\r\n\tThe purpose of this book is to discuss some of the critical security challenges in today’s computing world and to discuss mechanisms for defending against those attacks by using classical and modern approaches to cryptography and other security solutions. With this objective, the book invites contributions from researchers in the field of cryptography and its applications in network security. Some illustrative topics of interest (but not limited to) are cryptography algorithms, authentication, authorization, integrity, confidentiality, privacy, security in wireless networks, security in wireless local area networks, wireless sensor networks, wireless ad hoc networks, vehicular ad hoc networks, security and privacy in the Internet of Things. Privacy of information, Blockchains, and Machine Learning in Security are three additional topics that the book will also deal with.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"b268e581d5e458cb91b82c518f2717eb",bookSignature:"Prof. Jaydip Sen",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11547.jpg",keywords:"Symmetric Key Cryptography, Block Ciphers, Authentication Protocols, Electronic Mail Security, User Privacy, Privacy-Preserving Data Mining, Blockchain Security, Anomaly Detection, Malware Analysis, Secure Quantum Communications, Internet of Things, Cyber Laws",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 4th 2022",dateEndSecondStepPublish:"June 1st 2022",dateEndThirdStepPublish:"July 31st 2022",dateEndFourthStepPublish:"October 19th 2022",dateEndFifthStepPublish:"December 18th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"7 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Prof. Sen is a pioneering researcher in machine learning and artificial intelligence. He is an IEEE and ACM senior member who has been listed among the top 2% scientists in the world by Stanford University, USA. Prof. Sen has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"9",totalChapterViews:"0",totalEditedBooks:"7",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"418641",firstName:"Iva",lastName:"Ribic",middleName:null,title:"M.Sc.",imageUrl:"https://mts.intechopen.com/storage/users/418641/images/16830_n.png",email:"iva.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"19834",title:"Time Correlation Laws Inferred from Climatic Records: Long-Range Persistence and Alternative Paradigms",doi:"10.5772/23319",slug:"time-correlation-laws-inferred-from-climatic-records-long-range-persistence-and-alternative-paradigm",body:'Observational time series of climatic variables exhibit substantial changeability on spatial and temporal scales over many orders of magnitude. In statistical terms, this implies a continuous variance distribution involving all resolvable time scales (frequencies), starting from those comparable with the age of the Earth.
A correct causal interpretation of such a variability is very difficult even in the context of a cognitive approach (e.g., von Storch, 2001) to the problem.
Cognitive models are minimum complexity models aiming at the scientific understanding of the most relevant processes occurring at any given temporal and spatial scale. Although generally they cannot be useful for management decisions straightforwardly, their role is fundamental especially for understanding the internal climatic variability that cannot be passively related to external forcing factors. The concept of stochastic process is essential in this framework, since it synthesizes collective behaviours which contribute as a whole to the overall dynamics. As stochastic processes are the macroscopic result of many degrees of freedom, the characterization of their correlation properties across different scales through the analysis of observational data is a problem of statistical inference and their modelling is usually a mechanical-statistical problem.
Maybe, the most famous early effort aiming to summarize the climate variance distribution among different frequencies, which is commonly referred as climate spectrum, is the ideal sketch proposed by Mitchell (1976) (see Fig. 1).
All the features of this spectrum that deviate from the flat behaviour typical of white noise (pure random process) deserve dynamical interpretation in order to understand climate. Within the traditional picture of the climate dynamics, the variance distribution among different temporal scales is seen as the superposition of oscillations generated by astronomical cycles (spectral spikes), quasi-periodic or aperiodic fluctuations with a preferred scale (broad spectral peaks), and internal stochastic processes whose temporal correlation decays according to characteristic time scales. These last are responsible for all the continuous broad-band deviations of the spectrum from flatness. Within this picture, the variance accumulations that do not appear in the form of peaks and spikes, such as that we can observe in-between the red vertical lines of Fig. 1 by scanning the figure from the short to the long periods, are due to the superposition of stochastic processes with different scales. This “redness” (optical analogy: dominance of low frequencies) would reflect the thermal inertia of slow climatic subsystems, such as ocean and cryosphere, and would be the result of a progressive addition of variance “shelves” (Mitchell, 1976) generated by ever slower scale-dependent processes. Hasselmann (1976) proposed an interesting interpretation of this redness by assuming that the heat-storage capacity of “slow” Earth’s sub-systems act to integrate random “fast” disturbances in a dynamical context that is therefore characterized by separation between short and long scales. As an example, ocean would act as a long term integrator of the meteorological atmospheric forcing (white noise on climatic scales) thus providing “memory” to the atmosphere-ocean system in the form of non zero correlation among different scales, that is redness. The resulting simplest paradigm for this integration is Brownian motion (random walk) that is a non-stationary scale free process whose variance increases linearly with scale (Mandelbrot & van Ness, 1968). Such an ideal motion is able to produce random trends of any length but within climate dynamics the presence of dissipative phenomena is expected to dump such integration. Then, dissipation introduces a characteristic time scale that marks the temporal horizon for the decay of the fluctuations toward the mean value and also oceanic processes approach white noise asymptotically (e.g., Von Storch et al, 2001).
Idealized sketch of the planetary climate variance spectrum (after
To this day, the necessity of understanding the actual origin of the climate variability in the entire spectral range is still recognised as a “primary goal” of the climate research, especially if we aim to address the impact of human activities on climate. Currently, the availability of historical records of atmospheric temperature, which is the key variable of any terrestrial process, and the possibility of enlarging the observational time window back to about 400,000 years ago (proxy paleoclimatic data) give us the unique opportunity to get realistic insights into the correlation structures that characterise climate regimes from the meteorological to the glacial-interglacial domain.
Contextually, the development of new mathematical-statistical tools, devised for enhancing specific correlation features (e.g. fractal persistence), make it possible to better discriminate such correlations from structures ascribable to more traditional superpositions of fluctuations and cycles. For many years, the scientific community has worked to rightly interpret the collection of observational data in order to improve the current understanding of the climate dynamics, evaluate the performances of models, and detect signatures of climate change blurred within regime variability. In particular, many works have focused on red spectral patterns in order to explore the possibility that the scale free dynamics typical of fractals, either non stationary (fractal Brownian motion) or stationary (fractional Brownian noise) (Mandelbrot & van Ness, 1968), could provide a description of climate better than the traditional one. A wide literature, based on both classical and new mathematical-statistical tools, is now available which reports analysis results and possible dynamical scenarios able to explain the sample time scale laws (e.g.,Konscielny-Bunde et al., 1996, 1998; Govindan et al., 2001;Eichner et al., 2003; Kurnaz, 2004; Varotsos et al., 2006; Vecchio & Carbone, 2010 ). These works suggest long range persistence (power law correlation) rather than scale dependence (exponential correlation) as a good statistical paradigm for explaining the climate spectrum redness on scales up to about 102 years. Also some analyses of pre-historical records (Pelletier, 1998; Huybers & Curry, 2006) support scale-invariance, since a random walk spectrum appears in the time scale range from 102 to 104 years. In both historical and pre-historical climate, scale separation seems to fail giving place to a continuum of self-organized scales. In this case, weather would be the only dynamical framework where it works well.
In spite of the wide consensus around these studies, there are contradictory results about the universality of the scaling and the dependence of the exponent on the distance to sea (e.g., Vyushin et al., 2004a, 2004b; Blender and Fraedrich, 2004). More in general the interpretation of such a scaling is rather controversial because of the many drawbacks of the methodologies adopted (e.g., Hu, 2001; Kantelhardt, 2001; Metzler, 2003; Mauran et al., 2004; Gao et al., 2006; Rust, 2006; Lanfredi et al, 2009, Simoniello et al, 2009).
This chapter discusses the state of the art of the studies of historical time series of atmospheric temperature, particularly focused on the interpretation of redness, and provides new analysis results for enhancing the debate on paleoclimatic observations. The core of the chapter is the discussion of the correlation structures estimated from observational data and their reliability. This is a typical problem of statistical inference that is crucial for identifying the right class of dynamical models to be used in the climate modelling. It is shown that the most popular recent interpretations, supporting power-law correlation, are not the only possible. The traditional simpler explanations are also acceptable and may work better than the complex ones. The discussion is inserted into the framework of the stochastic approach to the climate approximation, although our arguments are useful for climate modelling also within a non-stochastic approach to the problem.
The chapter is organised according to the following principal points:
Section 2 summarises the main physical and statistical concepts and tools used in the chapter. A short overview of the basic models and operational implications concerning scale separation and scale invariance is provided; analysis tools and their potential weak points are discussed. Section 3 discusses the analyses of historical and pre-historical data. Detailed statistical estimates and literature results are provided in order to support the discussion. Then, the debate on the dynamical nature of redness is extended to millennial time scales. Finally, section 4 concerns the conclusive part of the chapter.
In this Section we summarise the main physical and statistical concepts and tools used in the chapter. These substantially concern the main general forms of correlation, scale dependence (short-range correlation) and scale invariance (long-range correlation), which are useful for the selection of the right class of stochastic models for climate. Of course, the discussion is not exhaustive but merely aims to provide the basic background that is necessary for the understanding of the chapter’s content.
Stationary stochastic processes are often fruitfully modelled by means of autoregressive processes, which are filters whose input is a Gaussian independent process (white noise) t (e.g., Jenkins & Watts, 1968). The output of an autoregressive process AR(p) of order p is:
where (ai) are the autoregressive coefficients and t is a Gaussian random process with zero mean and variance 2. In particular, the paradigmatic model of the meteorological fluctuations is the first order autoregressive process AR(1):
where the index t indicates the daily step. The autocovariance function is:
This last decays with the characteristic length =-1/ln(a). For continuous processes, the correlation function is:
For very long time scales AR(1) is completely stationary with variance:
AR(1) is the most simple example of scale-dependent process: for t<< it is strongly correlated whereas it becomes a white noise for t>>. Within the traditional approach to climate approximation, this white noise describes the variability of meteorological variables in a scale range satisfying the condition:
where
Fractional Brownian motion and fractional Gaussian noise, which were defined in (Mandelbrot & Van Ness, 1968), generalize Brownian motion and white noise, respectively.
