Average displacement and contraction threshold temperature.
\r\n\tPrevention represents a key factor in managing this condition and includes public health measures, addressing the risk factors, as well as access to oral health services. A regular dental examination is crucial for detecting early signs of caries, and timely treatment. Materials choice and proper handling, if restorative treatment is needed, are of utmost importance, to prevent a recurrence. State-of-the-art new types of restorative materials, such as antimicrobial composites, stimuli-responsive composites, or self-healing composites, together with the use of nanotechnology, represent some future choices for restorative biomaterials.
",isbn:"978-1-80356-360-2",printIsbn:"978-1-80356-359-6",pdfIsbn:"978-1-80356-361-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"e642ce6df40b676fae9ab16d5c414af1",bookSignature:"Prof. Laura Cristina Rusu and Dr. Lavinia Ardelean",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",keywords:"Oral Biofilm, Acid-Producing Bacteria, Oral Pain, Tooth Loss, Atraumatic Restorative Treatment, Dental Composites, Glass Ionomer Cement, Inlays, Risk Factors, Demineralization, Pit and Fissure Sealing, Dental Hygiene",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 18th 2022",dateEndSecondStepPublish:"March 18th 2022",dateEndThirdStepPublish:"May 17th 2022",dateEndFourthStepPublish:"August 5th 2022",dateEndFifthStepPublish:"October 4th 2022",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:'Professor, Head of Oral Pathology Department at the "Victor Babeş" University of Medicine and Pharmacy Timişoara, Faculty of Dentistry, doctor habilitatus, and confirmation as Ph.D. coordinator in the field of dental medicine.',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"174262",title:"Prof.",name:"Laura",middleName:"Cristina",surname:"Rusu",slug:"laura-rusu",fullName:"Laura Rusu",profilePictureURL:"https://mts.intechopen.com/storage/users/174262/images/system/174262.png",biography:'Professor Laura Cristina Rusu, DMD, Ph.D., is the mother of two lovely boys and a full-time professor and head of the Oral Pathology Department, Faculty of Dental Medicine, \\"Victor Babes\\" University of Medicine and Pharmacy, Timisoara, Romania. Her Ph.D. thesis was centered on allergens in dental materials. In 2017 she obtained a Dr. Habil and was confirmed as a Ph.D. coordinator in the field of dental medicine. She took part in 10 research projects, including FP7 COST Action MP 1005, and authored 140 peer-reviewed papers. She has published eight books and book chapters as an author and co-author. Her main scientific interests are oral pathology and oral diagnosis in dental medicine, with a focus on oral cancer.',institutionString:"Victor Babeș University of Medicine and Pharmacy Timișoara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Victor Babeș University of Medicine and Pharmacy Timișoara",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:{id:"180569",title:"Dr.",name:"Lavinia",middleName:null,surname:"Ardelean",slug:"lavinia-ardelean",fullName:"Lavinia Ardelean",profilePictureURL:"https://mts.intechopen.com/storage/users/180569/images/system/180569.png",biography:"Prof. Lavinia Cosmina obtained her DDS from the DMD Faculty of Dental Medicine of the \\'Victor Babes” University of Medicine and Pharmacy, Timisoara. She graduated with honors, with an average of 10 (out of 10 possible)\nIn 2000 Prof. Cosmina obtained her Ph.D. in Dental Medicine from the \\'Victor Babes” University of Medicine and Pharmacy, Timisoara.\nHer current position is Professor - Head of Department at the \\'Victor Babes” University of Medicine and Pharmacy, Timisoara, Faculty of Dental Medicine, Department of Technology of Dental Materials and Devices in Dental Medicine.\n\nProf. Cosmina acted as the president of the International Congress \\'Interdisciplinarity in Present Dental Medicine”, first edition, Timisoara, Romania, 2008 and \\'Timmedica” International Congress, 4th edition, Timisoara, Romania, 2011. She is a Member of the Editorial Board of Medicine in Evolution Journal, Journal of Research and Practices in Dentistry, International Journal of Dental Medicine, SCIREA Journal of Materials, PHAB Linx Journal of Dental Sciences, CPQ Dentistry, EC Dental Science, Mechanobiology Journal, SciMedicine Journal.\n\nProf. Cosmina is also a Member of the Reviewer Board of MDPI Materials, MDPI Prosthesis, MDPI Metals, and the Topics Board of MDPI Coatings. Her research interests are dentistry, dental materials/biomaterials, alloys, corrosion assessment, thermoplastic resins, ceramics, SLS in dentistry, CAD/CAM milling, 3D printing/bioprinting, laser welding, scanning.",institutionString:"Victor Babeș University of Medicine and Pharmacy Timișoara",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Victor Babeș University of Medicine and Pharmacy Timișoara",institutionURL:null,country:{name:"Romania"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444316",firstName:"Blanka",lastName:"Gugic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/444316/images/20016_n.jpg",email:"blanka@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"19138",title:"Radio-Frequency Assisted Liposuction (RFAL)",doi:"10.5772/20831",slug:"radio-frequency-assisted-liposuction-rfal-",body:'The increased prevalence of obesity worldwide has grown the body contouring market, as patients demand more solutions. One of the most popular body contouring methods is liposuction. Pioneered in Europe in the early 1980’s as a simple fat aspirating technique, liposuction has quickly expanded its breadth to incorporate a variety of energy sources and modus operandi.
