations (radiation, cumulus, microphysics, boundary layer, and mixing), and limits of predictability. While improvements in numerical models should be directed at all of these aspects, in this chapter we are focused on the initial condition. The purpose of TC initialization is to give the numerical prediction system the best estimate of the observed TC structure and intensity while ensuring both vortex dynamic and thermodynamic balances. In this chapter, a review of different types of TC initialization methods for numerical prediction systems is presented. An overview of the general TC structure and challenges of initialization is given in the next section. In section 3, the direct vortex insertion schemes are discussed. In section 4, TC initialization methods using variational and ensemble data assimilation systems are discussed. In section 5, initialization schemes that are designed for improved initial balance are discussed. A summary is provided in section 6.
\n\t\tTropical cyclones come in a wide variety of different structures and intensities. Intensity is a measure of the strength of the TC, and is usually given in terms of a maximum sustained surface wind or the minimum central pressure. Structure is a measure of various axisymmetric and asymmetric features of the TC in three dimensions. Structure encompasses the outer wind structure (such as the radius of 34 kt wind), inner core structure (such as the radius of maximum winds, eyewall width and eye width), as well as various asymmetric features (inner and outer spiral rain bands, asymmetries in the eyewall, asymmetric deep convection, and asymmetries due to storm motion and vertical wind shear). Additionally, structure would encompass vertical variations in the TC (such as the location of the warm core and how fast the tangential winds decay with height). While there are some observations (particularly for horizontal aspects of the structure from remote satellite imagery), there are never enough observations to know the complete three-dimensional flow and mass field in the TC.
\n\t\t\tIn this section we outline some important structural aspects of the TC, including the basic axisymmetric and asymmetric structures that should be incorporated into the numerical model initial condition. An atmospheric state variable
\n\t\t\t\t\tFig. 2 shows the basic axisymmetric structure of a TC from a real case, Hurricane Bill (2009), obtained from the initial condition of (COAMPS®) numerical prediciton system\n\t\t\t\t\t \n\t\t\tCOAMPS® is a registered trademark of the Naval Research Laboratory
Azimuthal mean structure of the initial condition of Hurricane Bill (2009) in the Naval Research Laboratory\'s Coupled Ocean/Atmosphere Mesoscale Prediction System COAMPS®. Panels: a) tangential velocity (m s
Using the quasi-balance approximation, where the vorticity is much larger than the divergence, the
where
where
This equation states that a vortex in which
In the outflow and boundary layers, there exists significant divergent and convergence, respectively, such that the quasi-balance approximation is no longer valid. Therefore an appropriate initialization scheme for TCs should not only capture the primary axisymmetric tangential (azimuthal) circulation, but also the secondary circulation, including the boundary and outflow layers. Additionally, there must be a thermodynamic balance between the boundary layer inflow, rising air in deep and shallow convection, and upper level outflow.
\n\t\t\tIn order to illustrate some asymmetric features in TCs, Fig. 3 shows two hurricanes: Hurricanes Dolly (2008) and Alex (2010). Hurricane Dolly was very asymmetric in the inner-core region. Note the azimuthal wavenumber-4 pattern in the eyewall radar reflectivity. Hurricane Alex (2010) was also very asymmetric, and had a large spiral rainband emanating from the core, and no visible eye. The point illustrated here is that TCs come in a wide variety of shapes and sizes, and often have prominent asymmetric features. While there is some structure dependence on intensity (i.e., stronger TCs in general are more axisymmetric than weaker TCs), at any initial time a given TC may have very different structure, and the goal of the initialization system is to capture its true state. Remote satellite measurements generally give a decent estimate of the horizontal structure. In fact, microwave data has allowed the ability to see through visible and infrared cloud shields, giving improved estimates of the deep convection and precipitation. However, typically there is much less data about the vertical structure. For example, the boundary layer structure or convective and stratiform heating profiles of Alex\'s rainband would not generally be known. Due to the lack of observations in TCs, in TC initialization systems, aspects of the structure are often specified using estimated information from satellite images.
\n\t\t\t\tRadar and visible satellite imagery depicting asymmetric features in TCs. Hurricane Dolly (2008) (left panel) had asymmetries in the eyewall and rain bands. Hurricane Alex (2010) (right panel) had a large azimuthal wavenumber-1 spiral rain band propagating outward from the vortex center. The left panel is courtesy of the NOAA National Weather Service and the right panel is courtesy of the NOAA/NESDIS in Fort Collins, CO.
As discussed in the previous section, TCs are poorly observed, particularly in the inner-core region. The North Atlantic basin is the only basin that routinely has aircraft reconnaissance missions into storms when they are close to the U.S. southeast coastal regions. The aircraft reconnaissance missions can provide important inner-core structural data using airborne Doppler radar and dropwindsondes, as well as direct or remote measurements of surface wind speed and minimum central pressure. Due to the lack of observations of the inner-core structure of TCs, vortex bogussing has been used to improve the representation of the TC in numerical prediction systems. Generally speaking, vortex bogussing is the creation of a TC-like vortex that can be inserted into the initial fields of numerical models [28]. The direct insertion methods take a bogus vortex and insert it directly into the numerical model initial conditions. The bogus vortex can be generated in different ways, which are described below. The main strength of these methods is that the vortex is usually self-consistent. However, some weaknesses exist. First, there can be imbalances that may exist when blending the inserted vortex with the environments in the model analysis. Secondly, for weak TCs and TCs experiencing vertical shear, it is not desirable to insert a vertically stacked vortex into the initial conditions (which is often the case with bogus vortices). Additionally previous studies have shown strong sensitivity to the vertical structure of the bogus vortex, which is often not well observed [46].
\n\t\t\tAfter a bogus vortex is created, there needs to be a method to properly insert this vortex into the initial fields of the forecast model. The first guess fields (or the previous model forecast which is valid at the analysis time), usually will already contain a TC-like vortex from the previous forecast. However this vortex may have an incorrect position, intensity, and structure, and therefore it should be removed from model fields. Vortex removal and insertion methods require a number of steps. The common method, discussed by [26] is as follows. First, the total field (e.g., surface pressure) is decomposed into a basic field and disturbance field using filtering. Next, the vortex with specified length scale is removed from the disturbance field. Then, the environmental field is constructed by adding the non-hurricane disturbance with the basic field. Finally, the specified vortex can then simply be added to the environmental field. Schemes of this nature are widely used in operational tropical cyclone prediction models in order to improve the TC representation from the global analysis [27, 34, 50].
\n\t\t\tSince TCs are observed to largely be in gradient and hydrostatic balance above the boundary layer [49], one method is to insert a balanced vortex. Routine warning messages are generated by TC warning centers that include estimates of the maximum sustained surface wind, central pressure, and size characteristics (such as the radii of 34 kt winds). Using a function fit to the observed radial wind profile (e.g., a modified Rankine vortex or more sophisticated methods [19, 20]) along with a vertical decay assumption, one can obtain an axisymmetric tangential wind field in the radius-height plane. Following this, the mass field (temperature and pressure) may be obtained by solving the nonlinear balance equation in conjunction with the hydrostatic equation. Then this balanced vortex may be directly inserted into the model initial conditions, as a representation of the actual observed TC vortex. While this method is relatively straightforward, there are a few potential problems: (i) TC vortices are not balanced in the boundary and outflow layers, where strong divergence exists, and (ii) in convectively active regions of the vortex the hydrostatic balance assumption is not valid. It is possible to relax the strict balance assumptions above by building in the boundary layer and outflow structure diagnostically. The addition of boundary and outflow layers should reduce the amount of initial adjustment after insertion.
\n\t\t\tInstead of specifying a vortex (usually analytically) to represent a TC, another method is to spin-up a TC-like vortex in a numerical model in an environment with no mean flow, and then insert this vortex into the model initial conditions. This method is called a TC dynamic initialization method because the TC vortex is developed from numerical simulation of a nonlinear atmospheric prediction model with full physics that requires prior model integration. The benefits of such a procedure are that the numerical model will generate a more realistic structure for the boundary layer and the outflow layer, and the moisture variables can also be included. The TC dynamic initialization is usually accomplished through Newtonian relaxation. A Newtonian relaxation term is added to the right hand side of a desired prognostic variable (e.g., the tangential velocity or surface pressure) in order to anchor the vortex to the desired structure and/or intensity. The Geophysical Fluid Dynamics Laboratory hurricane prediction model uses an axisymmetric version of its primitive equation to perform the dynamic initialization to a prescribed structure [3, 26, 27]. Recent work has also shown encouraging results with the TC dynamic initialization method using an independent three-dimensional primitive equation model in conjunction with a three-dimensional variational (3DVAR) data assimilation scheme [18, 61]. In Fig. 4, a flow diagram is shown depicting a TC dynamic initialization method applied after three-dimensional variational (3DVAR) data assimilation, where TCs are spun up using Newtonian relaxation to the observed surface pressure. This procedure showed a positive improvement in TC intensity prediction, as average errors in maximum sustained surface wind and minimum central pressure were reduced at all forecast lead times.
\n\t\t\t\tApplication of a TC dynamic initialization scheme to a 3DVAR system, reproduced from [
The purpose of data assimilation is to produce initial states (analyses) for numerical prediction that maximizes the use of information contained in observations and prior model forecasts to produce the best possible predictions of future states. Most data assimilation methods use observations (e.g., in-situ and remote measurements) to correct short-term model forecasts (the first guess), and therefore the accuracy of the resulting analysis is not just a function of the data assimilation methodology, but the fidelity of the forecast model itself. This analysis is then used as the initial condition for the forecast model. In this section, we discuss the data assimilation strategies that incorporate observational data into the model for proper representation of TCs at the initial time.
