Relationship between production planning and control activities and the characteristics of a remanufacturing system [14]
\r\n\t
",isbn:"978-1-80356-420-3",printIsbn:"978-1-80356-419-7",pdfIsbn:"978-1-80356-421-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"f188555eee4211fc24b6cca361983149",bookSignature:"Dr. Kim Ho Yeap",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",keywords:"Inductive Coupling, Resonant Inductive Coupling, Magnetic Coupling, Magnetic Resonance, Transmitter, Receiver, Rectenna, Antenna, Induction Coil, Stationery Charging, Dynamic Charging, Rectifier",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 25th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Kim Ho Yeap is a senior member of the IEEE, a Chartered Engineer registered with the UK Engineering Council, a Professional Engineer (PEng) registered with the Board of Engineers Malaysia, and an ASEAN Chartered Professional Engineer. In 2008 and 2015 he underwent research attachment at the University of Oxford (UK) and the Nippon Institute of Technology (Japan). Dr. Yeap has been given the university teaching excellence award and 21 research grants. He has published more than 100 research articles.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",middleName:null,surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap",profilePictureURL:"https://mts.intechopen.com/storage/users/126825/images/system/126825.jpeg",biography:"Kim Ho Yeap is an associate professor at Universiti Tunku Abdul Rahman, Malaysia. He is an Institute of Electrical and Electronics Engineers (IEEE) senior member, a professional engineer registered with the Board of Engineers, Malaysia, and a chartered engineer registered with the UK Engineering Council. He is the external examiner and external course assessor of Wawasan Open University. From 2017 to 2022, he was editor-in-chief of the Journal on Digital Signal Processing. He has also been a guest editor for the Journal of Applied Environmental and Biological Sciences and Journal of Fundamental and Applied Sciences. He has also been a recipient of the university teaching excellence award and twenty-too research grants. He has published more than 100 research articles in electromagnetics, including refereed journal papers, conference proceedings, books, and book chapters.",institutionString:"Universiti Tunku Abdul Rahman",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Universiti Tunku Abdul Rahman",institutionURL:null,country:{name:"Malaysia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444315",firstName:"Karla",lastName:"Skuliber",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444315/images/20013_n.jpg",email:"karla@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7617",title:"Electromagnetic Fields and Waves",subtitle:null,isOpenForSubmission:!1,hash:"d87c09ddaa95c04479ffa2579e9f16d2",slug:"electromagnetic-fields-and-waves",bookSignature:"Kim Ho Yeap and Kazuhiro Hirasawa",coverURL:"https://cdn.intechopen.com/books/images_new/7617.jpg",editedByType:"Edited by",editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38487",title:"A Perspective on Remanufacturing Business: Issues and Opportunities",doi:"10.5772/48103",slug:"a-perspective-on-remanufacturing-business-issues-and-opportunities",body:'Nowadays, the continuous technological innovations and the growing consumerism accelerate the rate at which products are replaced, causing the exponential increase in the production of waste and landfills’ saturation. The production processes of many products, however, requires a large amount of non-renewable resources and of substances that represents a potential threat to environment and human health if those products are not recovered or disposed of properly. This situation has turned on the environmental awareness of consumers and sensitized legislator from different countries to enact and implement specific laws and directives for the management of the end of the life cycle of products and to regulate the employment of hazardous materials. However, although disposed product represent a threat, they represent, also, a resource for companies that have to manage them, more if the recovery activities are properly integrated into the product’ design phase and manufacturing activities. In fact this situation is pushing toward new profit models, based on an integrated product life cycle management. The innovative policies oriented to recover disposed products on the one hand improve the efficiency in natural resources consumption, but on the other hand show new business opportunities to original equipment manufacturers and third-party companies. Among the different recovery options, remanufacturing is an important and interesting one. The aim of this chapter is to increase the wealth of technical/managerial ability to integrate the production cycle of new manufactured products with the recovery of discarded products In particular the multifaceted field of remanufacturing will be targeted identifying those strategic factors making the remanufacturing business sustainable from an economic point of view. In the second section the various models for an integrated product life cycle management will be presented together with the several recovery options. A brief discussion will be conducted on the impact of these choices on configuring a reverse logistics network. In the third section a profile of the remanufacturing industry has been drafted considering in particular its model of business. In fact, factors that have led various OEMs to undertake remanufacturing programs on their products are different and in many cases dependent on actors’ geographic location and the product category. Although many companies have started this activity as a mere compliance against increasingly compelling regulations aimed at products recovery, the empirical evidence shows that in the most successful cases companies simply tried to seize business opportunities already identified on that market. Companies designing remanufacturing programs within an integrated business model, with the aim to build a durable competitive advantage, put profit before legislative requirements and incentives. The purpose of this section, then, is to dissect the business of remanufacturing in order to highlight their strengths and weaknesses, its opportunities and its dangers. In the forth section we sum up some results of this study and future possible developments.
The recovery of the product,as an alternative to traditional disposal, is a response to environmental damage caused by the disposal of end of life products. Product recovery, in fact, minimizes the demand for energy and raw materials and the environmental impact of waste, and also provides the opportunity to start a profitable business. Therefore, environmental issues, eco-sustainability and production cost aspects are linked together.
Product recovery implies reviewing the management logic of product lifecycle, from an "open" production system to a "closed" one of variable length [1]. In the open loop logic, the process starts by taking resources from the ecosystem, when raw materials and energy are channeled into the transformation process, and ends with landfill disposal or incineration process. This situation is sustainable only if the natural resources consumption is lower than eco-system\'s ability to regenerate them.
On the other hand, in a closed loop supply chain some recovery activities delay the product disposal by starting new production cycles on the product, its part and components or raw materials. The adjective "closed", however, should not suggest a completely self-sufficient system, since the use of new resources is almost always necessary at each new cycle and it is related with the recovery option considered. Undoubtedly such a new approach to product lifecycle management improves the efficiency of the exploitation of natural resources and opens, at the same time, new business opportunities. The end of life phase is transformed into a testing time, to establish the most suitable recovery option to extend the product’s useful life. (Figure 1).
Products at final stage of their lifecycle, can be recovered in many ways and with different levels of efficiency in exploiting natural resources. In literature, these recovery options can be found (Figure 2):
reuse;
restoration;
refurbishing;
remanufacturing;
cannibalization;
recycling.
Open loop and closed loop supply chains [
Recovery options in a closed loop supply chain [
The recycling process is at the lowest level of recovery efficiency, it allows to recover only raw materials but not the added value of production cycle. Higher efficiency options, where the whole product, part or components are recovered, are reconditioning, remanufacturing and cannibalization. Intermediate options, are repair and reuse. A closed loop system consists of distribution, product recovery and waste management. The products and/or components, that come back through the reverse logistics channels, can be directly sold, recovered or disposed off.
The original definition of the remanufacturing concept is due to Robert Lund, professor at Boston University, a luminary in the study of this sector. His contribution paved the way for a systematic study of this recovery option. In literature there are many definitions of the remanufacturing concept [3,4] and a meaningful one is: "….remanufacturing is an industrial process whereby products referred as cores are restored to useful life. During this process the core pass through a number of remanufacturing steps, e.g. inspection, disassembly, part replacement/refurbishment, cleaning, reassembly, and testing to ensure it meets the desired product standards” [5].
The previous definition clearly refers to remanufacturing as a process, a set of linked activities, rather than a single step aimed at restoring the performance of a product. The same cannot be said, for example, for repair or reuse, which are simply defined as an activity.
This option is applied firstly to electronic and mechanical products and components, as they maintain, when recovered, a relatively high added value with respect to the market evaluation or to their original cost [6]. Gaudette and Giuntini consider this practice as the most evolved form of recycling: "…It Conserves not only the raw material content but also much of the value added during the processes required to manufacture new products " [7]. In fact, the energy used to remanufacture a product, basing on a study of Lund, is, on average approximately 20-25% of that required for an ex-novo manufacture, while the remanufacture cost is equal to about 60% of the original [8,9].
In Figure 3, the fundamental differences between the options of remanufacturing, reconditioning and repair are depicted, basing on three dimensions: warranty, product performance and content of work needed.
Hierarchy of recovery processes of a product intended for a secondary market [
The entire remanufacturing process can be decomposed in three sequential sub processes: disassembly, overhaul, reassembly. “The coordination of these sub-systems is key for a successful production planning and control system” [11].
According to Steinhilper [12] and Sundin [5] the activities composing a remanufacturing process can be divided into (Figure 4):
disassembly;
inspection;
sorting;
cleaning;
reprocessing;
reassembly;
checking and testing.
A generic remanufacturing process [
Empirical evidence shows that companies, involved in remanufacturing activities, organize their processes in different ways. Although the sequence disassembly -restore-assembly appears to be a fixed point, activities such as inspection, cleaning or testing have not an unique position into the process. The sequence, therefore, must be chosen considering the recovery process, the characteristics of the product, and the technology available for treatment.
The disassembly activity is located upstream of the entire process and it is extremely critical, since its implementation directly affects the quality of recovered material for successive activities. This step plays a central role in preserving the value of recovered cores. The main reasons for that are high incidence of manual labor, necessity of specialized equipment or time required. These issues are directly influenced by the design quality and its capability to respond not only to customer requirements but also to recovery necessity with higher environmental-friendly criteria. Several researches report that this phase is mainly carried out in a manual way, while the use of automation occurs only in case of large batches of standardized products [13]. The disassembly activity could be more complicated, if conducted by a third-party operator as it must develop a reverse engineering, rarely having access to OEM specifications.
The inspection and sorting phases are closely related: the second activity can be seen as the completion of the first one. The result is the sorting of cores into three subgroups:
"as is" reusable cores without need of revision;
Recoverable cores, for which a refurbish activity is necessity;
Not recoverable cores.
After inspection and sorting, it is possible to proceed to the cleaning phase of recovered parts. Cleaning goes beyond the elimination of dust and dirt from components [12]. Many cleaning processes cannot derive from the common ones of manufacturing processes. Therefore, the development of new ad-hoc solutions is necessary. As new methods are developed, they are more and more environmental friendly. It is crucial to implement such an operation with techniques and products that do not affect the component quality and combine a low environmental impact.
Reprocessing activities involve all those operations necessary to the component to provide a planned performance (or even higher if compared to new ones). The technical tools normally used are the same of manufacturing processes. The small size of batches can lead to the prevalence of manual work. There are some cases in which production lines, used for manufacture new products, have been "updated" to remanufacture recovered products.
The reconditioned components represent a large part of the remanufactured product. In order to limit the use of new parts, many times, the number of disassembled units can be increased if compared with the units to be re-assembled with the aim to recover enough parts from the cores.
The reassembly is the final phase to obtain remanufactured products. The greatest difficulty arises from ensuring a continuous flow, quantitatively and qualitatively adequate, in order to avoid blocks or slowdowns, inevitably resulting in higher costs and lower profits. The reassembly operation can be carried out with reprocessed or reused components, with new components or with cannibalized components. A monitoring problem arises as it is impossible to know in advance how many components can be reused or reprocessed. A possible solution is to purchase and store new components in case of need. However, this solution is not always suitable, because it increases the inventory level and obsolescence problems. It can be difficult to coordinate the reassembly of the various parts, if the reprocessing lead-times are uneven.
At the end of the whole process, there is a testing phase to ensure the achievement of quality standard set for this kind of products. Testing in remanufacturing contexts affects all products and is more rigorous than the random sampling in new products case.
Remanufacturing systems have a high level of uncertainty and complexity if compared to the traditional production systems. The management of these aspects makes the role of planning and control systems critical.In fact, companies, involved in remanufacturing activities, have to face a series of problems that limit the efficiency of their production process. These problems are typical of this sector and cannot be addressed by the traditional tools of planning and control. In literature, several technical and management issues have been identified [14]:
difficulties in disassembly of the product;
uncertainty about the quality of returns;
difficulties in matching of the parts;
uncertainty in working cycles and processing times;
the lack of correlation between returns and demand;
uncertainty in quantities and timing of returns;
configuring and managing a reverse logistics network.
From the Table 1 it can be argued that these features impact at various levels on the management of remanufacturing systems and in particular on the planning and production control activities.
Relationship between production planning and control activities and the characteristics of a remanufacturing system [14]
Virtually every manufactured product may be remanufactured at the end of its life cycle. However, aspects such as the business model or product’s design makes remanufacturing a certain product more profitable than others, or in some cases totally not convenient. Literature has tried to trace the profile of a remanufacturable item, using some parameters.
The main orientation of the research activities on this subject has been, not only to evaluate the "remanufacturability" from a strictly technical point of view, but also to verify the conditions that allow a sustainable business for the company. Parker identifies three key parameters for remanufacturable products [15]:
the intrinsic value, the market value of the product being reprocessed;
the re-constructability, the ease of disassembly a product and then its assembly at the end of recovery process;
the evolution rate, the speed at which new variants of the product are launched on the market.
Basing on these parameters, Parker recommends a legislative intervention intended to allow the reuse of components into new products, investments in research to develop the Design for Remanufacturing (DfRem) and the development of a system of services to extend product’s lifecycle and, if possible, to update it from a stylistic and functional point of view [15].
Robert Lund identified 75 categories of remanufacturable products and developed reference criteria also confirmed by subsequent research [6].
These criteria are:
the product is durable;
the product has only failed in its functionality;
the product is standardized and consists of interchangeable parts;
the added value at end of life, is high;
the cost to obtain the core is low if compared with the remaining intrinsic value;
the product’s technology is relatively stable over a period of time that exceeds the single lifecycle;
the consumer should be informed about the availability of remanufactured products, so to create an adequate demand on the market;
a technology exists to remove parts from products without damaging them and to restore the product.
Sundin identifies in a empirical way four relevant characteristics of product/component to simplify the implementation of activities required in a process of remanufacturing [5]:
wear resistant;
easy to identify;
easy to remove;
easy to be reprocessed.
These analysis provide a valuable support to identify those concerns during the design phase to facilitate a proper and simple reprocessing at the end of life.
In the current scenario, there is also the additional requirement of a minimum market value for certain categories of products, to secure a profit at the end of reprocessing. In fact, only on this condition, today, remanufacturing may be considered as an attractive business and not only conceived for environmental issues, but physiologically in loss. The low profit margin is due to the high labor cost involved in the various recovery options. This, however, should become secondary in the future thanks to the increased volumes of products to be treated with positive implications on economies of scale and experience, as well as the degree of automation in the process [16].
The remanufacturing business was born in United States during the Great Depression of the\'30s and achieved the final consecration during the Second World War, when the plants were converted to military commitments. Most of the available resources were reserved for war needs, while those for civilian use were very low. In this context, to balance the decreasing in supply of new products, used products were reprocessed extending their useful life.
This recovery option is currently used for several categories of products among which:
Aerospace and aeronautical;
Automotive ;
Industrial machinery;
gaming machines;
data communication systems;
robot;
electrical and electronic equipment with high residual value ;
compressors;
office supplies;
copiers;
printer cartridges;
musical instruments;
refrigeration appliances;
ATMs.
