Open Access is an initiative that aims to make scientific research freely available to all. To date our community has made over 100 million downloads. It’s based on principles of collaboration, unobstructed discovery, and, most importantly, scientific progression. As PhD students, we found it difficult to access the research we needed, so we decided to create a new Open Access publisher that levels the playing field for scientists across the world. How? By making research easy to access, and puts the academic needs of the researchers before the business interests of publishers.
We are a community of more than 103,000 authors and editors from 3,291 institutions spanning 160 countries, including Nobel Prize winners and some of the world’s most-cited researchers. Publishing on IntechOpen allows authors to earn citations and find new collaborators, meaning more people see your work not only from your own field of study, but from other related fields too.
Endoscopic Retrograde Cholangiopancreatography-Related Acute Pancreatitis – Identification, Prophylaxis and Treatment
Written By
Alejandro González-Ojeda, Carlos Dávalos-Cobian, Elizabeth Andalón-Dueñas, Mariana Chávez-Tostado, Arturo Espinosa-Partida and Clotilde Fuentes-Orozco
Surgical Section of the Research Unit in Clinical Epidemiology, Specialties Hospital, Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
Carlos Dávalos-Cobian
Department of Gastroenterology and Gastrointestinal Endoscopy,Specialties Hospital, Western Medical Center,Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
Elizabeth Andalón-Dueñas
Surgical Section of the Research Unit in Clinical Epidemiology, Specialties Hospital, Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
Mariana Chávez-Tostado
Surgical Section of the Research Unit in Clinical Epidemiology, Specialties Hospital, Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
Arturo Espinosa-Partida
Surgical Section of the Research Unit in Clinical Epidemiology, Specialties Hospital, Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
Clotilde Fuentes-Orozco
Surgical Section of the Research Unit in Clinical Epidemiology, Specialties Hospital, Western Medical Center, Mexican Institute of Social Security, Guadalajara, Jalisco,, Mexico
*Address all correspondence to:
1. Introduction
Pancreatitis is the most common complication of endoscopic retrograde cholangiopancreatography (ERCP) [1–4]. The reported incidence ranges from 1.8% to 7.2% in most prospective series [5–9] but can be up to 30%, depending on the criteria used to diagnose pancreatitis, the type and duration of patient follow-up, and the type of case mix [10]. More commonly, hyperamylasemia occurs in up to 30% of patients undergoing ERCP [11].
As the indications for ERCP have increased, a greater focus on recognizing and preventing complications has emerged. The recognized complications of ERCP include asymptomatic hyperamylasemia, cardiopulmonary depression, hypoxia, aspiration, intestinal perforation, bleeding, cholangitis, adverse medication reactions, sepsis, acute pancreatitis, and death. Post-ERCP pancreatitis (PEP) remains the leading cause of morbidity and mortality after the procedure and is the focus of studies designed to improve procedural outcomes [12,13]. Some studies have suggested that the rates of PEP can be reduced, but the incidence of pancreatitis remains high particularly in at-risk patient populations. Pancreatitis continues to be the major cause of postprocedure morbidity and mortality [14–17].
PEP was defined initially as the presence of new pancreatic-type abdominal pain associated with at least a threefold increase in serum amylase concentration occurring 24 h after an ERCP, with pain severe enough to require admission to the hospital or to extend an admitted patient’s length of stay. This definition was developed in 1991 based upon approximately 15 000 procedures evaluated during a consensus workshop. The severity of PEP was defined according to the length of stay (mild pancreatitis 2–3 d, moderate pancreatitis 4–10 d, and severe pancreatitis >10 d, or intensive care admission or local complications secondary to pancreatitis) [18]. This consensus definition has not been adopted uniformly and many studies published after 1991 have used different criteria to define PEP and to classify its severity. Several studies have challenged the serum amylase threshold of three times the upper limit of normal, arguing that this definition is not always consistent with the clinical and morphological features of pancreatitis [19–25]. Other criteria for serum amylase elevation include twice [23–26], four times [6,27,28] and five times [20,21,28–30] the upper normal limit.
There is also heterogeneity in the criteria used to classify the severity of PEP in published studies. Some authors have used the Atlanta criteria published in 1993 to define severity [31–33]. The Atlanta criteria incorporate systemic complications of PEP by integrating the Acute Physiologic and Chronic Health Evaluation (APACHE) II classification and Ranson’s criteria to define the severity [33–35]. An APACHE II score of >8 or a Ranson’s score of 3 of 11 criteria are defined as severe PEP. Some studies have used the APACHE II classification alone to grade the severity of PEP [36]. Other studies have used combinations of criteria to define the presence and severity of PEP or have established unique definitions [26,31,37–40]. The heterogeneity of criteria in the literature on PEP hinders direct comparison of the published clinical trials.
The pathophysiology of PEP is not well understood. Mechanical, hydrostatic, chemical, enzymatic, allergic, thermal, cytokine, oxidative, and microbiological factors have all been proposed as causes [32,41–46]. Many studies suggest that PEP results from mechanical trauma, causing injury to the papilla or pancreatic sphincter and subsequent swelling of the pancreatic duct and obstruction to the flow of pancreatic enzymes. This hypothesis remains controversial, and no consensus about the pathogenesis of PEP has been established.
The cascade of events leading to acute pancreatitis is characterized by three phases. The first phase is characterized by premature activation of trypsin within the pancreatic acinar cells [47]. The second phase is characterized by intrapancreatic inflammation. The third phase is characterized by extrapancreatic inflammation [47]. Inflammation in the second and third phases has been described as a four-step process: (1) activation of inflammatory cells; (2) chemoattraction of activated inflammatory cells; (3) activation of adhesion molecules causing binding of inflammatory cells to the endothelium; and (4) migration of activated inflammatory cells into areas of inflammation [47]. Recent studies have evaluated proinflammatory markers (TNF, interleukin-1 (IL-1), IL-6, IL-8, PAF, and IL-10) in the setting of PEP [48–51]. Although three randomized controlled trials (RCTs) suggested a protective effect of low- or high-dose (4 g/kg or 20 g/kg) IL-10 given intravenously 15–30 min before ERCP [52], subsequent studies using similar IL-10 protocols did not support these findings [53,54]. Although not demonstrated at present, modulation of proinflammatory pathways might be an appealing goal for studies evaluating PEP and the systemic inflammatory response.
Although the triggers of the inflammatory cascade are not well understood, procedural- and patient-related factors have been clearly associated with the incidence of PEP. ERCP is the most technically difficult endoscopic procedure performed by trainees and experienced endoscopists in both inpatient and outpatient settings. Whereas trauma to the duodenum or papilla during endoscopy without cannulation rarely causes pancreatitis [55], cannulation of the papilla, especially in moderate to difficult cases, is associated with high rates of PEP. Procedures involving multiple (>1–4) or failed attempts at cannulation, multiple pancreatic injections (2–5), pancreatic acinarization, and prolonged cannulation time (>10 min) are associated with PEP. The following factors have also been associated with a higher risk for developing PEP: operator experience, ampullary balloon dilation, precut access sphincterotomy, endoscopic sphincterotomy (ES), sphincter of Oddi manometry, distal common bile duct diameters of 1 cm, presence of a pancreatic stricture, papillectomy, and procedures not involving stone removal [45,56–59] (Table 1).
Patient related factors
Young age. Female gender. Suspected sphincter of Oddi dysfunction. Recurrent pancreatitis. Prior history of post-ERCP pancreatitis. Patients with normal serum bilirubin.
Factors Increasing the Risk of Post-ERCP Pancreatitis.
4.1. Operator experience
Although there is no established mandate for the procedure volume to develop competence in ERCP, a prospective study published in 1996 evaluated the number of supervised ERCPs a physician must perform to achieve procedural competence and reported that at least 180 procedures are required [60]. In the United States, the American Society for Gastrointestinal Endoscopy and the American College of Gastroenterology have published quality indicators for ERCP. Competent endoscopists are expected to be able to perform sphincterotomy, clear the common bile duct of stones, provide relief of biliary obstruction, and successfully place stents for bile leaks in 85% of patients [61].