\n\t\t\tIn the variational method, a cost function is minimized to produce an analysis that takes into account both the model and observation (including instrument and representativeness) errors. 3DVAR systems (or three-dimensional variational methods) solve this cost function in the three spatial dimensions, while 4DVAR (four-dimensional) systems add the temporal component in a set window. Generally speaking, most atmospheric observations are more applicable to the synoptic scale flow pattern, and often there are few (if any) observations of the inner-core of TCs or other mesoscale or small scale phenomena, aside from infrequent field campaigns. Yet even if these observations exist, it is not trivial to assimilate them while ensuring the proper vortex dynamic and thermodynamic balances.
\n\t\t\tThe replacement of optimal interpolation (OI) data assimilation scheme by the variational (VAR) method significantly improved the forecast skill of numerical weather prediction systems. The motivation originated from the difficulties associated with the assimilation of satellite data such as TOVS (TIROS-N Operational Vertical Sounders) radiances. It was shown by [31] that the statistical estimation problem could be cast in a variational form (3DVAR) which is a different way of solving the problem than the OI scheme which solves directly. The first implementation of 3DVAR was done at the National Centers for environmental Prediction (NCEP) [36] and later on at the European Center for Medium Range Weather Forecasting (ECMWF) [4]. Other centers like the Canadian Meteorological Centre [13], the Met Office [30], and Naval Research Laboratory [6] also implemented a 3DVAR scheme operationally.
\n\t\t\t\tThe common method for TC vortex initialization in 3DVAR systems is through the use of adding synthetic observations [15, 17, 29, 55, 65]. Synthetic observations are observations that are created from the estimates of the TC structure and intensity that come from tropical cyclone warning centers (such as the National Hurricane Center in Miami, FL, and the Joint Typhoon Warning Center in Pearl Harbor, HI), and give the best estimate of the storm position, intensity and structure. The synthetic observations are used to enhance the TC representation in the numerical model initial conditions, which generally cannot be adequately captured using the conventional observations. The synthetic observations themselves may be created by sampling a function that matches the observed vortex, and these observations are treated as radiosonde data with assigned proper position information and are included with all other observations and blended with the model first guess using the 3DVAR system. Generally speaking, the observation error is set very low with the TC synthetic observations in the assimilation process, so that the analysis process will largely retain these characteristics of the synthetic observations near the TC. A number of TC synthetic observations are shown for Typhoon Morakot (2009) in Fig. 5, which are ingested into the Naval Research Laboratory\'s 3DVAR scheme [6], reproduced from [29].
\n\t\t\t\tOne strength of 3DVAR systems is that synthetic or other TC observations from reconnaissance missions can be assimilated easily into the system. The main problem with using 3DVAR systems for TC initialization is that they generally do not have the proper balance constraints for mesoscale phenomena. Most 3DVAR systems have a geostrophic balance condition to relate the mass and wind fields, which is not valid for tropical cyclones and other strongly rotating mesoscale systems, where there exists a nonlinear balance between the mass and wind fields. The improper balance constraint for TCs in 3DVAR systems can result in rapid adjustment during the first few hours of model integration, causing the model vortex to deviate to a state that is very different from the initially ingested synthetic observations. This discrepancy will most likely be carried throughout the forecast period and can cause a large bias for intensity prediction. It has been recently demonstrated how quickly a 3DVAR system can lose the desired TC characteristics [61]. Additionally, it is very hard to use a 3DVAR data assimilation system to adequately capture the secondary circulation correctly, so as to have consistency between the boundary-layer inflow, vertical motion and heating, and outflow.
\n\t\t\t\tDepiction of near-surface TC synthetic observations for Typhoon Morakot (2009), reproduced from [
In addition to the synthetic data, dropwindsonde data from aircraft reconnaissance missions may also be included in variational data assimilation systems. Dropwindsondes measure a quasi-vertical profile of the troposphere from where they are launched. A number of studies have shown a positive impact of assimilating dropwindsonde data on TC track [47, 51]. However there can be significant variability on the impact on a case by case basis.
\n\t\t\tThe 4DVAR data assimilation system is a generalization of 3DVAR for assimilating observations that are distributed within a specified time window. The goal of 4DVAR is to significantly improve the 3DVAR deficiencies, especially in properly initializing a multi-scale weather system. Compared to 3DVAR, the 4DVAR analyses do not typically show a significant imbalance in the first hours of the forecast. This spin-up process is often associated with the presence of spurious gravity waves that need to be removed by an initialization process (discussed in the next section). A 4DVAR data assimilation system usually requires the development of the tangent linear model and corresponding adjoint system for the forecast model, which are not trivial, in order to iteratively minimize the difference between the first guess fields and the observation. 4DVAR data assimilation systems have been developed for major operation centers for their global prediction system and have led to improvements in forecast skill: ECMWF [40], the Canadian Meterological Centre [14], the U.K. Met Office [41], the Naval Research Laboratory [56], and the Australian Bureau of Meteorology. In some of the 4DVAR systems, synthetic observations are also ingested to improve the TC vortex representation, similar to 3DVAR systems.
\n\t\t\t\tAn example of an operational TC prediction model that uses a 4DVAR scheme for initialization is ACCESS-TC (Australian Community Climate and Earth System Simulator system for Tropical Cyclones), and a number of other studies have also employed 4DVAR systems for TC initialization [35, 52, 54, 63, 64]. For example, the utility of 4DVAR data assimilation in assimilating irregularly distributed observations in both space and time (such as AMSU-A retrieved temperature and wind fields, as well as the mean sea level pressure (MSLP) information) has been shown by [63]. Using a 72-hour simulation of a land-falling typhoon, they concluded that both the satellite data and the MSLP information could improve the typhoon track forecast, especially for the recurving of the track and landing point. The MM5-4DVAR data assimilation system developed by the Air Force Weather Agency (AFWA) [42] has been employed [62] with a comprehensive satellite products to construct a continuous-coverage, high-resolution TC dataset. Twelve typhoons that occurred over the western Pacific region from May to October 2004 were selected for this reanalysis. The resulting analysis fields show very similar structure of TCs in comparison with satellite observations, demonstrating the capability of 4DVAR in retaining the final structure of the data.
\n\t\t\tAnother four-dimensional data assimilation system, the ensemble Kalman filter (EnKF), has also been adopted for geophysical models [11, 21]. The Kalman filter, is an algorithm which uses a series of measurements observed over time (thus four-dimensional), produces estimates of unknown variables. More formally, the Kalman filter operates recursively on streams of noisy input data to produce a statistically optimal estimate of the underlying system state. The original Kalman Filter assumes that all probability density functions are Gaussian and provides algebraic formulas for the change of the mean and the covariance matrix by the Bayesian update, as well as a formula for advancing the covariance matrix in time provided the system is linear. However, maintaining the covariance matrix is not computationally feasible for high-dimensional systems. For this reason, EnKFs were developed that replace the covariance matrix by the sample covariance computed from the ensemble forecast. The EnKF is now an important data assimilation component of ensemble forecasting. An overview of the work done with the EnKF in the oceanographic and atmospheric sciences can be found in [12].
\n\t\t\t\tAn intercomparison of an EnKF data assimilation method with the 3D and 4D Variational methods was made using the Weather Research and Forecasting (WRF) model over the contiguous United States during June of 2003 [60]. It is found that 4DVAR has consistently smaller errors than that of 3DVAR for winds and temperature at all forecast lead times except at 60 and 72 h when their forecast errors become comparable in amplitude. The forecast error of the EnKF is comparable to that of the 4DVAR at the 12-36 h lead times, both of which are substantially smaller than that of the 3DVAR, despite the fact that 3DVAR fits the sounding observations much more closely at the analysis time. The advantage of the EnKF becomes even more evident at the 48-72 h lead times.
\n\t\t\t\tThe EnKF has recently been applied to the TC initialization problem [1, 9, 16, 44, 45, 48, 53, 58, 59]. The EnKF assimilation of inner-core data, such as airborne Doppler radar winds has shown some promising results with improving the vortex structure and intensity forecasts [1, 57]. In Fig. 6, the performance of an EnKF system for predicting TC intensity is shown for a sample of cases in which airborne Doppler radar data was assimilated, reproduced from [57]. As shown in the figure, average intensity errors were reduced by the EnKF assimilation of radar data. [53] used an ensemble Kalman filter (EnKF) to assimilate center position, velocity of storm motion, and surface axisymmetric wind structure in a high-resolution mesoscale model during the 24-h initialization period to develop a dynamically balanced TC vortex without employing any extra bogus schemes. The surface radial wind profile is constructed by fitting the combined information from both the best-track and the dropwindsonde data available from aircraft surveillance observations, such as the Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR). The subsequent numerical integration shows minor adjustments during early periods, indicating that the analysis fields obtained from this method are dynamically balanced. While the EnKF methods are appealing, due to its ensemble nature, it can be significantly more costly (in a computational sense) than the variational methods.
\n\t\t\tWhile the direct insertion and data assimilation techniques can produce estimates of the observed TC, inevitably imbalances will exist after interpolation and analyses procedures. As discussed earlier, the imbalances will typically be greater for the 3DVAR schemes than 4D schemes. The primary purpose of the initialization schemes is to improve the initial dynamic and thermodynamic balances of the TC, so that spurious gravity waves are filtered from the initial condition [5]. In this section, we discuss three widely used initialization schemes: nonlinear normal mode initialization, digital filters, and dynamic initialization.
