\r\n\tHomeostasis is brought about by a natural resistance to change when already in the optimal conditions, and equilibrium is maintained by many regulatory mechanisms. All homeostatic control mechanisms have at least three interdependent components for the variable to be regulated: a receptor, a control center, and an effector. The receptor is the sensing component that monitors and responds to changes in the environment, either external or internal. Receptors include thermoreceptors and mechanoreceptors. Control centers include the respiratory center and the renin-angiotensin system. An effector is a target acted on to bring about the change back to the normal state. At the cellular level, receptors include nuclear receptors that bring about changes in gene expression through up-regulation or down-regulation and act in negative feedback mechanisms. An example of this is in the control of bile acids in the liver.
\r\n\tSome centers, such as the renin-angiotensin system, control more than one variable. When the receptor senses a stimulus, it reacts by sending action potentials to a control center. The control center sets the maintenance range—the acceptable upper and lower limits—for the particular variable, such as temperature. The control center responds to the signal by determining an appropriate response and sending signals to an effector, which can be one or more muscles, an organ, or a gland. When the signal is received and acted on, negative feedback is provided to the receptor that stops the need for further signaling.
\r\n\tThe cannabinoid receptor type 1 (CB1), located at the presynaptic neuron, is a receptor that can stop stressful neurotransmitter release to the postsynaptic neuron; it is activated by endocannabinoids (ECs) such as anandamide (N-arachidonoylethanolamide; AEA) and 2-arachidonoylglycerol (2-AG) via a retrograde signaling process in which these compounds are synthesized by and released from postsynaptic neurons, and travel back to the presynaptic terminal to bind to the CB1 receptor for modulation of neurotransmitter release to obtain homeostasis.
\r\n\tThe polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) and are synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs) mediate significant effects in the fine-tuning adjustment of body homeostasis.
\r\n\t
\r\n\tThe aim of this book is to discuss further various aspects of homeostasis, information that we hope to be useful to scientists, clinicians, and the wider public alike.
Gels can be defined as three-dimensional cross-linked polymeric networks which swollen in contact with a liquid. When the polymers forming the gel contain mainly hydrophilic functional groups, the liquid that causes the swelling is water, and the gel is called hydrogel [1]. Biopolymers are often used for the synthesis of hydrogels as the natural composition of the polymer leads to extremely high biocompatibility and potential applications in the biomedical field [2].
Hydrogels can be classified as physical hydrogels when the properties of the gel depend on chain entanglements and other interactions, mainly hydrogen bonds or hydrophobic interactions [3]. In this case, properties are highly dependent on chain molecular weight as well as concentration, as mobility of the chains modifies the structure of the hydrogel and therefore its physical properties. Water temperature, salt content, and pH can also affect the mobility of the chains and interactions and must be controlled [4].
Chemically crosslinked hydrogels present a much more stable structure than physical hydrogels. In chemical hydrogels, the polymeric chains are covalently bonded using one or more crosslinking agents, using a chemical process [5]. In general, crosslinked hydrogels are less biocompatible than physical hydrogels, but this is compensated by other advantages: cross-linked hydrogels are insoluble, more stable, and rheological properties such as elasticity or viscosity, their pore size, and their degradation rate can be more optimized than with physical hydrogels.
Hydrogels can present different physical forms: from macrogels to micro and nanogels, which are particulate systems with similar chemical structure but different macroscopic size; implantable gels, with strong physical properties, or injectable gels, more fluids or composed of nano-microparticles which can pass through a needle; hydrogel coatings, where hydrogel nano or microlayer is immobilized on a surface; thermoresponsive or pH-responsive gels, where a trigger modulates the sol–gel properties, can be easily injected in a liquid form before gelation in physiological conditions [6].
Physical properties of physically and chemically crosslinked hydrogels, are similar to several soft biological tissues, and therefore they can be used as substitutes or supplements when the biological function of these soft tissues is compromised. Such hydrogels have been widely used as medical devices for different applications: in traumatology, as substitute or supplement of synovial fluid in osteoarthritis; in ophthalmology, as a substitute of aqueous humor during in cataract surgery; in esthetics and reconstructive surgery, as dermal fillers for rid correction and lipoatrophy for patients with VIH; in wound healing, as wound dressings to promote regeneration and healing of wounds [7].
The biomedical use of the hydrogels can be expanded by the employ of the hydrogels as a sustained release system. Concerning this the controlled release of pharmaceutical ingredients leads to important advantages as a control of the biodisponibility, dose control, local delivery and less side effects [8]. This chapter aims to cover a general overview concerning the sustained drug release from hydrogels and hydrogel coatings. In that regard,
The release of drugs from hydrogels can be achieved by different mechanisms such as swelling/deswelling, diffusion, and chemical mechanism. As previously mentioned, hydrogels are three-dimensional crosslinked polymeric networks that swelled in the presence of water. The crosslink can be physical (hydrophobic interactions, electrostatic interactions and hydrogen bonding) or chemical (covalent bonding) and is responsible of the network structure of the hydrogel. Such networks display open spaces, the size of which is referred to as the mesh size of the hydrogel [9]. Importantly, the mesh size of the hydrogels is one of the main parameters that affect how drugs diffuse through the hydrogel network, being dependent on polymer and crosslinker concentrations, as well as external stimuli. The gelation of hydrogels by polymerization means leads to network irregularities and polymer polydispersity upon formation, and as a result, the mesh size is usually heterogeneous. A number of approaches exist to determine the mesh size [9].
When the mesh is larger than the drug (rmesh/rdrug > 1), the drug release process is dominated by diffusion. Small drug molecules migrate freely through the network, and diffusion is largely independent of the mesh size. The diffusivity, D, in this situation depends on the radius of the drug molecule (rdrug) and the viscosity of the solution (η) via the Stokes–Einstein equation Eq. (1) [10]:
where R is the gas constant and T is the absolute temperature.
When the mesh size is close to the drug size (rmesh/rdrug ≈ 1), the effect of steric hindrance on drug diffusion becomes relevant. Finally, for an extremely small mesh size and/or very large drug molecules (rmesh/rdrug < 1), strong steric hindrance immobilizes the drugs and it remains physically entrapped inside the network, unless the network degrades or the mesh size expands in response for example, to external stimuli.
Several methods accompanied by mathematical model development have been created in parallel to hydrogel technology, in order to predict drug release from the network. The drug release fitting models (i.e. the zero order equation; the first order equation; the Higuchi’s equation; the Korsmeyer-Peppas’ equation; the Hixon-Crowell’s equation, the Weibull equation, among others) are the most abundant, however, they are not predictive but simple mathematical fitting equations. In the last years, mechanistic and statistical models are growing quite fast. Mechanistic models combining the mass transport with the system mechanics developed with a “fully coupled” approach considers the influence of the mass transport on the mechanics as well as the opposite, which makes this approach the only candidate to produce reliable first-principle models.