The time trace B(t) of a Brownian motion (random walk) is characterized by independent increments B(t+)-B(t) having a Gaussian distribution. Such increments have mean zero and variance ; the mean separation between two points is proportional to the square root of the time separation:
Mandelbrot & Van Ness (1968) introduced the family of fractional Brownian motions (fBm’s) by generalizing the Eq. 7.
FBm’s are random variables with Gaussian increments satisfying the condition:
where the exponent H is the Hurst’s coefficient. Thus, ordinary random walk coincides with an fBm with H=0.5. For discrete times it can be approximated by summing up a white noise
Equivalently, we can define the incremental process
thus obtaining a fractal generalization of white noise which is called fractional Gaussian noise (fGn). FGn has a standard normal distribution for every k; the corresponding autocorrelation function (.) is:
If H = 0.5,
The Hurst coefficient H provides a measure of the persistence properties of the process according to the following scheme:
0<H<0.5
H=0.5
0.5<H<1
The correlation of fGn expresses scale free interdependence and decays as a power law. For continuous times
Such ideal processes may be useful within empirical studies aiming to describe observational stationary time series which show interdependence between very distant samples without approaching white noise. In these cases, the most classical models that are characterized by exponential decorrelation
Generally, the investigation of time series aims to identify a class of theoretical processes able to synthesize some given correlation features of observational data: the class of the processes is assumed to be unknown. As a consequence, in order to propose a given model as a realistic descriptor of the investigated dynamics, we have to demonstrate both the compatibility of the tested theoretical correlation structure with that estimated from data (necessary condition) and to exclude any other alternative forms of correlation (sufficient condition).
Actually, the procedures that are used to identify the existence of power-law correlation do not allow us to satisfy both these conditions. It is well known that the variance spectrum is very sensitive to any form of non stationary behaviour. It is suitable for investigating stationary or cyclo-stationary signals or, more in general, signals with weak local features. As far as climatic time series, this condition cannot be guaranteed. Any external forcing such as volcanic eruptions and externally induced temporary warming/cooling trends can produce misleading results.
In order to avoid these drawbacks, some authors developed alternative tools, such as Detrended Fluctuation Analysis (DFA) (Peng et al, 1995), aiming to minimize externally-induced non-stationary effects describable in the form of low-order polynomials. We shortly recall how this methodology works. The time series to be analysed is integrated and divided into N boxes of length n. In each box, a least square polynomial yn(k), representing the trend in that particular box, is fitted to the integrated data y(k). Then, the root-mean-square fluctuation:
is calculated. This computation is repeated on many time-scales (box sizes) in order to characterize F(n) as a function of n. Power-law (fractal) scaling implies a linear relationship in a log-log plot. Under such conditions fluctuations can be characterized by a scaling exponent (=H for fGn). In this chapter the 2nd-order Detrending (DFA2) is adopted in order to minimize the effects of discontinuities and linear trends.
This methodology, that is generally considered the most powerful for identifying fGn, may produce many false positive results. This point is well stressed in Mauran et al., (2004). This is a method developed to discover fractals blurred in noise. In practice, it intrinsically postulates that a fractal is present and try to estimate the scaling coefficient minimizing external disturbances. It satisfies the necessary condition above (if a fractal is present it is generally able to find it) but is not able to satisfy the sufficient condition, since if there is not any fractal the estimation of a linear best fit in a log-log plot of sample statistics is not sufficient for supporting the actual existence of a power law. In particular, log-log collinearity should be carefully verified.
In this Section we discuss some examples of analyses of temperature time series aiming to detect long range persistence. We refer to bibliography for in-depth information.
The rationale behind most of the investigations on historical data is the more or less explicit use of white noise as null hypothesis.
Within the classical stochastic approach to climate approximation the fastest processes we deal with are the meteorological processes, whose time scale is considered well-separated from all the slower climatic time scales. Such a meteorological variability has been traditionally explained by low-order autoregressive processes such as the paradigmatic first-order autoregressive process (AR1):
where Xi is the meteorological variable, a is the first-order autocorrelation coefficient, and i represents white noise. According to this model, the parameter a accounts for rapid inter-day correlation decay so that the asymptotic behaviour, starting from scales of a few weeks, is uncorrelated and unpredictable: Xii
More recently, in the wake of the great success of empirical fractal tools devised for enhancing power-law correlation in noised and biased observational data (e.g., Peng et al., 1995; Konscielny-Bunde et al., 1998; Freeman et al., 2000; Matsoukas et al., 2000; Haggerty et al., 2002; Bunde et al., 2002; Kandelhardt et al., 2003, 2006; Blender and Fraedrich, 2003), many researches have focused on historical atmospheric temperature time series for exploring the possibility that long range persistence characterizes climate after the meteorological correlation is decayed (e.g., Konscielny-Bunde et al., 1996, 1998; Govindan et al., 2001; Eichner et al., 2003; Kurnaz, 2004; Varotsos et al., 2006).
Their analyses, based on the estimation of the Hurst coefficient prevalently by means of DFA, seem to put into evidence slightly long range persistent features and their conclusion is that the asymptotic noise I is not white but is a power law correlated noise (see Kiraly & Janosi, 2002 for a fractal version of Eq. 13).
According to these works Fractional Gaussian noise has been suggested as a realistic model for explaining the statistical dependence of atmospheric temperature anomalies (deviations from the mean annual trend) on climatic time scales.
Plot of the detrended fluctuation function for daily atmospheric temperature time series (
Fig. 2 shows the results of DFA applied to four atmospheric temperature time series widely analysed literature (Lanfredi et al, 2009 and references therein).
The apparent linear behaviour of the fluctuation function on decadal scales is rather evident and the value of the Hurst coefficient greater than 0.5 indicates a long range persistent behaviour. Nevertheless, just the well known redness of the climatic spectrum suggests that white noise is not the right null hypothesis against long range persistence. The actual problem is to establish whether the power law is the best representation for the atmospheric temperature correlation or instead alternative time scale laws are acceptable. In practice there is a problem of functional form goodness for the linear fit. Fig.3 (Lanfredi et al., 2009) shows the residuals from the power law best fit of Fig. 2 which should be a stationary noise in the time range where the time series is fractal. On the contrary, the residuals are arranged in a non-linear way in all the cases.
Plots of the ratio F(n)/n in logarithmic scale for the four time series of
Estimates of (n) for (a) Prague; (b)Wien; (c) St. Petersburg; (d) Potsdam (after
In addition, within the scaling regime, the scale invariant law F(kn)=kF(n) should hold for any k. Thus, the function (n)=logk[F(kn)/F(n)] should provide an estimation of the local scaling coefficient. Again, (n) should be a stationary noise where a scaling regimes occurs.
Fig. 4 shows the estimates of (n) for the four time series of Fig. 2. On short time scales the high value of (n) accounts for a strong correlation that progressively decays approaching a noised and irregular behaviour that does not allow us to detect scaling regimes unquestionably. Most likely, the apparent scaling is due to the emergence of slower fluctuations that add “shelves” (Mitchell,1976) to the time series variance.
In order to assess how short range dependent processes appear when examined by means of fractal tools, we can investigate time series simulated on the basis of observational data and modelled according to scale separation (Lanfredi et al, 2009).
Fig. 5 and 6 show the analysis results of a simple two-scales (weather-climate) process, modelled on the basis of the autocorrelation function of the Prague’s data. The analogies with the real data (Figs 2,3 and 4) are very impressive. The two-scale model is able to account for the whole results obtained from the fractal investigation. The mechanism that produces scaling is clear. Correctly, the total fluctuation function F(n) ends as a white noise (Fig. 5b) only in the latest part of the plot. Nevertheless, since the variance produced by the slow climatic variable emerges only on the long time scales, if we try to fit the function globally from the short to the long time scales (Fig. 5a), a spurious scaling occurs for the presence of the variance shelf.
a) Results of DFA for real (filled squares) and simulated (empty squares) anomalies. The continuous line shows the empirical power law reported in literature; b) effect of an hidden long scale within an asymptotic noise, the high scaling coefficient of the hidden process =1.4 on short scales is an indication of strong correlation and is compatible with values estimated for the ocean (after
Residuals from the linear best fit, and estimation of the local scaling exponent of a two-scales (weather-climate) autoregressive process (after
The temperature time series obtained from the Vostok ice core dataset (Petit et al, 1999) provides a unique source of information about climate changes over glaciological scales.
Although unevenly sampled in time and affected by reconstruction errors, such as non-temperature effects, observational uncertainty, age-model uncertainty, etc., it includes structures generated by those time scale laws we are searching for. Above all, they can inform us about possible common correlation structures unifying climate dynamics on historical and paloclimatic eras.
Fig. 7 shows this paleorecord that describes temperature variability for the past 420,000 years. The time series appears to be rather noised even if some near systematic behaviours are detectable. Among them, the longest oscillations (Milankovitch cycles) account for the alternation between glacial and interglacial eras. Although the astronomical variability that drives them are known to be a combination of cyclical changes of the Earth-Sun geometry (eccentricity, obliquity, precession), there is not yet a shared interpretation of the underlying dynamics (e.g., Meyers et al 2008). These data include information on the effects of the so-called “Pacemaker of the Ice Ages “ (Hayes, et al., 1976) on the terrestrial internal climatic variability. Just this variability under the action of the astronomical forcing could provide useful insights on the mechanisms that govern the mutual interactions between the different climatic subsystems. Also in this case, we do not discuss this specific dynamical problem but illustrate the difficulty related to the inference of time scale laws from this dataset.
Reconstructed temperature data from the Vostok Ice Core dataset (
Maybe, the most famous work proposing scale invariance as the main tool for explaining climate variability over millennia is that by Huybers & Curry, (2006). It gathers both historical and paleoclimatic data and discusses their power spectrum within an unified theory based on a fractal continuum of time scales. The estimated variance spectrum is reported in Fig. 8.