\n\t\t\tMean absolute error (ordinate) in the maximum sustained surface wind versus forecast lead time (abscissa) in a homonegeous sample of cases with airborne Doppler radar data during 2008-2010. As shown the EnKF system which assimilates the radar data had a lower average intensity error than the offical National Hurricane Center forecast (OFCL) and other operational hurricane prediction models (GFDL and HWRF). Figure is courtesy of Fuqing Zhang, reproduced from [
Since an important goal of initialization to provide a balanced initial state from which minimum spurious gravity activity remains [5], methods have been specifically developed to remove such gravity waves from the initial conditions. An early strategy for removal of high frequency oscillations is the nonlinear normal mode method [2, 33, 43]. The eigenvalues of the linearized version of the nonlinear forecast model are the normal modes of the system. For a three-dimensional atmospheric model, these normal modes will encompass higher frequency sound and gravity waves, as well as lower frequency Rossby waves. The idea with the normal mode initialization is to project the analysis vector on to the slower modes in order to reduce gravity waves in the initialization.
\n\t\t\tAnother method to remove high frequency variability is the digital filter. Similar to the electronic analogue, the digital filter performs a mathematical operation on a time signal to reduce or enhance certain aspects of that signal. For atmospheric applications, this is usually accomplished using a filter that has a cutoff frequency, so that waves of a desired frequency can be removed from the analysis [32]. The benefits of the digital filter is that it is a straightforward way to remove waves of a certain frequency without changing the initial condition significantly [22]. The digital filter can be used in both adiabatic and diabatic modes.
\n\t\t\tDynamic initialization (DI) is a short-term integration of the full model before it actually starts the forecast integration to allow the forecast model to handle the spin-up issue. It usually includes two steps: adiabatic backward integration (i.e., to 6 hour) and diabatic forward integration to the initial time. During adiabatic backward integration, the model physics does not contribute to the tendency of the variables so that this process is quasi-reversible (except the effect of numerical diffusion). In the forward integration (i.e., from 6 hour to the actual initial time at zero hour), the model incurs diabatic process with Newtonian relaxation to some chosen variables so that the initial fields are close to the analysis without introducing small model error during the extra integration time. The idea here is, taking TC prediction as an example, that the 3DVAR procedure produced a reasonably accurate initial state, however, imbalances for TCs with their multiple scales will exist and they should be removed prior to the start of model integration. This process also allows for the build up of the boundary layer and secondary circulation of the TC. The forward DI can be accomplished by relaxation to any or a combination of the model prognostic variables at the analysis time. Of course, much care should be taken in choosing the proper combination. One commonly adopted DI procedure is to relax to the analysis horizontal momentum during the initialization period. DI can also be enhanced by separately relaxing to the nondivergent and divergent wind components, with different relaxation coefficients [7]. This is useful because the nondivergent winds are better captured by the 3DVAR analysis than the divergent winds, and allows for direct way of including relaxation to the heating profiles (which affect the divergent circulation). Various methods have used to incorporate the diabatic effects into the dynamic initialization procedure. These methods include modifying the humidity vertical profiles due to rain rate assimilation, physical initialization, and dynamic nudging to the satellite observed heating profiles [7, 23, 24, 25, 37, 38, 39]. As an example of an operational system, the Australian Bureau of Meteorology used a diabatic dynamic initialization scheme in their earlier tropical cyclone prediction system (TC-LAPS). The diabatic, dynamic initialization was used after a high-resolution objective analysis to improve the mass-wind balance of the vortex while building in the heating asymmetries [8].
\n\t\t\tThis chapter reviewed different methods for initializing TCs in numerical prediction systems. The methods range from simpler direct insertion techniques to more advanced dynamic initialization, and from three-dimensional to four-dimensional data assimilation techniques. The strengths and weaknesses of the different schemes were discussed. The direct insertion techniques take either an analytically specified vortex or a dynamically initialized vortex and insert it into the numerical model analysis. These schemes require removal of the TC vortex in the numerical model first guess or analyzed fields, which is often not at the right location or does not match the observations. The direct insertion schemes are appealing because a vortex can be constructed to match the observations, however, there is no guarantee that when inserting this vortex into the analysis that dynamic and thermodynamic balance will exist. In the data assimilation techniques for TC initialization, synthetic observations matching the observed TC structure and intensity are created, and a data assimilation system blends these observations with all other observations to generate the analysis. 3DVAR systems are not as well suited for the TC initialization due to its inability to produce a nonlinear balance between the mass and wind fields. 4DVAR and ensemble Kalman filter schemes show some promising results for TC initialization, in particular, in obtaining a better dynamic and thermodynamic balance, and in the case of the EnKF also providing probabilistic information by running an ensemble. Finally, full domain dynamic initialization (adiabatic and diabatic) techniques were discussed. These schemes are advantageous because they are relatively straightforward to implement, and they are able to produce better dynamic and thermodynamically balanced vortices without the development of the four-dimensional data assimilation.
\n\t\t\tThere are a number of significant challenges that remain for TC initialization. First, most TCs lack of observations needed to construct accurate structure for the storms. Only a handful of TCs in the North Atlantic Ocean basin have routine reconnaissance missions. No matter how advanced the initialization system is, it will always be limited by lack or uncertainty in the observations. Secondly, TCs span multiple scales of motion, ranging from turbulence to deep convective updrafts to vortex scale waves (e.g. vortex Rossby waves), to its interaction with the environments and synoptic scale features. While the synoptic scale is largely responsible for TC track, many of these smaller-scale features are important for intensity. These features are transient and unbalanced, leading to initialization challenges. Third, it is difficult to initialize TCs properly in different environments, such as a TC in shear or with dry air wrapping into its core. Finally, if TC intensity largely depends on deep convective evolution, there are inherent limits to predictability.
\n\t\t\tIn spite of these challenges, much progress has been made of the TC initialization front, and there are promising results from the EnKF, 4DVAR and dynamic initialization schemes. The recent trend in data assimilation is to combine the advantages of 4DVAR and the Kalman filter techniques. Considering the threat that TCs will continue to play, efforts must continue to develop enhanced initialization schemes along with the new technologies for data assimilation to better predict track and intensity.
\n\t\tThis research is supported by the Chief of Naval Research through the NRL Base Program, PE 0601153N. The authors thank Jim Doyle and Jon Moskaitis for their comments and assistance.
Hand Gestures play very significant roles in our day-to-day communication, and often they convey more than words. As technology and information are growing rapidly in every sector of our life, interaction with machines has become an unavoidable part of life. Thus, a deep urge for natural interaction with machines is growing all around [1, 2]. One of the biggest accomplishments in the domain of Hand Gesture Recognition (HGR) is Sign language recognition (SLR) where machines interpret the static hand posture of a human standing in front of a camera [3]. Recently, implementation of HGR-based automotive interface in BMW cars is very much appreciated. Here, five gestures are used for contactless control of music volume and incoming calls while driving [4]. Project Soli is the ongoing project of Google’s Advanced Technology; in this project a miniature radar is developed that understands the real-time motion of the human hand at various scales [5].
Hand gestures are very versatile as they comprise static as well as dynamic characteristics, physical as well as behavioral characteristics, for example, movement in any direction, fingers can bend to many angles. Hand skeleton has a complex structure with a very high freedom factor, and thus its two-dimensional RGB data sequence has unpredictable variations. Visual recognition of dynamic hand gestures is complex because the complete process requires the determination of hand posture along with a cognitive estimation of the trajectory of motion of that posture [3, 6, 7, 8, 9]. Due to these intricacies to date, vision-based HGR applications mainly dominate with static hand gesture recognition.
In context with computer vision and pattern recognition, a human hand is described as a biological target with a complex structure. Uneven surface, broken contours, and erratic pattern of movement are some of the natural characteristics that complicate DHGR [10]. Thus, in comparison to the other commonly tracked moving object, a hand is a non-rigid subtle object and covers a very small area in the image frame. The scientific challenges accompanied in the online tracking of the hand region in an unconstrained environment in RGB images captured using a simple camera are categorized as follows: [3, 4, 6, 7, 8, 9, 10, 11].
Intrinsic Challenges: Intrinsic challenges are related to a target that is “Hand” physical and behavioral nature. The features such as
Hand Appearance: The number of joints in the hand skeleton, the appearance of the same hand posture has a large variation, known as shape deformation. Different postures have a wide difference in occupancy area in an image frame, and some postures only cover 10% of the image frame, which is a very small target size in computer vision. In a real-time unconstrained environment, the two-dimensional (2-D) posture shows large variation during movement.
Manner of Movement: There is a large diversity among human beings in performing the gesture of the same meaning, in terms of speed and path of movement. The moving pattern of the hand is erratic, irregular, and produces blur in the image sequence. Furthermore, the two-dimensional data sequence of a moving hand is greatly affected by background conditions, thus tracking and interpretation of dynamic hand gestures are a challenging task in the HGR domain. The unpredictable variation in target trajectory makes the detection and classification process complex in pattern recognition.
Extrinsic Challenges: These challenges mainly arise due to the environment in which the hand movement is captured. Some of the major factors that deeply impact the real-time visual tracking of the dynamic hand gestures are as follows:
Background: In the real-time HGR applications, backgrounds are unconstrained, we cannot use fixed background models to differentiate between the foreground and the background. Thus, the core challenge in the design of a real-time hand tracking system is the estimation of discriminative features between background and target hand posture.
Illumination: Illumination conditions in real-time applications are uneven and also unstable. Thus, 2-D (two-dimensional) projection of the 3-D (three-dimensional) hand movement produces loss of information in RGB images. This loss is the major reason for errors in the visual tracking of hand movement.
Presence of other skin color objects in the surroundings: The presence of objects with similar RGB values such as the face, neck, arm, etc., is the serious cause for track loss in the RGB-based visual tracking techniques.
There are four main components in cognitive recognition of dynamic hand gestures [3, 10, 11, 12].
Data Acquisition.
Interest Region Detection.
Tracking of Interest Region.
Classification of Trajectory.
