Procedure of VR treatment for public speaking anxiety [49]
\r\n\tCell viability is defined as the number of healthy cells in a sample and proliferation of cells is a vital indicator for understanding the mechanisms inaction of certain genes, proteins, and pathways involved in cell survival or death after exposure to toxic agents. The methods used to determine viability are also common for the detection of cell proliferation. A cell viability assay is performed based on the ratio of live and dead cells. This assay is based on an analysis of cell viability in cell culture for evaluating in vitro drug effects in cell-mediated cytotoxicity assays for monitoring cell proliferation. Various methods are involved in performing a cell viability assay, including the dilution method, surface viable count, roll tube technique, nalidixic acid method, fluorogenic dye assay, and the Trypan Blue Cell Viability Assay. The cell viability assays can determine the effect of drug candidates on cells and be used to optimize the cell culture conditions. The parameters that define cell viability can be as diverse as the redox potential of the cell population, the integrity of cell membranes, or the activity of cellular enzymes.
\r\n\tCytotoxicity is the degree to which a substance can cause damage to a cell. Cytotoxicity assays measure the ability of cytotoxic compounds to cause cell damage or cell death. Cytotoxicity assays are widely used in fundamental research and drug discovery to screen libraries for toxic compounds. The cell cytotoxicity and proliferation assays are mainly used for drug screening to detect whether the test molecules have effects on cell proliferation or display direct cytotoxic effects. In a cell-based assay, it is important to know how many viable cells are remaining at the end of the experiment. There are a variety of assay methods based on various cell functions such as enzyme activity, cell membrane permeability, cell adherence, ATP production, co-enzyme production, and nucleotide uptake activity. These methods could be classified in to different categories: (I) dye exclusion methods such as trypan blue dye exclusion assay, (II) methods based on metabolic activity, (III) ATP assay, (IV) sulforhodamine B assay, (V) protease viability marker assay, (VI) clonogenic cell survival assay, (VII) DNA synthesis cell proliferation assays and (V) Raman micro-spectroscopy.
\r\n\tMedical devices have been widely used in various clinical disciplines and these devices have direct contact with the tissues and cells of the body, they should have good physical and chemical properties as well as good biocompatibility. Biocompatibility testing assesses the compatibility of medical devices with a biological system. It studies the interaction between the device and the various types of living tissues and cells exposed to the device when it comes into contact with patients.
\r\n\t
\r\n\tThe book will cover original studies, reviews, all aspects of Cell Viability and Cytotoxicity assays, methods, Biocompatibility of studies of biomedical devices, and related topics.
In the past decade,
If users are to experience virtual environments as real, two conditions are required: immersion and presence.
Another technology that has been developed in the past years is referred to as
Research on the usage of VR and AR technologies in psychotherapy has mainly focused on behavioral therapy and was proven to be effective particularly in the treatment of specific phobias [4]. According to well-established behavior therapy theories, clients have to be exposed to fear inducing situations in order to treat phobias, because avoidance of fearful stimuli might stabilize the assumption that they are dangerous. Corrective experiences would thus be prevented. Two kinds of exposure can be implemented in therapy. While in-vivo exposure involves the immediate exposure to a fear-enhancing situation or object in reality, in-sensu exposure describes the mere imagination of the exposure to fearful stimuli. In terms of a graduated exposure, stimuli that trigger low levels of anxiety are usually presented first, increasing up to the client’s most extreme fear, which is called “flooding” (in-vivo exposure) or “implosion” (in-sensu exposure).
As already mentioned, exposure therapy supported by VR technologies exceeds imaginative exposure by adding a sense of presence. Moreover, including VR applications in psychotherapy offers a series of advantages. These include the possibility of adjusting virtual environments to each client’s specific needs and controlling what is presented to the client. In addition, VR enables the therapist to expose the client to conditions that might be unsafe or only accessible at high cost in the outside world, and to improve confidentiality by avoiding spectators [5]. Furthermore, therapists seem to consider VR exposure to be less aversive than in-vivo therapy [6]. Presumably, the same applies to patients. For instance, García-Palacios et al. [7] showed that only 3% of 150 participants suffering from specific phobia refused VR exposure, while 27% refused in vivo therapy.
Nevertheless, the usage of VR entails considerable costs. First of all, despite recent findings, some groups might be reluctant to the use of VR technologies and might therefore be excluded from treatment. Furthermore, the handling of VR applications requires a certain amount of training for therapists. Besides, therapists are tied to the position of VR equipment, since it is usually too unhandy to transport [1]. Additionally, equipment acquisition is rather expensive, even though costs have sunk dramatically in the past ten years [5]. Finally, clients might experience dizziness and nausea while undergoing a VR application, a syndrome referred to as simulation sickness [4]. But even though the cited costs have to be taken into account, a recent study [1] indicated that therapists perceive the benefits of VR supported psychotherapy to be outweighing potential costs.
Self-evidently, those costs should only be accepted on condition that VR applications are able to effectively treat mental disorders. The present article aims to outline recent findings in order to examine the effectiveness of usage of VR technologies in psychotherapy.
Previous studies have mainly focused on the use of VR applications in the treatment of anxiety disordersand particularly specific phobias, such as fear of heights, fear of flying, fear of animals or social phobia. However, research has recently started to focus on the usage of VR in the treatment of other disorders as well, including eating disorders and sexual dysfunctions. In the following, an overview of the current state of research will be given. After briefly describing the search strategy, two meta-analyses that are concerned with the application of VR in the treatment of anxiety disorders will be presented. Subsequently, exemplary studies evaluating the effectiveness of VR-assisted psychotherapy of different specific disorders are summarized.
In order to identify eligible studies, a search on the databases PsychInfo, PsychArticles and Pubmed was conducted. The search words
Two current meta-analyses have been reported concerning the effectiveness of VR in the treatment of anxiety disorders. Parsons and Rizzo [8] analyzed
Powers and Emmelkamp [9] examined
Nevertheless, overall results prove that VR applications are highly effective in the treatment of anxiety disorders. However, difficulties common to the realization of meta-analyses, for instance a publication bias that favors publication of studies implying significant results, have to be taken into account. Moreover, small sample sizes as well as missing data about the point of time of follow-up ratings and therefore questionable lastingness of treatment effects, limit the meaningfulness of findings. Future research should include varied levels of immersion and ensure controlled study designs.
The meta-analyses presented here mainly focused on the effectiveness of VR as a supplement of behavior therapy for patients with anxiety disorders, some of the most frequently diagnosed psychological disorders. Nearly one out of five adults in the USA suffers from an anxiety disorder, whereat women are more often affected than men [10]. Therefore, the continuing development and evaluation of effective treatment methods seems crucial.