Statistical models, are receiving a lot of attention due to the consensus of the regulatory authority and the possibility to predict the hydrogels behavior, in the analyzed design space, regardless the complicate phenomenology, with quick and inexpensive experimental designs [11]. Recently, Wu and Brazel developed a method for the simulation of water uptake profile and drug release from homogeneous hydrogels. This model successfully predicted the initial burst release observed experimentally [12]. Sheth et al. developed a mathematical and computational model using time snapshots of diffusivity and hydrogel geometry data measured experimentally as inputs to predict release profiles of two model proteins of varying molecular weights from degradable hydrogels [13].
Physical hydrogels are those formed by reversible and dynamic crosslinks grounded on noncovalent interactions. In this regard the network of physical hydrogels is reversibly held together by molecular entanglements, resulting from a dynamic competition between pro-assembly forces (for example, hydrophobic interactions, attractive electrostatic forces and hydrogen bonding) and anti-assembly forces (for example, solvation and electrostatic repulsion [3]. These interactions that occur in this type of hydrogels are usually weak. However, they are numerous and contribute to the presence of complex behaviors.
Polyampholytes may also be used to construct physical hydrogels, with randomly dispersed cationic and anionic groups. The randomness leads to a wide distribution of strengths: The strong bonds serve as structural crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. Consequently, physical hydrogels have reversible liquid to solid transition, also called sol–gel transition, in response to different changes in environmental conditions such as temperature, ionic strength, pH, or others [14]. Since the interactions depend significantly on external stimuli, they allow hydrogels to be highly versatile concerning the environment, unlike covalently bonded materials [15].
Physical hydrogels can be engineered to undergo spontaneous biodegradation under physiological conditions, which constitutes another way of controlling the release of active molecules [16]. Degradation is typically mediated by hydrolysis [17, 18] or enzyme activity [19]. The erosion or loss of polymer mass through degradation, can take place simultaneously in the bulk or on the surface of the hydrogel. For a variety of hydrogels, the bulk and surface erosion can be tuned to obtain desirable release kinetics ranging from weeks to months. Bulk erosion occurs because of the permeability to water or degrading enzymes when the rate of diffusion of these agents is rapid compared to the rate of bond degradation. Surface erosion, in contrast, results when the rate of bond breakage is more rapid than the rate of enzyme or water diffusion from the exterior into the bulk of the gel [13].
Representatives of reversible physical hydrogels are the shear-thinning hydrogels which flow like low-viscosity fluids under shear stress during injection, but quickly recover their initial stiffness after removal of shear stress in the body [3]. Alginate hydrogels are shear-thinning, formed via electrostatic interactions between alginate and multivalent cations (for example, calcium and zinc). They can be readily injected via a needle after gelation in a syringe and have been used to achieve sustained local delivery of bioactive vascular endothelial growth factor (VEGF) in ischemic murine hindlimbs for 15 days [20, 21].
Another example of physical hydrogels forming materials are the self-assembling peptide systems, where amino acid-based chains undergo the sol–gel transition without the need of any chemical crosslinking agent. This property makes them useful materials to safely in situ encapsulate living cells or sensitive drugs, among others. In addition, this peptide-driven self-assembly into physical hydrogels is highly specific, sourced mainly by the biorecognition of peptide segments scattered among the macromolecular chains. They form dynamic well-defined, hierarchically organized 3D structures with reversibility of the assembly and disassembly processes [22]. Another example are elastin-like polypeptides cross-linked via electrostatic interactions between their cationic lysine residues and anionic organophosphorus cross-linkers [23]. Non-covalent interactions between heparin and heparin-binding peptides and proteins can also be used to form hydrogels for growth factor delivery [24, 25].
Peptide self-assembly can also be achieved by taking advantage of interactions between metal cations and amino acid residues of the peptides. This was demonstrated with gelation of a β-sheet-rich fibrillar hydrogel with zinc ions [26].
Additional interesting example of physical hydrogels for drug release applications are pectin-chitosan hydrogels, which showed to be thermo-reversible and capable of prolonging the release of three different model hydrophobic drugs: mesalamin, curcumin and progesterone. In vitro drug-release studies revealed that lower percentage of pectin in the hydrogel led to slower release rates owing to smaller mesh size arising from stronger interactions between the polyelectrolytes. Also, the release was slower when the total polymer concentration was higher. Finally, a slower release in PBS solution compared to HCl solution was attributed to the fact that at pH 7.4, both polymers are charged, with strong electrostatic forces and consequently, smaller mesh size. At the molecular scale, the polymer chains can possess abundant binding sites for the drugs. DSC and FTIR analysis exhibited some interactions between the drugs and both chitosan and pectin that can contribute to the prolonged release of the drugs [27]. Another in situ-gelling hydrogel was formed with a polyelectrolyte complex, which showed a sustained release of insulin and avidin proteins [28].
Crosslinking of biopolymers provide a stable and non-soluble biomaterial which preserves the properties of the original biopolymer and displays a longer durability. Consequently, the half-life time of the hydrogels is increased when performing its biological application [5].
Usually, biopolymer crosslinking can be accomplished in two ways: by direct addition of a cross-linking agent followed by formation of a the three-dimensional (3D) network, or by chemical modification of the biopolymer chains with functional groups suitable for crosslinking with a compatible cross-linker. The first approach takes advance of the functional groups already present in the biopolymer, typically amine (NH2), hydroxyl (-OH), carboxylic acid (-COOH), amide (-CONH-, -CONH2), thiol (-SH) or sulfate (-SO3H) groups [29]. Examples of cross-linkers are dialdehyde derivatives, NH2-PEG-NH2 molecules, COOH-PEG-COOH derivatives, diglycidyl ether compounds, vinyl sulfone groups, etc. These agents cross-link through Michael-type addition, thiol exchange/disulfide cross-linking or Schiff-base processes among others [30]. In some case the addition of coupling agents such as carbodiimides derivatives, N-hydroxysuccinimide (NHS) or N-hydroxybenzo triazole (HOBt), is required for the cross-linking. In the second approach new active functionalities are created in the biopolymer [31, 32] which are appropriate for a broad range of cross-linking processes such as azide–alkyne cycloadditions, Diels–Alder reactions, ultraviolet (UV) photoinitiated crosslinking, (meth)acrylation reactions [5, 32]. Examples of cross-linkers are oxanorbornadiene, cyclooctyne, maleimide, trans-cyclooctene, norbornene, PEG-di(meth)acrylates among others.
The crosslinking of biopolymers produces hydrogels with elastic and deformable structures and great topochemical accessibility which is able to accommodate different kind of active molecules, such as drugs, for sustained release (Figure 1).
Left: Image of a hydrogel based on crosslinked hyaluronic acid. Right: Scanning electron microscopy (SEM) picture of the hydrogel. Figure produced by the authors.
Chitosan (CHI) is a linear polysaccharide formed by arbitrarily allocated β-(1 → 4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit). Chitosan is one of the most versatile biopolymers due to its unique properties: biodegradability, biocompatibility, non-toxicity, antioxidant, anti-inflammatory, antifungal, and antibacterial “contact killing” [33]. Therefore the applicability of this polysaccharide extends to a wide range of various biomedical areas, such as cosmetics, drug delivery, and tissue engineering, among others [34].