As it can be seen from the above list, the remanufacturing field mainly concerns consumer and durables goods for professional use. This recovery option has had, until today, a little impact on consumer goods. On these products, in fact, aspects such as fashion design or status, have a strong relevance on the purchase decision.
Today, remanufacturing is widespread in the sector of high value and high technology products. In addition, this recovery option thrives in those sectors that have adopted the concept of Product Service Systems (PSS), the costumer has access to the service provided by the product, without having the property of it. In this case, when the product is no longer able to deliver its performance, it is recovered to be used by other costumers, satisfying shared goals of longevity, durability and performance.
The remanufacturing industry is defined by Lund as an "hidden giant", in fact many companies operating in this sector is not devoted exclusively to remanufacturing activities, but practice them as an aftermarket service.
Data on the remanufacturing sector are rather difficult to find, because of the overlapping between Original Equipment Manufacturers and remanufacturers, among which there are OEM and "third party" operators, independent or working on commission. However, the potential growth of this business is very high, especially in new sectors and in the EU market, where it has so far been undervalued.
Distribution of companies engaged in remanufacturing by industry sector [17]
Basing on the research of Lund [17] the majority of companies engaged in this activity are independent actors with OEMs playing a restrained role. From Table II. 1 it can be argued that most of the US remanufacturers operate in the automotive sector, about 70% of the total. No coincidence that the automotive industry has a long tradition in the recovery of engines, but also of other vehicle parts, which can be used in several lifecycles before the final disposal. However, Table II 1 refers to data older than ten years. Today it is estimated that the weight of the automotive sector has been reduced in favor of other product categories such as office supplies or photography.
Turning to specific examples there are independent firms such as Flextronics, a US firm, with an international vocation and a comprehensive know-how to recover printers, PDAs, cell phones, medical equipment, notebooks and desktops.
About the OEMs, Xerox is a global leader in the remanufacturing of photocopiers and other office equipment, whose return is secured by lease sales [18]. The greatest obstacle to the success of remanufacturing program, according to officials, has been the spread of the idea among some customers that products containing some used parts, may be less in terms of performance to products consisting exclusively of new parts. The unique process, the technologies used and the product’s warranty should ensure that all products regardless of the presence of remanufactured parts, have the same quality standards, the same performance and the same reliability. Other companies like Kodak and Fuji normally practice this option on disposable cameras returning for the development of films. Caterpillar, involved in this business from 1972, recorded in 2005 for "Remanufacturing Division a revenue of $ 1bn. Other well-known brands involved in this field are General Electric, Boeing, Deere, Navistar, HP and Pitney Bowes. In the U.S., however, the larger re-manufacturer still remains the Department of Defense.
Basing on these data it can be noted an intense activity, which, however, is still restricted within specific business ambits. Only in particular cases and conditions, products are recovered on a large scale. However the remanufacturing process has difficulty to come out these limited areas and it is struggling to establish itself as an industrial application on a large scale, beyond the traditional sectors in a consumer goods application.
Remanufacturing companies tend to frame the satisfaction of customers’ need by placing on the market a product that optimizes also its life-cycle costs. More than through the selling activity, they try to create value providing a service through the product in a Product Service System concept, “a system of products, services, infrastructure and support network designed to be competitive, satisfy customers and have a lower environmental impact than a traditional business model” [19].
This business model has a central focus on customer satisfaction and value creation, keeping in mind that these results are not achieved only through technological development, but also emphasizing the contribution of intangible assets such as intellectual property, image, brand, design or style. These aspects, in fact, help the company to differentiate its products from the competition, improving the degree of "customization" of supply and strengthening the relationship between supplier and consumer.
The PSS model is widespread in various business sectors, where the relationship between consumers and companies can be articulated according to the three main approaches in Figure 5 [20]:
product orientation, where the product sale is also associated with additional services such as maintenance contracts and end-of-life repurchase agreements to ensure the functionality and the conservation of the product;
user orientation, where the product still remains central in the relationship but the service provider has the property of the product, that is available to consumers through various contractual arrangements such as leasing etc.;
result orientation, where the supplier and the consumer agree on a service delivery (without specifying a particular product).
The product-service concept [
Whatever is the orientation of the company, in general the value proposition relies on a combination of product and service with different weights. “The
In remanufacturing case, the value proposition is based more on a performance value than on product’s property. Corresponding to low economic sacrifices there are functional and psycho-social benefits. A PSS model emphasizes the de-materialization of the offer and the strict relationship with the consumer. The company’s competitive vision moves towards a product life-cycle perspective that starts from the product development and production, passes through additional services delivery, and ends up with product recovery or final disposal [23]. In addition, a co-creating value process is highlighted: the end user is requested to work together and more closely to the supplier, moving from a logic of satisfaction based on property of the product to one based on access to benefits deriving from its functionalities [24].
Those producers, providing a combination product / service through the remanufacturing option, focus, of course, on the product’s use and on end of life phases aiming at a cost reduction. In this perspective, in fact, many levers of profit for a traditional business (i.e. supply of spare parts and maintenance service) are transformed into additional costs that the company must internalize. Considering that a product will have multiple life cycles, a correct life cycle cost/benefit analysis must take into account not only the initial cost (to which apply the markup), but also those costs related to the whole useful life of the product and the corresponding revenues. The pricing strategy, in particular, will be evaluated according to criteria of multiperiod choice.
The relationship between customer and company becomes very strong. In a traditional business model the profits to companies derive from the costs incurred by customers (e.g. price of the product, cost of spare parts, etc..). The transition to a PSS model, however, distributes these benefits among the actors of the economic system. Both the company and the consumer obtain benefits, creating conditions for a win-win situation.
Remanufacturing business can involve OEMs, which remanufacture their own returned products, independent remanufacturers working on products from various producers, and committed, when OEMs decide to outsource remanufacturing activities. OEMs could face a great difficulty in controlling the entire product’s value chain and this can create the conditions for market entry of independent remanufacturers. In this case, the end of life products are remanufactured by small independent companies, faster to take market opportunities than the large ones. However, when the OEM itself chooses to rely on these independent remanufactures, as in the automotive sector, contracts on orders are developed.
OEMs are becoming increasingly aware of the opportunities offered by remanufacturing. Beyond the possible profits, it offers feedbacks on failure modes and duration of the products, moreover controlling the remanufacturing process allows companies to maintain a good reputation of their brand.
However, for different reasons not always managers have had a positive attitude towards this type of activity. Primarily they raise the problem of cannibalization between new and remanufactured products. “...Cannibalism occurs when the sale of some of a company’s portfolio of products reduces the sale level of one or more products in the company’s portfolio of products” [25].
Although in literature the issue of cannibalization between products has been treated from different point of view, there is not an organic study concerning the cannibalization of new products by the remanufactured ones. However, that is to be considered desirable if it allows to maintain company’s market share [26]. In fact, the incertitude of an OEM may represent a business opportunity for independent remanufacturers, but also for direct competitors.
Even if Linton verifies, for an OEM introducing on the market a remanufactured version of its product, a decrease, in relative terms, in profitability, considering all the market this trend is not so obvious [27]. An increasing in sales of remanufactured products could be accompanied by a lower decrease in sales of new products, perhaps because a diversification of the offer reaches customers who would never have bought new products, or because this move would make the remanufacturing business less attractive to independent actors with a consequent decrease in their competitive intensity. So, there are many good reasons to believe that a certain type of cannibalization can increase the overall level of sales, especially under two conditions:
the remanufactured product, if sold at a lower price, could be used in alternative ways;
the product could be offered to market segments very sensitive to price
The importance of the participation of an OEM to the remanufacturing process causes usually a positive effect on return rate and quality of cores (intermediaries, engaged in the collection of cores, may retain only those of higher quality). However, third parties cannot have the same economies of scale of an OEM and compensate this weakness with a wide freedom of movement both from a strategic point of view (an independent remanufacturer can treat cores of different brands) and technological.
The use of outsourcing for remanufacturing activities can be a complicating factor in this context. Toffel, in fact, recognizes a trade-off between internalization and outsourcing [28]. According to this author, an OEM should consider a vertical integration (or even a joint venture), rather than relying on independent companies, when tacit knowledge, confidential information related to the design, engineering and production phase, are involved. Moreover, this choice should be made when there is a risk of becoming dependent on third-party because of components becoming rare.
So, a competitive or collaborative relationship may develop between the players of this business. The competition may concern both the final market and the procurement market of cores. For this reason, there are various deterring actions for new incomings. They range from legal restrictions (which prohibits a third party to remanufacture products) to technological or economic restrictions, such as encrypted code known only by OEMs or prohibitive tariffs on relicensing software, in order to discourage or, at least, make the process more expensive.
The possible collaboration relationships may be work on commission or full outsourcing. In some cases the practice of de-branding could occur, i.e., the OEM requires that its products, entering a secondary market through third parties, have a different look, in particular, the original brand is removed. However, this operation requires additional work and may be expensive [29]. It is also possible to find cases of
The system value of a remanufacturing process is depicted in figure 6. From this figure it can be argued that the value systems of direct production and remanufacturing are strictly integrated, sharing some upstream stages (on the supply side) and some downstream (on the distribution side). There is a very little difference if an OEM or an independent remanufacturer is involved in the remanufacturing process, in fact the current trend for OEMs is to devote different facilities to manufacturing and remanufacturing activities. In some cases they employ hybrid systems rather than fully integrated production systems because of the specificity and uncertainty characterizing the remanufacturing process. The trend is to configure two different networks for forward and reverse flows.
Value System of remanufacturing The role of information is crucial in influencing consumer’s behaviour. Unfortunately there is not a systematic study on this subject. Nevertheless, basing on [
What distinguishes the
This model of value creation integrates the end customer, not only, as a player in the use phase, but also as a potential supplier of products to recover. The customer becomes a node of the network and with his behaviour impacts on the effectiveness of reverse logistics. If consumers does not return back their end of life products, there is a lacking of raw material to remanufacture. The reverse logistics system creates physical flows of products, but also intangible flows of information. So, the remanufacturing player bets on a collaborative attitude of consumers, moreover it work to formulate specific policies to facilitate it. Remanufacturers rely on networks allowing to save resources and to spread fixed costs over more use cycles of products, whit physical return flows supporting feedback on products’ performance and on market evolution in terms of requirements.
Consumers’ behavior is particularly complex to analyze with reference to the remanufacturing business, since they can cover two potential roles:
purchaser of a product (new or remanufactured);
supplier of a core.
According to a microeconomic approach the preferences of a consumer can be analyzed through the “Willingness to Pay", the maximum price he are willing to pay for a certain good. This parameter can be measured through questionnaires, games, auction mechanisms, etc.. Camacho et al. studied the willingness to pay for an environmentally friendly product using surveys and economic experiments [30].
An interesting aspect of this study is that the participants said they were willing to pay for a product improvement in an ecological sense, but this inclination was not related to the magnitude of improvements made. This situation has important implications for corporate strategy, because the company could benefit from a rise in consumer WTP only marginally improving product’s environmental performance. Therefore, it depends much on the marketing policy adopted, than on the actual environmental performance delivered. Needless to say that situations which may lend themselves to abuse must be faced.
An index to monitor the behaviour of the consumer as a supplier of used products may be the "Willingness to Receive" (WTR:), the minimum price at which a person is willing to make his product available to supply a reverse logistics program. In this situation, the customer must be encouraged to return its product through specific policies (e.g., repurchase price, leasing, buy-back transactions, etc.).
The WTR is, also, influenced by the exchange of information between the parties. With other conditions being equal, we can expect a high WTR if the company organizes an effective collecting system for end of life products, because this can be interpreted by customers as the demonstration of company’s interest towards the product.
On the contrary, if the collecting phase is conducted by a no profit organization the WTR lowers significantly and philanthropic purposes take over. Contracts, linking enterprise and consumer, may be critical: in a leasing case, in fact, the company don’t have to push the consumer to return the product back. Moreover, it is important how the consumer perceives the value of used products. The remanufacturing is focused on preserving the added value of products, but in many cases the consumer is not aware of it [31].
It must be also considered the fact that, although European legislation is based on maximum transparency in order to promote an informed purchase, in many countries, especially developing ones, there is no obligation to communicate to consumers the status (remanufactured or not) of a certain product. In these cases firms may exploit the information asymmetry to their advantage, keeping silent about product’s nature. In contrast to it, there could be an information campaign with emphasis on the value proposition, namely low economic sacrifices to get the product in exchange for high returns for consumers in both functional (performance is comparable or higher of new products) and psycho-social (think about the value of environmental benefits for ecologically sensitive subjects). In many cases the result of information campaigns has been to overcome the distrust of the market, especially if it starts from a proper definition of the target customer profile.
The potential market consists of consumers and businesses. The drivers, that may spark interest for a remanufactured product, environmental sensibility, or in the case of durable goods, product’s features that discourage or not allow access to a new one. In a vertically segmented market, a company may choose to serve two different target customers with the same product, using variables such as price and quality. So, on the same iso-value line, it is possible to locate “the primary market” and “the secondary market”. The two offers are the same in relative terms, but different in absolute terms.
On the primary market the value proposition concerns the best quality products sold at a high price, on the secondary market, on the contrary, are sold low quality products sold at a lower price. The product’s quality refers not only to functional aspects but also to product’s image and its perception by the customer himself. In fact, many remanufactured products are sold at a lower price than the new ones, even if they have similar characteristics, due to its perception by the consumer, who associates the concept of remanufactured product with that of used product.
The different perception linked to new and remanufactured products is closely related to the philosophy of product recovery and not only to the specific required remanufacturing activities. Some firms, for example, might sell new products at a certain price and remanufactured products (or
The type of products (new, remanufactured or refurbished) sold in the primary market, depends on the specific situation considered. Primary and secondary markets are generally separated from a geographical point of view, but this is not always true because in some cases they can even overlap. This is the case of offers devoted to consumers sensitive to the environmental impact of purchasing decisions, to the less affluent social groups most sensitive to price or, in general, to consumers of products with very high price elasticity (i.e. office consumables materials).
However, in these evaluations are also involved aspects such as product’s characteristics, its intrinsic value or its propensity to technological obsolescence, brand policy, characteristics of the target market. For example, primary and secondary markets, which tend to be separated in the case of mobile phones, overlap when automotive components and industrial machinery are considered. The concept of primary and secondary markets are connected to the several possibilities of product recovery and to different prices of recovered products.
The development of secondary markets, especially for Electric and Electronic Appliances, is strongly linked to growth in demand for these products in developing countries. It is easy to understand how these markets are definitely the most attractive to businesses. In areas like Latin America or Equatorial Africa, in fact, demand for these products is growing at two-digit rates. For example in Nigeria that, from 2000 to 2006, there has been an increasing number of mobile lines (from one to about 25 million). Because of the economic conditions of that population, a significant share of this demand was satisfied with mobile phones and accessories (210,000 used cell phones imported only in 2005) used or remanufactured imported from more developed countries.