In Dynamic Hand Gesture Recognition (DHGR), acquisition of signals plays a very important role in deciding the technique to recognize and deduce the hand pattern into meaningful information. Contact-based sensors and contactless sensors are two main types of sensors to acquire hand movement signals. Contact-based sensors are those sensors that are attached to the body parts of a user example. Data gloves are hand gloves, accelerometers are attached the arm region, and egocentric sensors are put on the head to record hand movement. Wearable sensor devices are equipped with inertial, magnetic sensors, mechanical, ultrasonic, or barometric [7]. Andrea Bandini et al. [13], in their survey, presented many advantages of egocentric vision-based techniques as they can acquire hand signals very closely. Although the contact-based techniques require fewer computations, but wearing these devices gives uneasiness to the subject. Due to the electrical and magnetic emission of signals, it is likely to produce hazardous effects on the human body.
Contactless sensors or vision-based sensor technology is becoming encouraging technology to develop natural human-machine interfaces [1, 2, 3, 4, 14]. These devices consist of visual sensors, with a single or a group of cameras situated at a distance from the user to record the hand movement. In vision-based methods, the acquired data is image type, a user does not have to wear any devices, and he can move his hand naturally in an unconstrained pattern. The important assets of vision-based techniques are large flexibility for users, low hardware requirements, and no health issues. These methods have the potential to develop any natural interface for remote human-machine interaction, this can ease the living of physically challenged or elderly people with impaired mobility [2, 9, 15].
In vision-based methods, the information is two-dimensional, three-dimensional, or multiview images. Two-dimensional images are RGB images with only intensity information about the object, captured using simple cameras and. Three-dimensional images are captured from advanced sensor cameras such as Kinect, Leap Motion, Time of flight, etc.; these cameras collect RGB along with depth information of the object in the scene. The third and the most popular choice in HGR is multiview images; here two or more cameras are placed at different angles to capture the hand movement from many views [3, 6, 8].
Wang J. et al. [16] used two calibrated cameras to record hand gestures under stable lighting conditions. They initially segmented the hand region using YCbCr color space and then applied SIFT algorithm for feature extraction. After then, they tracked using Kalman Filter. But due to similarity with other objects, the author imposes position constraints to avoid track loss.
Poon G. et al. [17] also supported multiple camera setups that can observe the hand region from diversified angles to minimize the errors due to self-occlusion. They proposed three camera setups to recognize bimanual gestures in HGR. Similarly, Bautista A.G. et al. [18] used three cameras in their system to avoid complex background and illumination. Marin G. et al. [19] suggested combining Kinect data with Leap motion camera data to exploit the complementary characteristics of both the cameras. Kainz O. et al. [20] combined leap motion sensor signals and surface electromyography signals to propose a hand tracking scheme.
Andreas Aristidou discussed that high complexity in hand structure and movement make the animation of a hand model a challenge. They preferred a marker-based optical motion capture system to acquire the orientation of the hand [21]. With the same opinion, Lizy Abraham et al. [22] placed infrared LEDs on the hand to improve the consistency of accuracy in tracking. According to the study conducted by Mais Yasen et al. [9], surface electromyography (sEMG) as wearable sensors and Artificial Neural Network (ANN) as classifiers are the most preferable choices in hand gesture recognition.
The important factor in HGR is that information obtained using a monocular camera is not sufficient to extract the moving hand region. The loss of information in RGB images is maximum due to unpredictable background, self-occlusion, illumination variation, and erratic pattern of the hand movement [8, 10, 14].
The second component in the design of DHGR is description of the region of interest or “target modeling.” In this section, features that are repetitive, unique, and invariant to general variations, e.g., illumination, rotation, translation of the hand region are collected. These features model the target of tracking and are responsible for detecting and localizing the target in all frames of a video. This step is very significant because it helps to detect the target in an unconstrained environment [10, 12].
Li X. et al. [12] presented a very detailed study of the building blocks of visual object tracking and the associated challenges. They stated that effective modeling of the appearance of the target is the core issue for the success of a visual tracker. Practically, effective modeling is greatly affected by many factors such as target speed, illumination conditions, state of occlusion, complexity in shape, and camera stability, etc. Skin color features are the most straightforward characteristic of the hand used in the HGR domain to identify the hand region in the scene. Huang H. et al. simply detected skin color for contour extraction and then classified them using VGGNet [23]. M. H. Yao et al. [24] extracted 500 particles using the CAMShift algorithm for tracking the moving hand region. In this case, the real-time performance of the HGR system decreases when a similar color object (face or arm region) interferes. As the number of particles increases the complexity of the system increases. The HGR technique proposed by Khaled H. et al. [25] emphasized the use of both shape and skin color features for hand area detection because of background conditions, shadows, visual overlapping of the objects. They stated that noise added due to camera movement is one of the major problems in real-time hand tracking. Liu P. et al. [26] proposed a single-shot multibox detector ConvNet architecture that is like Faster R-CNN to detect hand gestures in a complex environment. Bao P. et al. [27] expressed that since the size of hand posture is very small, therefore misleading behavior or the overfitting problem becomes prominent in regular CNN.
In the method discussed in [10], we have shown that though the local representation of the hand is a comparatively more robust approach to detect the hand region, but they often suffer from background disturbance in a real-time tracking. In general, hand-crafted features result in large computations and loss of trajectory visual while tracking in real-time hand movement is very common. Henceforth, it is difficult for hand-crafted features to perfectly describe all variations in target as well as background [10, 12]. According to Shin J. et al. [28], the trackers that visually trace the object, based on appearance and position, must have a high tolerance for appearance and position. Tran D. et al. [29] initially detected the palm region from depth data collected by Kinect V2 skeletal tracker followed by morphological processing. They determined hand contour using a border tracing algorithm on binary image converted using a fixed threshold. After detecting fingertip by K-cosine algorithm, hand posture is classified using 3DCNN.
Matching of hand gesture trajectory is another important phase in the cognitive recognition of DHGR. The main constrain in generating similarity index in HGR is the speed of hand motion and the path of movement. Both these factors are highly dependent on the user’s mood and surrounding conditions at the instant of movement. Similarity matching based on distance metrics generally fails to track efficiently as hand gestures of the same meaning do not follow the same path always.
Dan Zhao et al. [30] used a hand shape fisher vector to find the movement of the finger and then classified it by linear SVM. Plouffe et al. [31] proposed Dynamic Time Wrapping (DTW) to match the similarity between target and trained gesture. In [32], a two-level speed normalization procedure is proposed using DTW and Euclidean distance-based techniques. In this method, for each test gesture, 10 best-trained gestures are selected using the DTW algorithm. Out of these 10 gestures, the most accurate gesture is selected by calculating Euclidean distance. Pablo B. et al. [33] suggested a combination of the Hidden Markov Model (HMM) and DTW, in the prediction stage.
The proposed system is designed by using a web camera; it is a simple RGB camera. The use of the RGB camera is limited in the field of hand gesture tracking because of various difficulties as discussed above (Figure 1).
Architecture of the proposed system.
The proposed system is divided into three modules:
This module is also known as the “hand detection module.” Here the posture of the hand, which is used by the user in real-time hand movement events, is detected. When the user moves his hand in front of the web camera attached to any machine acquires a video of 5–6 seconds at a rate of 15 frames per second. This video comprises a raw data sequence of length 100–150 frames; it is saved in a temporary folder, resizing all the frames to size [240, 240]. In this module, detection of an online Active Hand Template (AHT) is made using Faster Region-based Convolutional Neural Network (Faster R-CNN).
We have proposed the design of an online hand detection scheme (AHT) using Faster Region-based Convolutional Neural Network (Faster R-CNN) [34], on Residual Network (ResNet101) [35], a deep neural architecture. Three major issues that are encountered in online tracking of hand motion captured using simple cameras are as follows:
A hand is a versatile object in comparison with other objects. The area occupied in the image frame has a high variation that depends on the posture selected.
It is not fixed that the subject starts the motion from the first frame or the fixed position in the frame.
Anthropometric and scale variation in the hand are very prominently seen during hand movement in RGB images.
Thus, the essential requisite of any technique is to cope with the abovementioned factors. In the proposed method, these issues are solved by using Faster-RCNN, a Deep Neural Network (DNN) architecture. Deep learning algorithms (DLAs) are models for a machine to learn and execute any task as human beings perform. Deep networks directly learn features from raw data by exploiting local information of the target, with no manual extraction or elimination of background. Convolutional Neural Network (ConvNet) is a powerful tool in the computer vision field that mainly deals with images.
Ren S. et al. [34] modified fast RCNN to Faster Region-based Convolutional Neural Network (Faster R-CNN). They added a region proposal network (RPN) (a separate CNN network) that simultaneously estimates objectness score and regresses the boundaries of the object using the anchor box concept.
The architecture of the proposed Faster R-CNN developed on ResNet 101 is shown in Figure 2. Region Proposal Network (RPN) is an independent small-sized ConvNet, designed to directly generate region proposals from an image of any size without using a fixed edge box algorithm. The process of RPN is shown in Figure 3; here region proposals are generated from the activation feature map of the last shared convolutional layer between the RPN network and Fast-RCNN. It is implemented with an
The architecture of the proposed faster R-CNN.
Process in RPN.
Anchor boxes are bounding boxes with predefined height and width to capture the scale and aspect ratio of the target object. There are pyramids of anchors. The anchor-based method is translation invariant and detects objects of multiple scales and aspect ratios. For every tiled anchor box, the RPN predicts the probability of object, background, and intersection over union (IoU) values. The advantage of using the anchor boxes in a sliding window-based detector is to detect, encode, and classify the object in the region in a single process [34].