In this regard a covalently crosslinked chitosan hydrogel was produced Diels Alder reaction of furan and maleimide functionalized CHI. The resulting biopolymer held the typical pH sensitivity and antibacterial properties of non-functionalized CHI. The drug delivery capabilities of this system were evaluated with model drug antibiotic chloramphenicol (ClPh). Drug release experiment did not show an initial burst, which indicated that the ClPh was successfully encapsulated, whereas it displayed a sustained delivery of the drug with a complete release of the total amount of drug loaded (2.61 ± 0.036 mg ClPh/g hydrogel) after 4 hours [35].
CHI was also crosslinked with genipin (GP) to obtain biocompatible, antibacterial and anti-inflammatory hydrogels with wound healing properties. Sustained release of acetylsalicylic acid (ASA), cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) from the hydrogels displayed a Pharmacologic Half Life t1/2 values of 88 h, 62 h, 135 h, and 240 h for ASA, CFX, TCN and AMX respectively. These antibiotic releases generated antibacterial activity against
Moreover, dialdehyde-β-cyclodextrin (DA-β-CD) crosslinked carboxymethyl chitosan (CMCS) hydrogels were prepared from carboxymethyl chitosan (CMCS) and periodate oxidized β-CD. Phenolphthalein (PhP), a formerly used laxative agent, [16] was selected as a model molecule to investigate the drug loading and sustained release capabilities of such hydrogels. PhP release results show that increasing crosslinking rate between DA-β-CD and CMCS delays the drug liberation process. On the other hand, DA-β-CD/CMCS system displays faster releases, with a 50% release in 2 h and about 90% within 12 h, compared to CMCS crosslinked with glyoxal dialdehyde which only releases 19% of PhP after 24 h [37].
CHI based hydrogels (N-succinyl chitosan-g-Poly(acrylamide-co-acrylic acid) were synthesized by free radical mediated cross-linking of N-succinyl chitosan, acrylamide and acrylic acid [38]. Drug delivery capabilities of the system were tested by encapsulation of theophylline, a phosphodiesterase inhibiting drug used for the treatment of respiratory diseases. The drug release experiments showed a pH dependent behavior. In this regard, at pH 1.2 the theophylline released rate was found to be between 14 and 24% whereas at pH 7.4 the release of the drug reached 67–93%. CHI itself has been used as a cross-linking agent for poly(acrylic acid). The resulting hydrogels display pH sensitive properties that have been exploited to control the release of antibiotic amoxicillin and anti-inflammatory drug meloxicam. Concerning this, the release rates of these molecules rise with increasing pH due to the disruption of hydrogen bonds between the hydrogel components and the drugs. As a result 30%, ∼60% and ∼80% of amoxicillin is released after 800 min at pH 1.2, 6.8 and 7.4, respectively. The corresponding release data for meloxicam are ∼20%, ∼70% and ∼90% at pH 1.2, 6.8 and 7.4, respectively [39].
Hyaluronic acid (HA) is a non-sulfated glycosaminoglycan constituted by repeating disaccharide β-1,4-D-glucuronic acid–β-1,3 N-acetyl-D-glucosamine units that form hydrogels in aqueous solutions. This naturally occurring polysaccharide is found in connective tissues, skin, and synovial joint fluids of the human body. HA displays bio-functionality, biocompatibility, and physicochemical properties, such as viscoelasticity and high-water retention. As a result hyaluronic acid is used for the treatment of dry eye disease, dermatological conditions as well as a as a viscosupplement for the treatment of osteoarthritis [5].
Biocompatible antibacterial hydrogels of HA were synthetized by crosslinking HA solution with divinyl sulfone (DVS) followed by loading with antibiotic molecules. This way cefuroxime (CFX), tetracycline (TCN) and amoxicillin (AMX) loaded hydrogels displayed in vitro antibacterial activity against S. aureus. The antibacterial properties of the hydrogels were synergically enhanced by merging antibiotics with anti-inflammatory agent acetyl salicylic acid (ASA). Consequently it was observed an increase in the log10 reduction value (R) from 3.2, in the absence of ASA, to R 5.55 when TCN or CFX were combined with ASA [40].
Hyaluronic acid was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) and loaded with quetiapine (QTP), an antipsychotic drug, and quercetin (QCT), a hyaluronidase (HAase) inhibitor that decreases the biodegradation of HA. Subcutaneous injection in rats of the system showed that the cHA hydrogel with QCT exhibited a lower maximum QTP concentration (Cmax. 782.6 ± 174.4 ng/mL) and longer half-life (t1/2 23.5 ± 2.7 h) and mean residence time values (MRT 30.9 ± 3.9 h) compared to the hydrogel without QCT (Cmax. 1827.6 ± 481.3 ng/mL, t1/2 13.4 ± 4.9 h, MRT 14.3 ± 4.8 h). These results demonstrated that HAase containing HA hydrogels are suitable systems for sustained drug delivery applications [41].
A thiol functionalized hyaluronic acid HA-SH was used, together with DMSO, for the fabrication of HA-SS-HA hydrogels. This system was loaded with antitumoral drugs such as doxorubicin (DOX), zinc phthalocyanine (ZnPc), and indocyanine green ICG, for implant post peritumoral administration. In vivo experiments validated that drug loaded hydrogel implant possessed satisfactory biocompatibility and succeeded in long term sustained release of drugs. As a result the system to ensured high tumor aggregation efficiency and adequate tumor suppression [42]. Hyaluronic acid (HA) functionalized with thiol and hydrazide moieties has been combined with oxidized sodium alginate (ALG)to produced cross-linked hydrogels (HA/ALG). These materials display tunable physicochemical properties and drug release behavior as a function of the HA/ALG precursor concentration. In this regard for HA2/ALG2 (2% w/v), HA3/ALG3 (3% w/v) and HA4/ALG4 (4% w/v) the yield stress of hydrogels were 1724, 4349 and 5306 Pa, and the degradation percentage were about 64%, 51%, and 42% after 35 days incubation, respectively. Thus, in vitro cumulative release of Bovine serum albumin (BSA) for HA2/ALG2, HA3/ALG3 and HA4/ALG4 were 79%, 72%, and 69% respectively for a 20 day release assay [43].
Near-infrared (NIR) light-triggered and reactive oxygen species (ROS)-degradable hyaluronic acid hydrogels (HPTG) were synthesized through the formation of dynamic covalent acylhydrazone bonds. Such system was loaded with photosensitizer protophorphyrin IX (PpIX) and anticancer drug doxorubicin (DOX), to obtain a with light-tunable on-demand drug release for chemo-photodynamic therapy. In this regard NIR light irradiation generated ROS that induced the required degradation of hydrogel and subsequent on-demand DOX release for cascaded chemotherapy. In vivo imaging-guided antitumor study using 4 T1 tumor- mouse model demonstrated that the treatment of DOX-loaded HPTG with laser irradiation nearly accomplished the suppression of tumor growth without noticeable regrowth [44].