In Nigeria there is a high rate of repair and reuse of mobile phones. This extends their life from about 18 months in developed countries to approximately 7 years. A further aspect that encourages the use of remanufactured products is the high availability of cores, especially in developed countries.
In addition to Nigeria and other African countries, a significant demand also comes from countries of South America and Asia, particularly from Brazil and China. It has been estimated that the demand for second hand mobile phones is still higher than their availability [32].
Offering a remanufactured product can increase the usefulness perceived by the consumer, whose willingness to pay for products in like-new conditions should increase with respect to second hand products. Meanwhile the manufacturer can increase its profits leveraging on products that can become attractive after appropriate transformations. Therefore, changes on the demand level and price could occur [33].
The importance of secondary markets for companies is demonstrated, also, by the fact that often a product not having demand in the primary market, could still have a certain attractiveness in secondary markets. For mobile phones, for example, the secondary market cannibalizes less than 1% of sales of new products [29]. Another type of secondary market is that of components. For example, computer chips may have an alternative use in devices simpler from a technological point of view, like toys etc..
A remanufacturing process can allow an higher saving of natural resources if compared to other forms of reuse. According to the Energy Systems Division of Argonne National Laboratory, through this type of product recovery the equivalent of 422 * 1021J of energy per year can be saved. This energy would be used to satisfy the need of new components, that in the remanufacturing case is reduced of about 80%.
The energy saving is associated with lower emissions of carbon dioxide in the atmosphere for 800.000 t. In a long term perspective if everything would be recovered from returned products, a closed loop cycle for management of products / wastes could occur eliminating the use of landfill.
Waste form electronic and electric appliances, in particular, can cause serious health damage, since they contain a wide range of hazardous substances such as cadmium, chromium or mercury. For these reasons, the legislation from several countries in the world have been improved several times to ensure a correct management of potentially dangerous products during their lifecycle.
However from an environmental point of view it is important to check the opportunity of prolonging the life of a product, especially if potentially obsolete or polluting. In fact, that the impact of many products is higher during the use phase than in the disposal one [34].
Therefore even the best environmental intentions can lead to product take-back regulations counterproductive if not coordinated with the type of materials resulting from the recovery process. This lack coupled with the breakthrough role of technology has created a strange situation that still does not find solution.
The product recovery can be a profitable business, in fact a remanufacturing process can allow a general price reduction of 35% - 40% with an average margin of 20% [16]. Furthermore, the reuse allows saving in raw materials and energy, avoiding the disposal costs that OEM by law have to support.
The cost reduction is at the base of profitability of this business and can ensure appropriate returns on investment. This will benefit the competitive position of the company that can share these benefit with its customers.
In a multi period perspective, the cost reductions do not affect only remanufactured products, but also the new ones. The pricing policy, in fact, has to take into account that many of the costs incurred,during first production cycle, can also be amortized in the following remanufacturing cycles. Often, recovery programs are not started fearing for the negative effect on sales of new products. This is a
Moreover, the strong tensions on market prices of materials, due to the rapid growth of some developing countries, are making the direct costs of materials an increasingly important factor of business profitability, as the labour costs. “…As valuable resources become scarcer and more expensive, companies managing their resources efficiently are likely to gain a competitive advantage” [31].
In many cases, strategies aimed at exploiting the added value of the product, as a policy of relocation, could be source of competitive advantage. Therefore, the profitability of this business is more pronounced if the incidence of raw materials, on the full cost of the product, is high.
Among the benefits of a remanufacturing program we can find the achievement of economies of scale and experience. The increase of production size allows to spread fixed costs over a higher volume of output. However, the economies of experience allow to maximize the overall efficiency of the process optimizing the use of variable factors and the time required for operations. For example, the benefits may relate to aspects such as quality of recovered materials, waste reduction, processes organization. In this case tacit knowledge is very important. It becomes crucial how this resource is managed by the organization to allow a wide spread use and exploitation, through various stages of socialization, externalization, combination and internalization in order to create explicit knowledge [35].
Ferrer and Guide argue that ethical and environmental reasons alone are not sufficient to justify a remanufacturing program [36]. Each firm to produce profits focuses on core activities and outsources the others. Eco-friendly production logic and principles of CSR (Corporate Social Responsibility) follow this approach.
In the US the business of product recovery and remanufacturing, has not developed only for regulation reasons or environmental awareness. Legislative obligations, incentives and taxes intended to address the problem, were not the key determinants for the emergence of this industry. This is also testified by the fact that the remanufacturing business was already established in different sectors before the concepts of EPR or Product Stewardship, grow up. The determining factor turns to be the business profitability, beyond environmental aspects or taxes.
The aspects related to policy and corporate strategy, although not directly related to the purpose of profit, could be particularly important for OEMs in starting remanufacturing activities. Among these there are the connotation of brand, the corporate image, the aftermarket coverage, feedback on sold products.
The image is a very critical factor in a successful business because it can only be built through a shrewd marketing policy and substantial investment diluted in time. Products devoted to remanufacturing activities, if not consistent with market expectations, could significantly damage the relationship between consumer and OEM regardless of who has carried out the remanufacturing activities.
For this reason it is crucial for an OEM to be interested in these activities. The purpose may be to stop any remanufacturing activity on its products, preventing others players from exploiting its brand image and possibly causing unwanted effects through lock-out systems, or to manage remanufacturing activities on its products.
As regards the implications of building a strong brand image, the company that enhances, in the public eye, its focus on the environmental problems by means of a suitable marketing strategy, can create an
The information used can be of two types: associated with the lower environmental impact of products and / or related to its higher performance. These two types are not mutually exclusive, rather, from their synergy the company can get the best results in terms of image return.
The first type of information is intended to highlight the aspect of product such as reduced use of resources, greater durability, the reduced number of components, the absence of environmentally hazardous materials in the product or its production process. The latter, instead, aims to highlight the performance which consumers can expect using it as, for example, greater accuracy, increased flexibility, modularity, etc.. The latter, instead, aim to highlight the performance which consumers can expect using it as, for example, greater accuracy, increased flexibility, modularity, etc.. All these information are intended to influence judgments and feelings of consumers, to amplify the potential value of the offer, working on those aspects to which the target market is more sensitive.
For an OEM collecting used components and products from its customers allows to preside over the aftermarket. In many cases this market turns out to be very profitable even more the main one. Recovery activities through the collection of end of life products is a way to preserve the aftermarket by competitors or potential players. The take-back activity represents an opportunity to maintain and increase the value of customer relationships. The product return represents a moment of interaction with customer with the chance to establish a new relationship. Hence the importance of policies aimed at valuing this phase, perhaps through an incentive system that motivates the customer to return the product. Business models like "System Lock-In, Competitor Lock-Out" oriented to a "Restricted Access" can limit the opportunities for contact between the customer and competitors preventing new consumer experiences, and comparisons of several offers. The complementary aspects of the offer and the economies of the system should be taken into account, considering also those systems that allows the multi-period use of products [37].
Conversely, avoiding to consider this option, means not to cover a market opportunity, waiving a retention action, and, yielding to competitors. A evidence of that is represented by the statements of a German manager of the automotive industry: "officially a remanufactured engine can be purchased only if a core is returned. But if a customer provides the core without buying a remanufactured product, we tend to buy it anyway, because otherwise it could become "food" for competitors "[38].
The remanufacturing process allows to extend the offer and introducing also low-cost options, to conquer new market spaces. This could be particularly important when spaces are not relevant [38]. Moreover, for products with a very long life-cycle, remanufacturing represents the only option to ensure replacement parts, because it is very difficult that companies provide new manufactured parts beyond a certain period of time. Remanufacturing activities allow a continuous monitoring of customer needs and conditions of installed products. Basing on these information, companies may decide reformulate its offer in a proactive way. Information highlighting the strengths and weaknesses of products can be collected as an input for the design phase of the product. In particular, the most critical data are the deterioration under the actual operating conditions, since many information are impossible to anticipate or difficult to simulate during experiments.
There are several reasons for considering remanufacturing as a business opportunity very attractive in a competitive advantage view. Savings in terms of natural resources through remanufacturing may be viewed as a reduction of the transactions between the actors involved in order to improve the overall efficiency of the economic system.
However, this improvement should be not considered only from an environmental and sustainability point of view, as produces lower production costs for companies. In fact they limit the purchase of raw materials and maximize the added value of their products with the additional benefits of feedback on products, image, customer relationships, and diversification.
A virtuous business, recovery-oriented, requires the transition from an industrial economy to an access economy, where services and the dematerialization are predominant. Hence, the most advanced form of value proposition based on a remanufactured product is represented by a result-oriented positioning, where there is an agreement contract with the customer based on target performance.
However, not always the relationship between customer and producer has evolved into a pure access one for several reasons: a marked relationship with the ownership of the product still remains for certain categories of products; the companies have not been able to promote correctly their value proposal to the market; the market is not ready yet for this kind of experience.
The criticality of technical, technological and design aspects in remanufacturing, shows that the value system of a remanufactured product goes towards a situation where the presence of independent actors decreases in favor of OEMs, who should overcome, therefore, fears of a possible substitution effect of remanufactured products with new ones.
A future development of this study could be, as a preliminary activity to any remanufacturing program, the development of a logical model for the evaluation of remanufacturability a generic product taking into account logistics, demand and technology aspects of the recovery process.
From the application in textiles, uses of natural dyes also extend to colouration of food and in other areas like medicines, cosmetics, and procession of leather products. Several sources of natural colorants used in the past have been re-identified today. Many are common and play a dual role in colouration of textiles as well as food products and drinks. Some dye-yielding plants contain compounds like curcumin, crocin, bixin, carthamin, punicalagin, nimbin that are known to have therapeutic properties and are used in various traditional medicinal therapies. Their inherent functional properties like antimicrobial, antifungal, deodorizing, UV protection, moth/insect-repellent, and others allow them to enhance the value of the dyed textiles, or the colored food products. This chapter deals with some selected natural colorants widely used in the textiles and food sectors and documents their chemistry, extraction process, application, usage and properties, separately, in relation to textiles and food. Few case studies on colourimetric measurements and analysis of functional properties of natural dyes on textiles and food are also discussed.
Natural dyes for textiles are dyes or colorants derived from plants, invertebrates, or minerals. From the plant source, colors are extracted from seeds, roots, stems, barks, leaves, flowers, berries, and fruits. In addition to the natural vegetable coloring matter, animal/insect coloring matter like tyrian purple, cochineal, lac and kermes, and mineral coloring matter derived from ocher, limestone, manganese, cinnabar, azurite, and malachite are also used to produce natural effects on the fabrics. With the advent of synthetic dyes, natural dyes faded into oblivion. But now with several advantages like fast and durable colors coupled with replaceable, biodegradable, and fairly non-polluting nature over the synthetic ones, natural dyes are making a comeback.
Different natural dyes yield different colors–yellow (kamala seed pods, myrobolan fruit); mustard yellow (latex from the gamboge tree); yellow to orange (pomegranate rind, turmeric, and lichens); peach to brown (chestnut hulls); orange (gold lichen, carrot and onion skin); pink (berries, rose and beets); crimson to maroon (teak leaves and cochineal); orange, pink and red (madder root); red to brown (bamboo and hibiscus flower); brown (catechu bark and coffee beans); red to purple (red sumac berries, basil leaves, hibiscus flower, logwood, lac); purple (red cabbage and murex snails), blue (indigo leaves), green (sorrel roots, spinach, and peppermint leaves); yellow, gray to black (black berries, iris root, and walnut hulls) and sepia brown (octopus/cuttlefish).
Different compounds are present in natural dye sources that impart a variety of colors on textiles; indigotin (blue and purple), anthraquinones (shades of red), carthamin from safflower (red and yellow shades), naphthoquinone (orange, red, or reddish-brown shades), flavonoid dyes (yellow to greenish-yellow and brown colors), carotenoid (orange), tannins (different colors with different mordants) and curcumin (yellow shades).
Color is the prime sensory attribute of foods and is often used by consumers as an indicator of food quality in terms of flavor, safety, and nutritional value. Food colors are dyes, pigments, or other substances that impart color when added to a food product or a drink. Such additives make the food more attractive, appealing, and appetizing; provide color to colorless foods or enhance their natural color; offset color that is lost on exposure to air, moisture, high temperature, light, and unfavorable storage conditions; and allows the consumers to identify products on sight. Thus, one of the main applications of food colorants is the modification or preservation of its visible appearance.
Food colors can be obtained naturally as extracts from natural sources, or they can be synthesized. Natural food colors are usually extracted from seeds, fruits, vegetables, leaves, insects, algae, etc., and are used both in domestic cooking and commercial food production and are available in many forms such as liquids, powders, gels, and pastes.
Among the natural food colorants, Asian spices like turmeric and saffron are used in everyday cooking; they lend an appeasing color to the food. Saffron, as a spice finds its use in biryanis and as colorants in dairy products. Caramel is mostly used to enhance flavor in deserts. Hibiscus is a commonly used bakery product and tea-based beverage to enhance the brown tint. Marigold does not have extensive use but the petals are sometimes used to enhance colors in salads. Beet juice has several applications in many beverages, dairy products, yoghurt ice cream, sauces, jams, jellies, and candies.
Different sources of natural colorants yield different colors; dark yellow is obtained from turmeric; yellow-orange from saffron; orange from carrots, red pepper/paprika, and sweet potato; pink from strawberries and raspberries; red from carrot, beets, and tomato; deep red from beetroot and red sandalwood; green from matcha and spinach; blue from red cabbage mixed with baking soda; purple from blueberries and purple sweet potato; brown from coffee, tea, and cocoa; and black from activated charcoal and squid ink.
A variety of compounds present in natural dye sources are responsible for different colors. Anthocyanins (flavonoids) found in fruits and vegetables are responsible for blue, purple, red, and orange colors. Carotenoids in fruits and vegetables are known for imparting red, orange, and yellow colors. Betalains present in most caryophyllales plants give a pink to red color. Curcumin is responsible for the yellow color of turmeric. Safflower gives an attractive yellow color. Chlorophylls from alfalfa (
The appearance of a textile or food material is ascertained through its surface color and is the first sensation perceived by the consumer to judge its acceptability. The color of an opaque object is described by the reflectance of light as a function of its wavelength. The human eye is versatile and can detect light and light modification by the colorant and this is interpreted by the brain as color. For any color to be perceived by a human eye, a source of light, an object, and an observer is required.