The design of the proposed Faster-RCNN technique is accomplished on Residual network (Resnet) resnet 101. Resnet architecture network was proposed in 2015 by Kaiming He et al. [35], to ease the learning process in a deeper network. They exhibited that a resnet architecture eight times deeper than VGG16 still has less complexity in training on ImageNet dataset. The proposed use of resnet 101 in the design of Faster R-CNN solves the complex problems in object classification by using a large number of hidden layers without increasing the training error. Furthermore, the network does not have a vanishing and exploding gradient problem because of the “skip connection” approach.
This module handles the feature extraction process of the AHT that helps in the continuous localization of the moving hand region. Our method processes a hybrid framework that combines Scale Invariant Feature Transform (SIFT) and Faster-RCNN. A framework with hybrid characteristics is selected because in real-time movement, the geometrical shape of any posture changes many times, and thus it is difficult to detect the moving hand region with only hand-crafted features i.e., SIFT. Whenever the posture is changed above the threshold (number of matched features <= 3), then AHT is determined using Faster R-CNN, and the previous AHT is updated with new AHT. During this process, a bounding box is also constructed around the centroid of the hand movement to determine the current two-dimensional area covered by the hand region.
In motion modeling, we have used SIFT algorithm designed by David Lowe [36], for local feature extraction of AHT. As compared with global features such as color, contour, texture, local features have high distinctiveness, better detection accuracy toward local image distortions, viewpoint change, and partial occlusion. Therefore, SIFT detects the object in the cluttered background without performing any segmentation or preprocessing algorithms [36, 37]. The combination of SIFT and Faster-RCNN is helpful in real-time fast-tracking of the non-rigid subtle object hand.
SIFT algorithm comprises of feature detector as well as a feature descriptor. In general, features are high-contrast areas example point, edge, or small image patch, in an image. These features are extracted such that they are detectable even in noise, scale variation, and during the change in illumination. Each SIFT feature is defined by four parameters:
In our approach, we find the SIFT features of the AHT template obtained in module-I, since it contains only the target hand posture and is small as compared with the image frame [240, 240]. Therefore, this approach saves time in matching unnecessary features and pruning them further [20, 21].
Let there be m key features in AHT frame, given as
Initially, we find the first nearest neighbors (FNN) of all the SIFT features in AHT with SIFT features in the current frame. The First Nearest Neighbors (FNNs) are defined as the pairs of key points in two different frames with a minimum sum of squared differences for the given descriptor vector
where
In the second step, matching is improved by performing Lowe’s Second Nearest Neighbor (SNN) test using Eq. (2).
SNN test is done by calculating the ratio between the FNND of
Further to find the geometrically consistent points, we apply the geometric verification test (Eq. (3)) on the key points obtained after SNN.
Here
This module deals with the cognitive recognition of the trajectory. Here the cognitive recognition means vision-based intellectual development of machine for the interpretation of hand movement. Because hand movements do not have a fixed pattern, by nature movement patterns are erratic. Due to this characteristic, till now static hand gesture recognition is more preferred than dynamic hand gesture recognition. We have determined the centroids of hand location in the tracked frames. To derive the meaning of hand movement, we have used the modified back-propagation Artificial Neural Network (m-BP-ANN) Match of test trajectory to train database. This cognitive stage is very significant for DHG because the way we collect and transform the centroid of hand movement
We have made use of the concept of the quadrant system of the Cartesian plane to transform the image frame into a 2-D plane. The two-dimensional Cartesian system divides the plane of the frame into four equal regions called Quadrants. Each quadrant is bound by two half-axes, with the center in the middle of a frame. The translation of the image frame axis to a Cartesian axis is done using Eqs. (4) and (5):
Here
Back-propagation (BP) is a supervised training procedure in feed-forward neural networks. It works on minimizing the cost function of the network using the delta rule or gradient descent method. The value of the weights with which we obtain the minimum cost function is the solution for the given learning problem. The error function
The minimization of the error function is carried out using gradient descent or delta rule. It determines the amount of weight update based on gradient direction along with step size. It is given by Eq. (7):
In the traditional BP, the optimization of the multidimensional cost function is difficult because step size is fixed, since the performance parameters are highly dependent on the learning rate
The term momentum (
In the proposed prototype, we have developed eight vision-based commands to operate and machine remotely by showing hand gestures. The proposed model of ANN has three layers, input layer, hidden layer, and output layer as shown in Figure 4. The input layer has 4 neurons, the hidden layer has 10 neurons, and the outer layer consists of 8 neurons.
Architecture of the proposed ANN model.
In this research work, we have taken three hand postures (as shown in Table 1) to demonstrate the vision-based tracking efficiency of our proposed concept. It is the unique feature of this work as most of the techniques demonstrate tracking of hand movements performed by a single posture [32]. For consolidated evaluation, we have taken approximately 100 data sequences captured in different environments as shown in Figure 5. Our database is a collection of publicly available dataset [32] and self-prepared data sequence. In [32], hand movements are mainly performed by a single hand posture (Posture III as shown in Table 1) and in a constrained laboratory environment.
Dataset for training faster R-CNN.
In self-prepared dataset, we have collected hand movements performed by six participants of three different age groups: two kids (age 10–16 years), two adults (age 20–40 years), and two seniors (age 65 years). In this, the hand movement is carried out using three different postures (as illustrated in Table 1), in linear as well as circular pattern. In self-collected dataset, 15 frames per second are taken through the web camera, and gesture length varies from 120 to 160 frames.
The evaluation of the proposed online adaptive hand tracking methodology is carried out on four test parameters. The methodology is also compared with the contemporary techniques that are based on RGB images or webcam images. The four test parameters are as follows:
Accuracy in hand detection in real-time complex images, i.e., video is captured in unconstrained background and covers natural variations occurring in geometrical contour of the postures.
Parametric evaluation of the proposed Faster R-CNN on resnet101 architecture on training and validation data.
The efficiency of a hybrid tracking system in complex environment.
Effectiveness of cognitive recognition of hand trajectory as machine command.
Figure 6 demonstrates the outcome of the hand recognition stage of different data sequences captured (using three hand postures demonstrated in Table 1) in different backgrounds under d
Various outcomes of module-I (simple background, complex background, the subject is also visible in camera range).
ifferent illumination conditions. To test the accuracy of the hand detection scheme in recognizing the hand region, we have considered nearly all possible combinations: only the hand is visible in the camera view, subject face along with arm region is in the camera view, illumination conditions are unstable, background has same color as the hand region, etc. Thus, the hand detection results in Figure 6 illustrate the following distinguishing key features of our proposed system:
Large diversity is present in hand shape and sizes also, the same posture differs in geometrical shapes and area of coverage in the image frame. Our technique does not require any foreground and background modeling. It detects the hand region by automatic learning, the discriminative deep features of the hand postures.
The subject’s state of mind at the instance of hand movement is not alike. Thus, it is not necessary that the hand is completely visible from the first frame. Our technique is not affected by the location from which the user starts their motion, it is also unaffected by the face region or other body parts of the user present in the data sequence.
The proposed hand detection module, developed on Faster R-CNN architecture, has been evaluated on the following parameters:
Accuracy: It is the parameters by which the network is evaluated and selected. It gives the count of accurate predictions.
Loss: The loss curve is the most useful diagnostic curve that accounts for variation in the predicted and actual value. Loss information helps to learn the optimization behavior of the model parameters.
Model Behavior: It talks about the learning behavior of the model. Learning pattern helps to diagnose the character of the train or validation dataset concerning the problem domain.
Root Mean Square Error (RMSE): It calculates the standard deviation between the actual value and the predicted value. The RMSE is applied in regression analysis and classification of the predicted bounding box with the ground truth bounding box. It is calculated during the training process for both train data and validation data.
Table 2 illustrates detailed performance outcomes of the proposed Faster R-CNN based on the abovementioned parameters. The observations are taken at intervals of 50, 100, 150, 200, 220 iterations. The outcomes illustrate following points of our proposed architecture on Faster R-CNN constructed on resnet101:
As the number of iterations increases, the accuracy of train data increases, and it reaches the maximum value at the 200th iteration.
Validation data achieve the maximum accuracy at 220th iterations.
There is a linear decrement in the RMSE and the loss values of both the train and validation dataset. This linear decrement reflects the stable learning behavior of the proposed model.
It is observed that at the 200th iteration, RMSE and loss of train data reached at its minimum value of 0.14 and 0.154, respectively. Similarly, in the case of the validation dataset, the value of RMSE and loss reached their minimal at the 200th iteration.
Types of postures used in the proposed system.
No. of iteration | Train data accuracy | Validation data accuracy | Train data RMSE | Validation data RMSE | Train data loss | Validation data loss |
---|---|---|---|---|---|---|
1 | 30.24 | 78.26 | 0.23 | 0.22 | 2.9331 | 2.2522 |
50 | 97.07 | 98.80 | 0.19 | 0.19 | 0.9396 | 0.6902 |
100 | 98.32 | 98.87 | 0.15 | 0.19 | 0.4791 | 0.6049 |
150 | 99.03 | 98.85 | 0.16 | 0.17 | 0.2671 | 0.5956 |
200 | 99.07 | 97.86 | 0.14 | 0.17 | 0.1544 | 0.55544 |
220 | 98.92 | 98.76 | 0.17 | 0.17 | 0.2052 | 0.6262 |
Outcomes in the training process of the proposed faster R-CNN model.
Based on above outcomes, the characteristic features of the proposed trained resnet101 are:
Accuracy: 98.76%
Loss: 0.17
The behavior of the Network: Well fit.