Few studies have been published on operator experience in ERCP, and this issue remains controversial. A recent study in Austria showed that a case volume of >50 ERCPs per year had higher success and lower overall complication rates [62]. It is generally agreed that the case mix at high volume and in academic referral centers may include a larger proportion of difficult and high-risk cases, which may confound the relationship between experience and complication rates. Although operator experience is felt to be critical for high-quality outcomes, many large prospective and retrospective trials have not shown consistent correlations between inexperience and PEP. Higher rates of bleeding have been reported after endoscopic sphincterotomy with a mean case volume of <1 per wk [14], and trainee involvement was associated with severe or fatal complications in a recent retrospective analysis [63]. However, a large prospective trial found that case volume had no effect on the incidence of PEP [24]. A prospective study of ERCP in the United Kingdom (UK) in 2007 based on self-reported surveys demonstrated that 15% of all credentialed endoscopists performed <50 ERCPs per year compared with 61% of those in training; 11% of deaths occurred after procedures by endoscopists who performed <50 ERCPs per year. Although the rates of PEP were low at 1.5%, the success rates for bile duct stone extraction and biliary stent placement were 62% and 73%, respectively. The authors concluded that in the UK there is a need for fewer operators and greater experience in those performing therapeutic endoscopy [64]. In the same year, a study in France showed no risk associated with operator inexperience [65].
4.2. Cannulation techniques
Cannulation techniques to access the pancreatic and biliary ducts include the use of a sphincterotome or straight or curved catheter with guide wires or contrast injection. When an initial attempt at cannulation fails, access may be achieved after placement of a pancreatic guide wire or stent to help guide the endoscopist toward the common bile duct and away from the pancreatic duct. Precut access papillotomy is used frequently in referral centers when conventional approaches fail. Rare or experimental techniques such as the use of endoscopic scissors or endoscopic dissection with a cotton swab have been reported but are used rarely in clinical practice [66].
Compared with a standard catheter, the use of a sphincterotome may decrease the number of failed attempts to obtain biliary access, the time required to cannulate the common bile duct, and the rate of PEP [67,68]. Selective sphincterotome cannulation with a guide wire may reduce the rate of PEP compared with cannulation with contrast injection [67–71]. In 2008, a large prospective controlled trial randomized 430 patients into sphincterotome plus guide wire versus conventional cannulation arms. The series demonstrated a significantly higher rate of cannulation with guide wires but failed to show a significant difference in the rate of PEP between the two approaches [72]. The authors reported an 8.8%–14.9% increased risk of PEP after >4 attempts at the papilla, highlighting the importance of cannulation with fewer attempts. These findings are consistent with those of previous studies [7,72].
4.3. Pancreatic duct injection
Multiple pancreatic duct injections (2–5) [6,7,15,24,58] and pancreatic acinarization [6,12,15,30] are recognized as risk factors for PEP. Differences in the osmolality and ionicity of contrast media have been studied with varying results in terms of impact on PEP [25,28,59,73–75]. A recent meta-analysis of 13 RCTs found no significant difference between high- and low-osmolality contrast media [75]. Earlier studies suggested that there is a decreased risk of PEP with the use of nonionic contrast agents [73], although this has not been demonstrated consistently [74]. One large retrospective analysis of 14 331 ERCPs suggested that less opacification of the pancreatic duct in the head than in the tail produced significantly lower rates of PEP [59]. Despite the variable findings, clinical trial data suggest that hydrostatic pressure may play a role in the development of pancreatitis.
4.4. Pancreatic duct stenting
The theory that PEP is caused by pancreatic duct obstruction is supported by most RCTs, which show a decreased incidence of pancreatitis in high-risk patients after placement of a pancreatic duct stent [76–84]. The three largest published studies to evaluate the rate of pancreatitis with pancreatic duct stent placement reported significant decreases, by 10.4%, 14.8%, and 52.3%, in the rates of PEP in patients treated with stent placement versus those without stent placement [78,79,85]. Although pancreatic duct stenting decreases the risk of PEP, it has not been shown to prevent it. Despite stent placement, pancreatitis occurs in 2.0%–14% of patients [78,79,81,83,84], and some studies have failed to demonstrate a significant protective effect [59,83,84]. Eight RCTs, multiple prospective uncontrolled studies, and five meta-analyses have compared the rates of pancreatitis after ERCP with and without prophylactic pancreatic stent placement [86–90]. Prophylactic stent placement reduces the incidence of PEP, particularly in high-risk patients, and virtually eliminates the risk of severe pancreatitis.
Many studies have criticized the absence of intent-to-treat analysis (i.e., patients with attempted but unsuccessful stent placement were excluded). However, a meta-analysis showed that the four RCTs used intent-to-treat principles by assuming that PEP developed in patients in whom the attempted prophylactic pancreatic stent placement failed, even when the clinical outcome was not stated in the original study. Despite the use of this approach, the odds ratio in the stent group was 0.44 compared with the controls and differed significantly in favor of stent placement [86]. On the basis of these results, prophylactic stent placement can be considered as the single most important advance in the past 15 years for the prevention of PEP in high-risk patients. Despite these findings, questions remain about when to place a prophylactic pancreatic stent, the type of stent to place, and the optimal follow-up period to ensure adequate removal. The incidence of adverse events associated with pancreatic stent placement is around 4% and must be considered in the decision-making process for the placement of a stent [86,91].
4.5. Biliary stone extraction
In the setting of choledocholithiasis, endoscopic papillary balloon dilatation (EPBD), ES, and mechanical lithotripsy are techniques used to extract obstructing stones. Many studies have shown an increased rate of PEP with EPBD; the rates range from 4.9–20% with EPBD versus 0.42–10% with ES [92–95]. Prospective trials support this observation, although it is difficult to generalize the findings given the many factors that contribute to procedural complications [96–100]. Balloon dilation may also be required in some clinical settings. If a patient has had a prior sphincterotomy and has limited remaining tissue for incision, balloon dilation may be necessary to enlarge the bile duct insertion and enable stone extraction.
5. Patient-related risk factors associated with PEP
Given the high risk of PEP in certain populations, identifying a clear indication is critical for reducing the complication rate. ERCP is riskiest in patients who need it the least [101,102]. Large prospective trials have demonstrated that being female, being younger than 60–70 years, and having suspected sphincter of Oddi dysfunction (SOD) or a recurrent or prior PEP are associated with a higher risk of PEP [6,9,15,24,45,87,103,104] (Table 1). However, there is some variability between studies. For example, one smaller trial suggested an age of <50 years as a significant risk factor [104]. A recent large retrospective study of 16 855 patients reported that the highest rates of PEP occurred in patients with SOD, but the rate was not significantly higher in younger patients or in women [63]. Alternatively, a meta-analysis evaluating five patient-related risk factors demonstrated relative risks of SOD of 4.09 (95% CI, 1.93–3.12; P<0.001) and of being female of 2.23 (95% CI, 1.75–2.84; P<0.001) [87]. One study demonstrated a 10-fold increase in the risk of PEP in patients with SOD [105]. Some factors may be protective as well. The absence of chronic pancreatitis [57], presence of obesity [106], older age (>80 years) [107], and a history of alcohol consumption or cigarette smoking may be associated with a lower risk of PEP [108]. Proper patient selection and identification of patients at higher risk are the most effective means for reducing the incidence of PEP.
6. Pharmacological agents evaluated for the prevention or reduction of PEP
The effects of pharmacological agents on PEP have attracted much interest. Preventing cellular injury and pancreatic tissue auto-digestion may involve blocking the premature activation of proteolytic enzymes within the acinar cells [14,45,109–116]. Although conceptually straightforward, the goal of blocking this activation has been difficult to achieve. Multiple trials have been performed with the goal of reducing the incidence or severity of PEP. About 34 pharmacological agents and procedures (e.g., topical application of pharmacological agents injected or sprayed onto the papilla) have been evaluated for their potential to prevent PEP in controlled trials. Most clinical trials have been disappointing, and only a minority of studies has demonstrated benefit (Table 2-5) [26,29,37,39,40,53,54,58,87,117–175].