Color measurement of products can be carried out in two ways; by visual evaluation or through instrumental analysis. The chromatic attributes and different geometric factors like texture, shape, etc. of foodstuffs can be assessed qualitatively by the human eye. In this process, the observer assesses the color of the sample under standard conditions of illumination, and after comparison with defined color standards; the assessment is defined in terms of some scores generally on a 9-point scale. One of the most popular scales is the 9-point Hedonic scale in which the products can be marked from 1 to 9 depending on the appearance and acceptability rate of the food product. A lower score indicates low and least acceptable color intensity; while a high score denotes high color intensity or acceptable appearance. Such visual assessment is subjective, relative, and is dependent on the observer and environmental conditions. On the other hand, the presence of color pigments can be also be quantitatively assessed using different types of equipment. But each instrument measures only one attribute at a time and so several instruments may be needed to measure various aspects of visual perception. Basically, there are three types of instruments that measure color or its attributes, colourimeter, spectrophotometer, and spectroradiometer.
Liquid chromatography is a method for separating, identifying, and quantifying the constituents of a mixture. The interaction of the sample with the mobile and stationary phases causes this separation. Because there are so many distinct stationary/mobile phase combinations that can be used to separate a mixture, chromatography is divided into various categories based on the physical states of those phases, liquid, and gas. Liquid–solid column chromatography is the most common chromatography technique that uses a liquid phase (mobile) that filters down through the solid stationary phase, bringing the separated components with it. To separate the components that make up a sample, high-pressure liquid chromatography (HPLC) uses pumps to push a pressurized liquid solvent containing the sample mixture through a chromatography column loaded with solid absorbent materials. Each component in the sample interacts with the adsorbent material in a slightly different way, resulting in varying flow rates and separation of the components as they flow out of the column. The type of chromatography column employed determines how different chemicals are separated. Several different types of columns (size exclusion, ion exchange, normal phase, reverse phase) are used. Once the molecules make it through the column, they will be detected by a detector, which is typically a UV detector, but other detectors such as refractive index detectors, laser light scattering detectors, fluorescence detectors, and thermal conductivity detectors are also used. High-performance liquid chromatography (HPLC) is considered the ‘gold standard’ for measuring pigment concentrations in plant samples. A major drawback of this process is its high cost both in terms of time required for assessment, and the high cost of the testing equipment itself. Liquid chromatography can be combined with mass spectrometers (LC–MS) to analyze organic and inorganic compounds of biological origin. While liquid chromatography may separate mixtures with several components, mass spectrometry can identify the individual components’ structural identity with high molecular specificity and detection sensitivity.
Colorimetric or spectrophotometric analysis is another technique to evaluate color in textiles or food. Because the amount and color of light absorbed or transmitted through a solution is dependent on the concentration of pigment particles present in it, such measurements rely on detecting the concentration of material (color/pigment) in a solution. Such color evaluation measures the change in the intensity of electromagnetic radiation in the visible wavelength area of the light spectrum after it is transmitted or reflected by the object or solution through which it passes. A colorimeter or spectrophotometer thus assesses the color in various sample solutions (dyes in textiles, or colorants in food) by absorbing a particular wavelength of light and denotes the assessment in the form of some values using the Beer–Lambert law. Under Beer’s law of photometry, the amount of light absorbed is proportional to the solute concentration present in the solution. According to Lambert’s law, the amount of light absorbed is proportional to the length as well as thickness of the solution taken for analysis or in other words, when light passes through a medium, its absorption is proportional to the intermediate convergence. Beer’s law and Lambert’s law are usually taken in combination as Beer–Lambert law which indicates the relationship of absorbance with both the path length of light inside the sample and the concentration of the sample.
Thus, the principle of operation of a colorimeter is outlined as follows—in a colorimeter a beam of light of a given wavelength is directed toward a liquid sample (of the dyes in textiles, or colorants in food). While passing through a solution in the colorimeter, the beam of light travels through a series of lenses, and the photocell is able to detect the amount of light passing. The current produced by the photocell depends on the quantity of light striking on it; higher the concentration of the colorant/pigment in the solution, the higher is the absorption of light and consequently less transmission. Thus, less light passing through the solution would indicate the creation of less current by the photocell [1]. The colorimeter can qualitatively detect the presence of color pigment in a sample when the wavelength peak detected in the experimental sample matches with the peak (λmax) of the standard pigment.
The colorimeter can also measure the amount of pigment present in the sample. In this case, calibration curves can be made using the different concentrations of the standard solution of the pigment. With the help of a calibration curve, the amount of pigment present in the sample can be estimated. In case standard solutions are not present, then various equations can be formulated using extinction coefficients, molecular weight, etc. to ascertain the amount of dye pigment in the sample.
When items are viewed under different sources of light and illuminations, their colors are frequently diverse. The discrepancy is due to differences in the spectral power distribution of the illuminations as well as changes in the lighting. An illuminant is a specific spectral power distribution incident on the object viewed by the observer, whereas a source is a physical emitter of radiant energy, such as a lamp or the sun and sky. As a result, a single source of light can provide several illuminants. Illuminants can also have a variety of spectrum power distributions. Numerical specification of color was earlier visualized by chromaticity diagram and the three chromaticity coordinates (x, y, and z) were calculated by the use of the three tristimulus values that represent the amount of standard lights (red, green, and blue) required to reproduce a color.
Over time, a slew of alternative color appearance models have arisen, as well as a numerous new color measurement related terms. To represent the color of an item, several color coordinate systems can be employed, including RGB (red, green, and blue), Hunter Lab, Commission Internationale de l’Eclairage’s (CIE) L*a*b*, CIE XYZ, CIE L*u*v*, CIE Yxy, and CIE LCH. Almost of modern color measurement is based on experimental observations in accordance with the CIE (International Commission on Illumination) color specification system. The human eye has three color receptors: red, green, and blue, according to CIE principles, and all colors are combinations of these.
Color evaluation methods such as the Hunter Lab L*,a*,b* and the modified CIE system known as CIELAB are widely used in the food and textile industries. They were created as a result of investigations that correlated tristimulus values with visual perceptions of color in order to convert the X, Y, Z system (tristimulus values) to a visually uniform color-system. Each color can be considered equivalent to a member of the greyscale lying between black and white, according to L*, which is an approximate measurement of brightness. As a result, the L value for each scale reflects the level of lightness or darkness, whereas the a and b values indicate redness or greenness, respectively. Hunter L, a, b is a color scale based on the opponent-color theory which states that color receptors in the human eye see color as pairs of opposites: light–dark, red-green, and yellow-blue. To fully define the color of an object, all three values are required. The scale consists of two color coordinates, a* and b*, as well as a psychometric index of lightness i.e. L*. The parameter a* is positive for reddish colors and negative for greenish colors, whereas the parameter b* is positive for yellowish colors and negative for bluish colors. L* is an approximate measurement of luminosity according to which each color can be considered as equivalent to a member of the greyscale lying between black and white. Thus, the L value for each scale, therefore, indicates the level of lightness or darkness; the values indicate redness or greenness, and the b values yellowness or blueness. The CIE 1976 L*a*b* color or modified CIE system called CIELAB was recommended by the CIE in 1976 to improve on the 1966 version of the Hunter L, a, b. The CIELAB color scale, like the Hunter, expresses color as three values: L* for perceived brightness, a* and b* for the four distinct hues of human vision: red, green, blue, and yellow. Under the two color scales, however, three values of L, a, and b are determined differently; the formulas for Hunter L, a, and b are square roots using CIE XYZ, whereas CIELAB uses cube roots of XYZ. The CIELAB color scales were designed to be a perceptually uniform space in which a given numerical change correlates to a corresponding perceived change in color, and so provides a better approximation to the visual judgment of color difference for very dark hues. Despite the fact that the LAB space is not genuinely perceptually uniform, it is valuable in the industry for detecting minute color changes. Because the CIE L*a*b* scale, which was released in 1976, has gained popularity, the Hunter color scale is no longer as widely used as it once was. Although CIE measured the single color space, it was not truly uniform visually throughout the color space and could not define color-difference in a singular term i.e. two colors cannot be red and green at the same time or yellow and blue at the same time. It meant that equal color difference magnitude appear of different visual magnitudes in different regions of the color space. For this reason, the CMC equation (Color Measurement Committee) or color difference (ΔE* or DE*) formula which takes the non-uniformity of the color space into account is used to assess the difference between two colors and is more preferred in textiles color assessment today. The CMC equation corrects the CIELAB color scale’s most significant flaw, which is chroma location dependency.
The total color difference, ∆E, may also be calculated. A comparison of two colors is used to determine this color difference (ΔE* or DE*). One is designated as the standard (or target), and the other as the sample. ∆E is a single value that takes into account the differences between the L, a, and b of the sample and standard. The delta values (∆L, ∆a, and ∆b) show how far a standard and sample differ in terms of L, a, and b. Different color difference formulae are used to calculate the numerical color difference between two colors.
ΔL* (L* sample - L* standard) = difference in lightness & darkness (+ve = lighter, −ve = darker)
Δa* (a* sample - a* standard) = difference in red & green (+ve = redder, −ve = greener)
Δb* (b* sample - b* standard) = difference in yellow & blue (+ve = yellower, −ve = bluer)
Deltas for L* (ΔL*), a* (Δa*) and b* (Δb*) may be positive (+) or negative (−). Whether the sample is redder or greener than the standard is indicated by the sign of the delta value. For example, a sample will be redder than the standard if ∆a is positive. The total difference, Delta E (ΔE*) is always positive. For the delta values, tolerances can be established. Out-of-tolerance delta values indicate that the discrepancy between the standard and the sample is too great. If ∆E is out of tolerance, it is difficult to know the parameter that is out of tolerance. It can also be deceiving in situations when L, a, or b are out of tolerance but E is still within it.
Color values of textiles are also assessed in terms of K/S (Kubelka-Munk) values where higher values represent darker and more saturated colors. K/S values are usually calculated at the wavelength of maximum absorption of the color (λmax); however, a calculation over the visible region may also be employed. The Kubelka-Munk equation is as follows:
Where K: is the constant related to light absorption of the dyed fabric; S: is the constant related to light scattering of the dyed fabric; R: is the reflectance of the colored fabric that is expressed in fractional form.
The objective measurement of color is thus dependent on the quantification of the light source (E), the object’s reflectance (percent R), and the observer’s color response functions r-g-b. In food products, color quality is either measured on a spectrophotometer and expressed in terms of the chromatic attributes (L*, a*, b*) as proposed by CIE, or in terms of tint values measured using a tinctometer and interpreted as color ratio between yellow and red pigments (R and Y values). Colors on textiles can be characterized by hue (dominant shade); the amount of color present or saturation; and by the degree of lightness or darkness of the particular color. Thus in textiles color values are generally expressed in terms of the color strength (K/S values), color difference (ΔE), chromatic attributes (L*, a*, b*), as proposed by CIE and Metamerism Index (MI). Based on the respective magnitudes of ΔE, ΔC, ΔH, MI, a newer empirical index CDI (Color difference index) of assessing color for a binary mixture of dyes has also been postulated [2].
Turmeric is derived from the tuberous rhizome of the Zingiberaceae family.
Turmeric has a volatile oil that contains turmerone, as well as other coloring compounds called curcuminoids mainly concentrated in the rhizome. Curcuminoids (1,7-bis 4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione) are natural antioxidants and curcumin is the principal curcuminoid present in turmeric. The other two curcuminoids are desmethoxycurcumin and bis-desmethoxycurcumin. Curcumin is a polyphenol and the principal coloring component of this yellow dye which has been also been classified as CI Natural Yellow 3 and considered a direct type of dye. Curcumin can be found in two different tautomeric forms: keto and enol. In the solid-state and in solution, the enol form is more energetically stable [4]. The chemical structure of curcumin is different under different pH and hence it can be used as an indicator. It remains yellow in an acidic medium, while when added to an alkaline medium above pH 8, the shift of the hydrogen atom causes the compound to change color giving a red hue. It is not soluble in water (acidic and neutral pH) at room temperature but is soluble in oil and alcohol. Curcumin also has fluorescence qualities, which extends the active life of these molecules and increases the chances of contact with oxygen in the air, making them more susceptible to photochemical oxidation. [5]. A relationship exists between the curcumin content and the L*a*b* values [6] and high curcumin content is associated with high L* (lighter) and b* (yellower) values, but with lower a* (less red) value. Where a* and b* values are high, the resultant shades are red and yellow respectively, while when both a* and b*values are similar, the resultant shade is orange (Table 1).
Curcumin content in different types of turmeric | L | a* | b* |
---|---|---|---|
3.5 | 32.6 | 39.1 | 31.5 |
3.8 | 36.6 | 28.4 | 36.1 |
4.3 | 46.3 | 22.1 | 42.0 |
5.1 | 54.7 | 17.5 | 46.1 |
Variation in color values with respect to changing curcumin content in turmeric taken from difference sources.
Very few studies have been reported on dyeing of textiles with turmeric. Cotton was dyed with purified ethalonic extract of turmeric by the exhaust technique [7]. Enhancement of dye uptake and wash fastness of cotton was achieved through modification with enzymes and chitosan [8], irradiation with gamma rays [9], and microwaves [10] before dyeing. Silk was dyed with
Turmeric yields a warm gold color on undyed natural cotton fabrics, silk, and wool. It gives a wide range of yellows without mordants. With mordants (metal salts), it gives colors like golden yellow (tin), mustard yellow (copper and chromium), and olive green (iron). Its wavelength of maximum absorption (λmax) is 420 nm [14] or 450 nm [15] indicating that the dye can absorb color in the blue end of the spectrum. The wavelength of maximum absorption for turmeric is.
Maximum yield (highest absorbance) of color from turmeric was obtained at pH - 6 at 100°C [16] indicating that the dye can be extracted under very mild acidic or neutral conditions. Also, maximum extraction occurs at high (boiling) temperatures [5]. The solvent extraction process gave maximum yield followed by aqueous extraction, but the purest form was obtained by spray drying [14].
Color strength (K/S) value of the dyed fabric was maximum in pH 7 [7]. Good color strength was observed by dyeing fabric irradiated at 65°C for 40 min in dyeing bath having pH 6 [10]. Glauber’s salt tends to neutralize or reduce the negative electric charge (zeta potential) of cotton fabric, thus facilitating the approach of the dye anions to the fabric within the range of formation of hydrogen and other bonds between the dye molecules and fabric and thus the color strength of cotton dyed with turmeric extract increases with increase in salt concentrations [5].
In general, turmeric is a fugitive dye and bleeds easily. Turmeric exhibits poor washing fastness due to the phenolic groups present in curcumin which reacts with soda ash (in washing liquor) forming curcumin salt that is soluble in water and hence can be easily washed out from the dyed fabric. The poor light fastness of turmeric is attributed to the inherent susceptibility of its chromophore to photochemical oxidation. However, both the wash and light fastness of textiles dyed with turmeric can be improved through mordanting. The improvement in light fastness can be attributed to the reduced susceptibility of the turmeric dye chromophore to photochemical oxidation in the presence of mordant. Though dyeing with turmeric exhibits good fastness to rubbing, a decrease is noted both in the dry and wet rubbing fastness in the presence of the mordant.