Many types of energies have been combined with standard liposuction techniques in an attempt to improve and optimize treatment outcomes. The current chapter is dedicated to the authors’ experience with the most recent addition to the liposuction family, Radio-Frequency Assisted Liposuction (RFAL). RFAL delivers RF energy for a thermal effect to the adipose tissue, skin and sub-dermal matrix in a minimally invasive manner.
Enhancing the standard lipoplasty experience with a safe and consistent thermal influence provides the following key benefits:
Blood vessel coagulation to reduce patient downtime through less bleeding and bruising.
Tissue tightening to expand the range of patients to now include individuals who are obese and/or have compromised skin conditions (lax skin).
Increased patient comfort and safety will increase consumer acceptance.
Reduced procedure time and ease of treatment will increase physician acceptance.
In previous years the liposuction procedure has stimulated the development of energy assisted lipoplasty methods, such as power-assisted lipoplasty (PAL), ultrasound–assisted lipoplasty (UAL), and laser-assisted lipoplasty (LAL).
PAL uses a reciprocating cannula that mechanically destroys the subcutaneous tissue through small rapid vibrations. This innovation was developed to accelerate the liposuction process, minimize the surgeon’s physical exertion and reduce patient downtime post surgery. A 15 patient study comparing PAL to standard liposuction demonstrated that PAL allowed for a faster suction removal without compromising aesthetic contour [1].
UAL has gained popularity over the past two decades especially in the niche market of male patients and as a secondary liposuction procedure. Through the cavitation of the tissue by ultrasonic energy, physicians can better treat more fibrotic tissue and perform more selective fat aspiration. However, UAL did lengthen procedure treatment time as port protectors needed to be incorporated and removed during each treatment. Port protectors increased incision size and often had to be stitched close. In addition, UAL was a two stage procedure, treatment then aspiration, which further lengthened surgeon OR time. Lastly, while treatment outcomes were satisfactory, the subsequent tightening effects of the treated area were similar to that of standard liposuction.
Laser-assisted liposuction provides a thermal experience to the skin to significantly impact dermal contraction. Dr. Barry DiBernardo’s randomized blind split abdomen study, “Evaluation of shrinkage and skin tightening in laser lipolysis vs liposuction”, determined that placing a laser under the skin and reaching a temperature of 42˚C can result in a 17% tightening and area contraction of the skin [2].
RFAL is the newest entry to the liposuction family and can be found in the BodyTite device (Invasix Ltd., Israel). RFAL deploys RF energy through a hand piece [Figure 1] to deliver a thermal effect to the adipose tissue, skin and sub-dermal matrix.
Schematic presentation of the bi-polar RF hand piece.
RFAL technology uses external and internal electrode, connected by a handpiece, to create a thermal profile. During treatment the internal cannula is introduced into the adipose tissue and can be adjusted for the desired depth of treatment. This adjustment can control the distance between electrodes in the range of 5mm to 50mm that allows for targeted treatment depth and uniform treatment by layers. Contact is maintained between the external electrode and the skin by a spring-loaded pivot.