Anxiety disorders present the first syndrome category for which the use of modern media such as the Internet or VR technology as a setting for interventions was scientifically evaluated. They are usually assigned to the field of
Anxiety disorders are classified differently within the two major diagnostic classification systems. While the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) [13] sorts them within a separate chapter, the International Classification of Diseases (ICD-10) [14] includes them in the chapter „Neurotic, Stress and Somatoform Disorders”. The latter distinguishes between the subgroups of phobic disorders (agoraphobia, social anxiety disorder, specific phobias) and other anxiety disorders (panic disorder, generalized anxiety disorders). In both classification systems, posttraumatic stress disorder is discussed along with anxiety disorders. In the following, the effectiveness of VR-assisted treatment of various syndromes is presented.
The first successful application of VR in the treatment of acrophobia was presented in a case study of an acrophobic student who was successfully treated using graded VR exposure [16]. A more extensive study including a sample of 20 students furnished further evidence for the effectiveness of VR-assisted treatment [17]. However, due to study limitations such as the absence of a control group, the further conclusions can only be drawn under reserve.
The first clinical trial of the effectiveness of VR in the treating acrophobia was conducted by Emmelkamp and collaborators [18]. In a within group design, ten patients were treated with two sessions of VR, followed by two sessions of exposure in-vivo. Acrophobic symptoms were measured before treatment, after VR treatment and after in-vivo exposure. Results showed that after being treated by the means of VR, exposure to real situations did not lead to any significant improvement on the Acrophobia Questionnaire (AQ) or the Attitudes Towards Heights Questionnaire (ATHQ). Unexpectedly, the research design had created a ceiling effect, insofar as the VR treatment effects left little space for improvement during exposure in-vivo.
In a randomized controlled trial (RCT) conducted by the same research group, effectiveness of exposure by the means of VR and in vivo were compared [19]. The places used in the exposure in vivo were reproduced in a virtual environment. Exposure was affected in a real or virtual shopping mall in Amsterdam, a fire escape, and a roof garden.
Krijn et al. [20] examined the effectiveness of different VR systems.
Another study series concentrating on treatment of acrophobia with the aid of VR was conducted by Coelho and collaborators [22, 23]. Initially, the authors compared effects of treatment in a VR (
However, VR-assisted treatment of acrophobia is not only effective and time efficient, but additionally represents a series of advantages. Anxiety inducing situations such as being on bridges or high buildings can be experienced without any great logistic efforts. Therefore, difficulties of accessing the actual place and potential disturbances by pedestrians can be avoided.
View from the real world (left) and the virtual reality system (right). Adapted from “Contrasting the Effectiveness and Efficiency of Virtual and Real Environments in the Treatment of Acrophobia” by C.M. Coelho, C.F. Silva, J.A. Santos, J. Tichon and G. Wallis, 2008,
Choi and collaborators [24] described the case of a 61-year old patient, who had been suffering from acrophobia for the past 40 years. He was not able to go up higher than the third floor of any apartment and therefore lived on the third floor on his 18-story building. In order to treat his acrophobia, the authors planned eight sessions of VR therapy that were supposed to take place three times a week and took about 30 minutes each.
The virtual environment was comprised of a steel tower which involved a lift within a steel frame structure that was open to all four sides. To enhance the sense of reality, sounds of wind and a moving lift were included, and the patient was isolated in a dark room in order to increase immersion. Prior to VR treatment, the patient received four sessions of relaxation training, including abdominal breathing and progressive muscle relaxation training, to be able to cope with body sensations during the VR sessions. Pretreatment assessment was completed and the patient accomplished a demo program to get used to VR.
In the first session, the patient stayed on the floor of the virtual lift to get accustomed to the environment. He was free to decide whether to go up on a higher floor or stay where he was. In this session, the patient went up to the fourth floor, experiencing dizziness and sweating and reporting 70 to 90 subjective units of disturbance (SUD). SUD was evaluated every two to five minutes. Whenever the patient stated to experience intense fear, he was instructed to relax. In the second and third session, the patient went up to the eighth floor, but still experienced high levels of SUD, breathlessness, and the sensation of falling down. After these sessions, the patient was already able to walk up to the eighth floor of his building for the first time in ten years. According to the patient, the virtual lift scared him more than going up his building in the real world. In the fourth session, the patient went up to 18th floor of the virtual tower, and then to the 25th floor, the top of the tower, in the fifth session. Even while looking down, the patient did not experience any particular symptoms and reported SUD scores below 30. After the sixth session, the patient claimed that he did not need VR anymore. The authors therefore changed treatment plans and assigned the patient to go up to the observatory of a mountain by cable car. Going up to and looking down from the observatory, the patient showed neither symptoms of anxiety nor avoidance. Subsequently, he suggested going up the highest building of Seoul. Looking outside from the elevator of this building, the patient expressed only little fear. Six months after the treatment, the patient stated that he did not have any fear of heights.
Fear of flying, or
The use of VR applications in the treatment of aviophobia could be advantageous to an exposure in-vivo because financial and logistical expenses are essentially lower. Furthermore, the privacy and confidentiality of a VR exposure in contrast to a regular flight should be emphasized.
The first RCT investigating the effectiveness of VR treatment of aviophobia was presented by Rothbaum et al. [26].
Another study compared VR exposure therapy with and without physiological feedback measures to self-visualization in
Mühlberger et al. [30, 31] proved the effectiveness of VR-assisted treatment of aviophobia in a series of studies.
Comparing five sessions of VR exposure therapy to an attention placebo group, Maltby et al. [33] obtained mixed results. While the VR treatment condition was superior to the placebo condition on self-report instruments, BAT scores did not reveal any significant differences. Moreover, VR exposure was more effective on only one self-report measure at six months follow-up.
Furthermore, Krijn and collaborators [34] compared four sessions of VR exposure with four sessions of CBT and with five weeks of bibliotherapy, that involved reading a psycho-educative book about aviophobia. Results indicated that both VR treatment and CBT were effective and did not differ in symptom reduction. However, after undergoing an additional CBT program, including an exposure in-vivo, CBT group was superior to VR treatment group.
Finally, the efficacy of VR and computer-aided psychotherapy in the treatment of aviophobia was examined by Tortella-Feliu et al. [35].
According to the ICD-10 [15],
VR applications seem to represent a potential treatment method for arachnophobia. Rinck et al. [37] examined spider fearful persons’ attention and motor reactions to spiders on a VR. The authors demonstrated that spider fearfuls show increased state anxiety, spend more time looking at spiders, and exhibit behavioral avoidance of spiders.
A first single case report examining the effectiveness of treating arachnophobia with the aid of VR was conducted by Carlin et al. [38]. They used VR as well as mixed reality, which involved touching real objects that can be seen in VR, to treat a 37-year old female suffering severe fear of spiders. After twelve weekly sessions of one hour each, measures of anxiety, avoidance, and behavior towards real spiders improved significantly.