Turmeric also has antibacterial and anti-inflammatory effects. Natural colorants extracted from turmeric exhibited excellent antimicrobial activities and related wound healing properties [17]. Silk fabrics dyed with an extract from
Turmeric (
Treatments | Mordanting time | ||
---|---|---|---|
1 hour | 3 hours | 5 hours | |
Unmordanted sample | 4.0 | ||
Cotton pre-mordanted with Colocasia | 4.1 | 4.5 | 5.1 |
Cotton pre-mordanted with Lemon | 7.0 | 7.3 | 8.6 |
Cotton pre-mordanted with potassium dichromate | 7.5* | — | |
Cotton pre-mordanted with potash alum | 4.0* | — | — |
Surface color strength of cotton dyed with turmeric pre-mordanted with different mordants for different time duration.
for 1 hr. 50 min
Aqueous extract of turmeric was used to dye cotton fabric using aluminum sulphate as a mordant [15]. The effect of different mordanting techniques (per, post, and simultaneous) on the surface color strength of the fabric was evaluated (Table 3). Simultaneous dyeing and mordanting sequence gave maximum dye uptake probably due to the mordanting of cotton with aluminum sulphate mordant and formation of a complex between the color component of the dye curcumin and the metal mordant. Also, turmeric being a direct type of dye exhausted well in the presence of a salt-like alumnium sulphate (mordant) and hence simultaneous mordanting sequences gives better results (K/S).
Mordanting Technique | K/S at λmax (450 nm) |
---|---|
Pre | 0.4 |
Post | 0.3 |
Simultaneous | 1.5 |
Surface color strength (K/S) of cotton dyed with aqueous extract of turmeric using aluminum sulphate as a mordant by the different mordanting sequences.
New and uncommon compound shades were developed through combination dyeing of the cotton combination of turmeric (yellow dye) with using madder (red dye), and turmeric (yellow dye) with red sandalwood (red dye) in different proportions by the different mordanting and dyeing process. A synergistic effect in the color interaction between the observed and calculated K/S values (calculated values were derived by adding the individual K/S value of the respective proportion of the two dye components on the fabric) was observed; the observed K/S values of the dyed cotton samples were always higher than the calculated or expected K/S values indicating the color value of the mixed dye system to be always higher. Also, an increased amount of turmeric in the mixture increased the dye uptake (K/S) values (Table 4).
Dye | Amount of dye when used singly | Proportional ratio of the dye in the mixture | Calculated value for the combined shade | Observed value for the combined shade | ||||
---|---|---|---|---|---|---|---|---|
100 | 75 | 50 | 25 | 0 | ||||
Turmeric | — | 0.7 | 0.3 | 0.2 | — | 100:0 | — | 1.5 |
Madder | — | 0.3 | 0.3 | 0.4 | — | 75:25 | 0.7 + 0.2 = 0.9 | 1.0 |
50:50 | 0.3 + 0.3 = 0.6 | 0.9 | ||||||
25:75 | 0.2 + 0.4 = 0.6 | 0.8 | ||||||
0:100 | — | 0.6 | ||||||
Turmeric | — | 0.7 | 0.3 | 0.2 | — | 100:0 | — | 1.5 |
Red sandalwood | — | 0.3 | 0.3 | 0.2 | — | 75:25 | 0.7 + 0.2 = 0.9 | 0.9 |
50:50 | 0.3 + 0.3 = 0.6 | 0.7 | ||||||
25:75 | 0.2 + 0.3 = 0.5 | 0.6 | ||||||
0:100 | — | 0.4 |
Surface color strength (K/S) of cotton dyed with a mixture of dyes (turmeric with madder and turmeric with red sandalwood) in different proportion by the simultaneous mordanting and dyeing sequence using aluminum sulphate as a mordant.
Curcumin is a polyphenol found naturally in turmeric rhizome that has antiinflammatory, antioxidant, anticancer, and immunosuppressive activities. It is used mainly in the development of dairy products as the presence of fat (triglycerides) enhances the solubility of curcumin [21]. While few studies have been carried out on colouration of food using turmeric, most of them focus on its functional aspects. Improvement in the sensory attribute and antioxidant potential of ghee has been reported by the addition of 160–350 ppm of curcumin [22]. The turmeric powder improved the oxidative stability and microbiological quality of soft cheese [23]. Turmeric extract rich in curcumin reduced the aging of fresh lamb sausages during modified atmospheric packaging by causing less generation of related volatile compounds due to its antioxidant capacity [24]. The addition of turmeric to the dough of biscuits and breads greatly improved the antioxidant potential and organoleptic properties of breads and biscuits [25].
Turmeric when applied to food yields a bright orangish-yellow shade.
Curcumin is mainly dissolves in oils and alcohols. It is not stable at alkaline conditions especially at pH above 7.5 though it is quite stable in temperatures generally used for processing foods. Curcumin is complexed with aluminum ions as it is light sensitive.
Curcuminoids present in turmeric possesses anti analgesic, anticarcinogenic, antiinflammatory antioxidant, antiseptic properties. It also helps in the prevention, palliation, or treatment of various disorders such as diabetes, cholelithiasis, diabetes mellitus, foodborne illnesses, and circulatory disorders [26, 27, 28]. Moreover, it also acts as a potent food preservative as it slows down lipid oxidation and possesses antimicrobial activity.
The effect of heat treatment and conventional sun drying on the color of fresh turmeric rhizome was evaluated in terms of its hue, yellowness, and brightness (L*, a*, and b* color coordinates) [29]. Turmeric rhizomes were subjected to heat treatment at varying temperatures (50–100°C) for different time periods (10–60 minutes). The rhizomes were cooked at 100°C and then sun-dried for 15 days. The rhizomes were brightened (L*) and yellowed (b*) after being heated at 60-80°C. Heat treatment from 60 to 80°C increased the brightness (L*) and yellowness (b*) of the rhizomes; the values remained the same and did not change with further increase in temperature. The phenolic activity of oxidases in turmeric decreased with an increase in temperature and this led to a decrease in browning of the sample while inversely increasing its hue to a yellower shade and brightness. Though the heat treatment did not significantly decrease the concentration of curcuminoids, sun drying caused a significant reduction in curcuminoids (4–5%). Heat treatment thus enhanced the color of turmeric and maximum brightness was observed at 80°C for 30 minutes.
The impact of irradiation on the color stability of curcuminoids was examined and curcumin reagent (curcumin, DMC, and BMC; 79.4, 16.8, and 3.8% - w/w) was irradiated with fluorescent light (27 watt) for 24 hours using a household fluorescent lamp [30]. The color intensity was analyzed by measuring absorbance at 435 nm and curcuminoids before and after treatment were quantified using HPLC. Turmeric pigments (oleoresin and curcumin) were not stable under light, and their photo-degradation was lower when present in higher concentrations. An increase in concentrations of the sample (20–1000 μg/mL) resulted in a loss in color intensity of both oleoresin and curcuminoids in turmeric (Table 5).
Concentration (μg/mL) of the sample | Color intensity | |
---|---|---|
Turmeric oleoresin | Curcuminoids | |
20 | 65.4% | 63.0% |
200 | 38.9% | 46.2% |
1000 | 28.6% | 27.0% |
Loss in color intensity of different pigments (i.e. oleoresin and curcuminoids) in turmeric due to light irradiation.
Of the total carotenoid pigments present in annatto, 80% consists of the red pigment, bixin, and a yellow pigment, norbixin or orelline. Bixin is a yellowish-orange-red dye that is high in carotenoid pigments and is derived from the thin seed coat of
Concentration of bixin in mg/L extracted by the patented method | Hunter | Lovibond | ||
---|---|---|---|---|
L* | b*/a* | Y | R | |
10 | 15.2 | 2.3 | 40 | 6.0 |
20 | 14.1 | 1.9 | 40 | 8.0 |
30 | 12.9 | 1.5 | 40 | 9.0 |
40 | 12.4 | 1.3 | 40 | 10.0 |
50 | 12.2 | 1.2 | 40 | 11.0 |
100 | 9.7 | 0.8 | 40 | 17.0 |
Effect of bixin concentration on color values (hunter and Lovibond) [35].
Natural fibres like cotton [34, 36], silk [37] and wool [32] and also synthetic fibers like nylon and polyester [38] have been dyed with
Yellow and orange can be produced from
Commercial preparations consist of solutions or suspensions of the pigment in vegetable oil or as a water-soluble form in dilute alkaline solution. Content of total phenols (TP) increases with an increase in pH and higher TP contents were obtained at an extraction time of 60 h and a solvent/seed ratio of 4 ml/g of the extract [42]. The primary pigment
Extraction condition | Dye yield (g/100 g) | Bixin (g/100 g) | Norbixin (g/100 g) |
---|---|---|---|
Bixin/norbixin dye from Indian seeds by CFTRI method | 2.3 | 21.9 | 18.5 |
Low bixin/norbixin dye from Indian seeds by the special patented method | 2.0 | 13.9 | 12.4 |
High bixin/norbixin dye from Indian seeds by special patented method CFTRI method | 1.0 | 60.2 | 55.4 |
Total yield of dye with bixin and norbixin content in Indian seeds of annatto extracted by different processes [35].
Extract of annatto has remarkable antimicrobial and antioxidant properties and a study revealed that the annatto dye had a bactericidal effect and could reduce
Cotton, wool, and silk were dyed with an aqueous extract of the
Effect of enzyme treatment on the color related properties (L*, a* and b*) of cotton, wool, and silk were dyed with an aqueous extract of the
Eco-friendly bamboo fiber was dyed with
Varying Parameters | K/S at λmax | L* | a* | b* | |
---|---|---|---|---|---|
Control (desized and potash alum pre-mordanted bamboo) | 0.1 | 89.3 | −0.2 | 6.6 | |
Variation in time (in min) | 15 | 4.4 | −23.6 | 30.7 | 1.2 |
30 | 4.5 | −24.3 | 29.8 | 1.2 | |
60 | 4.7 | −24.2 | 30.0 | 39.6 | |
Variation in temperature (°C) | Ambient | 3.9 | −19.9 | 28.2 | 42.5 |
60 | 4.7 | −23.3 | 29.8 | 42.2 | |
80 | 5.6 | −25.8 | 30.8 | 42.5 | |
Variation in pH | 2 | 1.4 | −15.3 | 17.3 | 25.8 |
7 | 3.8 | −23.0 | 28.0 | 37.0 | |
10 | 6.5 | −26.5 | 33.0 | 45.8 |
K/S (color strength) and other color related parameters of bamboo fabric pre-mordanted with potash alum and dyed with aqueous extract of annatto seeds (
L* – lightness/darkness; a* – greenness/redness difference; b* – blueness/yellowness; and CDI – color difference index
Annatto (E-160B) is a natural yellow-orange dye obtained from
Annatto gives a yellow to orange-red shade on food.
Annatto is water-soluble and can be mixed with sugar powder or potassium carbonate. The pigment is not heated stable. Moreover, there is a considerable loss of pigment due to deep-fat frying at high temperatures (> 200°C). It is stable at a pH 5.0–10.
Extract of annatto seed possess antimicrobial properties and decrease the growth and activity of
Color from annatto seeds is safe for human consumption compared to the synthetic colorants commonly used in sweetmeats.
Sample | Red values | Yellow values |
---|---|---|
Commercial | 1.7–4.1 | 9.0–20.0 |
2.5 mg/kg of nor-bixin (in sugar based formulation) | 2.0 | 20.0 |
5 mg/kg of nor-bixin (in sugar based formulation) | 3.0 | 20.0 |
5 mg/kg of nor-bixin (in potassium carbonate based formulation) | 3.1 | 40.0 |
Commercial | 9.1–10.8 | 20.0–20.7 |
40 mg/kg of nor-bixin (in sugar based formulation) | 10.0 | 30.0 |
40 mg/kg of nor-bixin (in potassium carbonate based formulation) | 10.0 | 40.0 |
Tinctometer color values of commercial
The solubility of bixin in oil and norbixin in water determines its usage. Annatto dye formulations suitable for dairy products like cheese and butter were developed and compared to their commercially available counterparts [55]. Three formulations were prepared; water-soluble solution using K2CO3, oil-soluble formulation using vegetable oil, and oil/water-soluble formulation using propylene glycol solution. The formulations were applied at different concentrations in cheese and butter. Lovibond Tintometer was used to measure the color of the commercial and experimental samples. Annatto dye oil/water soluble propylene glycol formulation was found to be the most effective formulation for imparting yellow color with good brightness to various dairy products (Table 10). Butter containing 3.75 mg/kg and 5 mg/kg of oil/water propylene glycol formulation closely resembled the commercial butter samples made using synthetic dyes. In the case of cheese, creamy yellow shade imparted by oil/water propylene glycol formulation at a concentration of 3.75 mg/kg looked very similar to the color of the commercial cheese sample.
Sample | Concentration (mg/kg) | R values | Y values |
---|---|---|---|
1.2 ± 0.26 | 4.0 ± 0.36 | ||
Butter with oil soluble annatto extract formulation | 3.8 | 0.8 ± 0.17 | 2.0 ± 0.26 |
5.0 | 1.0 ± 0.17 | 3.0 ± 0.26 | |
Butter with water soluble annatto extract formulation | 3.8 | 0.9 ± 0.10 | 2.5 ± 0.26 |
5.0 | 1.0 ± 0.10 | 3.3 ± 0.20 | |
Butter with oil/water annatto extract formulation | 3.8 | 1.1 ± 0.17 | 4.0 ± 0.46 |
5.0 | 1.5 ± 0.26 | 6.0 ± 0.36 | |
1.6 ± 0.26 | 4.6 ± 0.26 | ||
Cheese with oil soluble annatto extract formulation | 3.8 | 1.1 ± 0.10 | 4.0 ± 0.17 |
5.0 | 1.3 ± 0.26 | 3.3 ± 0.20 | |
Cheese with water soluble annatto extract formulation | 3.8 | 1.2 ± 0.18 | 2.5 ± 0.26 |
5.0 | 1.2 ± 0.20 | 3.0 ± 0.30 | |
Cheese with oil/water annatto extract formulation | 3.8 | 1.4 ± 0.12 | 4.6 ± 0.21 |
5.0 | 1.8 ± 0.10 | 5.0 ± 0.21 |
Lovibond tintometer readings of commercial and experimental test samples of butter and cheese.
Cochineal is a natural dye made from the pulverized and dried corpses of a female sessile parasite found in tropical and subtropical South America and North America. Dyeing of cochineal extract is mainly practiced in Mexico and Peru. Cochineal extracts have been used over ages as colorant for food, textiles, cosmetics, pharmaceuticals, and plastic applications.
The dye has mostly been used in the dyeing of silk, wool, cotton, and natural pigments (lakes) obtained from cochineal insects were used for paintings, frescoes, and restoration processes [56]. It’s the only natural red color that’s been allowed by the FDA for use in food and cosmetics, and it’s frequently used as a substitute for the infamous Red Dye #2.