The low frequency scaling coefficient for the paleorecord corresponds to a value of the Hurst’s coefficient H=0.32, which is signature of anti-persistent fractional Brownian motion. Quite similar results were also found by Pelletier, (1998) who estimated a coefficient compatible with random walk.
Sample estimation of the planetary climate spectrum (after
The visual inspection of this spectrum in the low frequency range, so as it is, raises some questions. Differently from the high frequency cycles (annual frequency and sub-harmonics), which appear as spikes well separated from the continuous spectrum of the stochastic component, the millennial cycles are difficult to be separated from noise: it is necessary to know them a priori for interpreting the spectrum correctly. As already specified above, the variance spectrum is not the best tool for investigating complex signals where trends and oscillations could introduce spurious scaling (Gao et al, 2006). Huybers & Curry (2006) estimated the paleorecord scaling in the frequency range between 1/100 and 1/15,000 years to minimize the influence from the Milankovitch bands. Nevertheless, cyclic trends occur in the analysed band too (e. g., Kerr, 1996).
In order to delve into this problem we can investigate time scale laws in the time domain by estimating the second order structure function (Kolmogorov, 1941):
which is the best statistical tool for studying fractional Brownian motion, since it can be applied to non-stationary data and
Fig. 9 illustrates the structure function of the Vostok time series normalised to 22X.
Second order structure function of the Vostok Ice Core dataset. Arrows indicates approximately the time scales where cycles exhibit minimum or maximum values. The level
Differently from the sample spectrum, the structure function reveals long time oscillations explicitly. They are clear in spite of the strong noised character of the estimations due to the uneven and limited sampling etc.. In the time domain, maximum values are associated to odd multiple of semiperiods whereas minimum values correspond to multiple periods. In a composition of cycles and noises, the minimum values reached in the periodic part of (n) (red dashed line in Fig. 8) mark the percentage contribution due to pure noise. The scale where this plateau is intercepted for the first time (a few thousand of years) marks the crossover between the scales where the truly stochastic noise is observable and that where the contribution of the cycles starts to appear. Then the scaling would occur in a scale range where the non stationary character of the oscillations contaminates the variance of the noise.
By looking at Fig. 10 in the temporal range where scaling should appear (red line from 102 to 1.5 x 104 years), a direct estimation provides the value H=0.53, which is in a rather good agreement with the estimations of Pelletier (1998). Nevertheless, we can observe that the scales shorter than 103 years are evidently not collinear with the subsequent ones. The same is true above 104 years, where (n) appears flatter. If we estimate H by progressively shortening the Huybers & Curry range from the short scale side, its value increases. The same is true if we shorten it by starting from the long time scales. The maximum value H=0.6 is obtained about in the middle of the initial range but this does cover not even one decade, which is the minimum requirement for keeping confidence in scale invariance. In addition, we can note that the apparent linearity ends with a maximum value that corresponds to one half period of the 20 k years oscillation. The central about linear behaviour seems to be an inflection transient between the short time scales (concavity up) and those belonging to cycles where the function (n) exhibits a different curvature (concavity down).
As
In all the studies on the dynamics of the natural world, observational time series play a fundamental role since they are the main source of information for inferring the underlying causal mechanisms. Especially in a stochastic context, when the number of degree of freedom is high, observational time series can provide those time scale laws that rule temporal correlation thus helping us to identify the right reference class of theoretical models. Nevertheless, the interpretation of time laws estimated from real data can be rather difficult because the analysis results can be rather ambiguous in many cases. Dynamical inferences from climate observations fall just in this class. The analysis results illustrated in this chapter put into evidence that no conclusive interpretation of the sample variance spectrum is available yet. It is clear that the analyses performed have to be carefully supervised, preferring those mathematical and statistical tools that are less sensitive to local (in time) disturbances, trends, and cycles that can trick analysts. Spurious scaling can easily appear thus suggesting an erroneous modelling of the deep dynamical characteristics of the climate. Future work should address the problem of temporal persistence not only by demonstrating that climate redness is compatible with scale invariance (necessary condition) but also by demonstrating that it “is not” compatible with a progressive coming out of a few ever slower scale-dependent processes (sufficient condition).
This work was developed in the framework of “TeRN” project (Tecnologie per le Osservazioni della Terra e i Rischi Naturali) (Rif. Miur DM28424) supported by the Italian Ministry of University and Research (MiUR)
Reverse engineering is based on the study of certain principles and information of a product. The main function of reverse engineering is to obtain the maximum information about an element or device, including its geometry and appearance, among other things [1, 2]. Its first appearance was around World War II, in military operations.
The field of application of this type of engineering is very wide, highlighting the 3D digitalization used mainly for research, analysis, and reasoning of the technology used by other companies, for the development of elements without making use of specific information (redesign), and for the tasks of inspection or virtual metrology of a product in almost every industry [3].
The main 3D digitization technologies are shown in Figure 1, among which photogrammetry stands out for its ease of use and low cost.
Classification of 3D scanning technologies.
Photogrammetry is distinguished by the measurement on photographs, allowing to obtain from any object its real dimensions, position, shape, and textures [4, 5]. These processes or this science emerged in the middle of the nineteenth century, being as old as photography. The first photogrammetric device and the first methodology were created in 1849 by the Frenchman Aimé Laussedat. He, “the father of photogrammetry,” used terrestrial photographs and compiled a topographic map. This method was known as iconometry, which means the art of finding the size of an object by measuring its image. Digital photogrammetry was born in the 1980s, having as a great innovation the use of digital images as a primary data source [6, 7].
The main phases of digital photogrammetry are analysis of the shape of the object and planning of the photos needed to be taken; calibration of the camera; image processing with specific software to generate a cloud of points; and transfer of this point cloud to the CAD software to create a 3D model. The accuracy of the reconstruction depends on the quality of the images and textures. Photogrammetry algorithms typically indicate the problem, such as minimizing the sum of the squares of a set of errors, known as “package fit” [8]. Structure algorithms, from motion (SfM), can find a set of 3D points (P), a rotation (R), and the camera position (t), given a set of images of a static scene with 2D points in correspondence, as shown in Figure 2 [10].
Structure of the motion algorithm [
Photogrammetric technology is generally based on the illumination of one object and the inclusion of solutions derived from the measurement of conjugated points, appearing in two photographic images or measuring the conjunction of points in multiple photographic images (three or more images). There are different photogrammetric techniques. One of them is to ensure that the surface of the object has enough light and optical texture to allow conjugated dots to be paired through two or more images. In some cases, optical texture can be achieved by projecting a pattern over the surface of the object at the time of image capture [11, 12, 13].
The basic mathematical equations underlying photogrammetry, called collinearity equations, are responsible for unifying the coordinate system of the image in the camera with the object being photographed [14] (Eqs. (1)–(3)):
where
where
The plane of the image can be transformed analytically into its
There are two main factors that induce photogrammetry measurement errors: System error due to lens distortion and random error due to human factors.
System error due to lens distortion. It causes a point in the image in the plane to move from its true position (
In the lens, the largest error occurs at the point of the projected image. Therefore,
Random error due to human factors. Theoretically, a point captured in two different photos is enough to set its 3D coordinates. To complete this, this step requires an identification and marking of the point in the two images. Any human can have failures in the marking of points, giving rise to the random error.
From the analytical photogrammetry, it is possible to describe the evolution from photogrammetry to digital, based on physical and mathematical principles. The main distinction is given by the nature of the measurement of the information taken in the images [15].
The analytical photogrammetry coordinates the image, and the gray digital image is evaluated with the digital photogrammetry. In both methods appropriate Gaussian-Markov evaluation procedures are used. Pertinent relations between object space models and image space data are obtainable. Radiometric concerns take a more important role than previously. The data evaluation of the gray value of the digital image is no longer based on the digital image correlation. As an alternative, the gray values of an image are projected directly onto the models in the object space, this being a new principle. However, these numerical procedures in digital photogrammetry need to be stabilized by adjustment methods. Thus, the original concept of digital photogrammetry can be pragmatic to images from any sensor.
Considerable advances in digital photogrammetry have been made in recent years due to the availability of new hardware and software, such as image processing workstations and increased storage capacity [16, 17].
The main camera and photography parameters are focal length, focal point, bias, distortion, and pixel error; they will allow more accurate calibration [18] and are shown in Figure 3.
Scheme of operation of a camera objective.
Included in the optical part of the camera, it is in charge in projecting the image that crosses it on the same plane and in outstanding conditions of sharpness. Therefore, it is a matter of focusing on the objects that are at equal distance on the focal plane. From certain distance, all the objects will be projected on the same plane. The light points are transmitted to an element that composes the scenario. As a result of diffraction, this is shown as a circular point with a halo around it and concentric rings, named Airy discs. Suppressing them is unfeasible because it is a physical light effect. Even so, it would be desirable for such rings to be as diffuse and thin as possible [17, 19].
Its resolving capacity depends on two parameters: aberrations and diffraction. One of the main functions of the objective is to suppress aberrations. When the diaphragm is closed, the aberrations are placated, and the only limiting factor is diffraction. When the diaphragm is opened, diffraction diminishes its significance in the wake of aberrations, which add up to force [20].
This parameter is measured from the optical center of the lens to the focal plane, when the camera focused toward the infinity [5, 21]. Normal lenses are those which have a distance close to the diagonal of the cliché. The representation of the focal length is shown in Figure 4.
Representation and focal length types on a camera.
Relative aperture (
It is shown by the denominator, known as brightness or “f-number.” In a different way, the aperture is the span through which light enters to be captured by the sensor. The more spacious the opening will be, the more light will enter the sensor as the number becomes smaller [4, 7]:
This is the viewing angle of the camera and is closely related to the focal length and dimension of the sensor [8, 22]. A schematic representation is proposed in Figure 5.
Focal distances and corresponding angles.
It is a mechanism that keeps the light passing through the lens into the closed camera. At certain intervals of time, it has the ability to open, allowing the passage of light so that the film can be impressed. The opening time can be set [21].