In 2002, a RCT was conducted that compared VR exposure therapy group and a waitlist group of altogether
In a following study with
Michaliszyn et al. [40]found similar results comparing the effectiveness of VR treatment and in-vivo exposure to a waitlist condition. A total of
Furthermore, a study demonstrated that modified 3D computer games instead of actual VR software can be effective in the treatment of arachnophobia [41]. Modification of computer games could therefore represent a less expensive alternative to VR equipment.
a) Participant putting her hand on the table and the cock- roaches crossing over it. (b) Participant searching for hidden cockroaches. Adapted from “A comparative study of the sense of presence and anxiety in an invisible marker versus a marker augmented reality system for the treatment of phobia towards small animals” by M.C. Juan and D. Joele, 2011,
Research has also focused on the use of AR in treating phobia towards small animals. In doing so, virtual spiders or cockroaches are blended into the real world. In a first case study, a participant suffering from cockroach phobia showed significant decreases in fear and avoidance levels, being capable of approaching, interacting with, and killing real cockroaches following AR exposure and one month later [3]. In a following study evaluating the effectiveness of AR, nine participants with either spider or cockroach phobia were treated in a single session [42]. Firstly, progressively more virtual spiders or cockroaches were presented in the therapist’s hand. Participants were asked to bring their hand closer to the animals. Subsequently, a box appeared which the participants had to pick up to see if there was an animal underneath. Finally, virtual animals had to be killed with an insecticide, flyswatter or dustpan and put into a box. After completion of the session, participants were asked to approach, interact and kill real spiders or cockroaches. All of the participants succeeded in doing so, showing considerable less avoidant behavior. A validation of the system used in these first studies demonstrated that all elements of the AR environment were highly fear inducing in
Roy et al. [46] presented a clinical protocol to assess the effectiveness of VR treatment of social phobia, describing the study structure, assessment tools, and content of the therapy sessions. Four virtual environments were used to reproduce situations inducing high levels of anxiety in social phobics: Performance, intimacy, scrutiny, and assertiveness. In a preliminary study, the effectiveness of VR treatment was demonstrated in
Furthermore, a few studies have focused specifically on the effectiveness of virtual environments in treating
Other studies have concentrated on specific aspects of treating social phobia with the aid of VR. For instance, Ter Heijden and Brinkmann [52] evaluated speech detection and recognition techniques in comparison to a human control condition in a VR surrounding. Interactions were observed in two phobic and 24 healthy persons. Results indicated that automatic speech techniques often did not show any significant differences compared to manual speech. Therapist workload of entering speech content might therefore be minimized in VR treatment.
Besides self-report instruments measuring social anxiety, a voice test sample was recorded while the participants answered a question and read a paragraph. The heart rate was measured during the speaking test and a brief relaxation exercise. | |
Participants stood at a podium with a microphone, looking around a virtual empty auditorium to get accustomed to the environment. Subsequently, participants were asked to talk about their public speaking anxiety. | |
Participants were asked to say the American Pledge of Allegiance. The auditorium was gradually filled with people, and applause was used to encourage participants. The pledge was repeated, with the virtual audience applauding at the end of the recitation. | |
Participants were asked to deliver a 2-min speech with a small light on the clipboard. The room was gradually filled with audience, people were speaking to each other, laughing, asking the speaker to speak louder, and applauding at the end of the speech. Afterwards, the speech was repeated. | |
Participants were asked to give the same or another speech. Manipulations of the scenario were made as in session 3. |
Procedure of VR treatment for public speaking anxiety [49]
Another study brought the aspect of presence within VR exposure into focus [53]. The relationship of three components of presence (spatial presence, involvement, and realness), fear ratings during VR, and treatment effectiveness were evaluated in
VR environments may also facilitate research on specific aspects of social phobia. For example, Cornwell et al. [54] used a VR setting to examine physiological reaction of persons diagnosed with social anxiety disorder in social-evaluative threat situations. Participants were asked to deliver a short speech in front of a virtual audience. In this way, no actual audience has to be recruited in order to realize study designs of that kind.
Around 5% of the US Americans suffer from
Vincelli et al. [56] presented a treatment protocol called Experiental Cognitive Therapy (ECT), which integrates VR in order to treat panic disorder and agoraphobia. Its effectiveness was demonstrated in
In a following study examining the effectiveness of VR in the treatment of panic disorder,
A later study evaluated effectiveness of interoceptive exposure in a virtual environment, simulating physical sensations through audible stimulation such as rapid heartbeat and panting, and visual stimulations such as blurry or tunnel vision [61]. Results indicated that both IE using VR and traditional IE significantly reduced symptoms of panic disorder, and that results were maintained or even improved at three months follow-up. Finally, Meyerbröker et al. [62] showed that varied levels of presence by using either a CAVE or a HMD did not influence effects of VR treatment of panic disorder.
While the benefits of computer-based assessment and treatment of OCD has already been demonstrated [63], only preliminary data concerning the use of VR in the treatment of OCD is available. A South Korean research group presented first results of VR exposure therapy of OCD [63].
Some authors suggest the application of new treatment approaches such as VR exposure, reasoning that conventional therapy approaches may be rejected by war veterans due to stigmatization and that in-vivo exposure is not possible. In fact, situations that caused the traumatization are difficult to frequent, but according to traumatherapy, this is neither necessary nor indicated [66]. On the contrary, exposure to virtual settings that are reconstructing traumatizing situations is ethically questionable, which is demonstrating by the following scenarios.
A case report describes the first application of VR for a Vietnam veteran suffering from PTSD [67]. As a result of VR treatment, he significantly improved on all PTSD measures and those gains remained stable at six months follow-up. A following open clinical trial demonstrated the effectiveness of VR in ten male Vietnam veterans diagnosed with PTSD [68]. They underwent eight to 16 sessions of VR exposure in two virtual environments: a virtual helicopter flying over Vietnam, and a clearing surrounded by jungle. Participants showed significant PTSD symptom reductions on the Clinician Administered PTSD Scale (CAPS) at six months follow-up, declaring symptom reductions ranging from 15 to 67% in an interview. Self-reported intrusion symptoms as measured by the Impact of Event Scale were significantly lower at three months follow-up in comparison to baseline, but not at six months follow-up. Another open trial of VR in the treatment of
Furthermore, several studies examined the use of a virtual environment to treat veterans returning from “Operation Iraqi Freedom” who suffered from PTSD. The “Virtual Iraq/ Afghanistan” environment was adapted from the Microsoft® X-box game “Full Spectrum Warrior”. Scenarios include a Middle Eastern city and a Humvee driving down a desert highway. Auditory, visual, olfactory and vibrotactile stimulation such as gunfire, weather conditions, the smell of burnt rubber and the sensation of a moving car can be adjusted. Some examples of Virtual Iraq/Afghanistan are shown in Figure 3.
Several case reports were conducted [e.g. 71, 72]. The first clinical trial assessing the effectiveness of exposure using “Virtual Iraq” indicated clinically and statistically significant symptom reduction in
Another VR environment was created to treat Portuguese survivors of the 1961-1974 wars in Africa. Subsequently to a case study [77], Gamito and colleagues [78] examined the effectiveness of a VR war environment to imaginal exposure and a waiting list condition. Participants in the VR condition showed significant reduction of depressive and anxiety symptoms.