The important color producing components in cochineal extract are carminic acid, kermesic acid and flavokermesic acid [57, 58, 59]. Cochineal’s coloring ability is due to cochinealin, or carminic acid (80–86%) with anthraquinone as the chromophore and –COOH, –OH,
Carminic acid content (percent) in different types of turmeric | L | a* | Tint (A420/A500) (ratio between yellow and red pigment) |
---|---|---|---|
12.8 | 19.5 | 3.9 | 0.44 |
15.8 | 19.4 | 3.8 | 0.44 |
16.0 | 19.1 | 3.7 | 0.45 |
17.9 | 19.4 | 3.6 | 0.46 |
19.7 | 19.4 | 3.3 | 0.44 |
Variation in color values with respect to changing carminic acid n content in turmeric taken from difference different geographical origin.
Cochineal was considered as one of the great treasures of the New World in the 16th–18th centuries, and along with alkanet, madder, kermes, and lac it formed a source of natural red dye for textiles. Cochineal dyed textile fibers in intense red colors with excellent fastness and was the dyed textiles were highly prized. There are several studies on the use of cochineal for dyeing different fibers; cotton has been dyed with cochineal [62, 63] as also wool [4] and silk [64]. Cochineal extract was used to dye silk and wool by the simultaneous dyeing and mordanting process using 1 gpl and 5 gpl of the dye and 1.5 gpl potash alum and copper sulphate as mordants at pH 4 and 80°C for 90 minutes using liquor ratio 1:40 [65]. Polyamide fabric has been successfully dyed in a range of shades with cochineal using different mordants and mordanting methods [66].
Cochineal produces scarlet, crimson, orange, and other range of fuchsias, reds, and purples on textiles. Different mordants produce different shades; blue-red/reddish-purple color with alum, maroon-red with copper, purple with iron. The addition of cream of tartar into the dye bath during the dye process will shift the color from a reddish-purple to a vivid flag red color. A combination of mordants also produces different colors like rich red when tin and alum are combined, purple-red when alum and iron are combined, and fuchsia to red shades with a combination of alum and cream of tartar. Over dyeing of cochineal with madder gives a good red, whilst cochineal over-dyed with indigo yields a range of light-fast violets and purples. Cochineal carmin has a maximum absorption wavelength (max) of 520 nm [67]. When carmin is esterified, the hydroxyl groups transform to carbonyl groups, lowering the electron cloud density and resulting in light shading effects [68].
The bodies of the insect,
pH of dye-bath has a great influence on shades obtained with cochineal though they do not impact the fastness properties of the dyed textiles.
Since the phenolic groups in cochineal are acidic, carminic acid is pale orange in low pH, but it changes to red in slightly acidic and neutral pH, and finally turns violet in alkaline solution [69]. Alkaline medium is favorable for dyeing cotton fabrics with cochineal extract and pre-mordanting cotton with alum and tannic acid mordant mixture improves the color yield [63]. Carminic acid also forms complexes with several metals ions, which act as acceptors to electron donors to form co-ordinate bonds with water-insoluble dye molecules. This complex formation between the dye and the mordant shifts the maximum absorption in the visible range to higher wavelengths with an apparent increase in color intensity. Tin-based mordanting gives a brighter, but higher lightness (L*) value on wool dyed with cochineal than other mordants [70]. The pre-mordanting method is preferred for aluminum and chromium salts, while the post-mordanting method is preferred for copper, tin, and iron salts in order to improve the color yield of wool dyed with cochineal extracts [71]. Catonization of cotton fabric [72] or its treatment with chitosan [70, 73] increases the color value of the cochineal dyed fabric. The optimum dyeing conditions for dyeing cotton with cochineal has been identified as temperature −60°C, time −60 min, MLR–1:40 liquor ratio [74].
Cochineal generally dyes textiles with excellent light and wash fastness. It gave moderate to good fastness properties on cotton [74] and moderate (grade 3) to very good (grade 4–5) washing fastness, and moderate (grade 5) to excellent (grade 7–8) light fastness on wool yarns [75]. Excellent fastness properties have also been reported on wool dyed with cochineal under the influence of microwave treatment and bio-mordants like heena and pomegranate [4].
Cochineal imparted antibacterial property to wool, silk, nylon, cotton, and viscose rayon fabrics [71, 76, 77]. Nylon yarn dyed with cochineal dye showed limited antibacterial activity, which increased on mordanting with copper and tin [76]. Excellent UV protection properties (UPF > 100) were observed on wool dyed with cochineal and this was higher for copper sulpate mordant compared to alum and also improved with the increase in dye concentration [65]. UPF values for silk dyed with cochineal was less than 50 at lower concentrations of the dye, but it was very good and in the acceptable range (UPF > 50) with a higher concentration of the dye and in the presence of copper sulphate mordant [65].
Woolen yarns were dyed with an aqueous extract of cochineal in presence of five different mordants (aluminum sulphate, stannous chloride, ferrous sulphate, citric acid, and cream of tartar i.e. potassium hydrogen tartarate), singly and in combination, using the pre-mordanting method as well as simultaneous mordanting methods [75]. During dyeing, the carbonyl group (>C=O) and alpha hydroxyl groups (–OH) in the anthraquinone moiety of carminic acid/kermesic acid of cochineal forms a coordinate complex with the metal cation of the mordant. The carboxylic acid group of the cochineal dye can also tautomerize and easily ionize into carboxylate anion (–COO−) forming ionic bonding with –NH3+ group of the wool fiber. In this way, metal-dye-fiber coordination complexes are formed between the mordant, dye, and the fiber. The anthraquinone-metal combination formed by cochineal and the metal mordant causes a red and blue shift in the visible region, i.e. between 460 and 570 nm, resulting in scarlet-red to purple colors [78]. Due to the H-substitution of the hydroxyl group bonded to C5 of the dye molecule by each metallic ligand, carminic acid present in the cochineal dye induces a bathochromic shift of the main hue to red when it interacts with metal cations during mordanting [79]. This happens when the bonding occurs between the 2-hydroxy group of dye molecule and metal cation [80]. But if bonding between dye and metal ion occurs in 7-hydroxy group, the complex could induce a small blue shift [80]. The bluish-purple color was obtained on unmordanted wool and a range of colors from scarlet-red to black on mordanting with the various mordants. In the case when mordants were used in combination, the final color depended on the chelating property of the dominant mordant, which forms more coordination complexes with the cochineal dye than the other mordants. Thus, ferrous mordant combinations gave grayish chrome; stannous mordant combinations gave reddish chrome and aluminum mordant combinations gave purple chrome. The redness/greenness (a* values) values of dyed samples from both the pre-mordanting method and simultaneous mordanting procedures were positive, indicating that all colors obtained using cochineal dye were in the red-purplish range. All dyed samples irrespective of the mordanting procedures showed an increase in yellowness (b* values) after mordanting and consequently, the color of dyed samples shifted from bluish (higher negative b* values) to yellowish (lower negative or positive b* values). In the pre-mordanting method, the metal cation of the mordant probably diffused well inside the fiber matrix-forming ionic bonding with functional groups of wool fiber before dyeing. During this dyeing process, this metal cation fixed on the fiber probably formed coordinate bonding with the cochineal dye molecule resulting in more aggregation of the dye molecules with the metal cation and formation of dye-fiber-metal complex inside the fiber. Contrarily in the simultaneous dyeing and mordanting method, the coordinate complex between the metal cation and the cochineal dye molecule was probably formed both in the dye-bath as well as inside the fiber matrix leading to lesser aggregation of dye-metal complex inside the wool fiber. Thus darker shades were obtained by the pre-mordanting process and the lightness (L*) of dyed was found to be higher in the case of simultaneous dyeing and mordanting process.
Wool was dyed in purple shades with cochineal and metal mordant (aluminum sulphate) and bio-mordant (chitosan) using the pre-mordanting process [81]. Results show that K/S value of wool mordanted with chitosan was higher than when mordanted with aluminum sulphate. Dye uptake increased with an increase in the concentration of the bio-mordant but beyond 1000 mg/L concentration, the K/S decreased. The decrease in dye absorption at higher bio-mordant concentrations may be due to the aggregation of bio-mordant on the wool surface reducing the area for dye adsorption as some dye sites already occupied by the bio-mordant become inaccessible to dye molecules. Thus, by using chitosan as mordant for dyeing wool with cochineal, not only the ill effects of a metal mordant is eliminated, but appreciable depth of color is obtained with lower amounts of dye. Low dye absorption was observed for unmordanted wool at pH 7 which increases at pH 4 indicating acidic pH to be favorable for dyeing wool with this dye. Dye absorption for wool fiber is primarily controlled by ion-exchange reactions between the carboxyl group of dye and amino groups of wool. Below its isoelectric point (pH 4.2), wool, is positively charged, whereas above that point the carboxyl groups present in it render a net negative charge. As a result, at pH 6, the amino groups in wool will always be protonated (carboxylate anions). The pKa value for the carboxyl group of carminic acid in cochineal dye is 2.81, indicating that carminic acid will exist in carboxylate anion form at pH 4. As a result of its increased affinity, the weak carboxylate anion of dye substitutes that of the acid at pH 4. The anion of dye has a complicated character, and when it is bound on wool, it undergoes additional interactions with ionic forces, increasing wool’s dyeability. However, dye absorption in wool pre-treated with chitosan followed an unanticipated pattern and showed higher dye absorption at pH 7. Generally, at pH 4, bio-mordant like chitosan acts as a cationic polyelectrolyte due to protonation of its amine groups thereby significantly increasing the dye absorption capacity of treated wool and at pH 7 it has a very low positive charge. However, the reaction between cochineal and chitosan treated wool was contrary to this indicating that the contact forces them are not solely electrostatic. Hydrogen bonding formation of carminic acid with several hydroxyl and carbonyl groups reduced in the acidic media due to protonation and loss of pair electrons of amine groups of the bio-mordant, resulting in better dye absorption in neutral medium. L* (lightness/darkness) decreased on mordanting indicating darker shades on chitosn pre-mordanted wool dyed with cochineal extract. The a* values were positive indicating redder shades, which decreases on mordanting with chitosan. The b* value of wool dyed with cochineal without any mordant was negative indicating bluer tone. These values were positive and the yellowness of the shades increased (decrease in blueness) when wool was pre-mordanted with chitosan before dyeing with cochineal extract.
Carmine has a color that is similar to cured pork [82]. Cochineal-derived colors are commonly found in alcoholic beverages, yoghurts, juices, ice creams, and confectionary, but they can also be found in jams and some processed meat items [83]. Typical applications of carmine dye in food are sausages and salami displaying an intense red color [84].
Cochineal produces intense purple color and the scarlet red color is obtained on complexing with aluminum.
For foodstuffs, extraction conditions for cochineal/carminic acid generally involve acid and/or enzymatic hydrolysis with or without solid-phase extraction (SPE). Carminic acid from cochineal is precipitated onto an alumina hydrate substrate. The precipitated complex called carmine is dried, grounded, and used as a food colorant. Though insoluble in water, carmine can be rendered water-soluble by reaction with a strong alkali. The color of carmine is dependent on the pH; at pH–4 and below, it is orange in color; as pH increases, it becomes redder and bluer until it becomes purplish-red above pH–6.5. The color pigment shows excellent heat and light stability.
Although carminic acid does not produce any genotoxic or cytotoxic effects, it has been related to cause anaphylactic reactions, asthma, urticaria, and angioedema in many individuals.
Surimi, minced beef, and milk were colored with naturally occurring carminic acid to change their color. Color modulation of carminic acid and carminic aluminum lake colored surimi, minced meat, and milk through the addition of different food additives, proteins, and metal ions was assessed [85]. Carminic acid rendered a light purple color to surimi while carminic aluminum lake rendered a magenta color. Minced meat and milk turned red and gray-green respectively with carminic acid. Iron and copper changed the color of the samples significantly. Changes were also observed in the case of the presence of food additives. The presence of myofibrillar protein, whey protein isolates, and soy protein isolate changed the pH of the medium resulting in a red color. Sodium nitrite is used as a preservative in the meat industry and as a chromogenic agent as well. Carminic acid changed to yellow with the addition of sodium nitrite though no change was observed in the case of the carminic aluminum lake. Also, no change in color was observed for ascorbic acid. Due to the chelation of the dye in presence of calcium ions, the color of the foodstuff changed. Hence, this dye was not found suitable for food samples rich in calcium and iron.
Pulse polarography was used to quantify carmine food dye in strawberry-flavored milk and candies and the results were compared with the UV–visible spectrophotometric analysis [77]. A pH 2.0 Britton-Robinson (B-R) buffer solution was used to perform differential pulse polarography on a falling mercury electrode (peak at 489 mV). Strawberry flavored milk and candy samples were added into the polarographic cell containing B-R buffer (pH 2.0) and polarograms were taken. The concentrations were measured using the standard addition method. To compare the validity of this electroanalytical method, the samples were analyzed using UV–visible spectrophotometry (Figure 2). The relationship between the peak current and carminic acid concentration was linear in the range of 1 μM to 90 μM with a detection limit of 0.16 μM. The results of both methods showed similar accuracy and precision. The pulse polarographic method was advantageous as it showcased high sensitivity, low limit of determination, simple instrumentation, and easy operation (Table 12). The UV-vis curves with the peak of maximum absorbance of turmeric [7], annatto [41] and cochineal [75] along with chemical structures of the main coloring component present in turmeric [9], annatto [50] and cochineal [58] are given in Figure 2.
UV–vis curves in the visible range with λmax values of aqueous extracts, and chemical structures of the coloring pigments present in the source of different natural colors.
Sample | Concentration of carminic acid | |
---|---|---|
Differential Pulse Polarography | UV- visible spectrophotometry | |
Milk (μg carminic acid /mL milk) | 121 ± 4 | — |
Candy (mg carminic acid/g candy) | 28.4 ± 1.5 | 27.1 ± 2.5 |
Determination of carminic acid in strawberry-flavored milk and candy using differential pulse polarography and UV–visible spectrophotometry.
With the introduction of synthetic dyes like aniline, alizarin, and indigo in the mid-1800, natural dyes lost their economic and commercial significance. Synthetic dyes now dominate the market due to their wide range of colors, ease of production, and excellent fastness features. Existing limitations and technical problems in the procurement of natural dyes have further compelled the shifting of focus from natural dyes to synthetic dyes. However, within a period of 150 years, some serious drawbacks associated with synthetic dyes have come to light; synthetic dyes are suspected to release harmful chemicals that are allergic, carcinogenic, and detrimental to human health. The use of eco-friendly natural dyes that are fairly non-polluting, automatically harmonizing, more challenging, and have rare color ideas in textile and food applications is now becoming increasingly popular due to the strict environmental requirements set on the harmful chemicals used in synthetic dye production. Renewability and eco-friendliness are the two major reasons that have led to the revival of these dyes and their gradual replacement with synthetic colorants.
IntechOpen - where academia and industry create content with global impact
",metaTitle:"Team",metaDescription:"Advancing discovery in Open Access for the scientists by the scientist",metaKeywords:null,canonicalURL:"page/team",contentRaw:'[{"type":"htmlEditorComponent","content":"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\\n\\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\\n\\nBut, one thing we have in common is -- we are all scientists at heart!