Tyramine functionalized HA solutions were combined silk fibroin (SF) to produce a series of HA/SF hydrogels for application in cartilage tissue engineering an and drug delivery. These hydrogels were loaded with Vanillic acid (VA) or Epimedin C (Epi C), both with anti-catabolic, anti-inflammatory and anabolic effects on human cartilage cells. Hydrogels with HA20/SF80 polymeric ratios displayed the longest and the most sustained release profile with 70.1% release of VA after 60 days of release assay and 54% release of Epi C after 7 days of release. Such behavior makes HA20/SF80 hydrogels a prospective material for the treatment of osteoarthritic joint conditions [45].
Polyethylene glycol (PEG)-HA was modified also with a small biologically active molecule, as dopamine, to fabricate a HD-PEG polymer. This polymer was crosslinked with α -cyclodextrin (α-CD) to afford a polypseudorotaxane supramolecular complex HD-PEG/α-CD. The system was loaded with poly(lactic-co-glycolic acid) (PLGA)/donepezil microspheres (PDM) in order to evaluate the drug delivery capabilities of the system. The released amounts of donepezil, a drug used for the treatment of mental conditions, reaches 39.9% and 56.7%, after 7 and 14 days respectively. These results demonstrate that the HD-PEG/α-CD/PDM system could be used for the subcutaneous injection of long acting donepezil [46]. Similarly, poly(L-lactide-co-glycolide) (PLGA) – dexamethasone (DEX) nanoparticles PLGADEX were combined with crosslinked HA for drug release applications. In this case the chemical crosslinking occurred doubly, by mixing amino-hyaluronic acid and aldehyde-hyaluronic acid in the presence of genipin as a cross-linker agent. Drug delivery experiments showed full DEX release after 2 months for a HPLGADEX hydrogel [47].
Oxidized hyaluronic acid (OHA) was combined with carboxymethyl chitosan (CMC) via Schiff base reaction to fabricate a hydrogel (OHA-CMC) with antibacterial and hemostatic activities. The drug delivery potential of the system was exploited by encapsulating PLGA-PEG nanoparticles of curcumin (CNP) and epidermal growth factor (EGF) that afforded a OHA-CMC/CNP/EGF hydrogel. This system displayed outstanding anti-inflammatory, antioxidant and cell migration-promoting effects
Finally, HA has been used as well as a biopolymer for the fabrication of a 3D printable dual-network hydrogel with drug delivery capabilities. For that acrylamide-modified HA was synthesized and subsequently mixed with folic acid and Fe3+ to form a physical crosslinking network. Afterwards acrylamide residues were polymerized by ultraviolet radiation affording a material suitable for wound dressing with high elasticity and fatigue resistance. The drug delivery properties were investigated using acetylsalicylic acid (ASA) as a drug model and resulted in a pH responsive hydrogels with the sustained release of ASA over 300 hours [49].
Lignin is a sustainable biopolymer derived from lignol precursors that has been historically related to the paper industry. Hydrogels of hardwood lignin (TCA) have been synthesized through crosslinking with poly(ethylene) glycol diglycidyl ether (PEGDGE) and loaded with paracetamol for drug release applications. Here, decreasing amounts of crosslinker diminishes the interaction paracetamol - hydrogel network and, as a result, the release of paracetamol increases. In this regard, hydrogels produced with a lignin:PEGDGE 1:1 ratio displayed up to 30% of paracetamol release after 120 h assay. The release data follow a pseudo-Fickian behavior of diffusion when fitted to the Korsmeyer-Peppas model [50]. Furthermore, lignin polymers have been mixed with cellulose to generate drug delivery systems. Mechanical and sustained release performances of these gels are tailored by varying the ratio of the precursors: cellulose, hardwood lignin (TCA), and epichlorohydrin (ECH) cross-linker. TCA containing hydrogels display the best release rate (>90%) for drug model paracetamol comparing to the pure cellulose hydrogels (~40%) after 7 hours of release experiment. This behavior is attributed to the lower affinity of paracetamol for lignin compared to cellulose [51].
Cellulose itself have been used for the fabrication of hydrogels with drug release properties. In this regard, carboxymethyl cellulose (CMC) functionalized with ꞵ-cyclodextrin and nucleic acids have been crosslinked by using of arylazopyrazoles (AAPs) and loaded with anti-cancer molecule Doxorubicin (DOX). The resulting hydrogel behaves as a functional matrix for the UV light mediated ON/OFF release DOX. Irradiation of the matrix provokes the photoisomerization of the trans-AAP to cis-AAP residues and the generation of the low-stiffness hydrogel that releases DOX. Therefore, the liberation of the DOX could be changed between ON and OFF states by oscillating the photoisomerization of the hydrogel by employing UV/Vis irradiation [52].
Xanthan is a heteropolysaccharide produced by fermentation from the bacteria
Casein is a proline-rich, open-structured protein found in raw milk. It displays high hydrophilicity, good biocompatibility and a lack of toxicity that makes of it a potential candidate for hydrogel development. Casein can be chemically cross-linked with enzymes such as microbial transglutaminase (MTG). This feature was utilized to produced crosslinked casein -γ-polyglutamic acid (PGA) hydrogels in 1/5 and 1/9 ratio. Drug release experiments showed that both composition displayed similar release rate values for aspirin (~ 100% after 10 h), while 1/9 hydrogels possessed a higher release rate for vitamin B12, ~100% after nearly 12 h versus ~20% for 1/5 casein/γ-PGA hydrogels [56].
Historically, the development of medical implants has been a great concern for biomedical community. Besides, their need has risen dramatically due to the increased number of surgical procedures that are predicted to be even higher in 2030 [57]. Thus, improving the performance of implantable biomaterials has become a high-priority trend, which is reflected in the large number of research realized to successfully meet the upward demand [58].
Implantable medical devices (e. g. coronary stents, cardiac pacemakers, prostheses, insulin pumps) are classified in four main groups: ceramics [59], polymers [60], composites [61], and metals [62]. Among them, metallic biomaterials as titanium and its alloys are of outmost interest thanks to their inert chemical and biological behavior
The use of these bioactive coatings entails the development of an improved version of bioactive materials that modulates biological systems response by the establishment of interactions with adjacent tissues and bones [65]. Nevertheless, these coatings require the most suitable physicochemical, mechanical, and biological functionality for a successful implantation and integration so as not to produce any counterproductive disorder in humans [66]. Therefore, it is imperative to develop functional bioactive coatings onto the surface of biomaterials (Figure 2, produced by the authors) that combine biocompatibility [67], antibacterial [68], anti-inflammatory [69], self-healing [70], wound healing [71], bone tissue engineering [72], and osseointegration [73] properties.
Bioactive properties of functional hydrogel coatings for biomaterials successful implantation. Figure produced by the authors.