In two of five prospective trials, allopurinol was shown to decrease the incidence of PEP [119,120]. In these trials showing benefits, allopurinol was given in 300 mg or 600 mg doses 15 h and 3 h before ERCP. When reviewing other studies of allopurinol, these effects were not significant in patients dosed on different 4 h and 1 h regimens and with varying dose concentrations of allopurinol [121–123]. This suggests that both the dose and timing of allopurinol administration are important in reducing the risk of PEP.
Three meta-analyses have been published using data obtained from four prospective, randomized, placebo-controlled studies that compared rectally administered diclofenac or indomethacin at a dose of 100 mg versus placebo [124–126]. No statistical heterogeneity was detected between the studies. Two RCTs evaluated the effect of rectal administration of 100 mg diclofenac immediately after the procedure [39,143], and the other two evaluated rectal administration of 100 mg indomethacin immediately before the procedure [144,145]. Both sets of studies showed similar results. Patients who were considered to be at high risk for PEP were included in both studies. Overall, PEP occurred in 20/456 (4.4%) patients in the treatment groups versus 57/456 (12.5%) patients in the placebo groups. The estimated pooled relative risk was 0.36 (95% CI, 0.22–0.60), and the number needed to treat to prevent one episode of PEP was 15. The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) was associated with a similar decrease in the incidence of PEP regardless of risk. No adverse event attributable to NSAIDs has been reported. A trial evaluating diclofenac 50
Table 2.
Randomized controlled trails of drugs that decrease inflammation evaluated for reduction or prevention of post-ERCP pancreatitis.
Table 3.
Randomized controlled trails of drugs that interrupt the activity of proteases evaluated for reduction or prevention of post-ERCP pancreatitis.
Table 4.
Randomized controlled trails of inhibitors of pancreatic secretion evaluated for reduction or prevention of post-ERCP pancreatitis.
Table 5.
Randomized controlled trails of drugs that decrease Sphincter of Oddi Pressure and miscellaneous drugs evaluated for reduction or prevention of post-ERCP pancreatitis.
mg by mouth given 30–90 min before ERCP and up to 4–6 h after ERCP showed no decrease in the incidence of PEP [146]. A small clinical trial by Senol and colleagues found no significant difference in the incidence of PEP in patients given ERCP with the use of 75 mg of diclofenac by the intramuscular route plus intravenous (IV) hydration versus those given placebo and IV solutions [147]. According to the European Society of Gastrointestinal Endoscopy, no other drug prophylaxis has been proven to be effective against PEP as rectal NSAIDs [148].
Glyceryl trinitrate [141], hydrocortisone [130], and IL-10 [52] were shown to be beneficial in one RCT. However, studies with larger numbers of patients [26,54,140] found no significant effects of these treatments. Gabexate [160,161,163], octreotide [150,151], somatostatin [171,174], and ulinastatin [167] have all been reported to reduce the incidence of PEP. However, studies evaluating each of these agents using similar designs have reported no significant reduction in the incidence of PEP. These differences might be explained by differences in the selection and number of patients, clinical presentation, and timing of administration or dosage of the agents under investigation.
Not all patients with pain and hyperamylasemia following ERCP have acute pancreatitis, and clinicians may have difficulty establishing the diagnosis. As a result, some patients with severe post-ERCP pancreatitis may not be identified in the early stages of their illness when aggressive hydration is most important. Some endoscopists may have difficulty acknowledging that post-ERCP pancreatitis has occurred, as this requires accepting that there has been a complication. A sense of guilt on the part of the clinician performing the procedure is understandable. However, delay in either the diagnosis or treatment of post-ERCP pancreatitis may lead to adverse consequences.
Post-ERCP pancreatitis should be managed as for other causes of acute pancreatitis. This is sometimes complicated by the difficulty distinguishing mild from severe disease in the early stages. The elevations in serum amylase and lipase levels do not always correlate with disease severity.
Mild and moderate PEP usually resolve quickly with conservative therapy. Although there are no specific guidelines for the treatment of PEP, a recent study found that a protocol-based management strategy was associated with less severe pancreatitis, shorter length of hospital stay, the need for fewer imaging studies, and less use of antibiotics [109,177].
Practice guidelines for acute pancreatitis treatment are available and may be applicable to PEP as well [47]. In patients with persistent or severe PEP, two important markers of severity are multisystem organ failure and pancreatic necrosis, both of which require aggressive management [18]. Early identification of organ failure, pancreatic necrosis, perforation (especially in the setting of endoscopic sphincterotomy), biliary damage/leak and pancreatic fluid collections are important clinical branch points that may require more intensive intervention. Checking the levels of serum transaminases, amylase, and lipase is not routinely recommended after ERCP, but if assessed, postprocedure elevations occur often. These elevations are likely to be secondary to intermittent biliary, pancreatic, or papillary obstruction. In a recent study, 46% of patients had elevated liver test results after ERCP, but only 5.4% had PEP [110]. Asymptomatic elevation of liver markers is not an indication for a change in management and a repeat ERCP should be performed only with a clear indication. Although the use of enteral feeding during treatment of acute pancreatitis is controversial, patients who are unlikely to resume oral nutrition within 5 days require nutritional support, which can be provided via total parenteral nutrition or enteral routes [177]. There appear to be some advantages to enteral feeding. A recent study found that initiating oral nutrition after mild acute pancreatitis with a low-fat soft diet appeared to be safe but did not shorten the length of hospitalization [111].
Acute pancreatitis is a well-recognized and frequent complication that can occur in 1%–15% of patients undergoing ERCP. Clinical research to prevent PEP using depurate endoscopic techniques and pharmacological prophylaxis is intense and so far indicates that the use of NSAIDs and pancreatic stenting, coupled with appropriate selection of eligible patients and performed by an experienced endoscopist are the most effective preventive measures to reduce the incidence and severity this complication.
2.RabensteinT.HahnE. G.2002Post-ERCP pancreatitis: New momentum.Endoscopy; 343259 .
3.FrankC. D.AdlerD. G.2006Post-ERCP Pancreatitis and its prevention. Nat Clin Pract Gastroenterol Hepatol;36808 .
4.La FerlaG.GordonS.ArchibaldM.MurrayW. R.1986 Hyperamylasaemia and acute pancreatitis following endoscopic retrograde cholangiopancreatography. Pancreas.;1216063 .
5.BadalovN.TennerS.BaillieJ.2009The Prevention, recognition and treatment of post-ERCP pancreatitis. JOP.;1028897 .
6.VandervoortJ.SoetiknoR. M.ThamT. C.WongR. C.FerrariA. P.Jr MontesH.et al.2002Risk factors for complications after performance of ERCP. Gastrointest Endosc.;5656526 .
7.García-CanoLizcano. J.GonzálezMartín. J. A.MorillasAriño. J.PérezSola. A.2004Complications of endoscopic retrograde cholangiopancreatography. A study in a small ERCP unit. Rev Esp Enferm Dig.;96316373 .
8.ChengC. L.ShermanS.WatkinsJ. L.BarnettJ.FreemanM.GeenenJ.et al.2006Risk factors for post-ERCP pancreatitis: a prospective multicenter study. Am J Gastroenterol.;101113947 .
9.WilliamsE. J.TaylorS.FaircloughP.HamlynA.LoganR. F.MartinD.et al.2007Risk factors for complication following ERCP; results of a large-scale, prospective multicenter study.Endoscopy.;399793801 .
10.FreemanM. L.GudaN. M.2004 Prevent ion of post- ERCP pancreatitis: a comprehensive review. Gastrointest Endosc.;59784564
11.ItoK.FujitaN.NodaY.KobayashiG.HoraguchiJ.TakasawaO.ObanaT.2007Relationship between post-ERCP pancreatitis and the change of serum amylase level after the procedure. World J Gastroenterol; 13385560 .
12.BilbaoM. K.DotterC. T.LeeT. G.KatonR. M.1976Complications of endoscopic retrograde cholangiopancreatography (ERCP). A study of 10,000 cases.Gastroenterology.;70331420 .
13.SkudeG.WehlinL.MaruyamaT.AriyamaJ.1976Hyperamylasaemia after duodenoscopy and retrograde cholangiopancreatography.Gut.;17212732 .