\\n\\nSara Uhac, COO
\\n\\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\\n\\nAdrian Assad De Marco
\\n\\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\\n\\nDr Alex Lazinica
\\n\\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Our business values are based on those any scientist applies to their research. We have created a culture of respect and collaboration within a relaxed, friendly and progressive atmosphere, while maintaining academic rigour.
\n\nCo-founded by Alex Lazinica and Vedran Kordic: “We are passionate about the advancement of science. As Ph.D. researchers in Vienna, we found it difficult to access the scholarly research we needed. We created IntechOpen with the specific aim of putting the academic needs of the global research community before the business interests of publishers. Our Team is now a global one and includes highly-renowned scientists and publishers, as well as experts in disseminating your research.”
\n\nBut, one thing we have in common is -- we are all scientists at heart!
\n\nSara Uhac, COO
\n\nSara Uhac was appointed Managing Director of IntechOpen at the beginning of 2014. She directs and controls the company’s operations. Sara joined IntechOpen in 2010 as Head of Journal Publishing, a new strategically underdeveloped department at that time. After obtaining a Master's degree in Media Management, she completed her Ph.D. at the University of Lugano, Switzerland. She holds a BA in Financial Market Management from the Bocconi University in Milan, Italy, where she started her career in the American publishing house Condé Nast and further collaborated with the UK-based publishing company Time Out. Sara was awarded a professional degree in Publishing from Yale University (2012). She is a member of the professional branch association of "Publishers, Designers and Graphic Artists" at the Croatian Chamber of Commerce.
\n\nAdrian Assad De Marco
\n\nAdrian Assad De Marco joined the company as a Director in 2017. With his extensive experience in management, acquired while working for regional and global leaders, he took over direction and control of all the company's publishing processes. Adrian holds a degree in Economy and Management from the University of Zagreb, School of Economics, Croatia. A former sportsman, he continually strives to develop his skills through professional courses and specializations such as NLP (Neuro-linguistic programming).
\n\nDr Alex Lazinica
\n\nAlex Lazinica is co-founder and Board member of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his Ph.D. in Robotics at the Vienna University of Technology. There, he worked as a robotics researcher with the university's Intelligent Manufacturing Systems Group, as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and, most importantly, co-founded and built the International Journal of Advanced Robotic Systems, the world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career since it proved to be the pathway to the foundation of IntechOpen with its focus on addressing academic researchers’ needs. Alex personifies many of IntechOpen´s key values, including the commitment to developing mutual trust, openness, and a spirit of entrepreneurialism. Today, his focus is on defining the growth and development strategy for the company.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"-totalCites"},profiles:[{id:"131328",title:"Prof.",name:"Abdennasser",middleName:null,surname:"Chebira",slug:"abdennasser-chebira",fullName:"Abdennasser Chebira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131328/images/system/131328.jpg",biography:"Dr. Abdennasser Chebira received his Ph.D. degree in Electrical Engineering and Computer Sciences from PARIS XI University, Orsay, France, in 1994. Since September 1994 he works as Professor Assistant at Sénart Institute of Technology of PARIS XII – Val de Marne University. He is a staff researcher at Images, Signal and Intelligent Systems Laboratory (LISSI / EA 3956) of this University. His current research works concern selforganizing neural network based multi-modeling, hybrid neural based information processing systems; Neural based data fusion and complexity estimation.",institutionString:null,institution:null},{id:"262400",title:"Dr.",name:"Thiago Lopes",middleName:null,surname:"Rocha",slug:"thiago-lopes-rocha",fullName:"Thiago Lopes Rocha",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"327936",title:"Dr.",name:"Mohamed",middleName:null,surname:"Anli",slug:"mohamed-anli",fullName:"Mohamed Anli",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"197120",title:"Mr.",name:"Habib Ur",middleName:null,surname:"Rehman",slug:"habib-ur-rehman",fullName:"Habib Ur Rehman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"328192",title:"Dr.",name:"Sameer",middleName:null,surname:"Kumar",slug:"sameer-kumar",fullName:"Sameer Kumar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"1024",title:"Dr.",name:"Keinosuke",middleName:null,surname:"Matsumoto",slug:"keinosuke-matsumoto",fullName:"Keinosuke Matsumoto",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Osaka Prefecture University",country:{name:"Japan"}}},{id:"66560",title:"Dr.",name:"Nicole",middleName:null,surname:"Verrills",slug:"nicole-verrills",fullName:"Nicole Verrills",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Newcastle Australia",country:{name:"Australia"}}},{id:"197632",title:"Ph.D.",name:"Karolína",middleName:null,surname:"Barinková",slug:"karolina-barinkova",fullName:"Karolína Barinková",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Pavol Jozef Šafárik",country:{name:"Slovakia"}}},{id:"328704",title:"Dr.",name:"Esther",middleName:null,surname:"Carrillo-Pérez",slug:"esther-carrillo-perez",fullName:"Esther Carrillo-Pérez",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidad de Sonora",country:{name:"Mexico"}}},{id:"66816",title:"Dr.",name:"Iwao",middleName:null,surname:"Emura",slug:"iwao-emura",fullName:"Iwao Emura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"67072",title:"Mr.",name:"Matthew",middleName:null,surname:"Lorenzi",slug:"matthew-lorenzi",fullName:"Matthew Lorenzi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"The Bristol-Myers Squibb Children's Hospital",country:{name:"United States of America"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6674},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2461},{group:"region",caption:"Asia",value:4,count:12719},{group:"region",caption:"Australia and Oceania",value:5,count:1018},{group:"region",caption:"Europe",value:6,count:17724}],offset:12,limit:12,total:134203},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:61},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:15},{group:"topic",caption:"Materials Science",value:14,count:24},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:108},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:672},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4433},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"246",title:"Artificial Intelligence",slug:"physical-sciences-engineering-and-technology-robotics-artificial-intelligence",parent:{id:"22",title:"Robotics",slug:"physical-sciences-engineering-and-technology-robotics"},numberOfBooks:14,numberOfSeries:0,numberOfAuthorsAndEditors:440,numberOfWosCitations:516,numberOfCrossrefCitations:452,numberOfDimensionsCitations:827,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"246",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8872",title:"Multi Agent Systems",subtitle:"Strategies and Applications",isOpenForSubmission:!1,hash:"6b0454f8f575d5d65603f329af59c80b",slug:"multi-agent-systems-strategies-and-applications",bookSignature:"Ricardo López - Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/8872.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",middleName:null,surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7227",title:"Applications of Mobile Robots",subtitle:null,isOpenForSubmission:!1,hash:"b4993517c29aed9abd474e362370e28a",slug:"applications-of-mobile-robots",bookSignature:"Efren Gorrostieta Hurtado",coverURL:"https://cdn.intechopen.com/books/images_new/7227.jpg",editedByType:"Edited by",editors:[{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",slug:"efren-gorrostieta-hurtado",fullName:"Efren Gorrostieta Hurtado"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7400",title:"Multi-Agent Systems",subtitle:"Control Spectrum",isOpenForSubmission:!1,hash:"ba8de13ac5162187fbc7f932a7fb0b34",slug:"multi-agent-systems-control-spectrum",bookSignature:"Vladimir Shikhin",coverURL:"https://cdn.intechopen.com/books/images_new/7400.jpg",editedByType:"Edited by",editors:[{id:"237011",title:"Dr.",name:"Vladimir",middleName:null,surname:"Shikhin",slug:"vladimir-shikhin",fullName:"Vladimir Shikhin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"857",title:"Recent Advances in Mobile Robotics",subtitle:null,isOpenForSubmission:!1,hash:"f0d60714b266e84fd76fd0f18ebeebae",slug:"recent-advances-in-mobile-robotics",bookSignature:"Andon Venelinov Topalov",coverURL:"https://cdn.intechopen.com/books/images_new/857.jpg",editedByType:"Edited by",editors:[{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"178",title:"Advances in Robot Navigation",subtitle:null,isOpenForSubmission:!1,hash:"15c636fbb26b21858432449cca2d5b13",slug:"advances-in-robot-navigation",bookSignature:"Alejandra Barrera",coverURL:"https://cdn.intechopen.com/books/images_new/178.jpg",editedByType:"Edited by",editors:[{id:"6195",title:"Prof.",name:"Alejandra",middleName:null,surname:"Barrera",slug:"alejandra-barrera",fullName:"Alejandra Barrera"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"79",title:"Multi-Agent Systems",subtitle:"Modeling, Control, Programming, Simulations and Applications",isOpenForSubmission:!1,hash:"8d008ca7612f80912f430003e530bf1f",slug:"multi-agent-systems-modeling-control-programming-simulations-and-applications",bookSignature:"Faisal Alkhateeb, Eslam Al Maghayreh and Iyad Abu Doush",coverURL:"https://cdn.intechopen.com/books/images_new/79.jpg",editedByType:"Edited by",editors:[{id:"19210",title:"Dr.",name:"Faisal",middleName:null,surname:"Alkhateeb",slug:"faisal-alkhateeb",fullName:"Faisal Alkhateeb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1480",title:"Multi-Agent Systems",subtitle:"Modeling, Interactions, Simulations and Case Studies",isOpenForSubmission:!1,hash:"39939f0537e53e4e50852acc46634cb1",slug:"multi-agent-systems-modeling-interactions-simulations-and-case-studies",bookSignature:"Faisal Alkhateeb, Eslam Al Maghayreh and Iyad Abu Doush",coverURL:"https://cdn.intechopen.com/books/images_new/1480.jpg",editedByType:"Edited by",editors:[{id:"19210",title:"Dr.",name:"Faisal",middleName:null,surname:"Alkhateeb",slug:"faisal-alkhateeb",fullName:"Faisal Alkhateeb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11",title:"Multi-Robot Systems",subtitle:"Trends and Development",isOpenForSubmission:!1,hash:null,slug:"multi-robot-systems-trends-and-development",bookSignature:"Toshiyuki Yasuda",coverURL:"https://cdn.intechopen.com/books/images_new/11.jpg",editedByType:"Edited by",editors:[{id:"5669",title:"Dr.",name:"Toshiyuki",middleName:null,surname:"Yasuda",slug:"toshiyuki-yasuda",fullName:"Toshiyuki Yasuda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"18",title:"Advances in Theory and Applications of Stereo Vision",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-theory-and-applications-of-stereo-vision",bookSignature:"Asim Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/18.jpg",editedByType:"Edited by",editors:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",slug:"asim-bhatti",fullName:"Asim Bhatti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3640",title:"Advances in Robot Manipulators",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"advances-in-robot-manipulators",bookSignature:"Ernest Hall",coverURL:"https://cdn.intechopen.com/books/images_new/3640.jpg",editedByType:"Edited by",editors:[{id:"5619",title:"Dr.",name:"Ernest",middleName:"Lenard",surname:"Hall",slug:"ernest-hall",fullName:"Ernest Hall"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3172",title:"Multiagent Systems",subtitle:null,isOpenForSubmission:!1,hash:"995ef70020c7315b615dbacbd5cbe719",slug:"multiagent_systems",bookSignature:"Salman Ahmed and Mohd Noh Karsiti",coverURL:"https://cdn.intechopen.com/books/images_new/3172.jpg",editedByType:"Edited by",editors:[{id:"131685",title:"Prof.",name:"Salman",middleName:null,surname:"Ahmed",slug:"salman-ahmed",fullName:"Salman Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3689",title:"Robot Manipulators",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"robot_manipulators",bookSignature:"Marco Ceccarelli",coverURL:"https://cdn.intechopen.com/books/images_new/3689.jpg",editedByType:"Edited by",editors:[{id:"5828",title:"Prof.",name:"Marco",middleName:null,surname:"Ceccarelli",slug:"marco-ceccarelli",fullName:"Marco Ceccarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:14,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"14511",doi:"10.5772/14142",title:"Convergence and Collision Avoidance in Formation Control: A Survey of the Artificial Potential Functions Approach",slug:"convergence-and-collision-avoidance-in-formation-control-a-survey-of-the-artificial-potential-functi",totalDownloads:3663,totalCrossrefCites:4,totalDimensionsCites:48,abstract:null,book:{id:"79",slug:"multi-agent-systems-modeling-control-programming-simulations-and-applications",title:"Multi-Agent Systems",fullTitle:"Multi-Agent Systems - Modeling, Control, Programming, Simulations and Applications"},signatures:"Eduardo G. Hernández-Martínez and Eduardo Aranda-Bricaire",authors:[{id:"16943",title:"Prof.",name:"Eduardo",middleName:null,surname:"Aranda-Bricaire",slug:"eduardo-aranda-bricaire",fullName:"Eduardo Aranda-Bricaire"},{id:"23859",title:"Dr.",name:"Eduardo Gamaliel",middleName:null,surname:"Hernandez-Martinez",slug:"eduardo-gamaliel-hernandez-martinez",fullName:"Eduardo Gamaliel Hernandez-Martinez"}]},{id:"11043",doi:"10.5772/9664",title:"Improving the Pose Accuracy of Planar Parallel Robots using Mechanisms of Variable Geometry",slug:"improving-the-pose-accuracy-of-planar-parallel-robots-using-mechanisms-of-variable-geometry",totalDownloads:2703,totalCrossrefCites:15,totalDimensionsCites:24,abstract:null,book:{id:"3640",slug:"advances-in-robot-manipulators",title:"Advances in Robot Manipulators",fullTitle:"Advances in Robot Manipulators"},signatures:"Jens Kotlarski, Bodo Heimann and Tobias Ortmaier",authors:null},{id:"12644",doi:"10.5772/12906",title:"Multi-Robot Path Planning",slug:"multi-robot-path-planning",totalDownloads:2569,totalCrossrefCites:11,totalDimensionsCites:21,abstract:null,book:{id:"11",slug:"multi-robot-systems-trends-and-development",title:"Multi-Robot Systems",fullTitle:"Multi-Robot Systems, Trends and Development"},signatures:"Pavel Surynek",authors:[{id:"13451",title:"Dr.",name:"Pavel",middleName:null,surname:"Surynek",slug:"pavel-surynek",fullName:"Pavel Surynek"}]},{id:"12649",doi:"10.5772/13104",title:"Bio-Inspired Communication for Self-Regulated Multi-Robot Sytems",slug:"bio-inspired-communication-for-self-regulated-multi-robot-sytems",totalDownloads:2366,totalCrossrefCites:20,totalDimensionsCites:20,abstract:null,book:{id:"11",slug:"multi-robot-systems-trends-and-development",title:"Multi-Robot Systems",fullTitle:"Multi-Robot Systems, Trends and Development"},signatures:"Md Omar Faruque Sarker and Torbjorn Dahl",authors:[{id:"13826",title:"Dr.",name:"Torbjorn",middleName:null,surname:"Dahl",slug:"torbjorn-dahl",fullName:"Torbjorn Dahl"},{id:"13932",title:"Prof.",name:"Md Omar Faruque",middleName:null,surname:"Sarker",slug:"md-omar-faruque-sarker",fullName:"Md Omar Faruque Sarker"}]},{id:"24924",doi:"10.5772/17790",title:"Motion Planning for Mobile Robots Via Sampling-Based Model Predictive Optimization",slug:"motion-planning-for-mobile-robots-via-sampling-based-model-predictive-optimization",totalDownloads:3574,totalCrossrefCites:3,totalDimensionsCites:20,abstract:null,book:{id:"857",slug:"recent-advances-in-mobile-robotics",title:"Recent Advances in Mobile Robotics",fullTitle:"Recent Advances in Mobile Robotics"},signatures:"Damion D. Dunlap, Charmane V. Caldwell, Emmanuel G. Collins, Jr. and Oscar Chuy",authors:[{id:"29474",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Collins",slug:"emmanuel-collins",fullName:"Emmanuel Collins"},{id:"39955",title:"Dr.",name:"Damion",middleName:null,surname:"Dunlap",slug:"damion-dunlap",fullName:"Damion Dunlap"},{id:"39956",title:"Dr.",name:"Charmane",middleName:null,surname:"Caldwell",slug:"charmane-caldwell",fullName:"Charmane Caldwell"},{id:"39957",title:"Dr.",name:"Oscar",middleName:null,surname:"Chuy",slug:"oscar-chuy",fullName:"Oscar Chuy"}]}],mostDownloadedChaptersLast30Days:[{id:"62978",title:"Intelligent Robotic Perception Systems",slug:"intelligent-robotic-perception-systems",totalDownloads:2395,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Robotic perception is related to many applications in robotics where sensory data and artificial intelligence/machine learning (AI/ML) techniques are involved. Examples of such applications are object detection, environment representation, scene understanding, human/pedestrian detection, activity recognition, semantic place classification, object modeling, among others. Robotic perception, in the scope of this chapter, encompasses the ML algorithms and techniques that empower robots to learn from sensory data and, based on learned models, to react and take decisions accordingly. The recent developments in machine learning, namely deep-learning approaches, are evident and, consequently, robotic perception systems are evolving in a way that new applications and tasks are becoming a reality. Recent advances in human-robot interaction, complex robotic tasks, intelligent reasoning, and decision-making are, at some extent, the results of the notorious evolution and success of ML algorithms. This chapter will cover recent and emerging topics and use-cases related to intelligent perception systems in robotics.