An increased incidence of PTSD was also detected among the survivors of the attacks of September 11, 2001. Consequently, Difede and Hoffmandeveloped a virtual environment simulating jets crashing into the World Trade Center, people jumping to their deaths from the buildings, and towers collapsing. A study revealed that participants in a VR condition (
In a further study, a VR surrounding was developed in order to treat victims of a terrorist bus bombing in Israel. The potential effectiveness of “BusWorld” was demonstrated in a study examining 30 asymptomatic participants, who showed significantly higher mean subjective units of discomfort scores (SUDS) with increasingly distressful scenarios. Treatment of a 29-year-old victim of a bus bombing using VR resulted in significant reduction of PTSD symptoms as measured by the CAPS [81].
Another field of application in the treatment of PTSD by the means of VR exposure is made up by motor vehicle accident survivors. Saraiva et al. [82] presented a case study describing positive outcomes of VR exposure of a 42-year-old female in the aftermath of a serious vehicle accident. Findings were confirmed by Beck et al. [83], who demonstrated significant reductions of re-experiencing, avoidance, and emotional numbing in six persons reporting subsyndromal PTSD after completing ten sessions of VR treatment.
A new approach of treating PTSD was introduced by Fidopiastis et al. [84]: As aforementioned, AR, referred to as Mixed Realities (MR) by the authors, are supposed to blend virtual content into the real world, which means that computer-generated objects can be superimposed on the real-world environment. In a pilot study, first promising effects of MR in the assessment of PTSD by capturing the patient’s interaction with the simulated environment were demonstrated. Riva et al. [85] further advanced the approach of MR by presenting the paradigm of Interreality, which is supposed to bridge the virtual and real world by using activity sensors, personal digital assistants or mobile phones.
However, even though treatment of persons suffering PTSD is crucial, study designs using VR seem questionable with regard to ethical concerns. Exposing war veterans or victims of terror attacks to simulated war scenarios is contra-indicated according to current research on trauma therapy. Certain phases of traumatherapy such as stabilization and development of a therapeutic relationship have to precede the processing of the traumatic experience [86]. In the studies presented here, none of these phases were considered so that VR exposure bore the risk of retraumatization. Besides, if the virtual setting does not in detail project the traumatic event, renewed traumatisation is risked. To date, long-term effects of exposing persons with PTSD to virtual environments are mostly unknown, because efficacy studies rarely collect follow-up data. Therefore, even though the use of VR technology seems feasible in the treatment of PTSD, ethical concerns and aspects with regard to therapy indication always need to be considered.
Virtual Iraq/ Afghanistan scenarios. Courtesy of Virtually Better Inc. and University of Southern California, Institute for Creative Technologies.
Virtual environments have also been applied in the assessment, treatment and research of other mental disorders such as eating disorders, sexual dysfunctions, schizophrenia, attention deficit disorder, and addictions. In the following, a cursory overview of VR treatment approaches in those clinical pictures will be provided.
The first use of VR in treating
In contrast, research on the effectiveness of VR in the treatment of
Furthermore, VR has been used to assess attention impairments in order to diagnose
Another virtual environment was developed to treat people with
The treatment of
Hereafter, the findings presented here will be discussed with regard to their implications for research and therapy.
The studies examining the efficacy of VR treatment in psychotherapy that were conducted up to that point are various with respect to their designs, treatment methods, and results. A multitude of case reports and pilot studies with questionable generalizability were published to demonstrate that VR can be an effective tool in the treatment of mental disorders. To provide a clearer overview of the studies proving the effectiveness of VR in anxiety disorders, the study designs and results of all controlled trials were listed in table 2. All controlled trials that examined the VR or AR treatment of at least one group of participants suffering from an anxiety disorder and that used a standardized outcome measure of anxiety were included. As the table shows, most RTCs have been effected in the field of aviophobia. Particularly with reference to specific phobias, considerable systematic research has been conducted in the past years. However, while the effectiveness of VR and AR exposure in treating specific phobias seems to be proven, the application of VR in more complex disorders like panic disorder, obsessive-compulsive disorder, and PTSD needs to be further evaluated. Treatment protocols in this field of research are still in an experimental phase and lack controlled studies to prove their effectiveness. In addition, the majority of studies examining the effects of VR-based treatment combines different treatment approaches and therefore makes it difficult to analyze VR outcomes separately. Future research should also work out which groups of patients benefit most from VR and how environments can be adapted to patients’ needs.Additionally, comparable outcome measures such as behavioral avoidance tests should be included in future studies. Finally, sample sizes are often too small to generalize study findings and longer-term catemneses are frequently missing.
Acrophobia | 15 | Between-subjects | 3 | VR and in vivo exposure were equally effective, despite shorter treatment times of VR | |
Acrophobia | 10 | Within-subjects | 2 | Exposure in vivo did not lead to any significant improvements after VR exposure | |
Acrophobia | 33 | RCT | 3 | VR and in vivo exposure were equally effective; results stable after 6 months | |
Acrophobia | 37 | RCT | 3 | VR administered by HMD and CAVE were equally effective; results stable after 6 months | |
Acrophobia | 26 | RCT | 4 | Self-statements did not additionally enhance effectiveness of VR treatment | |
Aviophobia | 59 | RCT | 4 | VR treatment and CBT were equally effective and superior to bibliotherapy | |
Aviophobia | 45 | RCT | 5 | VR treatment was superior to attention placebo group on self-report measures, but not avoidance test; results not stable after 6 months | |
Aviophobia | 30 | RCT | 1 | VR treatment and relaxation training were equally effective | |
Aviophobia | 45 | RCT | 1 | VR treatment in combination with CBT was more effective than CBT alone | |
Aviophobia | 30 | RCT | 1 | Presence of a therapist did not influence effectiveness of VR treatment | |
Aviophobia | 49 | RCT | 8 | VR and in vivo exposure were equally effective in comparison to a waitlist control group; results stable after 6 and 12 months | |
Aviophobia | 75 | RCT | 8 | VR and in vivo exposure were equally effective in comparison to a waitlist control group; results stable after 6 to 12 months | |
Aviophobia | 60 | RCT | 6 max. | VR exposure, computer-aided exposure with a therapist’s assistance, and self-administered computer-assisted exposure were equally effective; results stable after 12 months | |
Aviophobia | 30 | RCT | 8 | VR exposure in combination with biofeedback was more effective than VR exposure alone | |
Arachnophobia | 11 | Within-subjects | 5 | Modified 3D computer games were effective in the treatment of arachnophobia | |
Arachnophobia | Between-subjects | 4 on average | 83% of the VR exposure group showed clinically significant improvement, in comparison to 0% of the waitlist control group | ||
Arachnophobia | 36 | RCT | 3 | VR treatment including tactile stimulation was more effective than VR without tactile stimulation; both treatment groups were superior to waitlist control group | |
Arachnophobia, cockroach phobia | 9 | Open trial | 1 | AR treatment significantly reduced participants’ fear and avoidance | |