14.SilvieraM. L.MJSeamonPorshinsky. B.ProsciakM. P.DoraiswamyV. A.WangC. F.et al.2009Complications related to endoscopic retrograde cholangiopancreatography: a comprehensive clinical review. J Gastrointestin Liver Dis.;1817382 .
15.WangP.LiZ. S.LiuF.RenX.LuN. H.FanZ. N.et al.Risk factors for ERCP-related complications: a prospective multicenter study. Am J Gastroenterol. 110431402009
16.CohenS.BaconB. R.BerlinJ. A.FleischerD.HechtG. A.LoehrerP. J.et al.2002National Institutes of Health State-of-the-Science Conference Statement: ERCP for diagnosis and therapy, January 14-16, 2002. Gastrointest Endosc.;5668039 .
17.BruggeW. R.Van DamJ.1999Pancreatic and biliary endoscopy. N Engl J Med.;34124180816 .
18.CottonP. B.LehmanG.VennesJ.GeenenJ. E.RussellR. C.MeyersW. C.et al.1991Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc.;37338393 .
19.TestoniP. A.BagnoloF.CaporuscioS.LellaF.1999Serum amylase measured four hours after endoscopic sphincterotomy is a reliable predictor of postprocedure pancreatitis. Am J Gastroenterol.;945123541 .
20.TestoniP. A.CicardiM.BergamaschiniL.GuzzoniS.CugnoM.BuizzaM.et al.1995Infusion of C1-inhibitor plasma concentrate prevents hyperamylasemia induced by endoscopic sphincterotomy. Gastrointest Endosc.;4243015 .
21.TestoniP. A.BagnoloF.2001Pain at 24 hours associated with amylase levels greater than 5 times the upper normal limit as the most reliable indicator of post-ERCP pancreatitis. Gastrointest Endosc.;531339 .
22.TestoniP. A.BagnoloF.NataleC.PrimignaniM.2000Incidence of post-endoscopic retrograde-cholangiopancreatography/sphincterotomy pancreatitis depends upon definition criteria. Dig Liver Dis.;3254128 .
23.WeinerG. R.GeenenJ. E.HoganW. J.CatalanoM. F.1995 Use of corticosteroids in the prevention of post-ERCP pancreatitis. Gastrointest Endosc.;42657983 .
24.FreemanM. L.NelsonD. B.ShermanS.HaberG. B.HermanM. E.DorsherP. J.et al.1996 Complications of endoscopic biliary sphincterotomy. N Engl J Med.;3351390918 .
25.JohnsonG. K.GeenenJ. E.JohansonJ. F.ShermanS.HoganW. J.CassO.1997Evaluation of post-ERCP pancreatitis: potential causes noted during controlled study of differing contrast media. Midwest Pancreaticobiliary Study Group. Gastrointest Endosc.;46321722 .
26.De PalmaG. D.CatanzanoC.1999Use of corticosteriods in the prevention of post-ERCP pancreatitis: results of a controlled prospective study. Am J Gastroenterol.;9449825 .
27.ShermanS.RuffoloT. A.HawesR. H.LehmanG. A.1991Complications of endoscopic sphincterotomy. A prospective series with emphasis on the increased risk associated with sphincter of Oddi dysfunction and nondilated bile ducts.Gastroenterology.;1014106875 .
28.ShermanS.HawesR. H.RathgaberS. W.UzerM. F.SmithM. T.KhusroQ. E.et al.1994Post-ERCP pancreatitis: randomized, prospective study comparing a low- and high-osmolality contrast agent. Gastrointest Endosc.;404422427 .
29.TestoniP. A.LellaF.BagnoloF.CaporuscioS.CattaniL.ColomboE.et al.1996Long-term prophylactic administration of octreotide reduces the rise in serum amylase after endoscopic procedures on Vater’s papilla.Pancreas.;131615 .
30.MasciE.TotiG.MarianiA.CurioniS.LomazziA.DinelliM.et al.2001 Complications of diagnostic and therapeutic ERCP: a prospective multicenter study Am J Gastroenterol.;96241723 .
31.AbidG. H.SiriwardanaH. P.HoltA.AmmoriB. J.2007 Mild ERCP induced and non-ERCP-related acute pancreatitis: two distinct clinical entities? J Gastroenterol.;42214651 .
32.ChenC. C.WangS. S.LuR. H.LuC. C.ChangF. Y.LeeS. D.2003 Early changes of serum proinflammatory and anti-inflammatory cytokines after endoscopic retrograde cholangiopancreatography. Pancreas.;26437580 .
33.BradleyE.3rd1993A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Arch Surg.;128558690 .
34.KnausW. A.ZimmermanJ. E.WagnerD. P.DraperE. A.LawrenceD. E.1981APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med.;985917 .
35.RansonJ. H.RifkindK. M.RosesD. F.FinkS. D.EngK.SpencerF. C.1974Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet.;13916981 .
36.BhatiaV.GargP. K.TandonR. K.MadanK.2006Endoscopic retrograde cholangiopancreatography-induced acute pancreatitis often has a benign outcome. J Clin Gastroenterol.;40872631 .
37.BarkayO.NivE.SantoE.BruckR.HallakA.KonikoffF. M.2008Low-dose heparin for the prevention of post-ERCP pancreatitis: a randomized placebo-controlled trial. Surg Endosc.;229197176 .
38.ConwellD. L.O’ConnorJ. B.FergusonD. R.VargoJ. J.BarnesD. S.et al.1998 Pretreatment with methylprednisolone to prevent ERCP-induced pancreatitis: a randomized, multicenter, placebo-controlled clinical trial. Am J Gastroenterol.;931615 .
39.MurrayB.CarterR.ImrieC.EvansS.O’SuilleabhainC.2003Diclofenac reduces the incidence of acute pancreatitis after endoscopic retrograde cholangiopancreatography.Gastroenterology.;1247178691 .
40.TulassayZ.DöbrönteZ.PrónaiL.ZágoniT.JuhászL.1998Octreotide in the prevention of pancreatic injury associated with endoscopic cholangiopancreatography. Aliment Pharmacol Ther.;1211110912 .
41.ShermanS.LehmanG. A.1991 ERCP and endoscopic sphincterotomy-induced pancreatitis. Pancreas.;6335067 .
42.PezzilliR.RomboliE.CampanaD.CorinaldesiR.2002Mechanisms involved in the onset of post-ERCP pancreatitis. JOP.;361628 .
43.MessmannH.VogtW.HolstegeA.LockG.HeinischA.vonFürstenberg. A.et al.1997Post-ERP pancreatitis as a model for cytokine induced acute phase response in acute pancreatitis.Gut.;401805 .
44.Oezcueruemez-PorschM.KunzD.HardtP. D.FadgyasT.KressO.SchulzH. U.et al.1998Diagnostic relevance of interleukin pattern, acute-phase proteins, and procalcitonin in early phase of post-ERCP pancreatitis. Dig Dis Sci.;438176369 .
45.CooperS. T.SlivkaA.2007 Incidence, risk factors, and prevention of post-ERCP pancreatitis. Gastroenterol Clin North Am.;36225976 .
46.MohseniSalehi.MonfaredS. S.VahidiH.AbdolghaffariA. H.NikfarS.AbdollahiM.2009Antioxidant therapy in the management of acute, chronic and post-ERCP pancreatitis: a systematic review. World J Gastroenterol;15448190 .
47.BanksP. A.FreemanM. L.2006 Practice Parameters Committee of the American College of Gastroenterology. Practice guidelines in acute pancreatitis. Am J Gastroenterol.;101102379400 .
48.KilcilerG.MusabakU.BagciS.YesilovaZ.TuzunA.UygunA.et al.2008Do the changes in the serum levels of IL-2, IL-4, TNFalpha, and IL-6 reflect the inflammatory activity in the patients with post-ERCP pancreatitis? Clin Dev Immunol.;2008:481560.
49.SultanS.BaillieJ.2002What are the predictors of post-ERCP pancreatitis, and how useful are they? JOP.;3618894 .
50.DemolsA.DeviereJ.2003 New frontiers in the pharmacology prevention of post-ERCP pancreatitis: the cytokines. JOP.;414957 .