In this section, we have evaluated the tracking efficiency of our proposed hybrid method. The data sequences captured are of variable length ranging from 100 to 150 frames. Figure 7 shows results of tracking in different data sequences, approximately 10–12 frames of each data sequence are shown here to highlight the tracking efficiency of module II. Each frame is illustrated by its frame number, a yellow box enclosing the hand region and a yellow dot inside the yellow box represent the instant position of the centroid of the hand region. Figure 7(a) shows the tracking of P-I posture in a cluttered background. This data sequence is captured in a background that has many similar colored objects as that of the hand. Our proposed system discriminates and localizes the hand region efficiently due to the robust deep feature learning capability of our hybrid tracking system. It is also noticeable that the hand is properly identified even when the hand region was blurred due to sudden erratic movement by the subject as shown in frame 99 of the data sequence.
Tracking outcomes of different data sequence are shown in (a), (b), (c), and (d) shows the cognitive recognition of hand movement in (c).
Figure 7(b) displays the tracking results of the P-III hand posture in improper illumination conditions. It can be noticed that in Figure 7(a) and (b), the FoS are frame 3 and frame 15, respectively. This data sequence is mainly affected by the color reflection of the background wall, and thus, it is visible that the edges of the P-III posture are nearly mixed with the background in some frames.
Figure 7(c) demonstrates the tracking results of a data sequence [32] in which a teenage girl is moving her hand (posture P-III) in front of her face. It is noticeable that the hand region and face region nearly overlap in frame 17. The fast change in the hand position in the frames indicates that the subject is moving her hand in a speedy manner. The change in the distance between the two positions of the hand frame 45 to frame 59 along with the change from a clear image of the hand region to the blurred image of the hand image proves the fast movement of the hand. During the movement, the subject is also changing the orientation of the hand posture as can be seen from the frames 59, 73, 80, 87.
Cognitive efficiency means the development of the semantic between the trajectory of the dynamic hand gestures and machine command. Since, hand gestures do not follow a fixed line of movement to convey the same meaning. Therefore, syntax formation to match train data and test data is a challenge. Hence, the main limitation in DHGR is the development of a process that can convert the trajectory of hand movement to machine command. Our proposed method handles this difficult challenge in a schematic manner.
In our proposed technique, we have developed eight vision-based commands “INSTRUCTION 1–8” (abbreviated as INT-1 to INT-8). For the vision-based instruction, we have drafted a process to convert trajectory of the hand movement obtained in module-II to a machine command by using Cartesian plane system as illustrated in Figure 8.
Conversion of trajectory of hand movement to machine command.
Figure 7(d) illustrates the process in developing cognitive ability to recognize hand movement by the machine. This process consists of three steps: (i) trajectory plot of the hand movement, (ii) position of start and end point in Cartesian plane, and (iii) conversion to machine command. Figure 7(d) demonstrates the results of the cognitive recognition of a data sequence shown in Figure 7(c) [32]; here an adult girl moves her hand from right to left and the machine recognizes this movement as command 7.
Figure 9(a) shows tracking results of P-III posture performed by a teenage boy. In this data sequence, we can notice that scale change of the hand region is very prominent (as the size of the hand region is continuously changing from frame to frame). The posture area is big in frame 37, and it gradually decreases till frame 147. This indicates the distance between the subject’s hand and the camera, it is minimum in frame 37 and maximum at frame 147. Figure 9(b) displays the result of cognitive recognition of the trajectory in the three steps in trajectory to command interpretation of left initiated data sequences The movement starts from the bottom left, moves in a zigzag manner, and finally reaches close to the initial starting place. The PoS and end location of this sequence both are in the third and fourth quadrant respectively; thus, “INSTRUCTION 8” is generated through this hand movement.
Tracking results of P-III posture performed by a teenage boy. (b) Cognitive recognition of hand movement.
In this section, we compare our process and results with two different approaches used recently in the field of DHGR. In the first approach [32] technique utilizes true RGB images. This approach mainly involves hand-crafted features for hand detection and tracking. The research work conducted by Singha J. et al. [32] focused on only fist posture tracking in a fixed background, they have achieved 92.23% efficiency when no skin color object is present in the surroundings. One of the prominent limitations in their approach is that they have applied sequence of algorithms for precise detection of hand region. This method is complex and unsuitable for real-time implementation of DHGR.
In the approach proposed by Tran DS et al. [29] for fingertip tracking, depth coordinates of fingertip provided by the inbuilt software of the advanced sensor-based camera are directly used. According to the researchers, RGB camera images are largely affected by illumination variation, and thus, to avoid background and illumination complexities in DHGR, they utilized RGB-D data sequences captured through the Microsoft Kinect V2 camera. It is a skeletal tracker camera that provides the position of 25 joints of the human skeleton including fingertips. This method is designed for tracking only seven hand movements comprised of 30–45 frames in three fixed backgrounds; besides, subjects are also trained to perform correct hand movement. In this research work, each frame is allotted an individual 3DCNN for classification. Thus, the experiments can perform fingertip tracking only for short gesture length. The training time of the 3D CNN is 1 hr. 35 minute with a six-core processor of 16GB RAM, which indicates the complex architecture of the technique. The accuracy of the trained 3D CNN model is 92.6% on validation data. Table 3 illustrates and compares different technical aspect of the above two mentioned approaches with our proposed method:
Parameters | Research work-I (2018) [36] | Research work-II (2020) [29] | Proposed research work |
---|---|---|---|
Camera/Image type | Simple webcam/RGB | Microsoft Kinect Sensor version 2/depth, | Webcam/RGB |
Preprocessing | Face segmentation using ViolaJones and the background subtraction using skin filtering | Noise Removal using median filtering and morphological processing. Conversion to binary image | Not Required |
Initial stage-Hand detection | Three frames differencing on colored and grayscale images. | Hand Contour is extracted using Moore -Neighbor algorithm. Fingertip extraction using K-cosine algorithm. | Designed Faster-RCNN constructed on ResNet101. Used region-based network (RPN) for defining hand region. |
Feature Extraction | Eigen features of the detected hand region. Remove unwanted features using compact criteria | Position of Fingertip calculated through inbuilt software of the camera. | SIFT feature extraction of AHT |
Tracking methods | KLT features followed 44 features matching by compact criteria | For each frame, a 3D CNN is allotted. | Combination of Faster RCNN with SIFT algorithm. |
Classification | Results of ANN, SVM, kNN classifiers are fused to get the final classified value | Ensemble learning to generate a final probability for classification | Using ANN with Cartesian quadrant system. |
Background to conduct experiments | Fixed laboratory environment without any skin color object | Three fixed backgrounds | Any real-time background. |
Accuracy of Methodology | 92.23% | 92.60% | 95.83% |
Limitations | KLT features get reduced in subsequent frames. | (i) Preprocessing is required (ii) For each frame separate 3D CNN is required this makes the system slow. (iii) fixed gesture length of 20 frames. | Initially trained for five gestures and can be extended for many more postures |
Comparative analysis of two recent methods with the proposed methodology based on different parameters.
This research work presents solutions to many crucial and unresolved challenges in vision-based tracking of hand movement captured using a simple camera. The methodology has the potential to provide a complete solution from hand detection to tracking and finally for cognitive recognition of trajectory to machine command for contactless Human-Machine interaction via dynamic hand gestures. Since the proposed design is implemented around a single RGB webcam, thus the system is economical and user-friendly. The accuracy achieved in the online and adaptive hand detection scheme with Faster R-CNN is 98.76%. The proposed hybrid tracking scheme exhibits high efficiency to adapt scale variation, illumination variation, and background conditions. It also exhibits high accuracy when camera is in motion during the movement. The overall accuracy achieved by our proposed system in complex conditions is 95.83%.
The comparative analysis demonstrates that our system gives users the freedom to select posture and to start the hand movement from any point in the image frame. Also, we do not impose any strict conditions in terms of geometrical shape of any posture. The hybrid framework and cognitive recognition features of our proposed method give a robust solution to classify any hand trajectory in a simple manner. This feature has not been discussed in any existing technique working with RGB images till date. The cumulative command interpretation efficiency of our system in real-time environment is 96.2%. The various results justify the “online” hand detection and “adaptive” tracking feature of the proposed technique. In the future, the method can be further extended to track multiple hand movements.
No funding is received
At IntechOpen, we not only specialize in the publication of Book Chapters as part of our Edited Volumes, but also the publication and dissemination of longer manuscripts, known as Long Form Monographs. Monographs allow Authors to focus on presenting a single subject or a specific aspect of that subject and publish their research in detail.
\n\nEven if you have an area of research that does not at first sight fit within a previously defined IntechOpen project, we can still offer support and help you in publishing your individual research. Publishing your IntechOpen book in the form of a Long Form Monograph is a viable alternative.