When powered, the insulated internal electrode emits RF current through a small conductive tip. The external electrode has a larger contact area and is applied to the skin surface creating a lower power density in the skin than in the adipose tissue [Figure 2]. Up to 75W of RF power can be applied between the two electrodes depending on thickness and curvature of treated area. For large and medium volume treatment, the melted fat can be aspirated; for the treatment of small areas, such as the neck and face, the fat may be dissolved naturally through phagocytosis.
The BodyTite system provides real-time monitoring of the skin temperature and a power cut-off mechanism [Figure 3]. Typical cut-off temperature is in the range of 38–42˚C. When the desired temperature is reached during treatment, the system automatically turns the RF energy off to avoid overheating and ensure the maintenance of uniform temperature over the treated area. If the temperature in the zone starts to drop, or when the hand piece moves to a new zone with a lower temperature, the RF energy becomes active again. The cut-off temperature should be modified depending on the treatment area and the amount of thermal energy required for various zone and skin thicknesses. In addition, it can be adjusted to tailor to more aggressive or conservative approaches.
RFAL hand piece inserted into the body with directional energy applied to adipose fat and septae.
RFAL uniform thermal distribution without hot spots or under-treated areas resulting from the use of a cut-off temperature control mechanism.
In addition to emitting energy, the internal electrode also serves as a cannula to provide simultaneous aspiration of the coagulated tissue. Often this coagulated tissue has less hematocrit compared to standard or power assisted liposuction, providing for less bruising post-surgery. [3] Simultaneous aspiration immediately removes treated fat from the treatment site and allows the physician to perform desired contouring, thereby reducing procedure time and associated operating costs.
To appeal to the varied areas of treatment and physician preferences, a number of RFAL hand pieces are available with multiple lengths, diameters, tip configurations, and aspiration ports allowing RFAL to be adapted to different areas and procedures.
Depending on the volume of the body, the procedure can be conducted under general anesthesia, IV sedation or local anesthesia only.
RFAL mainly comprises of the following steps:
Patient marking of thermal zones (10 x 15cm) and planning of incision ports.
Applying tumescent anesthesia 30-60 minutes prior the treatment. Common methods include standard Klein or Hunstad techniques.
Applying sterile conductive gel to the skin surface to reduce friction and improve electrical contact between external electrode and skin.
Insertion of the RFAL cannula into the tissue, after adjusting the desired treatment depth into the tissue. Treatment should start in deeper planes moving up to more superficial planes while staying in the same thermal zone. The cannula movement should be slow, with 2-3 seconds for a back and forth cycle.
Performing RFAL treatment with simultaneous aspiration.
Treatment of each thermal zone should end when one of the following end points are reached:6-12kJ is deposited in the treatment zone. Higher kJ can be deposited in thicker fatty layers, such as the lower abdomen, and less kJ for thinner areas such as the epigastrium or neck; The cut-off temperature is reached and maintained for a few minutes; Skin erythema
Final contouring of the area should be done without RF, with a focus on contouring and uniformity.
Applying drains and suturing ports, if necessary.
Applying compressing foams and garments; considered critical for proper healing and symmetrical tightening.
The coagulation of blood vessels is a process naturally associated with a thermal treatment. The coagulation of vessels may have a positive effect in reducing the bruising and blood loss, however, it may present a safety concern as the termination of blood supply to the dermis can potentially cause skin necrosis.
The macro observation of the RFAL procedure allows the authors to conclude that hematocrit in the aspirating fat is lower during RFAL procedure compared to suction assisted lipoplasty (SAL). Observation of RFAL after an abdominoplasty shows no bleeding in the adipose fatty tissue from a 5mm to 30mm depth while flowing blood vessels are observed in sub-dermal area, illustrated in Figure 4.
The histological studies and observation of tissue sections in abdominoplasty patients pretreated with RFAL concludes that small vessels such as capillaries, venules and artherioles are coagulated during the treatment [Figure 5], while the majority of larger blood vessels are not damaged and continue to supply blood to the dermis. Observations show less bleeding in the adipose fatty tissue in a 5 to 30mm depth, whereas bleeding is observed from blood vessels in the subdermal area. Bleeding of the dermis can be observed after the treatment and no skin necrosis is observed at the 6 months follow-up. [4]
Cross section of RFAL treated adipose tissue.