Such features can be incorporated onto the surface of biomaterials by the use of biopolymer-based coatings, mostly based on hyaluronic acid and chitosan [74]. Moreover, these coatings acquire hydrogel-like three dimensional microstructure after crosslinking for bioactive agents delivery applications (Figure 3, produced by the authors). In such manner, bioactive properties that already possess biomaterials can be upgraded or even provide novel outstanding properties [75]. Specifically, hydrogel coatings take advantage of hydrogels peculiar ability of releasing in a controlled space–time manner to the therapeutic target the entrapped bioactive agents (drugs, proteins, peptides, growth factors, inorganic or polymeric nanoparticles, and nucleic acids) through their polymeric network [76].
Bioactive agents loading and controlled release ability from hydrogel-based coatings. Figure produced by the authors.
Bioactive agents controlled delivery reduces side effects in patients undergoing implant procedures. In addition, highly stable (from hours to months) hydrogel coatings with great loading ability provide a not sudden, uniform, and prolonged release of specific low- to high-doses [77]. This way, therapeutic effect of bioactive substances is extended, and the over-excessed concentration peaks of conventional methods are diminished. These features endow hydrogel coatings with privileged pharmacokinetic profiles, which can be modulated for personalized therapies [78]. Further, hydrogel coatings do not need to modulate specific linkages to release bioactive agents since their release mechanisms are mainly governed by simple diffusion, swelling, and degradation processes [79].
Nowadays, researchers are focusing their attention is the hinder of hydrogel coatings attachment to surfaces, which occurs due to hydrogels excessively huge swelling and macroscale thickness. One promising alternative approach to create highly adhesive hydrogel coatings with strong and resistant hydrogel-surface attachment is the
A) Conventional and B)
The number of works related to the development of novel biopolymer-based hydrogel systems, mainly those synthesized with hyaluronic acid and chitosan, that promote the sustained release of bioactive agents increases year by year. In the current chapter we have summarized the recent accomplishments of biopolymer based physical and chemically crosslinked hydrogels, as well as hydrogel coatings for drug delivery and sustained release applications. The future perspectives in this field involve the development of hydrogel based medicines with specific temporal and spatial controlled release of drugs. Such medicines afford dose control, local delivery and reduced side effects that increase the efficacy and security of the treatment and the adherence of the patient to it. This strategy will lower pharmaceutical costs and improve the quality of life of the patient and the society overall.
Jon Andrade del Olmo thanks Basque Government for “Program of Industrial Doctorates. Bikaintek 2018” (exp number 01-AF-W2-2018-00002).
All the authors are employees of the company i+Med S. Coop.
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5944},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17700}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11850",title:"Systemic Sclerosis",subtitle:null,isOpenForSubmission:!0,hash:"df3f380c5949c8d8c977631cac330f67",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11770",title:"Feminism",subtitle:null,isOpenForSubmission:!0,hash:"008be465c708a6fde48c8468757a40af",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11770.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:30},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:14},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:11},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:9},{group:"topic",caption:"Mathematics",value:15,count:5},{group:"topic",caption:"Medicine",value:16,count:83},{group:"topic",caption:"Neuroscience",value:18,count:5},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:1},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:25},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:253},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:79,numberOfSeries:0,numberOfAuthorsAndEditors:2103,numberOfWosCitations:1898,numberOfCrossrefCitations:1569,numberOfDimensionsCitations:3374,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"13",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11006",title:"Disinfection of Viruses",subtitle:null,isOpenForSubmission:!1,hash:"d7f3f66e22e16c3751989918a43b3210",slug:"disinfection-of-viruses",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,isOpenForSubmission:!1,hash:"31d6882518ca749b12715266eed0a018",slug:"advances-in-candida-albicans",bookSignature:"Xinhui Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",editedByType:"Edited by",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8043",title:"Monoclonal Antibodies",subtitle:null,isOpenForSubmission:!1,hash:"91da3371c910d66deb7b8c434948b834",slug:"monoclonal-antibodies",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/8043.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,isOpenForSubmission:!1,hash:"c31366ba82585ba3ac91d21eb1cf0a4d",slug:"human-microbiome",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",editedByType:"Edited by",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9481",title:"Celiac Disease",subtitle:null,isOpenForSubmission:!1,hash:"e6e11ac5ac7485c2653e734fafdc7b64",slug:"celiac-disease",bookSignature:"Jianyuan Chai",coverURL:"https://cdn.intechopen.com/books/images_new/9481.jpg",editedByType:"Edited by",editors:[{id:"28281",title:"Dr.",name:"Jianyuan",middleName:null,surname:"Chai",slug:"jianyuan-chai",fullName:"Jianyuan Chai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10424",title:"Homology Molecular Modeling",subtitle:"Perspectives and Applications",isOpenForSubmission:!1,hash:"b1e441eeee1e41b634c8f8086fa4283c",slug:"homology-molecular-modeling-perspectives-and-applications",bookSignature:"Rafael Trindade Maia, Rômulo Maciel de Moraes Filho and Magnólia Campos",coverURL:"https://cdn.intechopen.com/books/images_new/10424.jpg",editedByType:"Edited by",editors:[{id:"212393",title:"Prof.",name:"Rafael",middleName:"Trindade",surname:"Trindade Maia",slug:"rafael-trindade-maia",fullName:"Rafael Trindade Maia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:79,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"62553",doi:"10.5772/intechopen.79371",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7230,totalCrossrefCites:43,totalDimensionsCites:86,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"39599",doi:"10.5772/50046",title:"Encapsulation Technology to Protect Probiotic Bacteria",slug:"encapsulation-technology-to-protect-probiotic-bacteria",totalDownloads:12380,totalCrossrefCites:43,totalDimensionsCites:83,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"María Chávarri, Izaskun Marañón and María Carmen Villarán",authors:[{id:"150285",title:"Dr.",name:"María",middleName:null,surname:"Chávarri Hueda",slug:"maria-chavarri-hueda",fullName:"María Chávarri Hueda"},{id:"151613",title:"MSc.",name:"Izaskun",middleName:null,surname:"Marañon",slug:"izaskun-maranon",fullName:"Izaskun Marañon"},{id:"151621",title:"Dr.",name:"Mª Carmen",middleName:null,surname:"Villarán",slug:"ma-carmen-villaran",fullName:"Mª Carmen Villarán"}]},{id:"39607",doi:"10.5772/50121",title:"Recent Application of Probiotics in Food and Agricultural