",metaTitle:"Publish a Whole Book",metaDescription:"At IntechOpen, we not only specialize in the publication of book chapters as part of our Edited Volumes, but also the publication and dissemination of long form manuscripts, known as monographs. Monographs allow authors to focus on presenting a single subject or a specific aspect of that subject and publish their research at length.\n\nPerhaps you have an area of research that does not fit within a previously defined IntechOpen project, but rather need help in publishing your individual research? Publishing your IntechOpen book in the form of a long form monograph is a great alternative.",metaKeywords:null,canonicalURL:"/page/publish-a-whole-book",contentRaw:'[{"type":"htmlEditorComponent","content":"MONOGRAPH - LONG FORM MANUSCRIPT
\\n\\nFORMATS
\\n\\nCOST
\\n\\n10,000 GBP Monograph - Long Form
\\n\\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'MONOGRAPH - LONG FORM MANUSCRIPT
\n\nFORMATS
\n\nCOST
\n\n10,000 GBP Monograph - Long Form
\n\nThe final price includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applied in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister brand, Ulatus, which is one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work to readers from across the globe in a language they understand. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book and their high degree of linguistic and subject expertise enables them to deliver a superior quality output.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation services. To find out more information or obtain a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their work. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nFor a complete overview of all publishing process steps and descriptions, go to How Open Access Publishing Works.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish",topicId:"8,11,9"},books:[{type:"book",id:"11930",title:"Reliability-Based Design in Structure and Geotechnical Engineering",subtitle:null,isOpenForSubmission:!0,hash:"63cb9ce2478d12b0649b47deaab8ab56",slug:null,bookSignature:"Dr. Faham Tahmasebinia",coverURL:"https://cdn.intechopen.com/books/images_new/11930.jpg",editedByType:null,editors:[{id:"211659",title:"Dr.",name:"Faham",surname:"Tahmasebinia",slug:"faham-tahmasebinia",fullName:"Faham Tahmasebinia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11921",title:"Web Development for User Interface, Data Visualization, and Visual Analytics",subtitle:null,isOpenForSubmission:!0,hash:"03f436c075bce593edf126475e69a478",slug:null,bookSignature:"Dr. Tommy Dang and Dr. Vung Pham",coverURL:"https://cdn.intechopen.com/books/images_new/11921.jpg",editedByType:null,editors:[{id:"335450",title:"Dr.",name:"Tommy",surname:"Dang",slug:"tommy-dang",fullName:"Tommy Dang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11935",title:"Oil Spills",subtitle:null,isOpenForSubmission:!0,hash:"8ef4f1400c5e99e53d93847aaf92216b",slug:null,bookSignature:"Prof. Prof.Dr. Maged Marghany",coverURL:"https://cdn.intechopen.com/books/images_new/11935.jpg",editedByType:null,editors:[{id:"96666",title:"Prof.",name:"Prof.Dr. Maged",surname:"Marghany",slug:"prof.dr.-maged-marghany",fullName:"Prof.Dr. Maged Marghany"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11520",title:"Direct Torque Control",subtitle:null,isOpenForSubmission:!0,hash:"6504dee75dbbfd7792308293a8f1a27f",slug:null,bookSignature:"Prof. Moulay Tahar Lamchich",coverURL:"https://cdn.intechopen.com/books/images_new/11520.jpg",editedByType:null,editors:[{id:"21932",title:"Prof.",name:"Moulay Tahar",surname:"Lamchich",slug:"moulay-tahar-lamchich",fullName:"Moulay Tahar Lamchich"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11559",title:"Photocatalysts - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fc9a28dbceaeccb8991b24aec1decd32",slug:null,bookSignature:"Prof. Nasser S Awwad and Dr. Ahmed Alomary",coverURL:"https://cdn.intechopen.com/books/images_new/11559.jpg",editedByType:null,editors:[{id:"145209",title:"Prof.",name:"Nasser",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11950",title:"Hyperspectral Imaging - A Perspective on Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b95808f12e716f6494aaedba4d67d98d",slug:null,bookSignature:"Dr. Jung Y. Huang",coverURL:"https://cdn.intechopen.com/books/images_new/11950.jpg",editedByType:null,editors:[{id:"457620",title:"Dr.",name:"Jung",surname:"Huang",slug:"jung-huang",fullName:"Jung Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11983",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!0,hash:"81ebecb28b5cad564075e6f5b2dc7355",slug:null,bookSignature:"Distinguished Prof. Lulu Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11983.jpg",editedByType:null,editors:[{id:"257388",title:"Distinguished Prof.",name:"Lulu",surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11902",title:"Lignin - Chemistry, Structure, and Application",subtitle:null,isOpenForSubmission:!0,hash:"4c3ccf3ce961d9c60aeb9774034eeb87",slug:null,bookSignature:"Associate Prof. Arpit Sand and Dr. Jaya Tuteja",coverURL:"https://cdn.intechopen.com/books/images_new/11902.jpg",editedByType:null,editors:[{id:"287032",title:"Associate Prof.",name:"Arpit",surname:"Sand",slug:"arpit-sand",fullName:"Arpit Sand"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11549",title:"Data Integrity and Data Governance",subtitle:null,isOpenForSubmission:!0,hash:"97a93f73a55957a70eb2a40de891b344",slug:null,bookSignature:"Dr. B. Santhosh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11549.jpg",editedByType:null,editors:[{id:"330426",title:"Dr.",name:"B. Santhosh",surname:"Kumar",slug:"b.-santhosh-kumar",fullName:"B. Santhosh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11918",title:"LabVIEW - Virtual Instrumentation in Education and Industry",subtitle:null,isOpenForSubmission:!0,hash:"789e06b22e11ce2be68ba43311d46abd",slug:null,bookSignature:"Dr. Petru Adrian Cotfas, Dr. Daniel Tudor Cotfas and Dr. Horia Hedesiu",coverURL:"https://cdn.intechopen.com/books/images_new/11918.jpg",editedByType:null,editors:[{id:"460635",title:"Dr.",name:"Petru Adrian",surname:"Cotfas",slug:"petru-adrian-cotfas",fullName:"Petru Adrian Cotfas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:109},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"902",title:"Diagnostic Immunology",slug:"diagnostic-immunology",parent:{id:"150",title:"Pure Immunology",slug:"pure-immunology"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:52,numberOfWosCitations:154,numberOfCrossrefCitations:60,numberOfDimensionsCitations:170,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"902",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6470",title:"Rapid Test",subtitle:"Advances in Design, Format and Diagnostic Applications",isOpenForSubmission:!1,hash:"4511f4aaf7e54a38e8519d210290e032",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",bookSignature:"Laura Anfossi",coverURL:"https://cdn.intechopen.com/books/images_new/6470.jpg",editedByType:"Edited by",editors:[{id:"48947",title:"Dr.",name:"Laura",middleName:null,surname:"Anfossi",slug:"laura-anfossi",fullName:"Laura Anfossi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1499",title:"Advances in Immunoassay Technology",subtitle:null,isOpenForSubmission:!1,hash:"4b1a356482c2cfbe2550488651cb1c59",slug:"advances-in-immunoassay-technology",bookSignature:"Norman H. L. Chiu and Theodore K. Christopoulos",coverURL:"https://cdn.intechopen.com/books/images_new/1499.jpg",editedByType:"Edited by",editors:[{id:"98973",title:"Dr.",name:"Norman",middleName:"H. L.",surname:"Chiu",slug:"norman-chiu",fullName:"Norman Chiu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1697",title:"Serological Diagnosis of Certain Human, Animal and Plant Diseases",subtitle:null,isOpenForSubmission:!1,hash:"981c10c8346033ca6cebd640a12ed3d7",slug:"serological-diagnosis-of-certain-human-animal-and-plant-diseases",bookSignature:"Moslih Al-Moslih",coverURL:"https://cdn.intechopen.com/books/images_new/1697.jpg",editedByType:"Edited by",editors:[{id:"112609",title:"Dr.",name:"Moslih",middleName:null,surname:"Al-Moslih",slug:"moslih-al-moslih",fullName:"Moslih Al-Moslih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"33740",doi:"10.5772/35797",title:"Interferences in Immunoassays",slug:"interference-in-immunoassays",totalDownloads:17489,totalCrossrefCites:14,totalDimensionsCites:53,abstract:null,book:{id:"1499",slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Johan Schiettecatte, Ellen Anckaert and Johan Smitz",authors:[{id:"105883",title:"Mr.",name:"Johan",middleName:null,surname:"Schiettecatte",slug:"johan-schiettecatte",fullName:"Johan Schiettecatte"},{id:"113099",title:"Dr.",name:"Ellen",middleName:null,surname:"Anckaert",slug:"ellen-anckaert",fullName:"Ellen Anckaert"},{id:"113100",title:"Prof.",name:"Johan",middleName:null,surname:"Smitz",slug:"johan-smitz",fullName:"Johan Smitz"}]},{id:"33741",doi:"10.5772/36947",title:"Fundamentals and Applications of Immunosensors",slug:"fundamentals-and-applications-of-immunosensors",totalDownloads:5015,totalCrossrefCites:15,totalDimensionsCites:34,abstract:null,book:{id:"1499",slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Carlos Moina and Gabriel Ybarra",authors:[{id:"110541",title:"Dr.",name:"Carlos",middleName:null,surname:"Moina",slug:"carlos-moina",fullName:"Carlos Moina"},{id:"110556",title:"Dr.",name:"Gabriel",middleName:null,surname:"Ybarra",slug:"gabriel-ybarra",fullName:"Gabriel Ybarra"}]},{id:"61451",doi:"10.5772/intechopen.76926",title:"Ways to Reach Lower Detection Limits of Lateral Flow Immunoassays",slug:"ways-to-reach-lower-detection-limits-of-lateral-flow-immunoassays",totalDownloads:2748,totalCrossrefCites:11,totalDimensionsCites:24,abstract:"This chapter considers factors influencing sensitivity of lateral flow immunoassay and modern developments that are focused on reaching lower detection limits. The existing variety of proposed approaches is classified in accordance with the “big five rules” for these assays, including proper sample, receptor, interaction, response, and output. The solutions for rapid extraction of target analytes and preventing negative influence of extractants are considered. Role to antibodies affinity and specificity is characterized. Potential of alternate bioreceptor molecules is discussed. Immunoreactants’ compositions, concentrations, and locations on the test strip are characterized as factors determining assay parameters. The existing variety of labels is compared in terms of their optical and alternate registration. Tools to modulate a sequence of analytical reactions and to form aggregates of the detected labels are considered. The discussed approaches are illustrated through developments of test strips for detection of mycotoxins, veterinary drugs, and other analytes.",book:{id:"6470",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",title:"Rapid Test",fullTitle:"Rapid Test - Advances in Design, Format and Diagnostic Applications"},signatures:"Anatoly V. Zherdev and Boris B. Dzantiev",authors:[{id:"175229",title:"Dr.",name:"Anatoly",middleName:null,surname:"Zherdev",slug:"anatoly-zherdev",fullName:"Anatoly Zherdev"},{id:"224281",title:"Prof.",name:"Boris",middleName:"B",surname:"Dzantiev",slug:"boris-dzantiev",fullName:"Boris Dzantiev"}]},{id:"33156",doi:"10.5772/38038",title:"Serology Applied to Plant Virology",slug:"serology-applied-to-plant-virology",totalDownloads:4265,totalCrossrefCites:6,totalDimensionsCites:17,abstract:null,book:{id:"1697",slug:"serological-diagnosis-of-certain-human-animal-and-plant-diseases",title:"Serological Diagnosis of Certain Human, Animal and Plant Diseases",fullTitle:"Serological Diagnosis of Certain Human, Animal and Plant Diseases"},signatures:"J. Albersio A. Lima, Aline Kelly Q. Nascimento, Paula Radaelli and Dan E. Purcifull",authors:[{id:"115306",title:"Dr.",name:"Jose Albersio A.",middleName:"Araujo",surname:"Lima",slug:"jose-albersio-a.