51.PandeH.ThuluvathP.2003 Pharmacological prevention of postendoscopic retrograde cholangiopancreatography pancreatitis. Drugs.;63171799812 .
52.DevièreJ.Le MoineO.Van LaethemJ. L.EisendrathP.GhilainA.SeversN.et al.2001Interleukin 10 reduces the incidence of pancreatitis after therapeutic endoscopic retrograde cholangiopancreatography. Gastroenterology.;1202498505 .
53.DumotJ. A.ConwellD. L.ZuccaroG.Jr VargoJ. J.ShayS. S.EasleyK. A.et al.2001A randomized, double blind study of interleukin 10 for the prevention of ERCP-induced pancreatitis. Am J Gastroenterol.;9672098102 .
54.ShermanS.ChengC. L.CostamagnaG.BinmoellerK. F.PuespoekA.AithalG. P.et al.2009Efficacy of recombinant human interleukin-10 in prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis in subjects with increased risk. Pancreas.;38326774 .
55.DeschampsJ. P.AllemandH.JaninMagnificat. R.CamelotG.GilletM.CarayonP.Acute pancreatitis following gastrointestinal endoscopy without ampullary cannulation.DeschampsJ. P.AllemandH.JaninMagnificat. R.CamelotG.GilletM.CarayonP. Acute pancreatitis following gastrointestinal endoscopy without ampullary cannulation. Endoscopy. 1982; .. 31410561982
56.WilliamsE. J.TaylorS.FaircloughP.HamlynA.LoganR. F.MartinD.et al.2007Risk factors for complication following ERCP; results of a large-scale, prospective multicenter study.Endoscopy.;399793801 .
58.AndriulliA.SolmiL.LoperfidoS.LeoP.FestaV.BelmonteA.et al.2004Prophylaxis of ERCP-related pancreatitis: a randomized, controlled trial of somatostatin and gabexate mesylate. Clin Gastroenterol Hepatol.;287138 .
59.CheonY. K.ChoK. B.WatkinsJ. L.Mc HenryL.FogelE. L.ShermanS.et al.2007Frequency and severity of post-ERCP pancreatitis correlated with extent of pancreatic ductal opacification. Gastrointest Endosc.;65338593 .
60.JowellP. S.BaillieJ.MSBranchAffronti. J.BrowningC. L.ButeB. P.1996Quantitative assessment of procedural competence. A prospective study of training in endoscopic retrograde cholangiopancreatography. Ann Intern Med.;125129839 .
61.BaronBaron. T. H.PetersenB. T.MergenerK.ChakA.CohenJ.DealS. E.et al.2006 Quality indicators for endoscopic retrograde cholangiopancreatography. Am J Gastroenterol.;10148927 .
62.KapralC.DullerC.WewalkaF.KerstanE.VogelW.SchreiberF.2008Case volume and outcome of endoscopic retrograde cholangiopancreatography: results of a nationwide Austrian benchmarking project. Endoscopy.;40862530 .
63.CottonP. B.GarrowD. A.GallagherJ.RomagnuoloJ.2009 Risk factors for complications after ERCP: a multivariate analysisof 11,497 procedures over 12 years. Gastrointest Endosc.;701808 .
64.WilliamsE. J.TaylorS.FaircloughP.HamlynA.LoganR. F.MartinD.et al.2007Are we meeting the standards set for endoscopy? Results of a large-scale prospective survey of endoscopic retrograde cholangio-pancreatograph practice.Gut.;5668219 .
65.VitteR. L.MorfoisseJ. J.2007 Investigator Group of Association Nationale des Gastroentérologues des Hôpitaux Généraux. Evaluation of endoscopic retrograde cholangiopancreatography procedures performed in general hospitals in France. Gastroenterol Clin Biol.;31(8-9 Pt 1):740-9.
66.FreemanM. L.GudaN. M.2005ERCP cannulation: a review of reported techniques. Gastrointest Endosc.;61111225 .
67.CortasG. A.MehtaS. N.AbrahamN. S.BarkunA. N.1999 Selective cannulation of the common bile duct: a prospective randomized trial comparing standard catheters with sphincterotomes. Gastrointest Endosc.;5067759 .
68.LellaF.BagnoloF.ColomboE.BonassiU.2004A simple way of avoiding post-ERCP pancreatitis. Gastrointest Endosc.;597830834 .
69.ArtifonE. L.SakaiP.CunhaJ. E.HalwanB.IshiokaS.KumarA.2007Guidewire cannulation reduces risk of post-ERCP pancreatitis and facilitates bile duct cannulation. Am J Gastroenterol.;10210214753 .
70.ItoK.FujitaN.NodaY.KobayashiG.ObanaT.HoraguchiJ.et al.2008Pancreatic guidewire placement for achieving selective biliary cannulation during endoscopic retrograde cholangio-pancreatography. World J Gastroenterol.;143655956000 .
72.BaileyA. A.BourkeM. J.WilliamsS. J.WalshP. R.MurrayM. A.LeeE. Y.et al.2008 A prospective randomized trial of cannulation technique in ERCP: effects on technical success and post-ERCP pancreatitis. Endoscopy.;404296301 .
73.BarkinJ. S.CasalG. L.ReinerD. K.GoldbergR. I.PhillipsR. S.KaplanS.1991A comparative study of contrast agents for endoscopic retrograde pancreatography. Am J Gastroenterol.;8610143741 .
74.JohnsonG. K.GeenenJ. E.BedfordR. A.JohansonJ.CassO.ShermanS.et al.1995A comparison of nonionic versus ionic contrast media: results of a prospective, multicenter study. Midwest Pancreaticobiliary Study Group. Gastrointest Endosc.;4243126 .
75.GeorgeS.KulkarniA. A.StevensG.ForsmarkC. E.DraganovP.2004 Role of osmolality of contrast media in the development of post-ERCP pancreatitis: a metanalysis. Dig Dis Sci.;4935038 .
76.TarnaskyP. R.PaleschY. Y.Cunningham. J. T.MauldinP. D.CottonP. B.HawesR. H.1998 Pancreatic stenting prevents pancreatitis after biliary sphincterotomy in patients with sphincter of Oddi dysfunction. Gastroenterology.;1156151824 .
77.HarewoodG. C.PochronN. L.GostoutC. J.2005 Prospective, randomized, controlled trial of prophylactic pancreatic stent placement for endoscopic snare excision of the duodenal ampulla. Gastrointest Endosc.;623367370 .
78.SofuniA.MaguchiH.ItoiT.KatanumaA.HisaiH.NiidoT.et al.2007Prophylaxis of postendoscopic retrograde cholangiopancreatography pancreatitis by an endoscopic pancreatic spontaneous dislodgement stent. Clin Gastroenterol Hepatol.;511133946 .
79.FreemanM. L.2007Pancreatic stents for prevention of postendoscopic retrograde cholangiopancreatography pancreatitis. Clin Gastroenterol Hepatol.;511135465 .
80.TarnaskyP. R.2003Mechanical prevention of post-ERCP pancreatitis by pancreatic stents: results, techniques, and indications. JOP.;415867 .
81.FazelA.QuadriA.CatalanoM. F.MeyersonS. M.GeenenJ. E. (2003).Does a pancreatic duct stent prevent post-ERCP pancreatitis?. A prospective randomized study. Gastrointest Endosc.;5732914 .
82.SimmonsD. T.PetersenB. T.GostoutC. J.LevyM. J.TopazianM. D.BaronT. H.2008 Risk of pancreatitis following endoscopically placed large-bore plastic biliary stents with and without biliary sphincterotomy for management of postoperative bile leaks. Surg Endosc.;226145963 .
83.SmithlineA.SilvermanW.RogersD.NisiR.WiersemaM.JamidarP.et al.1993Effect of prophylactic main pancreatic duct stenting on the incidence of biliary endoscopic sphincterotomy-induced pancreatitis in high-risk patients. Gastrointest Endosc; 396527
84.TsuchiyaT.ItoiT.SofuniA.ItokawaF.KuriharaT.IshiiK.et al.2007Temporary pancreatic stent to prevent post endoscopic retrograde cholangiopancreatography pancreatitis: a preliminary, single-center, randomized controlled trial. J Hepatobiliary Pancreat Surg.;143302307 .