Science",slug:"recent-application-of-probiotics-in-food-and-agricultural-science",totalDownloads:10144,totalCrossrefCites:29,totalDimensionsCites:74,abstract:null,book:{id:"3145",slug:"probiotics",title:"Probiotics",fullTitle:"Probiotics"},signatures:"Danfeng Song, Salam Ibrahim and Saeed Hayek",authors:[{id:"107905",title:"Prof.",name:"Salam",middleName:null,surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"},{id:"150202",title:"Dr.",name:"Danfeng",middleName:null,surname:"Song",slug:"danfeng-song",fullName:"Danfeng Song"},{id:"151025",title:"MSc.",name:"Saeed",middleName:null,surname:"Hayek",slug:"saeed-hayek",fullName:"Saeed Hayek"}]},{id:"51065",doi:"10.5772/63499",title:"Role of the Biofilms in Wastewater Treatment",slug:"role-of-the-biofilms-in-wastewater-treatment",totalDownloads:6802,totalCrossrefCites:27,totalDimensionsCites:59,abstract:"Biological wastewater treatment systems play an important role in improving water quality and human health. This chapter thus briefly discusses different biological methods, specially biofilm technologies, the development of biofilms on different filter media, factors affecting their development as well as their structure and function. It also tackles various conventional and modern molecular techniques for detailed exploration of the composition, diversity and dynamics of biofilms. These data are crucial to improve the performance, robustness and stability of biofilm-based wastewater treatment technologies.",book:{id:"5197",slug:"microbial-biofilms-importance-and-applications",title:"Microbial Biofilms",fullTitle:"Microbial Biofilms - Importance and Applications"},signatures:"Shama Sehar and Iffat Naz",authors:[{id:"180364",title:"Dr.",name:"Iffat",middleName:null,surname:"Naz",slug:"iffat-naz",fullName:"Iffat Naz"},{id:"183345",title:"Dr.",name:"Shama",middleName:null,surname:"Sehar",slug:"shama-sehar",fullName:"Shama Sehar"}]},{id:"49246",doi:"10.5772/61300",title:"Chitosan as a Biomaterial — Structure, Properties, and Electrospun Nanofibers",slug:"chitosan-as-a-biomaterial-structure-properties-and-electrospun-nanofibers",totalDownloads:4671,totalCrossrefCites:25,totalDimensionsCites:57,abstract:"Chitosan is a polysaccharide derived from chitin; chitin is the second most abundant polysaccharide in the world, after cellulose. Chitosan is biocompatible, biodegradable and non-toxic, so that it can be usedin medicalapplications such as antimicrobial and wound healing biomaterials. It also used as chelating agent due to its ability to bind with cholesterol, fats, proteins and metal ions.",book:{id:"4648",slug:"concepts-compounds-and-the-alternatives-of-antibacterials",title:"Concepts, Compounds and the Alternatives of Antibacterials",fullTitle:"Concepts, Compounds and the Alternatives of Antibacterials"},signatures:"H. M. Ibrahim and E.M.R. El- Zairy",authors:[{id:"90645",title:"Dr.",name:"Hassan",middleName:null,surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"},{id:"175694",title:"Dr.",name:"Enas",middleName:null,surname:"El- Zairy",slug:"enas-el-zairy",fullName:"Enas El- Zairy"}]}],mostDownloadedChaptersLast30Days:[{id:"65613",title:"The Methods for Detection of Biofilm and Screening Antibiofilm Activity of Agents",slug:"the-methods-for-detection-of-biofilm-and-screening-antibiofilm-activity-of-agents",totalDownloads:9161,totalCrossrefCites:13,totalDimensionsCites:21,abstract:"Biofilm producer microorganisms cause nosocomial and recurrent infections. Biofilm that is a sticky exopolysaccharide is the main virulence factor causing biofilm-related infections. Biofilm formation begins with attachment of bacteria to biotic surface such as host cell or abiotic surface such as prosthetic devices. After attachment, aggregation of bacteria is started by cell-cell adhesion. Aggregation continues with the maturation of biofilm. Dispersion is started by certain conditions such as phenol-soluble modulins (PSMs). By this way, sessile bacteria turn back into planktonic form. Bacteria embedded in biofilm (sessile form) are more resistant to antimicrobials than planktonic bacteria. So it is hard to treat biofilm-embedded bacteria than planktonic forms. For this reason, it is important to detect biofilm. There are a few biofilm detection and biofilm production methods on prosthetics, methods for screening antibacterial effect of agents against biofilm-embedded microorganism and antibiofilm effect of agents against biofilm production and mature biofilm. The aim of this chapter is to overview direct and indirect methods such as microscopy, fluorescent in situ hybridization, and Congo red agar, tube method, microtiter plate assay, checkerboard assay, plate counting, polymerase chain reaction, mass spectrometry, MALDI-TOF, and biological assays used by antibiofilm researches.",book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"}]},{id:"62553",title:"Antibiotic Use in Poultry Production and Its Effects on Bacterial Resistance",slug:"antibiotic-use-in-poultry-production-and-its-effects-on-bacterial-resistance",totalDownloads:7230,totalCrossrefCites:43,totalDimensionsCites:86,abstract:"A surge in the development and spread of antibiotic resistance has become a major cause for concern. Over the past few decades, no major new types of antibiotics have been produced and almost all known antibiotics are increasingly losing their activity against pathogenic microorganisms. The levels of multi-drug resistant bacteria have also increased. It is known that worldwide, more than 60% of all antibiotics that are produced find their use in animal production for both therapeutic and non-therapeutic purposes. The use of antimicrobial agents in animal husbandry has been linked to the development and spread of resistant bacteria. Poultry products are among the highest consumed products worldwide but a lot of essential antibiotics are employed during poultry production in several countries; threatening the safety of such products (through antimicrobial residues) and the increased possibility of development and spread of microbial resistance in poultry settings. This chapter documents some of the studies on antibiotic usage in poultry farming; with specific focus on some selected bacterial species, their economic importance to poultry farming and reports of resistances of isolated species from poultry settings (farms and poultry products) to essential antibiotics.",book:{id:"6978",slug:"antimicrobial-resistance-a-global-threat",title:"Antimicrobial Resistance",fullTitle:"Antimicrobial Resistance - A Global Threat"},signatures:"Christian Agyare, Vivian Etsiapa Boamah, Crystal Ngofi Zumbi and\nFrank Boateng Osei",authors:[{id:"182058",title:"Dr.",name:"Christian",middleName:null,surname:"Agyare",slug:"christian-agyare",fullName:"Christian Agyare"},{id:"261271",title:"MSc.",name:"Crystal Ngofi",middleName:null,surname:"Zumbi",slug:"crystal-ngofi-zumbi",fullName:"Crystal Ngofi Zumbi"},{id:"261272",title:"MSc.",name:"Frank Boateng",middleName:null,surname:"Osei",slug:"frank-boateng-osei",fullName:"Frank Boateng Osei"},{id:"261273",title:"Dr.",name:"Vivian Etsiapa",middleName:null,surname:"Boamah",slug:"vivian-etsiapa-boamah",fullName:"Vivian Etsiapa Boamah"}]},{id:"65914",title:"Introductory Chapter: The Action Mechanisms of Antibiotics and Antibiotic Resistance",slug:"introductory-chapter-the-action-mechanisms-of-antibiotics-and-antibiotic-resistance",totalDownloads:4358,totalCrossrefCites:6,totalDimensionsCites:9,abstract:null,book:{id:"8427",slug:"antimicrobials-antibiotic-resistance-antibiofilm-strategies-and-activity-methods",title:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods",fullTitle:"Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods"},signatures:"Sahra