It is related to the permissiveness that occurred between obtaining a sharp image with a suitable impression and another less adequate exposure, although also producing a sharp image. Depth of focus is altered by lens magnification and numerical aperture, and under some pretexts, large aperture systems have more pronounced depths of focus than low aperture systems, even if the depth of field is small [19].
Depth of field is the area of sharp reproduction seen in the photograph. In this one, there are some objects observed which are located at a certain distance, as well as others more distant or adjacent to them [20].
Its function is to modify the light received in order to obtain a digital systematization. The sensor is called pixel in its minimum element. A digital image consists of a set of pixels. The technology based on complementary metal oxide semiconductor (CMOS) sensors is the most applied. The sensors consist of a semiconductor and sensitive material in the visible spectrum, between 300 and 1000 nm [10]. Charge-coupled device (CCD) sensors are becoming obsolete due to the cost and speed of processing images.
The comparison reading of the information in the CMOS sensors has the advantage of obtaining enough captures, obtaining readings using less time and with greater flexibility. Using a high dynamic range of work, high contrasts and a correct display of objects are achieved. In terms of quality, the physical size of the sensor is more significant than the number of cells or resolution. A large unit may allow higher-quality photographs to be taken than another sensor with a higher resolution but with a smaller surface [23].
As far as color is concerned, it must be seen that color is just a human visual perception. In order to be able to glimpse the color of an object, it is necessary to have a light source and something that reflects this light. A color is represented in digital format by applying a system of representation. The most commonly used is the RGB system. To represent a color, the exact percentages of primary red, primary green, and primary blue (RGB, red, green, blue) must be available. By this way, the color is displayed through the implementation of three numbers [24].
The function of this element is to enlarge or decrease the percentage of light circulating through the target. The diaphragm aperture is related to the percentage of aperture it has. It is counted in f-numbers. The step is the shift from one value to the next. The ratio of luminosity, according to the scale of the f, does it in a factor of 2 [5] (Figure 6).
Solution to (a) different openings, (b) shutter speeds, and (c) ISO.
The first step in taking a picture is focusing. The most commonly used types of automatic focusing are [25]:
Phase detection autofocus (PDAF). Its management is done by applying photodiodes through the sensor. The focusing element is moved in the lens to focus the image. It is a slow and inaccurate system due to the use of photodiodes.
Dual pixel. This method uses more focus points along the sensor than the PDAF. This system uses two photodiodes at each pixel to compare minimal dissimilarities. This is the most effective focusing technology.
Contrast detection. It is the oldest of the three systems exposed. Its operation theoretically bases that the contrast of an image is greater, and its edges are appreciated in a clearer way, when it is focused correctly. The disadvantage is its slowness.
A photograph is a perspective image of an object. If straight lines are drawn from all points of an object to a fixed point (called point of view or center of projection) and lines are considered that cross an intermediate surface (called projection surface), the image is drawn on this surface and is known as perspective [1, 26].
The camera is responsible for executing and materializing perspectives of objects. The projection surface is the flat extension of the image sensor or the capture surface. Focal distance is the orthogonal distance separating the viewpoint from the projection surface. Knowing the distance between the point of view and the plane that contains the points of the object, the focal distance with which the photograph was taken and the inclination of the plane in which the points of the object to be measured are located with respect to the projection plane, the reliable coordinates of the points can be disintegrated, using basic trigonometry (Figure 7).
Diagram of the projection of a camera.
The orthogonal and the geometric perspectives are the most widely used in photogrammetry. Using a conventional camera (reel or digital), a geometric perspective will be plotted. From a photograph in which the points of the object to be measured are in a plane parallel to the projection plane or the one on which the photographic film is spread, the real position of the points in space is obtained by using Eqs. (18)–(19):
where
It would be in front of more complex expressions if the planes that contain the points are not parallel to the one of projection, being indispensable to know the inclination of the plane having as reference the plane of projection. In practice, in order to avoid complications in the calculation of coordinates, photographs are usually taken in a way that the planes are parallel.
It is based on the capture of a scene by means of a sensitive material. In analog photography, this corresponds to the film and in digital photography, the sensor. Exposure is based on three variables to control the entry of light into the focal plane (sensor) and achieve an adequate exposure [9]:
ISO Sensitivity: it indicates the amount of light required to take a picture. The higher the light, the lower the ISO.
Diaphragm opening: it inspects the light reaching the focal plane, along with the shutter speed, and regulates the depth of field of the photograph.
Shutter speed: shutter opening time allows light to reach the sensor. The higher the shutter speed, the lower the percentage of light reaching the sensor.
When a sensor has the ability to capture as many tones (dynamic range) and information (light) as its ability allows, the picture is perfectly exposed.
It measures the amount of light and dark tones that a camera has the ability to capture in the same picture. It shows the amount of tonal nuances that a camera is capable of capturing, measurable by contrast and sharpness.
Contrast and sharpness are based on the differentiation of tonality with which a pair of white and black lines are obtained, captured, or reproduced. It is measurable of the degree of detail, being 100% when both lines can be perfectly differentiated as pure whites and blacks. Resolution and contrast are closely related concepts. If the contrast falls below 5%, it is difficult to observe any detail, which is shown more clearly and distinctly the higher it is. Frequency and modulation are shown in the way they are altered when light passes through the different optical components of the lens of the photographed image, thanks to contrast transfer functions. As the viewer moves away, a substantial loss of contrast begins to be noticed [12].
By performing a contrast correction, different filters are applied to the central zones instead of the peripheral zones. An example of contrast and resolution is shown in Figure 8.
Contrast sensitivity change as a function of the spatial frequency of the target.
One of the most outstanding components of a camera is the photographic lens, which produces a series of aberrations that distort the images of the photographs, making difficult to visualize the correct dimensions of the object [27, 28]. There are different types of aberrations, being the most common in photographic lenses:
Point aberrations: housed in the position arranged by the paraxial optics. It is a “stain” instead of a point. There are also chromatic aberration, spherical aberration, astigmatism, and coma.
Shape aberrations: the point is shown as a point but with a different position to the one arranged by means of paraxial approximation. This is a systematic error and can be of two types: field curvature and distortions.
Field curvature: defect when creating the image, being curved instead of flat. It is difficult to correct the aberration, but it can be mitigated in a low percentage.
Distortion: only affects the shape of the image. It occurs due to the difference in the scale of reproduction of the image off-axis. If an object with straight lines is photographed, such as a square, the center lines will appear straight, and the edge lines will curve inward or outward producing the so-called barrel or cushion distortions. This aberration is not corrected by closing the diaphragm. This error affects the tone of the image and needs to be corrected.
Stability of environmental conditions must be achieved:
Temperature: the ideal temperature for taking a photograph should be between approximately 18 and 26° in order to avoid dilatation of the lens.
Wind: calm wind, to avoid hindrances when taking the photo.
Illumination: sufficient light bulb. In most cases, natural light is not sufficient, and it is necessary to use spotlights or other artificial elements.
Other significant parameters, such as the texture of the element, significantly help the quality of the 3D reconstruction, and optimal results are obtained with the highest level of ambient light (exposure 1/60, f/2.8, and ISO sensitivity 100). The surface of an element should be opaque, with Lambertian reflection and surface homogeneity. A single point on the surface of the object must be visible from at least two or more sensors [26, 29].
Image quality is a prerequisite for working with it properly. There are two main characteristics that define it:
Resolution in amplitude (bit depth): number of bits per point of an image
Spatial resolution: the number of pixels per unit area
Image processing is the transformation of an input image into an output image. It is carried out to facilitate the analysis of the image and to obtain a greater reliability of this [30]. Among the transformations, those that eliminate noise or variation in the intensity of the pixels stand out. There are two types of operations: individual operations (rectification or binarization) and neighborhood operations (filtering).
This is a visual tool very useful for the study of digital images. With the naked eye, it is possible to study the contrast or the distribution of intensities, because it follows the following discrete function of Eq. (20):
where
Histogram areas.
The most common errors in the image, which prevent good image quality, can be identified in the histogram and are muted tones, black areas, overexposure or burned areas, and backlight. In order to know that a good image is acquired, the best thing is to have a histogram that has the shape of a Gauss bell, that is to say, that has the most information in the central part and less in the extremes. Another important point is that the histogram must embrace and reach both ends, so as to ensure that there are blacks and whites in the photograph.
The representation of an image with two values is obtained. The dimensions of the image are still preserved. The decision threshold must be chosen correctly and used in a step filter with an algorithm similar to Eq. (21):
where 0/1 represents the black/white values and
Grayscale (left) and binary (right).
To obtain an image with sufficient quality, the binarization must correspond with white pixels to the objects of interest, being the blacks of the environment. If the object of interest turns out to be darker than the environment, a reversal is applied after the binarization. The most important point in the process is the calculation of the threshold. There are different methods for this: histogram, clustering, entropy, similarity, spatial, global, and local.
The setting of the threshold value is latent, due to its difficulty, in all methods. The techniques are supported by statistics applied to the histogram. They are as follows: carry error method, Otsu method, and Saulova’s pixel deviation method.
It is based on a convolution operation between the two-dimensional functions image, f, and a nucleus, called h, in digital images. This operation aims to transform the value of a pixel p into the position (
These operations modify the spatial coordinates of the image. There are several operations that are easy to understand and apply, such as interpolation, rotation, rectification, and distortion correction.
Due to the geometry of the lens, it reproduces a square object with variations in its parallel lines. There are three types of distortion: barrel, pincushion, and mustache (combination of the first two) (Figure 11) [25, 33]. This error is negligible in a photograph of a natural scene, but to take engineering measurements and obtain a virtual object, it is necessary to compensate for the distortion. There is a mathematical model for the treatment of distortion.
Types of lens distortion.