Arachnophobia | 43 | RCT | 8 | VR and in vivo exposure groups showed clinically significant improvement in comparison to waitlist control group | |
Social Phobia | |||||
Social Phobia | 10 | Within-subjects | 8 | The combination of VR and anxiety management resulted in reduction of public speaking anxiety on self-report; stable at 3 months follow-up | |
Fear of public speaking | 14 | Between-subjects | 4 | VR treatment reduced self-reported anxiety and physiological reactions significantly in comparison to waitlist control group | |
Social Phobia | 36 | RCT | 12 | VR treatment and CBT showed equally significant improvements in anxiety and avoidance behavior | |
Social Phobia | 41 | RCT | 8 | Involvement score predicted therapy outcome | |
Social Phobia | 45 | RCT | 16 | VR treatment and combination of CBT and VR were both effective in comparison to waitlist control group | |
Social Phobia | 10 | Between-subjects | 12 | VR treatment and CBT equally showed significant improvements in anxiety and avoidance behavior | |
Fear of public speaking | 88 | RCT | 12 | CBT as well as VR and CBT combined resulted in significant improvements of self-rated anxiety and 4 out of 5 anxiety measures in contrast to waitlist control group; results stable at 12 months follow-up | |
OCD | 63 | Matched between-subjects | 1 | Participants with OCD experienced significantly higher anxiety, but also showed a higher decreased ratio of anxiety than healthy controls | |
Panic disorder | 37 | RCT | 9 | CBT including VR exposure and CBT including exposure in vivo resulted in equal symptom reductions in comparison to waitlist control group; results stable at 12 months follow-up | |
Panic disorder | 40 | RCT | 12 | CBT including VR exposure and a panic disorder program were equally effective; results did not stable at 6 months follow-up | |
Panic disorder | 27 | Matched between subjects | 11 | CBT including VR exposure and CBT including exposure in vivo were equally effective in addition to antidepressive medication | |
Panic disorder | Between- subjects | 8 max. | Interoceptive exposure using VR and traditional interoceptive therapy equally reduced symptoms; results stable at 3 months follow-up | ||
Panic disorder | 28 | Matched between-subjects | 11 | CBT including VR exposure and CBT including exposure in vivo were equally effective in addition to antidepressive medication | |
Panic disorder | 12 | RCT | 9 | VR treatment and CBT equally reduced the number of panic attacks, the level of depression and state and trait anxiety | |
subsyndromal PTSD | 6 | Within-subjects | 10 | Motor vehicle accident survivors showed significant reductions of re-experiencing, avoidance, and emotional numbing after VR treatment | |
PTSD | 17 | Between-subjects | 14 | Survivors of 9/11 undergoing VR exposure showed significantly greater improvement on CAPS scores than waitlist control group | |
PTSD | 21 | Quasi-experimental | 14 max. | Survivors of 9/11 undergoing VR exposure showed significantly greater improvement on CAPS scores than waitlist control group | |
PTSD | 10 | Between-subjects | 12 | Portuguese war veterans in the VR condition showed significant reduction of depressive and anxiety symptoms in comparison to waitlist control group | |
PTSD | 14 | Open trial | 20 max. | Vietnam veterans showed significant symptom reductions at 3 and 6 months follow-up; 2 participants experienced an increase in symptoms during VR exposure | |
PTSD | 11 | RCT | 10 | No significant differences between VR and present-centered therapy at posttreatment and 6 months follow-up in Vietnam veterans | |
PTSD | 20 | Open trial | 10 | Participants of “Virtual Iraq” showed clinically and statistically significant symptom reductions | |
PTSD | 24 | Open trial | 3-12 | Significant symptom reduction in Iraq or Afghanistan active duty soldiers | |
PTSD | 10 | Open trial | 8-16 | Vietnam veterans showed significant symptom reductions on the CAPS at 6 months follow-up; self-reported intrusion symptoms were significantly lower at 3 but not at 6 months follow-up |
Overview of VR treatment outcome studies
Alongside the realization of further outcome studies, future research should focus on underlying cognitive and physiological processes of VR exposure. Moreover, the role of the therapist-patient-relationship should be further investigated. Although some studies indicate that the assistance of a therapist might be reduced (e.g. [35]), the consequences of a changing role of the therapist still need to be explored. For instance, the exposure of war veterans to frightening war scenarios might impair trust towards the therapist and therefore influence treatment outcome.
A significant number of studies has furnished evidence for the effectiveness of using VR in psychotherapy. However, if therapists decide to include VR into treatment sessions, they should act in accordance with certain guidelines in order to abet positive outcomes and minimize negative treatment effects. To date, just a few treatment manuals have been published. For example, Rothbaum et al. [95] presented an abbreviated treatment manual for exposure therapy of acrophobia. VR was used to replace conventional exposure as a component of behavioral therapy. According to the manual, treatment sessions should include symptom assessment, breathing retraining, cognitive restructuring, hyperventilation exposure and VR exposure. The authors recommend arranging VR settings as follows:
Sitting on plane, engines off
Sitting on plane, engines on
Taxiing
Takeoff
Smooth flight
Landing
Thunderstorm and turbulent flight
Another treatment manual was developed by Spira et al. [96]. The authors describe in detail twelve steps to treat combat-related PTDS with the aid of meditation, biofeedback, and VR.Furthermore, Bouchard et al. [98] outlined a treatment manual for VR exposure therapy of specific phobias, can be used with different VR software. In approximately eight sessions, patients are supposed to overcome their fears and stop avoidance behaviors by participating in cognitive restructuring and graduated VR exposure. In addition, guidelines to enhance the sense of presence and minimize potential negative side effects of immersion are provided.However, even though first publications are promising, more evidence-based treatment manuals focusing on specific syndromes are required in order to advance VR usage in psychotherapy.
The current state of research presented in this article furnishes considerable evidence for the effectiveness of virtual and augmented environments in the treatment of several mental disorders. However, VR treatment is not yet part of ordinary mental health care. Possible explanations for that could be:
On the other hand, in the case of obvious indication of VR treatment, therapists should be open with respect to embedding VR technologies into therapy. Those who apply VR in therapy should be aware that VR tools always have to be part of a broader therapy plan and only complement, but cannot replace the skills of well-trained clinicians. Advantages of VR treatment include:
In the past few decades, virtual reality (VR) has been widely used in many different areas including entertainment, education and training, manufacturing, medical and rehabilitation. The compound annual growth rate for VR revenue is expected to grow more than fifty percent from 2018 to 2023. It is expected that education and training is one of the leading sectors in the coming 5 years [1]. VR not only provides immersive stereoscopic visualization of virtual environments and sound effects, but participants can also interact with virtual objects and environment with haptic feedback. No matter what kind of application to be applied by the VR, the visualization effect and computer graphics are critical to enhance the engagement of participants and thus increases the education and training effectiveness [2]. Nevertheless, increasing the visual realism in VR is not an easy task because it is not only due to artist’s sense of the design engineers but also due to the drawback between the realistic VR environment and the demanding computation requirement of real-time interaction in VR.