Kırmusaoğlu, Nesrin Gareayaghi and Bekir S. Kocazeybek",authors:[{id:"179460",title:"Associate Prof.",name:"Sahra",middleName:null,surname:"Kırmusaoğlu",slug:"sahra-kirmusaoglu",fullName:"Sahra Kırmusaoğlu"},{id:"248288",title:"Prof.",name:"Bekir",middleName:null,surname:"Kocazeybek",slug:"bekir-kocazeybek",fullName:"Bekir Kocazeybek"},{id:"406463",title:"Dr.",name:"Nesrin",middleName:null,surname:"Gareayaghi",slug:"nesrin-gareayaghi",fullName:"Nesrin Gareayaghi"}]},{id:"50992",title:"Probiotics: A Comprehensive Review of Their Classification, Mode of Action and Role in Human Nutrition",slug:"probiotics-a-comprehensive-review-of-their-classification-mode-of-action-and-role-in-human-nutrition",totalDownloads:5380,totalCrossrefCites:15,totalDimensionsCites:27,abstract:"Probiotics are live microorganisms that live in gastrointestinal (GI) tract and are beneficial for their hosts and prevent certain diseases. In this chapter, after a complete introduction to probiotics, definition, mechanism of action, and their classification, currently used organisms will be discussed in detail. Moreover, different kinds of nutritional synthetic products of probiotics along with their safety and drug interaction will be noticed. This chapter mentions all clinical trial studies that have been done to evaluate probiotic efficacy with a focus on gastrointestinal diseases.",book:{id:"5193",slug:"probiotics-and-prebiotics-in-human-nutrition-and-health",title:"Probiotics and Prebiotics in Human Nutrition and Health",fullTitle:"Probiotics and Prebiotics in Human Nutrition and Health"},signatures:"Amirreza Khalighi, Reza Behdani and Shabnam Kouhestani",authors:[{id:"179560",title:"Dr.",name:"Amirreza",middleName:null,surname:"Khalighi",slug:"amirreza-khalighi",fullName:"Amirreza Khalighi"},{id:"185238",title:"Dr.",name:"Reza",middleName:null,surname:"Behdani",slug:"reza-behdani",fullName:"Reza Behdani"},{id:"185239",title:"Dr.",name:"Shabnam",middleName:null,surname:"Kouhestani",slug:"shabnam-kouhestani",fullName:"Shabnam Kouhestani"}]},{id:"56849",title:"Physiology and Pathology of Innate Immune Response Against Pathogens",slug:"physiology-and-pathology-of-innate-immune-response-against-pathogens",totalDownloads:6143,totalCrossrefCites:21,totalDimensionsCites:28,abstract:"Pathogen infections are recognized by the immune system, which consists of two types of responses: an innate immune response and an antigen-specific adaptive immune response. The innate response is characterized by being the first line of defense that occurs rapidly in which leukocytes such as neutrophils, monocytes, macrophages, eosinophils, mast cells, dendritic cells, etc., are involved. These cells recognize the pathogen-associated molecular patterns (PAMPs), which have been evolutionarily conserved by the diversity of microorganisms that infect humans. Recognition of these pathogen-associated molecular patterns occurs through pattern recognition receptors such as Toll-like receptors and some other intracellular receptors such as nucleotide oligomerization domain (NOD), with the aim of amplifying the inflammation and activating the adaptive cellular immune response, through the antigenic presentation. In the present chapter, we will review the importance of the main components involved in the innate immune response, such as different cell types, inflammatory response, soluble immune mediators and effector mechanisms exerted by the immune response against bacteria, viruses, fungi, and parasites; all with the purpose of eliminating them and eradicating the infection of the host.",book:{id:"5975",slug:"physiology-and-pathology-of-immunology",title:"Physiology and Pathology of Immunology",fullTitle:"Physiology and Pathology of Immunology"},signatures:"José Luis Muñoz Carrillo, Flor Pamela Castro García, Oscar\nGutiérrez Coronado, María Alejandra Moreno García and Juan\nFrancisco Contreras Cordero",authors:[{id:"214236",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Muñoz-Carrillo",slug:"jose-luis-munoz-carrillo",fullName:"Jose Luis Muñoz-Carrillo"},{id:"216080",title:"Dr.",name:"Alejandra",middleName:null,surname:"Moreno-García",slug:"alejandra-moreno-garcia",fullName:"Alejandra Moreno-García"},{id:"216081",title:"Dr.",name:"Oscar",middleName:null,surname:"Gutiérrez-Coronado",slug:"oscar-gutierrez-coronado",fullName:"Oscar Gutiérrez-Coronado"},{id:"216082",title:"Dr.",name:"Pamela",middleName:null,surname:"Castro-García",slug:"pamela-castro-garcia",fullName:"Pamela Castro-García"},{id:"220717",title:"Dr.",name:"Juan Francisco",middleName:null,surname:"Contreras Cordero",slug:"juan-francisco-contreras-cordero",fullName:"Juan Francisco Contreras Cordero"}]}],onlineFirstChaptersFilter:{topicId:"13",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82397",title:"Gut Microbiota Potential in Type 2 Diabetes",slug:"gut-microbiota-potential-in-type-2-diabetes",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105616",abstract:"Appropriate metabolic regulation is vital for health. Multiple factors play important roles in maintaining the metabolic system in different physiological conditions. These factors range from intestinal metabolism of food and absorption of nutrients, pancreatic hormones and their interplay under feeding and fasting, hepatic regulation of macronutrient formation and metabolism storage of macronutrients in skeletal muscles. Intestinal metabolism of ingested food and subsequent nutrient absorption depends on the symbiotic microbial community residing in the gut. The specific ratio of different microbial phyla in the gut has proved to be extremely important for the beneficial role of the gut microbiome. The importance of gut microbiome in the regulation of metabolism has been highlighted with reports of the abnormal ratio of gut microbial community resulting in different metabolic disturbances ranging from obesity to the development of diabetes mellitus. The physiological impact of insulin on the metabolic regulation of macronutrients has recently been shown to be augmented by the secondary metabolites produced by anaerobic fermentation. The current chapter aims to highlight recent findings in the regulation of extraintestinal metabolism by gut microbiome with a specific emphasis on the physiology and pathophysiology of the pancreas in health and disease.",book:{id:"11631",title:"Gut Microbiota - Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11631.jpg"},signatures:"Shahzad Irfan, Humaira Muzaffar, Haseeb Anwar and Farhat Jabeen"},{id:"82372",title:"Unlocking the Potential of Ghost Probiotics in Combating Antimicrobial Resistance",slug:"unlocking-the-potential-of-ghost-probiotics-in-combating-antimicrobial-resistance",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104126",abstract:"Antimicrobial resistance is a global concern that requires immediate attention. Major causes of development of antimicrobial resistance in microbial cells are overuse of antimicrobials along the food chain especially in livestock, in preventing infections as well as misuse of antimicrobials by patients. Probiotics could be a viable alternative to antibiotics in the fight against antimicrobial resistance. Probiotic strains can act as a complement to antimicrobial therapy, improving antimicrobial function and enhancing immunity. However, there are safety concerns regarding the extensive use of live microbial cells especially in immunocompromised individuals; these include microbial translocation, inhibition of other beneficial microorganisms and development of antimicrobial resistance, among other concerns. Inevitably, ghost