85.FogelE. L.EversmanD.JamidarP.ShermanS.LehmanG. A.2002Sphincter of Oddi dysfunction: pancreaticobiliary sphincterotomy with pancreatic stent placement has a lower rate of pancreatitis than biliary sphincterotomy alone.Endoscopy.;3442805 .
86.AndriulliA.ForlanoR.NapolitanoG.ConoscitoreP.CarusoN.PilottoA.et al.2007 Pancreatic duct stents in the prophylaxis of pancreatic damage after endoscopic retrograde cholangiopancreatography: a systemic analysis of benefits and associated risks. Digestion.;75(2-3):156-163.
87.MasciE.MarianiA.CurioniS.TestoniP. A.2003Risk factors for pancreatitis following endoscopic retrograde cholangiopancreatography: a meta-analysis.Endoscopy.;35108304 .
88.SinghP.DasA.IsenbergG.WongR. C.SivakM. V.Jr AgrawalD.et al.2004 Does prophylactic pancreatic stent placement reduce the risk of post-ERCP acute pancreatitis? A meta-analysis of controlled studies. Gastrointest Endosc.;60454450 .
89.MazakiT.MasudaH.TakayamaT.2010Prophylactic pancreatic stent placement and post-ERCP pancreatitis: a systematic review and meta-analysis. Endoscopy.;421084253 .
90.ChoudharyA.BechtoldM. L.ArifM.SzaryN. M.PuliS. R.OthmanM. O.PaisW. P.AntillonM. R.et al.2011Pancreatic stents for prophylaxis against post-ERCP pancreatitis: a meta-analysis and systematic review. Gastrointest Endosc.;73227582 .
91.DeviereJ.2011Pancreatic Stents. Gastrointest Endosc Clin N Am.;213499510 .
92.ArnoldJ. C.BenzC.MartinW. R.AdamekH. E.RiemannJ. F.2001Endoscopic papillary balloon dilation vs. sphincterotomy for removal of common bile duct stones: a prospective randomized pilot study.Endoscopy.;3375637 .
93.DisarioJ. A.2003Endoscopic balloon dilation for extraction of bile duct stones: the devil is in the details. Gastrointest Endosc.;5722825 .
94.FujitaN.MaguchiH.KomatsuY.YasudaI.HasebeO.IgarashiY.et al.2003Endoscopic sphincterotomy and endoscopic papillary balloon dilatation for bile duct stones: A prospective randomized controlled multicenter trial. Gastrointest Endosc; 571515 .
95.VlavianosP.ChopraK.MandaliaS.AndersonM.ThompsonJ.WestabyD.2003Endoscopic balloon dilatation versus endoscopic sphincterotomy for the removal of bile duct stones: a prospective randomised trial.Gut.;52811659 .
96.SongS. Y.LeeK. S.NaK. J.AhnB. H.2009 Tension pneumothorax after endoscopic retrograde pancreatocholangiogram. J Korean Med Sci.;2411735 .
97.García-CanoJ.2007Fatal pancreatitis after endoscopic balloon dilation for extraction of common bile duct stones in an 80 -year-old woman.Endoscopy.;39 Suppl 1:E132.
98.MaoZ.ZhuQ.WuW.WangM.LiJ.LuA.et al.2008Duodenal perforations after endoscopic retrograde cholangiopancreatography: experience and management. J Laparoendosc Adv Surg Tech A.;1856915 .
99.MargantinisG.SakorafasG. H.KostopoulosP.KontouS.TsiakosS.ArvanitidisD.2006Post-ERCP/endoscopic sphincterotomy duodenal perforation is not always a surgical emergency. Dig Liver Dis.;3864346 .
100.ParkD. H.KimM. H.LeeS. K.LeeS. S.ChoiJ. S.SongM. H.et al.2004 Endoscopic sphincterotomy vs. endoscopic papillary balloon dilation for choledocholithiasis in patients with liver cirrhosis and coagulopathy. Gastrointest Endosc.;6021805 .
101.CottonP. B.2001ERCP is most dangerous for people who need it least. Gastrointest Endosc.;5445356 .
102.WoodsK. E.WillinghamF. F.2010 Endoscopic retrograde cholangiography associated pancreatitis: A 15-year review. World J Gastrointest Endosc;216578 .
103.LoperfidoS.AngeliniG.BenedettiG.ChiloviF.CostanF.De BerardinisF.et al.1998Major early complications from diagnostic and therapeutic ERCP: a prospective multicenter study. Gastrointest Endosc.;481110 .
104.ChristoforidisE.GoulimarisI.KanellosI.TsalisK.DemetriadesC.BetsisD.2002Post-ERCP pancreatitis and hyperamylasemia: patient-related and operative risk factors.Endoscopy.;34428692 .
105.TarnaskyP.CunninghamJ.CottonP.HoffmanB.PaleschY.FreemanJ.et al.1997Pancreatic sphincter hypertension increases the risk of post-ERCP pancreatitis.Endoscopy.;2942527 .
106.DeenadayaluV. P.BlautU.WatkinsJ. L.BarnettJ.FreemanM.GeenenJ.et al.2008Does obesity confer an increased risk and/or more severe course of post-ERCP pancreatitis?: a retrospective, multicenter study. J Clin Gastroenterol.;421011039 .
107.LukensF. J.HowellD. A.UpenderS.ShethS. G.JafriS. M.2010ERCP in the very elderly: outcomes among patients older than eighty. Dig Dis Sci.;55384751 .
108.DebenedetA. T.RaghunathanT. E.WingJ. J.WamstekerE. J.Di MagnoM. J.2009 Alcohol use and cigarette smoking as risk factors for post-endoscopic retrograde cholangiopancreatography pancreatitis. Clin Gastroenterol Hepatol.;733538 e4.
109.ReddyN.WilcoxC. M.TamhaneA.MAEloubeidiVaradarajulu. S.2008 Protocol-based medical management of post-ERCP pancreatitis. J Gastroenterol Hepatol.;23338592 .
110.SilvermanW. B.ThompsonR. A.2002Management of asymptomatically/minimally symptomatic post-ERCP serum liver test elevations: first do no harm. Dig Dis Sci.;4771498501 .
111.JacobsonB. C.VanderVliet. M. B.MDHughesMaurer. R.Mc ManusK.BanksP. A.2007 A prospective, randomized trial of clear liquids versus low-fat solid diet as the initial meal in mild acute pancreatitis. Clin Gastroenterol Hepatol.;5894651 .
112.DundeeP. E.Chin-LennL.SymeD. B.ThomasP. R.2007Outcomes of ERCP: prospective series from a rural centre. ANZ J Surg.;771110137 .
113.BarthetM.LesavreN.DesjeuxA.GasmiM.BerthezeneP.BerdahS.et al.2002Complications of endoscopic sphincterotomy: results from a single tertiary referral center.Endoscopy.;34129917 .
114.AndriulliA.LoperfidoS.NapolitanoG.NiroG.ValvanoM. R.SpiritoF.et al.2007Incidence rates of post- ERCP complications: a systematic survey of prospective studies.Am J Gastroenterol.;102817818 .
115.DisarioJ. A.FreemanM. L.BjorkmanD. J.MacmathunaP.PetersenB. T.JaffeP. E.et al.2004Endoscopic balloon dilation compared with sphincterotomy for extraction of bile duct stones.Gastroenterology.;127512919 .
116.BergmanJ. J.RauwsE. A.FockensP.van BerkelA. M.BossuytP. M.TijssenJ. G.et al.1997Randomised trial of endoscopic balloon dilation versus endoscopic sphincterotomy for removal of bileduct stones.Lancet.;349905911249 .
117.MatsushitaM.TakakuwaH.ShimenoN.UchidaK.NishioA.OkazakiK.2009Epinephrine sprayed on the papilla for prevention of post-ERCP pancreatitis. J Gastroenterol; 44715
118.DumotJ. A.ConwellD. L.O’ConnorJ. B.FergusonD. R.VargoJ. J.BarnesD. S.et al.1998 Pretreatment with methylprednisolone to prevent ERCP-induced pancreatitis: a randomized, multicenter, placebo-controlled clinical trial. Am J Gastroenterol; 93615 .