\n3D modeling and computer graphics techniques have been developed for several decades [3]. Due to the era of digital information technologies, 3D modeling and computer graphics techniques drive the explosive growth and becoming crucially important in the recent years. The techniques not only apply to the development of virtual models for computer simulation, virtual reality (VR), augmented reality (AR), mixed reality (MR), etc., but also it can be applied to many various application such as artificial intelligence (AI), big data analytics, etc. [4]. Despite VR technologies have been developed for many years, the development of computer hardware and the 5th generation (5G) mobile network bloomed the 5Vs of the data flow including volume, velocity, value, veracity and variety [5]. As a consequence, the computation requirements and the flow of big data in VR is very demanding not only due to the need for real-time interaction, wireless connection, data inter-exchange, but also due to the greater expectations in computer graphical effects, realistic 3D models and infectant of virtual environments.
\nWe would like to organize this book chapter as following sections. In Section 2, we aim to review the major software in 3D modeling and rendering in computer graphics. We will present the key computer modeling, computer graphics and VR programming software and tools. The techniques in computer modeling and graphics are particularly important for real-time and realistic interaction in VR. Therefore, in Section 3, we will describe some of the key modeling techniques used in VR. These techniques include shading and mesh editing modifiers. We will compare the difference of these techniques and their visual effects.
\nThe development of VR models is divided into several key procedures. The VR models are used to create the virtual scenes used in the VR program. Figure 1 shows the flow chart of the VR program development. In general, the development process is developed into three major steps including modeling, texture painting and VR programming. The virtual models are firstly modeled using 3D modelling tools to create the object 3D geometries. After completion of the 3D modeling process, the models are rendered using computer graphics techniques including materials painting, texture mapping, etc. This process can be done directly on the 3D modeling software. Then, the 3D models including the corresponding graphical UV texture maps have to be imported into the game engine for the development of VR computer program. Alternatively, the texture painting and rendering processes can be performed by separate professional software. Then, the 3D models including the texture maps are used as the input of the game engines. The 3D models and texture files can be exported into various file formats depending on the compatibility between the software. Some of the commonly used file formats of 3D models are FBX, OBJ, STL, etc. FBX (Filmbox) is a proprietary file format (.fbx) developed by Autodesk and is used to provide interoperability between digital content creation applications. FBX is commonly used as the part of game wares and is recommended in the development of VR program [6].
\nThe flow chart of the VR program development. The development process includes modeling, texture mapping and VR programming.
Nowadays, there exists number of 3D modeling tools such as ZBrush, Blender, SketchUp, AutoCAD, SolidWorks, 3Ds Max, Maya, Rhino3D, CATIA, etc. Table 1 summarized and compared the major differences of these 3D modeling tools. Most of the commonly used modeling tools are professional and used for industrial application. These tools not only used in the computer-aided design (CAD), but also provides some advanced features such as computer-aided engineering (CAE) for performing analysis [7], additional manufacturing (AM) and 3D printing [8].
\nModeling software | \nEase of use | \nCategory | \nSupport formats | \n
---|---|---|---|
SketchUp | \nBeginner | \nCAD | \ndwg, dxf, 3ds, dae, dem, def, ifc, kmz, stl | \n
Blender | \nIntermediate | \nCAID | \n3ds, dae, fbx, dxf, obj, x, lwo, svg, ply, stl, vrml, vrml97, x3d | \n
ZBrush | \nProfessional | \nCAID | \ndxf, goz, ma, obj, stl, vrml, x3d | \n
AutoCAD | \nProfessional | \nCAD | \ndwg, dxf, pdf | \n
SolidWorks | \nProfessional | \nCAD | \n3dxml, 3 dm, 3ds, 3mf, amf, dwg, dxf, idf, ifc, obj, pdf, sldprt, stp, stl, vrml | \n
3Ds Max | \nProfessional | \nCAID | \nstl, 3ds, ai, abc, ase, asm, catproduct, catpart, dem, dwg, dxf, dwf, flt, iges, ipt, jt, nx, obj, prj, prt, rvt, sat, skp, sldprt, sldasm, stp, vrml, w3d xml | \n
Maya | \nProfessional | \nCAID | \ndxf, fbx, obj, stl | \n
Rhino3D | \nProfessional | \nCAID | \n3 dm, 3ds, cd, dae, dgn, dwg, emf, fbx, gf, gdf, gts, igs, kmz, lwo, rws, obj, off, ply, pm, sat, scn, skp, slc, sldprt, stp, stl, x3dv, xaml, vda, vrml, x_t, x, xgl, zpr | \n
CATIA | \nProfessional | \nCAD | \n3dxml, catpart, igs, pdf, stp, stl, vrml | \n
Comparison of major modeling software [11].
Traditionally, CAD tools are used to translate the CAD file into VR format directly by a downstream process [9]. However, the CAD tools usually provides a complex and highly detailed CAD data, common in engineering design and other industries, which makes it translates into excessively large VR models. This makes the models difficult to maintain the speed of computation in an acceptable level. In this case, models optimization need to be implemented to allow real time interaction by reducing the complexity of the models which makes the modeling process complicated.
\nComputer-aided industrial design (CAID) tools not only provide 3D modeling features, but it is also used in various industries like 3D printing, animation, gaming, architecture, and industrial design for digital production. The CAID tools provide designers with improved freedom of creativity compared to typical CAD tools [10]. The 3D model can be saved in a format that can be read for AM to speed up the prototyping process, so that designers can has more time to focus on the design processes. CAID also provides a larger flexibility for sketching, design and modeling for designers, thus particularly suitable to create flexible models to meet the extensive demand of visual realism in VR nowadays.
\n\nTable 1 summarized the major CAD and CAID modeling software in the market. AutoCAD, SolidWorks, CATIA are the major CAD software for engineering design developed for many years. The software is designed professionally not only for performing engineering design, but also provides a number of features for engineering analysis and simulation. 3Ds Max, ZBrush, Maya are the CAID software widely used in various professional design application. It provides a larger freedom for designers to perform freeform and digital sculpting, and allows the model files to be exported into AM formats for rapid prototyping. Blender was initially released in 1994 and was developed by the Blender Foundation. Blender is the free and open source 3D creation suite. It supports the entirety of the 3D pipeline—modeling, rigging, animation, simulation, rendering, compositing and motion tracking, video editing and 2D animation pipeline [12]. It provides various modeling functions for VR and are easier to be handled by most of designers and engineers.