Small coagulated blood vessel of the subcutaneous layer after RFAL.
Skin appearance and tightening is a common concern during one’s consideration for a liposuction procedure. Patients classified as obese, or with excessive skin, or compromised skin quality are typically excluded as liposuction candidates as fat removal can often leave behind excess lax skin causing their skin and body contour to appear worse. Skin laxity post liposuction can create patient dissatisfaction with the only solution being excisional surgery. Therefore, a liposuction method that can consistently contract the skin can address these patients who were previously excluded from treatment.
RF thermal induced contraction of collagen is well documented in medicine and is used in ophthalmology, orthopedic applications and treatment of varicose veins. Each type of collagen has an optimal contraction temperature that does not cause thermal destruction of fibroblasts, but induces a restructuring effect in collagen fibers. The reported range of temperatures causing collagen shrinkage varies from 60oC to 80oC [5-9]. At this temperature tissue contraction occurs immediately after tissue reaches the threshold temperature. The shrinkage of tissue is dramatic and can reach tens of percents of the heated tissue volume. This type of contraction is well studied in cornea [5], joints [6], cartilage [7, 8] and vascular tissue [9], but its application for the skin, sub-dermal and subcutaneous tissue tightening has not been as explored.
Non-invasive RF and lasers have been used for skin tightening effects since the mid 1990’s [10-15]. Due to superficial thermal safety concerns, the skin surface temperature is maintained below 45°C and in order to increase the temperature in the deep dermis the skin is heated with RF or laser energy penetrating into the tissues deeper than 1.5mm, with simultaneous skin surface cooling. This sophisticated method of trans-epidermal, non-invasive RF thermal delivery provides a variable and controversial tightening effect, which is not usually apparent, if at all, until dermal remodeling occurs, a few months after the treatment.
Recently, thermal induced tissue tightening was expanded to minimally invasive treatments [11-15]. Using laser assisted liposuction or radio-frequency assisted liposuction, physicians have attempted to achieve reduction of subcutaneous tissue with simultaneous tissue contraction. DiBernardo reported 17% skin surface shrinkage measured at three months follow-up after LAL treatment [2]. RFAL technology provides a higher power and more efficient energy transfer than laser energy systems and thus, allows the treatment of larger volumes of the subcutaneous tissue with optimal thermal profiles, facilitating the significant tightening of the tissue. Recently introduced radio-frequency assisted liposuction and soft tissue contraction technology has shown tremendous promise for thermal contouring [3, 4, 16-19].
When considering skin contraction, it is important to differentiate two-dimensional horizontal x-y tightening of the skin surface from three-dimensional x-y-z tissue tightening of the subcutaneous tissue, where the skin is also more firmly connected and adjacent to the deeper anatomical structures. If two-dimensional contraction is a function of collagen structure changes in dermis, the three-dimensional tissue tightening changes involve contraction of different types of collageneous tissue. We can separate the following types of collagen tissue in the subcutaneous space:
Dermis – papillary and reticular.
Fascia – relatively thick layer of connective tissue located between muscles and skin.
Septal connective tissue – thin layers of connective tissue separating lobules of the fat and connecting dermis with fascia.
Reticular fibers – framework of single collagen fibers encasing fat cells.
An ex-vivo study [16] was conducted to measure subcutaneous collageneous tissue contraction with simultaneous monitoring of local tissue temperature, to determine the threshold temperature of the collagen shrinkage on different types of ex-vivo collageneus tissue samples.
Two types of collageneus tissue were studied for thermal induced contraction:
Fascia
Adipose tissue with septal and reticular connective tissue
The excised post abdominoplasty tissue samples were placed between the two BodyTite RF electrodes, where the small area, internal RF active electrodes (cannula) were placed in contact with the studied tissue and the other large area electrode was applied to the opposite side, or epidermal side, of the sample [Figure 6]. Two marks were placed at a distance of 1 cm from the active internal electrode to visualize tissue displacement.
Ex-vivo experiment set-up.
The delivered power was 75W, at 1MHz frequency; energy was delivered until evaporation of water from the adipocytes was observed.