119.Martinez-TorresH.Rodriguez-LomeliX.Davalos-CobianC.Garcia-CorreaJ.Maldonado-MartinezJ. M.Medrano-MuñozF.et al.2009Oral allopurinol to prevent hyperamylasemia and acute pancreatitis after endoscopic retrograde cholangiopancreatography. World J Gastroenterol.;151316006 .
120.KatsinelosP.KountourasJ.ChatzisJ.ChristodoulouK.ParoutoglouG.MimidisK.et al.2005 Highdose allopurinol for prevention of post-ERCP pancreatitis: a prospective randomized double-blind controlled trial. Gastrointest Endosc.;61340715 .
121.RomagnuoloJ.HilsdenR.SandhaG. S.ColeM.BassS.MayG.et al.2008Allopurinol to prevent pancreatitis after endoscopic retrograde cholangiopancreatography: a randomized placebo-controlled trial. Clin Gastroenterol Hepatol.;6446571 .
122.MoslerP.ShermanS.MarksJ.WatkinsJ. L.GeenenJ. E.JamidarP.et al.2005Oral allopurinol does not prevent the frequency or the severity of post-ERCP pancreatitis. Gastrointest Endosc.;62224550 .
123.BudzyńskaA.MarekT.NowakA.KaczorR.Nowakowska-DulawaE.2001 A prospective, randomized, placebo-controlled trial of prednisone and allopurinol in the prevention of ERCP-induced pancreatitis. Endoscopy.;33976672 .
124.DaiH. F.WangX. W.ZhaoK.2009Role of nonsteroidal anti-inflammatory drugs in the prevention of post-ERCP pancreatitis: a meta-analysis. Hepatobiliary Pancreat Dis Int; 8116 .
125.ElmunzerB.WaljeeA.EltaG.TaylorJ. R.FehmiS. M.HigginsP. D.2008A meta-analysis of rectal NSAIDs in the prevention of post-ERCP pancreatitis. Gut; 5712627 .
126.ZhengM. H.XiaH.ChenY. P.2008Rectal administration of NSAIDs in the prevention of post-ERCP pancreatitis: a complementary meta-analysis.Gut; 5716323 .
127.LavyA.KarbanA.SuissaA.YassinK.HermeshI.Ben-AmotzA.2004Natural beta-carotene for the prevention of post-ERCP pancreatitis.Pancreas; 29(2): e45 -e50.
128.GorelickA.BarnettJ.CheyW.AndersonM.EltaG.2004Botulinum toxin injection after biliary sphincterotomy.Endoscopy; 3621703 .
130.KwanngernK.TiyapattanaputiP.WanitpukdeedechaM.NavicharernP.2005Can a single dose corticosteroid reduce the incidence of post-ERCP pancreatitis? A randomized, prospective control study. J Med Assoc Thai; 88 Suppl 4:S425 .
131.ManolakopoulosS.AvgerinosA.VlachogiannakosJ.ArmonisA.ViazisN.PapadimitriouN.et al.2002Octreotide versus hydrocortisone versus placebo in the prevention of post-ERCP pancreatitis: a multicenter randomized controlled trial. Gastrointest Endosc; 5544705 .
132.ShermanS.BlautU.WatkinsJ. L.BarnettJ.FreemanM.GeenenJ.et al.2003Does prophylactic administration of corticosteroid reduce the risk and severity of post-ERCP pancreatitis: a randomized, prospective, multicenter study. Gastrointest Endosc; 581239 .
133.RabensteinT.FischerB.WiessnerV.SchmidtH.Radespiel-TrögerM.HochbergerJ.et al.2004Low-molecular-weight heparin does not prevent acute post-ERCP pancreatitis. Gastrointest Endosc.;59660613 .
134.MilewskiJ.RydzewskaG.DegowskaM.KierzkiewiczM.RydzewskiA.2006 N-acetylcysteine does not prevent postendoscopic retrograde cholangiopancreatography hyperamylasemia and acute pancreatitis. World J Gastroenterol.;122337515 .
135.KatsinelosP.KountourasJ.ParoutoglouG.BeltsisA.MimidisK.ZavosC.2005Intravenous N-acetylcysteine does not prevent post-ERCP pancreatitis. Gastrointest Endosc.;62110511 .
136.PratF.AmarisJ.DucotB.BocquentinM.FritschJ.ChouryA. D.et al.2002Nifedipine for prevention of post-ERCP pancreatitis: a prospective, double-blind randomized study. Gastrointest Endosc.;5622028 .
137.SandJ.NordbackI.1993Prospective randomized trial of the effect of nifedipine on pancreatic irritation after endoscopic retrograde cholangiopancreatographyDigestion.;54210511 .
138.HaoJ. Y.WuD. F.WangY. Z.GaoY. X.LangH. P.ZhouW. Z.2009 Prophylactic effect of glyceryl trinitrate on post-endoscopic retrograde cholangiopancreatography pancreatitis: a randomized placebo-controlled trial. World J Gastroenterol.;1533668 .
139.BeauchantM.IngrandP.FavrielJ. M.DupuychaffrayJ. P.CaponyP.MoindrotH.et al.2008Intravenous nitroglycerin for prevention of pancreatitis after therapeutic endoscopic retrograde cholangiography: a randomized, double-blind, placebo-controlled multicenter trial. Endoscopy.;4086316 .
140.KaffesA. J.MJBourkeDing. S.AlrubaieA.KwanV.WilliamsS. J.2006 A prospective, randomized, placebo-controlled trial of transdermal glyceryl trinitrate in ERCP: effects on technical success and post-ERCP pancreatitis. Gastrointest Endosc.;6433517
141.MoretóM.ZaballaM.CasadoI.MerinoO.RuedaM.RamírezK.et al.2003Transdermal glyceryl trinitrate for prevention of post-ERCP pancreatitis: A randomized double-blind trial. Gastrointest Endosc.;57117 .
142.SudhindranS.BromwichE.EdwardsP. R.(2001 (2001).Prospective randomized double-blind placebo-controlled trial of glyceryl trinitrate in endoscopic retrograde cholangiopancreatography-induced pancreatitis. Br J Surg.;889117882 .
143.KhoshbatenM.KhorramH.MadadL.EhsaniArdakani.MJFarzinH.ZaliM. R.2008Role of diclofenac in reducing post-endoscopic retrograde cholangiopancreatography pancreatitis. J Gastroenterol Hepatol.;23(7 Pt 2):e116 .
144.Montaño-LozaA.Rodriguez-LomeliX.Garcia-CorreaJ.FuentesOrozco. C.GonzálezOjeda. A.MedranoMunoz. F.et al.2007Effect of rectal administration of indomethacin on amylase serum levels after endoscopic retrograde cholangiopancreatography, and its impact on the development of secondary pancreatitis episodes. Rev Esp Enferm Dig;9963306 .
145.SotoudehmaneshR.KhatibianM.KolahdoozanS.AinechiS.MalboosbafR.NouraieM.2007Indomethacin may reduce the incidence and severity of acute pancreatitis after ERCP. Am J Gastroenterol.;102597883 .
146.CheonY. K.ChoK. B.WatkinsJ. L.Mc HenryL.FogelE. L.ShermanS.et al.2007Efficacy of diclofenac in the prevention of post-ERCP pancreatitis in predominantly high-risk patients: a randomized double blind prospective trial. Gastrointest Endosc.;666112632 .
147.SenolA.SaritasU.DemirkanH.2009 Efficacy of intramuscular diclofenaco and fluid replacement in prevention of post-ERCP pancreatitis. World J Gastroenterol;153239994004 .
148.DumonceauJ. M.AndriulliA.DeviereJ.MarianiA.RigauxJ.BaronT. H.et al.2010 European Society of Gastrointestinal Endoscopy (ESGE) Guideline: Prophylaxis of post-ERCP pancreatitis. Prophylaxis. Endoscopy; 4250315
149.KisliE.BaserM.AydinM.GulerO.2007The role of octreotide versus placebo in the prevention of post-ERCP pancreatitis. Hepatogastroenterology.;54732503 .