-lima",fullName:"Jose Albersio A. Lima"},{id:"115713",title:"MSc.",name:"Aline K.",middleName:null,surname:"Nascimento",slug:"aline-k.-nascimento",fullName:"Aline K. Nascimento"},{id:"137876",title:"Dr.",name:"Dan",middleName:null,surname:"Purcifull",slug:"dan-purcifull",fullName:"Dan Purcifull"},{id:"137877",title:"Dr.",name:"Radaelli",middleName:null,surname:"Paula",slug:"radaelli-paula",fullName:"Radaelli Paula"}]},{id:"33154",doi:"10.5772/36464",title:"Serodiagnosis of Peste des Petits Ruminants Virus",slug:"serodiagnosis-of-peste-des-petits-ruminants-virus",totalDownloads:4460,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"1697",slug:"serological-diagnosis-of-certain-human-animal-and-plant-diseases",title:"Serological Diagnosis of Certain Human, Animal and Plant Diseases",fullTitle:"Serological Diagnosis of Certain Human, Animal and Plant Diseases"},signatures:"Muhammad Munir, Muhammad Abubakar, Siamak Zohari and Mikael Berg",authors:[{id:"108444",title:"Dr.",name:"Muhammad",middleName:null,surname:"Munir",slug:"muhammad-munir",fullName:"Muhammad Munir"},{id:"113339",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"},{id:"113341",title:"Dr.",name:"Siamak",middleName:null,surname:"Zohari",slug:"siamak-zohari",fullName:"Siamak Zohari"},{id:"113342",title:"Prof.",name:"Mikael",middleName:null,surname:"Berg",slug:"mikael-berg",fullName:"Mikael Berg"}]}],mostDownloadedChaptersLast30Days:[{id:"61451",title:"Ways to Reach Lower Detection Limits of Lateral Flow Immunoassays",slug:"ways-to-reach-lower-detection-limits-of-lateral-flow-immunoassays",totalDownloads:2751,totalCrossrefCites:11,totalDimensionsCites:24,abstract:"This chapter considers factors influencing sensitivity of lateral flow immunoassay and modern developments that are focused on reaching lower detection limits. The existing variety of proposed approaches is classified in accordance with the “big five rules” for these assays, including proper sample, receptor, interaction, response, and output. The solutions for rapid extraction of target analytes and preventing negative influence of extractants are considered. Role to antibodies affinity and specificity is characterized. Potential of alternate bioreceptor molecules is discussed. Immunoreactants’ compositions, concentrations, and locations on the test strip are characterized as factors determining assay parameters. The existing variety of labels is compared in terms of their optical and alternate registration. Tools to modulate a sequence of analytical reactions and to form aggregates of the detected labels are considered. The discussed approaches are illustrated through developments of test strips for detection of mycotoxins, veterinary drugs, and other analytes.",book:{id:"6470",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",title:"Rapid Test",fullTitle:"Rapid Test - Advances in Design, Format and Diagnostic Applications"},signatures:"Anatoly V. Zherdev and Boris B. Dzantiev",authors:[{id:"175229",title:"Dr.",name:"Anatoly",middleName:null,surname:"Zherdev",slug:"anatoly-zherdev",fullName:"Anatoly Zherdev"},{id:"224281",title:"Prof.",name:"Boris",middleName:"B",surname:"Dzantiev",slug:"boris-dzantiev",fullName:"Boris Dzantiev"}]},{id:"60908",title:"Microarrays as Platform for Multiplex Assays in Biomarker and Drug Discovery",slug:"microarrays-as-platform-for-multiplex-assays-in-biomarker-and-drug-discovery",totalDownloads:1126,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"Despite the tremendous advances in the understanding of the molecular mechanisms and the complexity of the diseases is one of the present challenges for the scientific community; then, novel strategies are required to be designed and developed for effective strategies for early diagnosis and treatment. As many cellular alterations are observed at protein level, high-throughput assays are dramatically needed for biomarker discovery. Herein, we describe advantages and limitations of protein microarrays, as proteomics strategy useful for multiplex and high-throughput protein characterization in clinical samples. Finally, a few examples are discussed; mostly of them related to currently disease biomarkers already identified in proximal fluids by protein arrays are discussed.",book:{id:"6470",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",title:"Rapid Test",fullTitle:"Rapid Test - Advances in Design, Format and Diagnostic Applications"},signatures:"Pablo Juanes-Velasco, Javier Carabias-Sanchez, Rodrigo Garcia-\nValiente, Jonatan Fernandez-García, Rafael Gongora, Maria\nGonzalez-Gonzalez and Manuel Fuentes",authors:[{id:"173804",title:"Dr.",name:"Manuel",middleName:null,surname:"Fuentes",slug:"manuel-fuentes",fullName:"Manuel Fuentes"}]},{id:"33740",title:"Interferences in Immunoassays",slug:"interference-in-immunoassays",totalDownloads:17492,totalCrossrefCites:14,totalDimensionsCites:53,abstract:null,book:{id:"1499",slug:"advances-in-immunoassay-technology",title:"Advances in Immunoassay Technology",fullTitle:"Advances in Immunoassay Technology"},signatures:"Johan Schiettecatte, Ellen Anckaert and Johan Smitz",authors:[{id:"105883",title:"Mr.",name:"Johan",middleName:null,surname:"Schiettecatte",slug:"johan-schiettecatte",fullName:"Johan Schiettecatte"},{id:"113099",title:"Dr.",name:"Ellen",middleName:null,surname:"Anckaert",slug:"ellen-anckaert",fullName:"Ellen Anckaert"},{id:"113100",title:"Prof.",name:"Johan",middleName:null,surname:"Smitz",slug:"johan-smitz",fullName:"Johan Smitz"}]},{id:"61519",title:"SLE, An Overlooked Disease: Possibilities for Early Rescue by Early Diagnosis",slug:"sle-an-overlooked-disease-possibilities-for-early-rescue-by-early-diagnosis",totalDownloads:1200,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Systemic lupus erythematosus (SLE) is a progressive autoimmune disease associated with widespread organ damage that can eventually cause death. Worldwide prevalence of SLE is difficult to report mainly due to difficulty in diagnosis as a result of its heterogeneous nature and nonspecific protean manifestations. Currently, circulating anti-DNA antibodies are the most specific diagnostic biomarkers for SLE where many detection assays are being employed in clinical practice. However, the diagnostic value of these techniques is challenged by the detection of only subpopulations of these antibodies with varying sensitivity and specificity. This is mainly attributed to differences in the antigen source and presentation and in the employed reaction conditions. This chapter will thoroughly discuss the technology, advantages, and limitations of each assay in addition to a special focus on the recently developed diagnostic technologies and novel biomarkers. Moreover, SLE will be presented as a disease model highlighting the importance of personalized medicine.",book:{id:"6470",slug:"rapid-test-advances-in-design-format-and-diagnostic-applications",title:"Rapid Test",fullTitle:"Rapid Test - Advances in Design, Format and Diagnostic Applications"},signatures:"Reem K. Arafa and Mariam M. Ahmed",authors:[{id:"231130",title:"Prof.",name:"Reem",middleName:null,surname:"Arafa",slug:"reem-arafa",fullName:"Reem Arafa"},{id:"231133",title:"MSc.",name:"Mariam",middleName:null,surname:"Magdy",slug:"mariam-magdy",fullName:"Mariam Magdy"}]},{id:"33151",title:"Helicobacter pylori Infection and Undiagnosed Dyspepsia in Dyspeptic Populations Under 45 of Age Tested by ELISA, Urease Breath Test and Helicotest",slug:"the-level-of-elisa-antibody-and-h-pylori-infection",totalDownloads:3314,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1697",slug:"serological-diagnosis-of-certain-human-animal-and-plant-diseases",title:"Serological Diagnosis of Certain Human, Animal and Plant Diseases",fullTitle:"Serological Diagnosis of Certain Human, Animal and Plant Diseases"},signatures:"Małgorzata Palka",authors:[{id:"110466",title:"Dr.",name:"Margaret",middleName:null,surname:"Palka",slug:"margaret-palka",fullName:"Margaret Palka"}]}],onlineFirstChaptersFilter:{topicId:"902",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:12,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:140,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:315,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:196,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78503",title:"Biomechanics of the Canine Elbow Joint",doi:"10.5772/intechopen.99569",signatures:"Thomas Rohwedder",slug:"biomechanics-of-the-canine-elbow-joint",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78018",title:"Application of Noble Metals in the Advances in Animal Disease Diagnostics",doi:"10.5772/intechopen.99162",signatures:"Gabriel Alexis S.P. Tubalinal, Leonard Paulo G. Lucero, Jim Andreus V. Mangahas, Marvin A. Villanueva and Claro N. Mingala",slug:"application-of-noble-metals-in-the-advances-in-animal-disease-diagnostics",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"