probiotics have become the favored alternative as they eliminate the safety and shelf-life problems associated with use of probiotics. Ghost probiotics are non-viable microbial cells (intact or broken) or metabolic products from microorganisms, which when administered in adequate amounts have biologic activity in the host and confer health benefits. Ghost probiotics exert biological effects similar to probiotics. However, the major drawback of using ghost probiotics is that the mechanism of action of these is currently unknown, hence more research is required and regulatory instruments are needed to assure the safety of consumers.",book:{id:"11373",title:"The Global Antimicrobial Resistance Epidemic – Innovative Approaches and Cutting-Edge Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11373.jpg"},signatures:"Abigarl Ndudzo, Sakhile Ndlovu, Nesisa Nyathi and Angela Sibanda Makuvise"},{id:"82292",title:"Obesity and Gut Microbiota",slug:"obesity-and-gut-microbiota",totalDownloads:6,totalDimensionsCites:0,doi:"10.5772/intechopen.105397",abstract:"Obesity is a severe worldwide health problem driven by both hereditary and environmental factors, and its prevalence is increasing year after year. According to current thinking, The bacteria in the stomach may have a part in the growth of obesity and other health comorbidities. To better fully comprehend the link between obesity but also microbiomes, we sum up the features of the intestinal microbiota in obese people, the metabolic pathway of obesity-induced by the intestinal microbiota, and the impact of biological factors on the intestinal microbiota and adiposity in this chapter. The microbiome has been shown to have a major role in the development of obesity by regulating energy metabolism. The makeup and density of intestinal flora can be influenced by diet. Simultaneously, it is suggested that the gut microbiome be used in obesity studies. Some food items have recently shown that pro capability via functional ingredients that impact the intestinal flora, attracting the interest of scientists.",book:{id:"11631",title:"Gut Microbiota - Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11631.jpg"},signatures:"Arslan Ahmad, Sakhawat Riaz, Amir Shahzad, Muhammad Tanveer and Muhammad Shaheryar"},{id:"82231",title:"Studies on Endophytic Actinobacteria as Plant Growth Promoters and Biocontrol Agents",slug:"studies-on-endophytic-actinobacteria-as-plant-growth-promoters-and-biocontrol-agents",totalDownloads:8,totalDimensionsCites:0,doi:"10.5772/intechopen.105169",abstract:"The exploration of microbial resources is necessary for plant growth promotion, biological control, and reducing the agrochemicals and fertilizers for sustainable agriculture. Bacteria and fungi are distributed in the biosphere including the rhizosphere and help the host plants by alleviating biotic and abiotic stress through different mechanisms and can be used as bioinoculants for biocontrol and plant growth promotion. Actinobacteria are among the most abundant groups of soil microorganisms. They have been studied for their function in the biological control of plant pathogens, interactions with plants, and plant growth promotion. Streptomyces is the largest genus of actinobacteria. Streptomyces acts as both plant growth promoter and also as plant disease suppressor by various mechanisms like an increase in the supply of nutrients such as phosphorus, iron, production of IAA, and siderophore production. Endophytic actinobacteria help in plant growth-promoting through multiple ways by producing plant hormones; controlling fungal disease through antibiosis and competition. This review briefly summarizes the effects of actinobacteria on biocontrol, plant growth promotion, and association with plants as endophytes.",book:{id:"10893",title:"Actinobacteria",coverURL:"https://cdn.intechopen.com/books/images_new/10893.jpg"},signatures:"Sumi Paul and Arka Pratim Chakraborty"},{id:"82230",title:"Escherichia coli (E. coli) Resistance against Last Resort Antibiotics and Novel Approaches to Combat Antibiotic Resistance",slug:"escherichia-coli-e-coli-resistance-against-last-resort-antibiotics-and-novel-approaches-to-combat-an",totalDownloads:7,totalDimensionsCites:0,doi:"10.5772/intechopen.104955",abstract:"An important feature complicating the treatment of infections caused by E. coli is the increase in resistance to different antibiotics, even to last resort antibiotics. When resistant bacteria spread to the community, resistance creates comprehensive infection control issues, increasing morbidity for non-hospitalized patients of all ages and sexes. New resistance mechanisms are constantly being described, and new genes and vectors of transmission are identified on a regular basis. This chapter reviews different mechanisms of E. coli resistance against different classes of last resort antibiotics such as fosfomycin, nitrofurantoin, and polymixins. In addition, E. coli vaccines, epidemiology, and novel approaches to combat antibiotic resistance will be discussed throughout the chapter. In the age of antibiotic resistance and precise microbial genome engineering, many new strategies are now being used to combat multidrug-resistant bacteria, hoping to be our end game weapon. These strategies include CRISPR-Cas antimicrobials, nanobiotics, phage therapy, and probiotics, which promise to have a substantial impact on the way we treat diseases in the future, as we will discuss in the chapter.",book:{id:"10894",title:"Escherichia coli",coverURL:"https://cdn.intechopen.com/books/images_new/10894.jpg"},signatures:"Rana Elshimy"},{id:"82051",title:"Could Alterations in the Infant Gut Microbiota Explain the Development of Noncommunicable Diseases from the DOHaD Perspective?",slug:"could-alterations-in-the-infant-gut-microbiota-explain-the-development-of-noncommunicable-diseases-f",totalDownloads:10,totalDimensionsCites:0,doi:"10.5772/intechopen.105168",abstract:"Obesity and its complications are a global public health problem with increasing childhood prevalence. The developmental origins of health and disease (DOHaD) theory explain the maintenance of health or disease development throughout life, related to early life exposures. Although it arises from epidemiological observations, its support for epigenetics is strong. In this chapter, we address the importance of maternal diet in prenatal development, as well as the establishment of the infant microbiota and its postnatal regulating factors. According to the DOHaD theory, breastfeeding and other environmental factors are modulators or enhancers of the epigenetic mechanisms, which explain the increased incidence of noncommunicable diseases. We will discuss the molecular mechanisms related to the microbiota products, their effects on gene expression, and the pathophysiology of the disease. Finally, we will raise the areas of opportunity in childhood for preventive purposes, including the potential role of the use of prebiotics, probiotics, synbiotics, and postbiotics in early life.",book:{id:"11631",title:"Gut Microbiota - Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11631.jpg"},signatures:"Maria Esther Mejia-Leon, Alejandra Argüelles-Lopez, Paulina Briseño-Sahagun, Sandra V. Aguayo-Patron and Ana Maria Calderon de la Barca"}],onlineFirstChaptersTotal:97},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{},onlineFirstChapters:{},publishedBooks:{},testimonialsList:[]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/27183",hash:"",query:{},params:{id:"27183"},fullPath:"/chapters/27183",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()