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Cristiano Premebida, Rares Ambrus and Zoltan-Csaba Marton",authors:[{id:"203409",title:"Ph.D.",name:"Cristiano",middleName:null,surname:"Premebida",slug:"cristiano-premebida",fullName:"Cristiano Premebida"},{id:"254880",title:"Dr.",name:"Rares",middleName:null,surname:"Ambrus",slug:"rares-ambrus",fullName:"Rares Ambrus"},{id:"254881",title:"Dr.",name:"Zoltan-Csaba",middleName:null,surname:"Marton",slug:"zoltan-csaba-marton",fullName:"Zoltan-Csaba Marton"}]},{id:"68525",title:"Architecture of a Microgrid and Optimal Energy Management System",slug:"architecture-of-a-microgrid-and-optimal-energy-management-system",totalDownloads:1043,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"With the growing population trends, the demand for electricity is accelerating rapidly. The policy planners and developers have great focus to utilize renewable energy resources (RERs) to encounter the scarcity of energy since they offer benefits to the environment and power systems. At present, the energy generation is evolving into a smart distribution system that assimilates several energy resources assuring to generate clean energy, to have reliable operational procedures, and to enhance the energy supervision and management arrangements. Therefore, the model of a distributed microgrid (DMG) with optimal energy management strategies based on multi-agent systems (MASs) technique has been focused in this chapter. Distributed energy resources (DER) have been considered for the generation of electrical power to fulfill the consumer’s load demands. Thus, a fully controlled architecture of a grid along with concept of MAS and its development platforms, implementation, and operational procedures have been discussed in detail. In addition, agent’s operations and their coordination within the MG arrangements have been focused by considering the supervision of the entire system autonomously. Moreover, optimal procedures of a microgrid (MG) energy supervision and power distribution system have also been presented considering the cost control and optimal operations of the entire MG at the distributed level.",book:{id:"8872",slug:"multi-agent-systems-strategies-and-applications",title:"Multi Agent Systems",fullTitle:"Multi Agent Systems - Strategies and Applications"},signatures:"Muhammad Waseem Khan, Jie Wang, Linyun Xiong and Sunhua Huang",authors:[{id:"293464",title:"Dr.",name:"Muhammad Waseem",middleName:null,surname:"Khan",slug:"muhammad-waseem-khan",fullName:"Muhammad Waseem Khan"},{id:"307966",title:"Prof.",name:"Jie",middleName:null,surname:"Wang",slug:"jie-wang",fullName:"Jie Wang"},{id:"308072",title:"Dr.",name:"Linyun",middleName:null,surname:"Xiong",slug:"linyun-xiong",fullName:"Linyun Xiong"},{id:"308073",title:"Dr.",name:"Sunhua",middleName:null,surname:"Huang",slug:"sunhua-huang",fullName:"Sunhua Huang"}]},{id:"5578",title:"Experimental Results on Variable Structure Control for an Uncertain Robot Model",slug:"experimental_results_on_variable_structure_control_for_an_uncertain_robot_model",totalDownloads:2626,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"3689",slug:"robot_manipulators",title:"Robot Manipulators",fullTitle:"Robot Manipulators"},signatures:"K. Bouyoucef1 K. Khorasani and M. Hamerlain",authors:null},{id:"63854",title:"A Survey and Analysis of Cooperative Multi-Agent Robot Systems: Challenges and Directions",slug:"a-survey-and-analysis-of-cooperative-multi-agent-robot-systems-challenges-and-directions",totalDownloads:2437,totalCrossrefCites:8,totalDimensionsCites:20,abstract:"Research in the area of cooperative multi-agent robot systems has received wide attention among researchers in recent years. The main concern is to find the effective coordination among autonomous agents to perform the task in order to achieve a high quality of overall performance. Therefore, this paper reviewed various selected literatures primarily from recent conference proceedings and journals related to cooperation and coordination of multi-agent robot systems (MARS). The problems, issues, and directions of MARS research have been investigated in the literature reviews. Three main elements of MARS which are the type of agents, control architectures, and communications were discussed thoroughly in the beginning of this paper. A series of problems together with the issues were analyzed and reviewed, which included centralized and decentralized control, consensus, containment, formation, task allocation, intelligences, optimization and communications of multi-agent robots. Since the research in the field of multi-agent robot research is expanding, some issues and future challenges in MARS are recalled, discussed and clarified with future directions. Finally, the paper is concluded with some recommendations with respect to multi-agent systems.",book:{id:"7227",slug:"applications-of-mobile-robots",title:"Applications of Mobile Robots",fullTitle:"Applications of Mobile Robots"},signatures:"Zool Hilmi Ismail and Nohaidda Sariff",authors:[{id:"91546",title:"MSc.",name:"Nohaidda Binti",middleName:null,surname:"Sariff",slug:"nohaidda-binti-sariff",fullName:"Nohaidda Binti Sariff"},{id:"135439",title:"Dr.",name:"Zool",middleName:"H",surname:"Ismail",slug:"zool-ismail",fullName:"Zool Ismail"}]},{id:"11057",title:"A 9-DoF Wheelchair-Mounted Robotic Arm System: Design, Control, Brain-Computer Interfacing, and Testing",slug:"a-9-dof-wheelchair-mounted-robotic-arm-system-design-control-brain-computer-interfacing-and-testing",totalDownloads:4568,totalCrossrefCites:9,totalDimensionsCites:15,abstract:null,book:{id:"3640",slug:"advances-in-robot-manipulators",title:"Advances in Robot Manipulators",fullTitle:"Advances in Robot Manipulators"},signatures:"Redwan Alqasemi and Rajiv Dubey",authors:null}],onlineFirstChaptersFilter:{topicId:"246",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"June 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:23,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:22,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"82184",title:"Biological Sensing Using Infrared SPR Devices Based on ZnO",doi:"10.5772/intechopen.104562",signatures:"Hiroaki Matsui",slug:"biological-sensing-using-infrared-spr-devices-based-on-zno",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hiroaki",surname:"Matsui"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82122",title:"Recent Advances in Biosensing in Tissue Engineering and Regenerative Medicine",doi:"10.5772/intechopen.104922",signatures:"Alma T. Banigo, Chigozie A. Nnadiekwe and Emmanuel M. Beasi",slug:"recent-advances-in-biosensing-in-tissue-engineering-and-regenerative-medicine",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"82080",title:"The Clinical Usefulness of Prostate Cancer Biomarkers: Current and Future Directions",doi:"10.5772/intechopen.103172",signatures:"Donovan McGrowder, Lennox Anderson-Jackson, Lowell Dilworth, Shada Mohansingh, Melisa Anderson Cross, Sophia Bryan, Fabian Miller, Cameil Wilson-Clarke, Chukwuemeka Nwokocha, Ruby Alexander-Lindo and Shelly McFarlane",slug:"the-clinical-usefulness-of-prostate-cancer-biomarkers-current-and-future-directions",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cancer Bioinformatics",coverURL:"https://cdn.intechopen.com/books/images_new/10661.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:8,paginationItems:[{id:"11662",title:"Limnology - The Importance of Monitoring and Correlations of Lentic and Lotic Waters",coverURL:"https://cdn.intechopen.com/books/images_new/11662.jpg",hash:"f1043cf6b1daae7a7b527e1d162ca4a8",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"315689",title:"Dr.",name:"Carmine",surname:"Massarelli",slug:"carmine-massarelli",fullName:"Carmine Massarelli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11665",title:"Recent Advances in Wildlife Management",coverURL:"https://cdn.intechopen.com/books/images_new/11665.jpg",hash:"73da0df494a1a56ab9c4faf2ee811899",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 25th 2022",isOpenForSubmission:!0,editors:[{id:"75563",title:"Dr.",name:"Farzana Khan",surname:"Perveen",slug:"farzana-khan-perveen",fullName:"Farzana Khan Perveen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11666",title:"Soil Contamination - Recent Advances and Future Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11666.jpg",hash:"c8890038b86fb6e5af16ea3c22669ae9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 9th 2022",isOpenForSubmission:!0,editors:[{id:"299110",title:"Dr.",name:"Adnan",surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"10845",title:"Marine Ecosystems - Biodiversity, Ecosystem Services and Human Impacts",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",hash:"727e7eb3d4ba529ec5eb4f150e078523",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 22nd 2022",isOpenForSubmission:!0,editors:[{id:"320124",title:"Dr.",name:"Ana M.M.",surname:"Gonçalves",slug:"ana-m.m.-goncalves",fullName:"Ana M.M. Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12222",title:"Advances and Challenges in Microplastics",coverURL:"https://cdn.intechopen.com/books/images_new/12222.jpg",hash:"a36734a551e0997d2255f6ce99eff818",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"347657",title:"Prof.",name:"El-Sayed",surname:"Salama",slug:"el-sayed-salama",fullName:"El-Sayed Salama"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11650",title:"Aquifers - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",hash:"27c1a2a053cb1d83de903c5b969bc3a2",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 12th 2022",isOpenForSubmission:!0,editors:[{id:"271093",title:"Dr.",name:"Abhay",surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12223",title:"Sustainable Management of Natural Resources",coverURL:"https://cdn.intechopen.com/books/images_new/12223.jpg",hash:"1881a08bbd8f5dc1102c5cb7c635bc35",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 19th 2022",isOpenForSubmission:!0,editors:[{id:"144417",title:"Dr.",name:"Mohd Nazip",surname:"Suratman",slug:"mohd-nazip-suratman",fullName:"Mohd Nazip Suratman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11668",title:"Mercury Pollution",coverURL:"https://cdn.intechopen.com/books/images_new/11668.jpg",hash:"0bd111f57835089cad4a9741326dbab7",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 22nd 2022",isOpenForSubmission:!0,editors:[{id:"196849",title:"Dr.",name:"Ahmed",surname:"Abdelhafez",slug:"ahmed-abdelhafez",fullName:"Ahmed Abdelhafez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:1,group:"subseries"},{caption:"Education",value:89,count:4,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"26",type:"subseries",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",slug:"juan-ignacio-guerrero-alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",slug:"w.-david-pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81471",title:"Semantic Map: Bringing Together Groups and Discourses",doi:"10.5772/intechopen.103818",signatures:"Theodore Chadjipadelis and Georgia Panagiotidou",slug:"semantic-map-bringing-together-groups-and-discourses",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79491",title:"Fuzzy Perceptron Learning for Non-Linearly Separable Patterns",doi:"10.5772/intechopen.101312",signatures:"Raja Kishor Duggirala",slug:"fuzzy-perceptron-learning-for-non-linearly-separable-patterns",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Raja Kishor",surname:"Duggirala"}],book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81331",title:"Machine Learning Algorithm-Based Contraceptive Practice among Ever-Married Women in Bangladesh: A Hierarchical Machine Learning Classification Approach",doi:"10.5772/intechopen.103187",signatures:"Iqramul Haq, Md. Ismail Hossain, Md. Moshiur Rahman, Md. Injamul Haq Methun, Ashis Talukder, Md. Jakaria Habib and Md. Sanwar Hossain",slug:"machine-learning-algorithm-based-contraceptive-practice-among-ever-married-women-in-bangladesh-a-hie",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"80937",title:"Assessing Heterogeneity of Two-Part Model via Bayesian Model-Based Clustering with Its Application to Cocaine Use Data",doi:"10.5772/intechopen.103089",signatures:"Ye-Mao Xia, Qi-Hang Zhu and Jian-Wei Gou",slug:"assessing-heterogeneity-of-two-part-model-via-bayesian-model-based-clustering-with-its-application-t",totalDownloads:24,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78846",title:"Clustering Algorithms: An Exploratory Review",doi:"10.5772/intechopen.100376",signatures:"R.S.M. Lakshmi Patibandla and Veeranjaneyulu N",slug:"clustering-algorithms-an-exploratory-review",totalDownloads:146,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"78463",title:"Clustering by Similarity of Brazilian Legal Documents Using Natural Language Processing Approaches",doi:"10.5772/intechopen.99875",signatures:"Raphael Souza de Oliveira and Erick Giovani Sperandio Nascimento",slug:"clustering-by-similarity-of-brazilian-legal-documents-using-natural-language-processing-approaches",totalDownloads:157,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",slug:"brain-computer-interface",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Vahid Asadpour",hash:"a5308884068cc53ed31c6baba756857f",volumeInSeries:9,fullTitle:"Brain-Computer Interface",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",institutionString:"Kaiser Permanente Southern California",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:319,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:16,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"July 5th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:320,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/38487",hash:"",query:{},params:{id:"38487"},fullPath:"/chapters/38487",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()