The barrel distortion is centered and symmetrical. Therefore, to correct the distortion of a certain point, a radial transformation is performed, expressed mathematically in Eq. (22):
where
The radial function
The second one is based on an approach (Eq. (24)):
The values
Image correction is necessary because either it is difficult to keep the optical axis vertical at all points of the shot or the axis is tilted toward the vertical. Vertical images are obtained free of displacement because of the inclination of the shot but still have inclinations, product of the depth of the workpiece. Displacements can be suppressed by applying differential grinding or orthorectification process. In the original digital image or a scan, the technique is applied pixel by pixel. In a scanned image, the initial data are the coordinates of the control points. The procedure is divided into two steps:
Determination of the mathematical transformation related to real coordinates and those belonging to the image
Achievement of new image, being aligned to the reference system
After this process, it is necessary to know that all the pixels of the resulting orthophotography have their level of gray, performing a digital resampling [17, 34]. Figure 12 shows an unrectified (left) and rectified (right) photograph.
Visual example of photo rectification.
Several resamples are made on the initial image. Three resampling methods are regularly used: bilinear interpolation, nearest neighbor, and bicubic convolution. The transformations to be applied to the images are [19] Helmert transformation; affine transformation; polynomial transformation; and two-dimensional projective transformation.
To obtain a 3D model of an object from a 2D one, photographs must be taken from different views, with adequate quality. From these photographs, the reconstruction process begins.
3D reconstruction is the process by which real objects are reproduced on a computer. Nowadays there are several reconstruction techniques and 3D mesh methods, having a function to obtain an algorithm that is able to make the connection of the set of representative points of the object in form of surface elements. The efficiency with which the techniques are used will be linked to the final quality of the reconstruction.
The stereoscopic scene analysis system presented by Koch uses image matching, object segmentation, interpolation, and triangulation techniques to obtain the 3D point density map. The system is divided into three modules: sensor processing, image pair processing, and model-based sequence processing.
Pollefeys features a 3D reconstruction process based on well-defined stages. The input is an image sequence, and the output of the process is a 3D surface model. The stages are the following: image ratio, structure and motion recovery, dense matching, and model construction.
Another proposal is expressed by Remondino. He presents a 3D reconstruction system following these steps: image sequence acquisition and analysis, image calibration and orientation, matching process and the generation of points, and 3D modeling [18].
It is used in revolutionary pieces. With only one photograph, it is possible to obtain the axis and dimensions. In 1978 Barrow and Tenenbaum demonstrated that the orientation of the surface along the silhouette can be calculated directly from the image data, resulting in the first study of silhouettes in individual views. Koenderink showed that the sign of the silhouette’s curvature is equivalent to that of the Gaussian curvature. Thus, concavities, convexities, and inflections of the silhouette indicate hyperbolic, convex, and parabolic surface points, respectively. Finally, Cipolla and Blake exposed that the curvature of the silhouette has the corresponding sign as the normal curvature along the contour generator in the perspective projection. A similar result was derived for the orthographic projection by Brady [35].
First, the silhouette
Harmonic homology of the figure and its transformation to orthogonal projection [
The apparent contour is first manually segmented from the rectified silhouette. This can usually be done easily by removing the upper and lower elliptical parts of the silhouette. The points are then sampled from the apparent contour, and the tangent vector (i.e.,
For
where
This section is based on an investigation using a practical heuristic method, for the reconstruction of structured scenes from two uncalibrated images. The method is based on an initial estimation of the main homographies of the initial 2D point coincidences, which may contain some outliers, and the homographies are recursively refined by incorporating the point and line support coincidences on the main spatial surfaces. The epipolar geometry is then recovered directly from the refined homogenies, and the chambers are calibrated from three orthogonal vanishing points, and the infinite homography is recovered.
First, a simple homography-guided method is proposed to fit and match the line segments between two views, using Canny edge detector and regression algorithms. Second, the cameras are automatically calibrated with the four intrinsic parameters that vary between the two views. A RANSAC mechanism is adopted to detect the main flat surfaces of the object from 2D images. The advantages of the method are that it can build more realistic models with minimal human interactions and it also allows more visible surfaces to be reconstructed on the detected planes than traditional methods that can only reconstruct overlapping parts (Figure 14).
The matching results of the line segments in four main planes [
This is one of the fields where photogrammetry is most applied nowadays. In this specific point, the reconstruction is carried out applying Delaunay’s triangulation and the tetrahedron. Many data models based on tetrahedron mesh have been developed to represent the complex objects in 3D GIS.
The tetrahedron grid can only be used to represent the geometrical structure of geological objects. The natural characteristics of geological objects are reflected in their different attributes, such as different rock formations, different contents of mineral bodies, etc. It is defined that the attribute value of the internal point can be linearly interpolated from the attribute values in four vertices in a tetrahedron. But the attributes could change suddenly between different formations and different mineral bodies. To cope with sudden changes, interpolation of the tetrahedron is needed that can only be applied to six sides of a tetrahedron. Those interpolated points are only used as time data for the following processing [37].
This section presents a robust and precise system for the 3D reconstruction of real objects with shapes and textures in high resolution. The reconstruction method is passive, and the only information required is 2D images obtained with a camera calibrated from different viewing angles as the object rotates on a rotating plate. The triangle surface model is obtained through a scheme that combines the octree construction and the walking cube algorithm. A texture mapping strategy based on surface particles is developed to adequately address photographic-related problems such as inhomogeneous lighting, lights, and occlusion [38]. To conclude, the results of the reconstruction are included to demonstrate the quality obtained (Figure 15).
Flowchart to the reconstruction of objects.
The scheme combining octree construction and isolevel extraction through marching cubes is presented for the problem concerning the shape of the silhouette. The use of octree representation allows to reach very high resolutions, while the method of fast walking cubes is adapted through a properly defined isolevel function to work with binary silhouettes, resulting in a mesh of triangles with vertices precisely located in the visual object.
Calibration is performed on the camera and rotary table. One of the problems found is the discontinuity of the texture due to the nonhomogeneous lighting in different parts of the element due to shadows.
Next, the octree is represented. An octree is a hierarchical tree structure that can be used to represent volumetric data in terms of cubes of different sizes. Each octree node corresponds to a cube in the octree space that is entirely within the object. This opens up different possibilities: voxels, particles, triangles, and more complicated parametric primitives, such as splines or NURBS. Voxels are used to represent volumes but can also be used to represent surfaces. A related primitive is a particle that is defined by its color, orientation, and position. By marching the cube triangulation of the octree, the white and black points denote the corners of the cube that are inside and outside, respectively, while the gray points are the points of the triangle’s vertex on the surface (Figure 16).
From cube to triangulation, adapted from [
The application of the isolevel function calculated by means of the dichotomous subdivision procedure allows for the construction of a faithful model of the object. The triangular vertices that make up the object’s mesh are placed precisely on the surface of the digitized model even at low resolutions. This creates an efficient compromise between resolution and geometric accuracy. The octree construction followed by the walking cube algorithm generates a triangular mesh consisting of an excessive number of triangles, which must be simplified.
The reconstruction of objects is mainly based on the archeological field. The process to obtain the 3D model will be governed by Figure 17.
Steps to obtain the 3D model, adapted from [
First of all, corresponding or common characteristics must be found among the images of the object. The process occurs in two phases:
The reconstruction algorithm generates a reconstruction in which dimensions are not correctly defined. A self-calibration algorithm performs a reconstruction equivalent to the original one, formed by a set of 3D points.
All the pixels of an image are made to coincide with those of the neighboring images so that the system can reconstruct these points.
The system selects two images to set up an initial projective reconstruction frame and then reconstructs the matching feature points through triangulation.
Then a dense surface estimation is performed. To obtain a more detailed model of the observed surface, a dense matching technique is used. The 3D surface is approached with a triangular grid, to reduce geometric complexity and adapt the model to the requirements of the computer graphic display system. Then construct a corresponding 3D mesh by placing the triangle vertices in 3D space according to the values found in the corresponding depth map. To reconstruct more complex shapes, the system must combine multiple depth maps. Finally, it is provided with texture.
It is used for medical purposes in many cases, as a base for implants, splints, etc. The process consists of the following parts: acquisition and analysis of the image sequence; calibration and orientation of the images; matching process on the surface of the human body; and generation and modeling of the point cloud. Once the necessary images have been obtained from different points of view, the calibration and orientation of the images are carried out.
The choice of the camera model is often related to the final application and the required accuracy. The correct calibration of the sensor used is one of the main objectives. Another important point is image matching [40].
To evaluate the quality of the matching results, different indicators are used: an ex post standard deviation of the least squares adjustment, the standard deviation of the change in the x-y directions, and the shift from the initial position in the x-y directions. The performance of the process, in the case of uncalibrated images, can only be improved with a local contrast enhancement of the images.
Finally, 3D reconstruction and modeling of the human body shape is performed. The 3D coordinates of each matching triplet are calculated through a forward intersection. Using collinearity and the results of the orientation process, the 3D paired points are determined with a solution of least squares. For each triplet of images, a point cloud is calculated, and then all the points are joined together to create a unique point cloud. A spatial filter is applied to reduce noise and obtain a more uniform point cloud density. Figure 18 shows the results before and after filtering (approximately 20,000 points, left); a view of the recovered point cloud with pixel intensity (center); and a 3D human model (right).
3D reconstruction of a human body, adapted from [
The system is composed of two main modules. The first one is in charge of image processing, to determine the depth map in a pair of views, where each pair of successive views follows a sequence of phases: detection of points of interest, correspondence of points, and reconstruction of these. In this last phase, the parameters that describe the movement (rotation matrix R and translation vector T) between the two views are determined. This sequence of steps is repeated for all successive pairs of views of the set.
The second module is responsible for creating the 3D model, for which it must determine the total 3D points map generated. In each iteration of the previous module, the 3D mesh is generated by applying Delaunay’s triangulation method. The results obtained from the process are modeled in a virtual environment to obtain a more realistic visualization of the object [16].
The number of detected minutiae is related to the number of reconstructed 3D points and the quality of that reconstruction (higher number of details). Therefore, the higher the number of points on the map, the more detailed areas are obtained. In some cases this does not apply, due to the geometry of the object, for example, in a cube, more points can result in a distorted object.