150.LiZ. S.PanX.ZhangW. J.GongB.ZhiF. C.GuoX. G.et al.2007Effect of octreotide administration in the prophylaxis of post-ERCP pancreatitis and hyperamylasemia: A multicenter, placebo-controlled, randomized clinical trial. Am J Gastroenterol.;10214651 .
151.ThomopoulosK. C.PagoniN. A.VagenasK. A.MargaritisV. G.TheocharisG. I.NikolopoulouV. N.2006 Twenty-four hour prophylaxis with increased dosage of octreotide reduces the incidence of post-ERCP pancreatitis. Gastrointest Endosc.;64572631 .
152.TestoniP. A.BagnoloF.AndriulliA.BernasconiG.CrottaS.LellaF.et al.2001Octreotide 24-h prophylaxis in patients at high risk for post-ERCP pancreatitis: results of a multicenter, randomized, controlled trial. Aliment Pharmacol Ther.;15796572 .
153.HardtP. D.KressO.FadgyasT.DopplW.Schnell-KretschmerH.WüstenO.et al.2000Octreotide in the prevention of pancreatic damage induced by endoscopic sphincterotomy. Eur J Med Res.;5416570 .
154.DuvnjakM.SupancV.SimicevićV. N.HrabarD.TroskotB.Smircić-DuvnjakL.et al.1999 Use of octreotideacetate in preventing pancreatitis-like changes following therapeutic endoscopic retrograde cholangiopancreatography. Acta Med Croatica.;5331158 .
155.ArvanitidisD.HatzipanayiotisJ.KoutsounopoulosG.FrangouE.1998The effect of octreotide on the prevention of acute pancreatitis and hyperamylasemia after diagnostic and therapeutic ERCP. Hepatogastroenterology.;451924852 .
156.ArcidiaconoR.GambittaP.RossiA.GrossoC.BiniM.ZanasiG.1994The use of a long-acting somatostatin analogue (octreotide) for prophylaxis of acute pancreatitis after endoscopic sphincterotomy.Endoscopy.;2697158 .
157.BaldazziG.ContiC.SpottiE. G.ArisiG. P.ScevolaM.GobettiF.et al.1994 Prevention of post-ERCP acute pancreatitis with octreotide. G Chir.;15(8-9):359-62.
158.TestoniP. A.LellaF.BagnoloF.BuizzaM.ColomboE.1994Controlled trial of different dosages of octreotide in the prevention of hyperamylasemia induced by endoscopic papillosphincterotomy. Ital J Gastroenterol.;2694316 .
159.UekiT.OtaniK.KawamotoK.ShimizuA.FujimuraN.SakaguchiS.et al.2007Comparison between ulinastatin and gabexate mesylate for the prevention of post-endoscopic retrograde cholangiopancreatography pancreatitis: a prospective, randomized trial. J Gastroenterol.;4221617 .
160.ManesG.ArdizzoneS.LombardiG.UomoG.PieramicoO.PorroG. B.2007Efficacy of postprocedure administration of gabexate mesylate in the prevention of post-ERCP pancreatitis: a randomized, controlled, multicenter study Gastrointest Endosc.;6579827 .
161.XiongG. S.WuS. M.ZhangX. W.GeZ. Z.2006Clinical trial of gabexate in the prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis. Braz J Med Biol Res.;3918590
162.FujishiroH.AdachiK.ImaokaT.HashimotoT.KohgeN.MoriyamaN.et al.2006 Ulinastatin shows preventive effect on post-endoscopic retrograde cholangiopancreatography pancreatitis in a multicenter prospective randomized study. J Gastroenterol Hepatol.;21610659 .
163.AndriulliA.ClementeR.SolmiL.TerruzziV.SurianiR.SigillitoA.et al.2002 Gabexate or somatostatin administration before ERCP in patients athigh risk for post-ERCP pancreatitis: a multicenter, placebo controlled, randomized clinical trial. Gastrointest Endosc.;56448895 .
164.CavalliniG.TittobelloA.FrulloniL.MasciE.MarianaA.Di FrancescoV.1996Gabexate for the prevention of pancreatic damage related to endoscopic retrograde cholangiopancreatography. Gabexate in digestive endoscopy--Italian Group. N Engl J Med.;3351391923 .
165.ChoiC. W.KangD. H.KimG. H.EumJ. S.LeeS. M.SongG. A.et al.2009 Nafamostat mesylate in the prevention of post-ERCP pancreatitis and risk factors for post-ERCP pancreatitis. Gastrointest Endosc. Apr;69(4):e118 .
166.YooJ. W.RyuJ. K.LeeS. H.WooS. M.ParkJ. K.YoonW. J.et al.2008 Preventive effects of ulinastatin on post-endoscopic retrograde cholangiopancreatography pancreatitis in high-risk patients: a prospective, randomized, placebo-controlled trial. Pancreas.;37436670 .
167.TsujinoT.KomatsuY.IsayamaH.HiranoK.SasahiraN.YamamotoN.et al.2005Ulinastatin for pancreatitis after endoscopic retrograde cholangiopancreatography: a randomized, controlled trial. Clin Gastroenterol Hepatol.;3437683 .
168.KapetanosD.KokozidisG.ChristodoulouD.MistakidisK.SigounasD.DimakopoulosK.et al.2007A randomized controlled trial of pentoxifylline for the prevention of post-ERCP pancreatitis. Gastrointest Endosc.;6635138 .
169.ShermanS.AlazmiW. M.LehmanG. A.GeenenJ. E.ChuttaniR.KozarekR. A.et al.2009Evaluation of recombinant platelet-activating factor acetylhydrolase for reducing the incidence and severity of post-ERCP acute pancreatitis. Gastrointest Endosc.;69(3 Pt 1):462 472 -72.
170.van WesterlooD. J.RauwsE. A.HommesD.de VosA. F.van der PollT.PowersB. L.et al.2008 Pre-ERCP infusion of semapimod, a mitogen-activated protein kinases inhibitor, lowers post-ERCP hyperamylasemia but not pancreatitis incidence. Gastrointest Endosc.;68224654 .
171.LeeK. T.LeeD. H.YooB. M.2008The prophylactic effect of somatostatin on post-therapeutic endoscopic retrograde cholangiopancreatography pancreatitis: a randomized, multicenter controlled trial. Pancreas.;3744458 .
172.ArvanitidisD.AnagnostopoulosG. K.GiannopoulosD.PantesA.AgaritsiR.MargantinisG.et al.2004Can somatostatin prevent post-ERCP pancreatitis? Results of a randomized controlled trial. J Gastroenterol Hepatol.;19327882 .
173.PoonR. T.YeungC.LiuC. L.LamC. M.YuenW. K.LoC. M.et al.2003 Intravenous bolus somatostatin after diagnostic cholangiopancreatography reduces the incidence of pancreatitis associated with therapeutic endoscopic retrograde cholangiopancreatography procedures: a randomized controlled trial. Gut.;5212176873 .
174.PoonR. T.YeungC.LoC. M.YuenW. K.LiuC. L.FanS. T.1999Prophylactic effect of somatostatin on post-ERCP pancreatitis: a randomized controlled trial. Gastrointest Endosc.;4955938 .
175.BordasJ. M.Toledo-PimentelV.LlachJ.ElenaM.MondeloF.GinèsA.et al.1998Effects of bolus somatostatin in preventing pancreatitis after endoscopic pancreatography: results of a randomized study. Gastrointest Endosc.;4732304 .
176.SchwartzJ. J.LewR. J.AhmadN. A.ShahJ. N.GinsbergG. G.KochmanM. L.et al.2004 The effect of lidocaine sprayed on the major duodenal papilla on the frequency of post-ERCP pancreatitis. Gastrointest Endosc.;59217984 .
177.TalukdarR.VegeS. S.2011Early Management of Severe Acute Pancreatitis. Curr Gastroenterol Rep;13212330 .
Written By
Alejandro González-Ojeda, Carlos Dávalos-Cobian, Elizabeth Andalón-Dueñas, Mariana Chávez-Tostado, Arturo Espinosa-Partida and Clotilde Fuentes-Orozco