\nBesides the 3D modeling, texture painting is an essential step to enhance the visual effects and increase the realism of virtual environments. Most of the 3D modeling software such as Blender, 3Ds Max, ZBrush provides the texture painting features and pipelines for 3D rendering, which are sufficient to most of the VR production. Other professional 3D texture painting software include Substance Painter, Mari, Armor Paint, Quixel Mixer, etc. The software is professional and some of them are even used in movie production. However, it may require more professional skills and experience to handle the software. Table 2 shows the major 3D texture painting software for creating 3D models textures in VR.
\nTexture painting software | \nEase of use | \n
---|---|
Blender | \nIntermediate | \n
Armor Paint | \nProfessional | \n
ZBrush | \nProfessional | \n
Quixel Mixer | \nProfessional | \n
Substance Painter | \nProduction | \n
Foundry Mari | \nProduction | \n
Major 3D texture painting software.
In order to create 3D models in VR for real-time interaction, one approach is to perform optimization to reduce the complexity by minimizing the mesh size of the models. However, a significant drawback of this approach is that the visual realism of the models may be affected. Therefore, in this section, we will describe some essential modeling and computer graphics techniques that can be applied to create 3D models in VR. These techniques not only able to reduce the mesh size of the models, but also keep the visual realism effectively without the need of additional modeling procedures.
\nThere are some fundamental techniques we need to understand in order to make good models. Shading is one of the key techniques in 3D modeling. There are several approaches to perform mesh shading including flat-shading and smooth-shading. As seen in Figure 2, most of the models are represented by polygons and truly curved objects are often approximated by polygon meshes [13]. When rendering the models, you may notice that these polygons appear as a series of small, flat faces (Figure 2a). In order to create a desirable effect, traditionally edge split and subdivision surface can be applied to smooth the model (Figure 2b). However, this will increase the number of faces and vertices of the models thus its complexity therefore is not desired in VR applications. The easiest way is to generate visually smooth model is to apply the auto smooth shading filter to quickly and easily changes the way the shading. The mesh shading does not actually modify model geometry, it simply changes the way of shading by calculating across the surfaces, giving the illusion of a smooth surface (Figure 3).
\nExample of 3D mesh model rendered: (a) flat and (b) smoothed using subdivision surface.
Same 3D mesh model applied smooth shading.
The shading approaches can create the mesh non-destructively by calculating the faces normal. Alternatively, or in some cases, mesh editing tools such as bevel, subdivision, loop cut, etc. may need to be applied at the edge to create better visual effects. Figure 4 shows the 3D models applied the bevel modifiers with 20 segments, 2 segments and 6 loop cuts (from left to right). The visual effects looks similar, but the mesh size increases significantly with the number of bevel segments. The bevel modifiers with 2 segments can create similar effect with 6 loop cuts, but the modeling process is easier. Although 2 bevels and 6 loop cuts are more effect, but usually we would prefer the 3D models to look nice and smooth. The loop cuts will create a sharper edge, therefore bevel segments are more preferred in VR modeling.
\nExample of using bevel modifiers with 20 segments, 2 segments and 6 loop cuts (from left to right).
The corresponding models are rendered using the real-time render engine Eevee in Blender. Figure 5 shows the visual effects of the models represented by red, green and blue color (from left to right). The visual effects can be previewed quickly in the modeling software. The red (left hand side) model can create a very smooth visual effect, which looks similar to the green (middle) one. However, the blue (right hand side) model shows sharp edges clearly which may not be desired visually. Therefore, modeling with bevel modifiers with a few segments will be preferred. Sometimes, it can also be applied together with the smooth-shading to create a better visual realism of 3D models in VR.
\nThe rendering effect of the models applied bevel modifiers with 20 segments, 2 segments and 6 loop cuts (from left to right).
In this book chapter, we have reviewed the recent exiting 3D modeling and texture painting software packages and the difficulties in handling the software. The key techniques used in the creation of 3D models for VR are also described. The techniques including the shading and mesh editing modifiers not only help reducing the mesh size of the 3D models but also maintaining the visual realism of the models. It is particularly important to meet the demanding computation requirement of real-time interaction in VR program. Results have also shown that bevel modifiers with a few segments can enhance the visual effects compare with the loop cut modifier. However, this feature will change the mesh size of the model. The smooth shading modifiers not only maintain the complexity of the models but also enhanced the visual realism significantly. The mesh editing and shading modifiers can also be applied based on the requirement of the models in VR program.
\nThe author(s) received financial support from the Hong Kong Polytechnic University, the Hong Kong Special Administrative Region, China, for the research, authorship, and/or publication of this chapter.
\nThe authors declare no conflict of interest.
We would also like to extend our thanks to the Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University, for the support in our VR projects.
\nAuthors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6"},books:[{type:"book",id:"11643",title:"Genetic Diversity - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"0b1e679fcacdec2448603a66df71ccc7",slug:null,bookSignature:"Prof. Mahmut Çalışkan and Dr. Sevcan Aydin",coverURL:"https://cdn.intechopen.com/books/images_new/11643.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11644",title:"Structural and Molecular Aspects of DNA Repair",subtitle:null,isOpenForSubmission:!0,hash:"83dfefc2400d2d037281f1e25bbc544b",slug:null,bookSignature:"Prof. Subrata Kumar Dey",coverURL:"https://cdn.intechopen.com/books/images_new/11644.jpg",editedByType:null,editors:[{id:"31178",title:"Prof.",name:"Subrata",surname:"Dey",slug:"subrata-dey",fullName:"Subrata Dey"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11645",title:"Neural Tube Defects",subtitle:null,isOpenForSubmission:!0,hash:"08d6ba70d97767769a97cfeeb52dac78",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11645.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11669",title:"Fatty Acids - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"9117bd12dc904ced43404e3383b6591a",slug:null,bookSignature:"Assistant Prof. Erik Froyen",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",editedByType:null,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"69f009be08998711eecfb200adc7deca",slug:null,bookSignature:"Dr. Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",editedByType:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11673",title:"Stem Cell Research",subtitle:null,isOpenForSubmission:!0,hash:"13092df328080c762dd9157be18ca38c",slug:null,bookSignature:"Ph.D. Diana Kitala",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",editedByType:null,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11674",title:"Updates on Endoplasmic Reticulum",subtitle:null,isOpenForSubmission:!0,hash:"5d7d49bd80f53dad3761f78de4a862c6",slug:null,bookSignature:"Dr. Gaia Favero",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",editedByType:null,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11676",title:"Recent Advances in Homeostasis",subtitle:null,isOpenForSubmission:!0,hash:"63eb775115bf2d6d88530b234a1cc4c2",slug:null,bookSignature:"Dr. Gaffar Sarwar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/11676.jpg",editedByType:null,editors:[{id:"203015",title:"Dr.",name:"Gaffar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11804",title:"CRISPR Technology",subtitle:null,isOpenForSubmission:!0,hash:"4051570f538bd3315e051267180abe37",slug:null,bookSignature:"Dr. Yuan-Chuan Chen",coverURL:"https://cdn.intechopen.com/books/images_new/11804.jpg",editedByType:null,editors:[{id:"185559",title:"Dr.",name:"Yuan-Chuan",surname:"Chen",slug:"yuan-chuan-chen",fullName:"Yuan-Chuan Chen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11805",title:"Genome-Wide Association Studies - Trends and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"006916e730c66d3b84d3ec036f769e00",slug:null,bookSignature:"Prof. Rafael Trindade Trindade Maia, Dr. Magnólia De Araújo Campos and Dr. Marco Antônio Alves Schetino",coverURL:"https://cdn.intechopen.com/books/images_new/11805.jpg",editedByType:null,editors:[{id:"212393",title:"Prof.",name:"Rafael",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12174",title:"Genetic Polymorphisms",subtitle:null,isOpenForSubmission:!0,hash:"5922df051a2033c98d2edfb31dd84f8c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12174.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"729",title:"Probability Distribution",slug:"engineering-control-engineering-probability-distribution",parent:{id:"115",title:"Control Engineering",slug:"engineering-control-engineering"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:20,numberOfWosCitations:2,numberOfCrossrefCitations:2,numberOfDimensionsCitations:2,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"729",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"2174",title:"Stochastic Modeling and Control",subtitle:null,isOpenForSubmission:!1,hash:"b4b944e9c857315f20b2f5ffb8a5ec2b",slug:"stochastic-modeling-and-control",bookSignature:"Ivan Ganchev Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/2174.jpg",editedByType:"Edited by",editors:[{id:"145553",title:"Prof.",name:"Ivan",middleName:null,surname:"Ivanov",slug:"ivan-ivanov",fullName:"Ivan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"41182",doi:"10.5772/39266",title:"Stochastic Observation Optimization on the Basis of the Generalized Probabilistic Criteria",slug:"stochastic-observation-optimization-on-the-basis-of-the-generalized-probabilistic-criteria",totalDownloads:1722,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Sergey V. Sokolov",authors:[{id:"148120",title:"Prof.",name:"Sergey",middleName:null,surname:"Sokolov",slug:"sergey-sokolov",fullName:"Sergey Sokolov"}]},{id:"41183",doi:"10.5772/39274",title:"Identifiability of Quantized Linear Systems",slug:"identifiability-of-quantized-linear-systems",totalDownloads:1848,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Ying Shen and Hui Zhang",authors:[{id:"10457",title:"Prof.",name:"Hui",middleName:null,surname:"Zhang",slug:"hui-zhang",fullName:"Hui Zhang"}]},{id:"41185",doi:"10.5772/45950",title:"Stochastic Based Simulations and Measurements of Some Objective Parameters of Acoustic Quality: Subjective Evaluation of Room Acoustic Quality with Acoustics Optimization in Multimedia Classroom (Analysis with Application)",slug:"stochastic-based-simulations-and-measurements-of-some-objective-parameters-of-acoustic-quality-subje",totalDownloads:1684,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Vladimir Šimović, Siniša Fajt and Miljenko Krhen",authors:[{id:"10431",title:"Dr.",name:"Vladimir",middleName:"Prof.",surname:"Simovic",slug:"vladimir-simovic",fullName:"Vladimir Simovic"},{id:"149501",title:"Dr.",name:"Sinisa",middleName:null,surname:"Fajt",slug:"sinisa-fajt",fullName:"Sinisa Fajt"},{id:"149527",title:"Dr.",name:"Miljenko",middleName:null,surname:"Krhen",slug:"miljenko-krhen",fullName:"Miljenko Krhen"}]},{id:"41186",doi:"10.5772/45951",title:"Stochastic Modelling of Structural Elements",slug:"stochastic-modelling-of-structural-elements",totalDownloads:2283,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"David Opeyemi",authors:[{id:"11301",title:"Dr.",name:"David",middleName:"Akinyiwola",surname:"Opeyemi",slug:"david-opeyemi",fullName:"David Opeyemi"}]},{id:"41187",doi:"10.5772/46153",title:"Stochastic Control and Improvement of Statistical Decisions in Revenue Optimization Systems",slug:"stochastic-control-and-improvement-of-statistical-decisions-in-revenue-optimization-systems",totalDownloads:1696,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Nicholas A. Nechval and Maris Purgailis",authors:[{id:"10275",title:"Prof.",name:"Nicholas",middleName:"A.",surname:"Nechval",slug:"nicholas-nechval",fullName:"Nicholas Nechval"}]}],mostDownloadedChaptersLast30Days:[{id:"41198",title:"Geometrical Derivation of Equilibrium Distributions in Some Stochastic Systems",slug:"geometrical-derivation-of-equilibrium-distributions-in-some-stochastic-systems",totalDownloads:2233,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Ricardo López-Ruiz and Jaime Sañudo",authors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}]},{id:"41183",title:"Identifiability of Quantized Linear Systems",slug:"identifiability-of-quantized-linear-systems",totalDownloads:1846,totalCrossrefCites:1,totalDimensionsCites:1,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Ying Shen and Hui Zhang",authors:[{id:"10457",title:"Prof.",name:"Hui",middleName:null,surname:"Zhang",slug:"hui-zhang",fullName:"Hui Zhang"}]},{id:"41202",title:"On Guaranteed Parameter Estimation of Stochastic Delay Differential Equations by Noisy Observations",slug:"on-guaranteed-parameter-estimation-of-stochastic-delay-differential-equations-by-noisy-observations",totalDownloads:1625,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Uwe Küchler and Vyacheslav A. Vasiliev",authors:[{id:"148175",title:"Prof.",name:"Vyacheslav",middleName:null,surname:"Vasiliev",slug:"vyacheslav-vasiliev",fullName:"Vyacheslav Vasiliev"},{id:"166040",title:"Prof.",name:"Uwe",middleName:null,surname:"Küchler",slug:"uwe-kuchler",fullName:"Uwe Küchler"}]},{id:"41186",title:"Stochastic Modelling of Structural Elements",slug:"stochastic-modelling-of-structural-elements",totalDownloads:2278,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"David Opeyemi",authors:[{id:"11301",title:"Dr.",name:"David",middleName:"Akinyiwola",surname:"Opeyemi",slug:"david-opeyemi",fullName:"David Opeyemi"}]},{id:"41187",title:"Stochastic Control and Improvement of Statistical Decisions in Revenue Optimization Systems",slug:"stochastic-control-and-improvement-of-statistical-decisions-in-revenue-optimization-systems",totalDownloads:1693,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"2174",slug:"stochastic-modeling-and-control",title:"Stochastic Modeling and Control",fullTitle:"Stochastic Modeling and Control"},signatures:"Nicholas A. Nechval and Maris Purgailis",authors:[{id:"10275",title:"Prof.",name:"Nicholas",middleName:"A.",surname:"Nechval",slug:"nicholas-nechval",fullName:"Nicholas Nechval"}]}],onlineFirstChaptersFilter:{topicId:"729",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differentia