The technological development of 3D photogrammetry makes it a real option in the various applications of 3D scanners. Among the different benefits it brings are faster raw data acquisition, simplicity, portability, and more economical equipment. Different studies have verified the accuracy and repeatability of 3D photogrammetry. These investigations have compared the digital models of objects obtained from 2D digital photographs with those generated by a 3D surface scanner. In general, the meshes obtained with photogrammetric techniques and with scanners show a low degree of deviation from each other. The surface settings of photogrammetric models are usually a little better. For these reasons, photogrammetry is a technology with an infinite number of engineering applications.
In this chapter the basic fundamentals, the characteristics of the acquisition, and the aspects to be taken into account to obtain a good virtual model from photogrammetry have been explained.
The authors would like to thank the call for Innovation and Teaching Improvement Projects of the University of Cadiz and AIRBUS-UCA Innovation Unit (UIC) for the Development of Advanced Manufacturing Technologies in the Aeronautical Industry.
The authors declare no conflict of interest.
IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors. To that end we maintain a flexible Copyright Policy guaranteeing that there is no transfer of copyright to the publisher and Authors retain exclusive copyright to their Work.
',metaTitle:"Publication Agreement - Journals",metaDescription:"IntechOpen aims to ensure that original material is published while at the same time giving significant freedom to our Authors",metaKeywords:null,canonicalURL:"/page/publication-agreement-journals",contentRaw:'[{"type":"htmlEditorComponent","content":"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Journal Article:
\\n\\n1. DEFINITIONS
\\n\\nCorresponding Author: The Author of the Article who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author. Co-Author: All other Authors of the Article besides the Corresponding Author. IntechOpen: IntechOpen Ltd., the Publisher of the Journal.
\\n\\nJournal: The publication as a collection of Articles compiled by IntechOpen .
\\n\\nArticle: The original literary work created by Corresponding Author and any Co Author that is the subject of this Agreement.
\\n\\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\\n\\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to publish, communicate to the public, reproduce, republish, transmit, sell, distribute and otherwise use and make available the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works, in electronic and print editions of the Publication and in derivative works and on any platform owned and/or operated by IntechOpen, throughout the world, in all languages, and in all media and formats now known or later developed.
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to create and store electronic archival copies of the Article, including the right to deposit the Article in open access digital repositories.
\\n\\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to license others to reproduce, translate, republish, transmit and distribute the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works under the condition that the Corresponding Author and each Co-Author is attributed (currently this is carried out by publishing the Article under a Creative Commons 4.0 International Licence).
\\n\\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\\n\\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Article but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Article as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world. The Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\\n\\nSubject to the license granted above, copyright in the Article and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\\n\\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Article.
\\n\\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\\n\\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Article as a consequence of IntechOpen's changes to the Article arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\\n\\n3. CORRESPONDING AUTHOR'S DUTIES
\\n\\n3.1 When distributing or re-publishing the Article, the Corresponding Author agrees to credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen, when they are distributing or re publishing the Article.
\\n\\n3.2 When submitting the Article, the Corresponding Author agrees to:
\\n\\n• Comply with all instructions and guidelines provided by IntechOpen;
\\n\\n• Produce the Article with all due skill, care and diligence, and in accordance with good scientific practice;
\\n\\n• Submit all the corrections in due time as defined during the publishing process schedule.
\\n\\nThe Corresponding Author will be held responsible for the payment of the Article Processing Charge.
\\n\\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\\n\\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Article worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\\n\\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\\n\\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\\n\\n4. CORRESPONDING AUTHOR'S WARRANTY
\\n\\n4.1 The Corresponding Author represents and warrants that the Article does not and will not breach any applicable law or the rights of any third party and, specifically, that the Article contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Article is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Article has not been formally published in any other peer-reviewed journal or in a Journal or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication
\\n\\nAgreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\\n\\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Article to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Article was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Article on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\\n\\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\\n\\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\\n\\n5. TERMINATION
\\n\\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\\n\\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\\n\\n6. INTECHOPEN’S DUTIES AND RIGHTS
\\n\\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Article attributing it to the Corresponding Author and any Co-Author.
\\n\\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Article and has the right to contact the Corresponding Author and any Co-Author until the Article is publicly available on any platform owned and/or operated by IntechOpen.
\\n\\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Article,
\\n\\nIntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\\n\\n7. MISCELLANEOUS
\\n\\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\\n\\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\\n\\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\\n\\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\\n\\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\\n\\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\\n\\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\\n\\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\\n\\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\\n"}]'},components:[{type:"htmlEditorComponent",content:"The Corresponding Author (acting on behalf of all Authors) and INTECHOPEN LIMITED, incorporated and registered in England and Wales with company number 11086078 and a registered office at 5 Princes Gate Court, London, United Kingdom, SW7 2QJ conclude the following Agreement regarding the publication of a Journal Article:
\n\n1. DEFINITIONS
\n\nCorresponding Author: The Author of the Article who serves as a Signatory to this Agreement. The Corresponding Author acts on behalf of any other Co-Author. Co-Author: All other Authors of the Article besides the Corresponding Author. IntechOpen: IntechOpen Ltd., the Publisher of the Journal.
\n\nJournal: The publication as a collection of Articles compiled by IntechOpen .
\n\nArticle: The original literary work created by Corresponding Author and any Co Author that is the subject of this Agreement.
\n\n2. CORRESPONDING AUTHOR'S GRANT OF RIGHTS
\n\n2.1 Subject to the following Article, the Corresponding Author grants and shall ensure that each Co-Author grants, to IntechOpen, during the full term of copyright and any extensions or renewals of that term the following:
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to publish, communicate to the public, reproduce, republish, transmit, sell, distribute and otherwise use and make available the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works, in electronic and print editions of the Publication and in derivative works and on any platform owned and/or operated by IntechOpen, throughout the world, in all languages, and in all media and formats now known or later developed.
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to create and store electronic archival copies of the Article, including the right to deposit the Article in open access digital repositories.
\n\n• An irrevocable, worldwide, royalty-free, perpetual, transferable, sublicensable, non-exclusive right to license others to reproduce, translate, republish, transmit and distribute the Article in whole, partial or adapted from and/or incorporated in or in conjunction with other works under the condition that the Corresponding Author and each Co-Author is attributed (currently this is carried out by publishing the Article under a Creative Commons 4.0 International Licence).
\n\nThe aforementioned licenses shall survive the expiry or termination of this Agreement for any reason.
\n\n2.2 The Corresponding Author (on their own behalf and on behalf of any Co-Author) reserves the following rights to the Article but agrees not to exercise them in such a way as to adversely affect IntechOpen's ability to utilize the full benefit of this Publication Agreement: (i) reprographic rights worldwide, other than those which subsist in the typographical arrangement of the Article as published by IntechOpen; and (ii) public lending rights arising under the Public Lending Right Act 1979, as amended from time to time, and any similar rights arising in any part of the world. The Corresponding Author confirms that they (and any Co-Author) are and will remain a member of any applicable licensing and collecting society and any successor to that body responsible for administering royalties for the reprographic reproduction of copyright works.
\n\nSubject to the license granted above, copyright in the Article and all versions of it created during IntechOpen's editing process (including the published version) is retained by the Corresponding Author and any Co-Author.
\n\nSubject to the license granted above, the Corresponding Author and any Co-Author retains patent, trademark and other intellectual property rights to the Article.
\n\n2.3 All rights granted to IntechOpen in this Article are assignable, sublicensable or otherwise transferrable to third parties without the Corresponding Author's or any Co-Author’s specific approval.
\n\n2.4 The Corresponding Author (on their own behalf and on behalf of each Co Author) will not assert any rights under the Copyright, Designs and Patents Act 1988 to object to derogatory treatment of the Article as a consequence of IntechOpen's changes to the Article arising from translation of it, corrections and edits for house style, removal of problematic material and other reasonable edits.
\n\n3. CORRESPONDING AUTHOR'S DUTIES
\n\n3.1 When distributing or re-publishing the Article, the Corresponding Author agrees to credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen. The Corresponding Author warrants that each Co-Author will also credit the Journal in which the Article has been published as the source of first publication, as well as IntechOpen, when they are distributing or re publishing the Article.
\n\n3.2 When submitting the Article, the Corresponding Author agrees to:
\n\n• Comply with all instructions and guidelines provided by IntechOpen;
\n\n• Produce the Article with all due skill, care and diligence, and in accordance with good scientific practice;
\n\n• Submit all the corrections in due time as defined during the publishing process schedule.
\n\nThe Corresponding Author will be held responsible for the payment of the Article Processing Charge.
\n\nAll payments shall be due 30 days from the date of the issued invoice. The Corresponding Author or the payer on the Corresponding Author's and Co-Authors' behalf will bear all banking and similar charges incurred.
\n\n3.3 The Corresponding Author shall obtain in writing all consents necessary for the reproduction of any material in which a third-party right exists, including quotations, photographs and illustrations, in all editions of the Article worldwide for the full term of the above licenses, and shall provide to IntechOpen upon request the original copies of such consents for inspection (at IntechOpen's option) or photocopies of such consents.
\n\nThe Corresponding Author shall obtain written informed consent for publication from people who might recognize themselves or be identified by others (e.g. from case reports or photographs).
\n\n3.4 The Corresponding Author and any Co-Author shall respect confidentiality rights during and after the termination of this Agreement. The information contained in all correspondence and documents as part of the publishing activity between IntechOpen and the Corresponding Author and any Co-Author are confidential and are intended only for the recipient. The contents may not be disclosed publicly and are not intended for unauthorized use or distribution. Any use, disclosure, copying, or distribution is prohibited and may be unlawful.
\n\n4. CORRESPONDING AUTHOR'S WARRANTY
\n\n4.1 The Corresponding Author represents and warrants that the Article does not and will not breach any applicable law or the rights of any third party and, specifically, that the Article contains no matter that is defamatory or that infringes any literary or proprietary rights, intellectual property rights, or any rights of privacy. The Corresponding Author warrants and represents that: (i) the Article is the original work of themselves and any Co-Author and is not copied wholly or substantially from any other work or material or any other source; (ii) the Article has not been formally published in any other peer-reviewed journal or in a Journal or edited collection, and is not under consideration for any such publication; (iii) they themselves and any Co-Author are qualifying persons under section 154 of the Copyright, Designs and Patents Act 1988; (iv) they themselves and any Co-Author have not assigned and will not during the term of this Publication Agreement purport to assign any of the rights granted to IntechOpen under this Publication
\n\nAgreement; and (v) the rights granted by this Publication Agreement are free from any security interest, option, mortgage, charge or lien.
\n\nThe Corresponding Author also warrants and represents that: (i) they have the full power to enter into this Publication Agreement on their own behalf and on behalf of each Co-Author; and (ii) they have the necessary rights and/or title in and to the Article to grant IntechOpen, on behalf of themselves and any Co-Author, the rights and licenses expressed to be granted in this Publication Agreement. If the Article was prepared jointly by the Corresponding Author and any Co-Author, the Corresponding Author warrants and represents that: (i) each Co-Author agrees to the submission, license and publication of the Article on the terms of this Publication Agreement; and (ii) they have the authority to enter into this Publication Agreement on behalf of and bind each Co-Author. The Corresponding Author shall: (i) ensure each Co-Author complies with all relevant provisions of this Publication Agreement, including those relating to confidentiality, performance and standards, as if a party to this Publication Agreement; and (ii) remain primarily liable for all acts and/or omissions of each such Co-Author.
\n\nThe Corresponding Author agrees to indemnify and hold IntechOpen harmless against all liabilities, costs, expenses, damages and losses and all reasonable legal costs and expenses suffered or incurred by IntechOpen arising out of or in connection with any breach of the aforementioned representations and warranties. This indemnity shall not cover IntechOpen to the extent that a claim under it results from IntechOpen's negligence or willful misconduct.
\n\n4.2 Nothing in this Publication Agreement shall have the effect of excluding or limiting any liability for death or personal injury caused by negligence or any other liability that cannot be excluded or limited by applicable law.
\n\n5. TERMINATION
\n\n5.1 IntechOpen has a right to terminate this Publication Agreement for quality, program, technical or other reasons with immediate effect, including without limitation (i) if the Corresponding Author or any Co-Author commits a material breach of this Publication Agreement; (ii) if the Corresponding Author or any Co Author (being an individual) is the subject of a bankruptcy petition, application or order; or (iii) if the Corresponding Author or any Co-Author (being a company) commences negotiations with all or any class of its creditors with a view to rescheduling any of its debts, or makes a proposal for or enters into any compromise or arrangement with any of its creditors.
\n\nIn case of termination, IntechOpen will notify the Corresponding Author, in writing, of the decision.
\n\n6. INTECHOPEN’S DUTIES AND RIGHTS
\n\n6.1 Unless prevented from doing so by events outside its reasonable control, IntechOpen, in its discretion, agrees to publish the Article attributing it to the Corresponding Author and any Co-Author.
\n\n6.2 IntechOpen has the right to use the Corresponding Author’s and any Co-Author’s names and likeness in connection with scientific dissemination, retrieval, archiving, web hosting and promotion and marketing of the Article and has the right to contact the Corresponding Author and any Co-Author until the Article is publicly available on any platform owned and/or operated by IntechOpen.
\n\n6.3 IntechOpen is granted the authority to enforce the rights from this Publication Agreement, on behalf of the Corresponding Author and any Co-Author, against third parties (for example in cases of plagiarism or copyright infringements). In respect of any such infringement or suspected infringement of the copyright in the Article,
\n\nIntechOpen shall have absolute discretion in addressing any such infringement which is likely to affect IntechOpen's rights under this Publication Agreement, including issuing and conducting proceedings against the suspected infringer.
\n\n7. MISCELLANEOUS
\n\n7.1 Further Assurance: The Corresponding Author shall and will ensure that any relevant third party (including any Co-Author) shall, execute and deliver whatever further documents or deeds and perform such acts as IntechOpen reasonably requires from time to time for the purpose of giving IntechOpen the full benefit of the provisions of this Publication Agreement.
\n\n7.2 Third Party Rights: A person who is not a party to this Publication Agreement may not enforce any of its provisions under the Contracts (Rights of Third Parties) Act 1999.
\n\n7.3 Entire Agreement: This Publication Agreement constitutes the entire agreement between the parties in relation to its subject matter. It replaces and extinguishes all prior agreements, draft agreements, arrangements, collateral warranties, collateral contracts, statements, assurances, representations and undertakings of any nature made by or on behalf of the parties, whether oral or written, in relation to that subject matter. Each party acknowledges that in entering into this Publication Agreement it has not relied upon any oral or written statements, collateral or other warranties, assurances, representations or undertakings which were made by or on behalf of the other party in relation to the subject matter of this Publication Agreement at any time before its signature (together "Pre-Contractual Statements"), other than those which are set out in this Publication Agreement. Each party hereby waives all rights and remedies which might otherwise be available to it in relation to such Pre-Contractual Statements. Nothing in this clause shall exclude or restrict the liability of either party arising out of its pre-contract fraudulent misrepresentation or fraudulent concealment.
\n\n7.4 Waiver: No failure or delay by a party to exercise any right or remedy provided under this Publication Agreement or by law shall constitute a waiver of that or any other right or remedy, nor shall it preclude or restrict the further exercise of that or any other right or remedy. No single or partial exercise of such right or remedy shall preclude or restrict the further exercise of that or any other right or remedy.
\n\n7.5 Variation: No variation of this Publication Agreement shall be effective unless it is in writing and signed by the parties (or their duly authorized representatives).
\n\n7.6 Severance: If any provision or part-provision of this Publication Agreement is or becomes invalid, illegal or unenforceable, it shall be deemed modified to the minimum extent necessary to make it valid, legal and enforceable. If such modification is not possible, the relevant provision or part-provision shall be deemed deleted.
\n\nAny modification to or deletion of a provision or part-provision under this clause shall not affect the validity and enforceability of the rest of this Publication Agreement.
\n\n7.7 No partnership: Nothing in this Publication Agreement is intended to, or shall be deemed to, establish or create any partnership or joint venture or the relationship of principal and agent or employer and employee between IntechOpen and the Corresponding Author or any Co-Author, nor authorize any party to make or enter into any commitments for or on behalf of any other party.
\n\n7.8 Governing law: This Publication Agreement and any dispute or claim (including non-contractual disputes or claims) arising out of or in connection with it or its subject matter or formation shall be governed by and construed in accordance with the law of England and Wales. The parties submit to the exclusive jurisdiction of the English courts to settle any dispute or claim arising out of or in connection with this Publication Agreement (including any non-contractual disputes or claims).
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"18"},books:[{type:"book",id:"12165",title:"Mild Cognitive Impairment",subtitle:null,isOpenForSubmission:!0,hash:"53705d28ee50f077d865170f6dbb769c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12165.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12166",title:"New Topics on Electroencephalography",subtitle:null,isOpenForSubmission:!0,hash:"e6eae5162ca3ec5be1a1f2b85f007b2d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12166.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12167",title:"Neuroprotection",subtitle:null,isOpenForSubmission:!0,hash:"5b16c09a6266c3be63796aefa6828df2",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12167.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12168",title:"Neuroglial Research",subtitle:null,isOpenForSubmission:!0,hash:"ce5fb5312ae2e8239b9ba2710fe3c0fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12168.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12169",title:"Olfactory and Gustatory Systems",subtitle:null,isOpenForSubmission:!0,hash:"d5a1c1b017ee33f8028a4de153f5762c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12169.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12170",title:"Hydrocephalus",subtitle:null,isOpenForSubmission:!0,hash:"2a0f7f54e5e93c674dd19336fa859f50",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12170.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12300",title:"Dopamine Receptors",subtitle:null,isOpenForSubmission:!0,hash:"257af6b69ae2215cdd6327cc5a5f6135",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12300.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:99},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:7},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4380},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"835",title:"Ecosystem",slug:"ecosystem",parent:{id:"125",title:"Earth Science",slug:"earth-science"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:56,numberOfWosCitations:109,numberOfCrossrefCitations:32,numberOfDimensionsCitations:122,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"835",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"394",title:"Ecosystems Biodiversity",subtitle:null,isOpenForSubmission:!1,hash:"49d03ba9ec3a70c20364366827d63cbf",slug:"ecosystems-biodiversity",bookSignature:"Oscar Grillo and Gianfranco Venora",coverURL:"https://cdn.intechopen.com/books/images_new/394.jpg",editedByType:"Edited by",editors:[{id:"51992",title:"PhD.",name:"Oscar",middleName:null,surname:"Grillo",slug:"oscar-grillo",fullName:"Oscar Grillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"25321",doi:"10.5772/24995",title:"Biodiversity of Coastal Lagoon Ecosystems and Their Vulnerability to Global Change",slug:"biodiversity-of-coastal-lagoon-ecosystems-and-their-vulnerability-to-global-change",totalDownloads:4365,totalCrossrefCites:7,totalDimensionsCites:30,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Rutger de Wit",authors:[{id:"60941",title:"Dr.",name:"Rutger",middleName:null,surname:"De Wit",slug:"rutger-de-wit",fullName:"Rutger De Wit"}]},{id:"25322",doi:"10.5772/23099",title:"Distribution, Endemism and Conservation Status of Fishes in the Yangtze River Basin, China",slug:"distribution-endemism-and-conservation-status-of-fishes-in-the-yangtze-river-basin-china",totalDownloads:3230,totalCrossrefCites:5,totalDimensionsCites:14,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Shaowen Ye, Zhongjie Li, Jiashou Liu, Tanglin Zhang and Songguang Xie",authors:[{id:"50583",title:"Dr.",name:"Shaowen",middleName:null,surname:"Ye",slug:"shaowen-ye",fullName:"Shaowen Ye"},{id:"59836",title:"Prof.",name:"Zhongjie",middleName:null,surname:"Li",slug:"zhongjie-li",fullName:"Zhongjie Li"},{id:"59837",title:"Prof.",name:"Jiashou",middleName:null,surname:"Liu",slug:"jiashou-liu",fullName:"Jiashou Liu"},{id:"59838",title:"Prof.",name:"Tanglin",middleName:null,surname:"Zhang",slug:"tanglin-zhang",fullName:"Tanglin Zhang"},{id:"59839",title:"Prof.",name:"Songguang",middleName:null,surname:"Xie",slug:"songguang-xie",fullName:"Songguang Xie"}]},{id:"25331",doi:"10.5772/24635",title:"Impact of Domestic Animals on Ecosystem Integrity of Lesotho High Altitude Peatlands",slug:"impact-of-domestic-animals-on-ecosystem-integrity-of-lesotho-high-altitude-peatlands",totalDownloads:3701,totalCrossrefCites:3,totalDimensionsCites:13,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"P.J. Du Preez and L.R. Brown",authors:[{id:"58649",title:"Prof.",name:"Leslie",middleName:"Robert",surname:"Brown",slug:"leslie-brown",fullName:"Leslie Brown"},{id:"58653",title:"Prof.",name:"Johan",middleName:null,surname:"Du Preez",slug:"johan-du-preez",fullName:"Johan Du Preez"}]},{id:"25323",doi:"10.5772/24424",title:"Biodiversity and Conservation of the Estuarine and Marine Ecosystems of the Venezuelan Orinoco Delta",slug:"biodiversity-and-conservation-of-the-estuarine-and-marine-ecosystems-of-the-venezuelan-orinoco-delta",totalDownloads:2848,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Patricia Miloslavich, Alberto Martín, Eduardo Klein, Yusbelly Díaz, Carlos A. Lasso, Juan José Cárdenas and Oscar M. Lasso-Alcala",authors:[{id:"56659",title:"Prof.",name:"Eduardo",middleName:null,surname:"Klein",slug:"eduardo-klein",fullName:"Eduardo Klein"},{id:"57302",title:"Dr.",name:"Alberto",middleName:null,surname:"Martín Zazo",slug:"alberto-martin-zazo",fullName:"Alberto Martín Zazo"},{id:"58727",title:"Dr.",name:"Patricia",middleName:null,surname:"Miloslavich",slug:"patricia-miloslavich",fullName:"Patricia Miloslavich"},{id:"58728",title:"MSc.",name:"Yusbelly",middleName:null,surname:"Díaz",slug:"yusbelly-diaz",fullName:"Yusbelly Díaz"},{id:"94391",title:"Dr.",name:"Juan José",middleName:null,surname:"Cárdenas",slug:"juan-jose-cardenas",fullName:"Juan José Cárdenas"},{id:"94393",title:"Dr.",name:"Carlos Andrés",middleName:null,surname:"Lasso",slug:"carlos-andres-lasso",fullName:"Carlos Andrés Lasso"},{id:"94394",title:"Mr.",name:"Oscar M.",middleName:null,surname:"Lasso-Alcalá",slug:"oscar-m.-lasso-alcala",fullName:"Oscar M. Lasso-Alcalá"}]},{id:"25337",doi:"10.5772/24032",title:"How Past Vicariant Events Can Explain the Atlantic Forest Biodiversity?",slug:"how-past-vicariant-events-can-explain-the-atlantic-forest-biodiversity-",totalDownloads:2877,totalCrossrefCites:4,totalDimensionsCites:8,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Gisele Pires Mendonça Dantas, Gustavo Sebastián Cabanne and Fabrício Rodrigues Santos",authors:[{id:"55047",title:"Dr.",name:"Gisele",middleName:null,surname:"Dantas",slug:"gisele-dantas",fullName:"Gisele Dantas"},{id:"61812",title:"Dr.",name:"Gustavo",middleName:null,surname:"Cabanne",slug:"gustavo-cabanne",fullName:"Gustavo Cabanne"},{id:"61813",title:"Dr.",name:"Fabrício",middleName:null,surname:"Santos",slug:"fabricio-santos",fullName:"Fabrício Santos"}]}],mostDownloadedChaptersLast30Days:[{id:"25320",title:"Biodiversity and Conservation of Coastal Lagoons",slug:"biodiversity-and-conservation-of-coastal-lagoons",totalDownloads:3221,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Josefina Garrido, Amaia Pérez-Bilbao and Cesar João Benetti",authors:[{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido"},{id:"60557",title:"Dr.",name:"Amaia",middleName:null,surname:"Pérez-Bilbao",slug:"amaia-perez-bilbao",fullName:"Amaia Pérez-Bilbao"},{id:"60558",title:"Dr.",name:"Cesar",middleName:"Joao",surname:"Benetti",slug:"cesar-benetti",fullName:"Cesar Benetti"}]},{id:"25327",title:"Mnemiopsis leidyi Invasion and Biodiversity Changes in the Caspian Sea",slug:"mnemiopsis-leidyi-invasion-and-biodiversity-changes-in-the-caspian-sea",totalDownloads:3570,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Aboulghasem Roohi and Ameneh Sajjadi",authors:[{id:"54577",title:"Dr.",name:"Aboulghasem",middleName:null,surname:"Roohi",slug:"aboulghasem-roohi",fullName:"Aboulghasem Roohi"},{id:"54636",title:"Dr.",name:"Seyedeh Ameneh",middleName:null,surname:"Sajjadi",slug:"seyedeh-ameneh-sajjadi",fullName:"Seyedeh Ameneh Sajjadi"}]},{id:"25332",title:"Waterbird Biodiversity and Conservation Threats in Coastal Ecuador and the Galapagos Islands",slug:"waterbird-biodiversity-and-conservation-threats-in-coastal-ecuador-and-the-galapagos-islands",totalDownloads:2719,totalCrossrefCites:0,totalDimensionsCites:4,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Juan José Alava and Ben Haase",authors:[{id:"53467",title:"Dr.",name:"Juan Jose",middleName:null,surname:"Alava",slug:"juan-jose-alava",fullName:"Juan Jose Alava"},{id:"65866",title:"Mr.",name:"Ben",middleName:null,surname:"Haase",slug:"ben-haase",fullName:"Ben Haase"}]},{id:"25323",title:"Biodiversity and Conservation of the Estuarine and Marine Ecosystems of the Venezuelan Orinoco Delta",slug:"biodiversity-and-conservation-of-the-estuarine-and-marine-ecosystems-of-the-venezuelan-orinoco-delta",totalDownloads:2848,totalCrossrefCites:0,totalDimensionsCites:9,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Patricia Miloslavich, Alberto Martín, Eduardo Klein, Yusbelly Díaz, Carlos A. Lasso, Juan José Cárdenas and Oscar M. Lasso-Alcala",authors:[{id:"56659",title:"Prof.",name:"Eduardo",middleName:null,surname:"Klein",slug:"eduardo-klein",fullName:"Eduardo Klein"},{id:"57302",title:"Dr.",name:"Alberto",middleName:null,surname:"Martín Zazo",slug:"alberto-martin-zazo",fullName:"Alberto Martín Zazo"},{id:"58727",title:"Dr.",name:"Patricia",middleName:null,surname:"Miloslavich",slug:"patricia-miloslavich",fullName:"Patricia Miloslavich"},{id:"58728",title:"MSc.",name:"Yusbelly",middleName:null,surname:"Díaz",slug:"yusbelly-diaz",fullName:"Yusbelly Díaz"},{id:"94391",title:"Dr.",name:"Juan José",middleName:null,surname:"Cárdenas",slug:"juan-jose-cardenas",fullName:"Juan José Cárdenas"},{id:"94393",title:"Dr.",name:"Carlos Andrés",middleName:null,surname:"Lasso",slug:"carlos-andres-lasso",fullName:"Carlos Andrés Lasso"},{id:"94394",title:"Mr.",name:"Oscar M.",middleName:null,surname:"Lasso-Alcalá",slug:"oscar-m.-lasso-alcala",fullName:"Oscar M. Lasso-Alcalá"}]},{id:"25322",title:"Distribution, Endemism and Conservation Status of Fishes in the Yangtze River Basin, China",slug:"distribution-endemism-and-conservation-status-of-fishes-in-the-yangtze-river-basin-china",totalDownloads:3231,totalCrossrefCites:5,totalDimensionsCites:14,abstract:null,book:{id:"394",slug:"ecosystems-biodiversity",title:"Ecosystems Biodiversity",fullTitle:"Ecosystems Biodiversity"},signatures:"Shaowen Ye, Zhongjie Li, Jiashou Liu, Tanglin Zhang and Songguang Xie",authors:[{id:"50583",title:"Dr.",name:"Shaowen",middleName:null,surname:"Ye",slug:"shaowen-ye",fullName:"Shaowen Ye"},{id:"59836",title:"Prof.",name:"Zhongjie",middleName:null,surname:"Li",slug:"zhongjie-li",fullName:"Zhongjie Li"},{id:"59837",title:"Prof.",name:"Jiashou",middleName:null,surname:"Liu",slug:"jiashou-liu",fullName:"Jiashou Liu"},{id:"59838",title:"Prof.",name:"Tanglin",middleName:null,surname:"Zhang",slug:"tanglin-zhang",fullName:"Tanglin Zhang"},{id:"59839",title:"Prof.",name:"Songguang",middleName:null,surname:"Xie",slug:"songguang-xie",fullName:"Songguang Xie"}]}],onlineFirstChaptersFilter:{topicId:"835",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:7,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",slug:"hitoshi-tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",slug:"marcus-vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",slug:"ramana-vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]},overviewPageOFChapters:{paginationCount:50,paginationItems:[{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:1,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Business and Management",value:86,count:1,group:"subseries"}],publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:{title:"Infectious Diseases",id:"6"},selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/19834",hash:"",query:{},params:{id:"19834"},fullPath:"/chapters/19834",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()