Video and thermal cameras were used to monitor temperature change and tissue displacement during the treatment. The start of tissue displacement was correlated with tissue temperature to determine the contraction thermal threshold.
The adipose tissue with septal and reticular collagen behavior is shown in Figure 7.
The experiments showed that the marker movement (contraction) started within two seconds after the start of RF energy delivery. Adipose fibrous septal tissue coagulation and vaporization started to be observed at 13 seconds after initiating RF energy. Tissue contraction was not symmetrical as the displacement from one side was 8mm, and the other side presented an average displacement of 3mm. Non-symmetrical behavior can be explained by the non-uniform structure of the connective tissue and the non-symmetrical geometry of the studied tissue sample. The average marker migration and tissue contraction for the three experiments with adipose tissue was 6.5mm.
Adipose-septal tissue behavior during RF energy delivery with time lapse.
Figure 8 shows thermal images of the same sample taken before the treatment, at the beginning of tissue displacement and at the end of the treatment showing the rise in thermal profile with time and onset of contraction.
Thermal images of adipose-septal tissue thermal behavior during RF energy delivery with time lapse.
For fascial tissue, contraction started when the maximal adipose tissue temperature near the active internal electrode reached 69.4OC and its response is illustrated in Figure 9.
The displacement of the markers and tissue contraction in fascia were significantly less than in adipose tissue. Average movement was 2.75 mm, or approximately 2.5 times less than the mark migration and tissue contraction observed in adipose tissue.
The marker migration and medial contraction started after 3.5 sec and maximal temperature near the active electrode at this moment was 61.5°C.
Fascia contraction behavior during RF energy delivery with time lapse.
Table 1 summarizes the results on subcutaneous tissue contraction.
Fascia | Septa/Adipose Tissue | |
Average Displacement, mm | 2.75 | 6.5 |
Threshold Temperature, oC | 61.5 | 69.4 |
Average displacement and contraction threshold temperature.
Results show the strongest contraction response in adipose tissue containing septal connective tissue and reticular collagen fibers encasing fat cells. Fascia and septa can be heated to these high, optimal contraction temperatures, but it can be done only in an minimally invasive transcutaneous manner that deposits the thermal RF energy directly into the adipose tissue and sub-dermal space, thus avoiding heating the epidermal surfaces.
The contraction temperatures of collagen in the ex-vivo study were in the same range reported for other collageneous tissues. Tissue contraction was observed in the area with diameter of 2cm, which corresponds to a spherical contraction volume of 4.2cm3. Knowing the tissue volume and deposited energy before the start of contraction, one can estimate the energy density required for each cubic centimeter of treated tissue to reach tissue contraction effects. It can be calculated that for 1L of adipose tissue, up to 48.3kJ is required to start to see immediate and significant collagen contraction. These tissue energy calculations for initiation of adipose contraction are consistent with empirical data obtained with LAL treatment where energy from 50kJ up to 100kJ per liter is recommended for the treatment of the abdominal area.
The ex-vivo experiments produced different degrees of contraction for septal and dermal tissues that emphasizes the balance between these processes for optimal aesthetic results. Lower two-dimensional contraction of the skin and significant three-dimensional contraction of sub-dermal adipose connective tissue may cause wrinkling of the skin surface for high volume liposuction patients.
In-vivo clinical monitoring of temperature, both in the adipose tissue and the epidermal surface, should allow the physician to more accurately predict the thermal treatment times and reduce the risk of thermal injuries.
An in-vivo study [16] enrolled 24 patients, 22 female and 2 male patients, who underwent RFAL to the abdomen and hips. The average age was 39.7 years old (range 19-52 years) with an average pre-operative weight of 71kg. The selected patients were typical candidates for a liposuction procedure. All patients were active with no significant medical diseases. 15 of 24 patients had a normal body mass index (BMI) (<25), while 9 of 24 patients were moderately overweight (BMI 25-30) and 3 patients were obese (BMI >30 but < 32).
The RF power, in the range of 40 to 75W was used for uniform heating throughout a thick subcutaneous flap. The average total energy, 72kJ, was delivered to the abdominal area. The temperature around the tip of cannula reached 70-80˚C. The skin temperature was monitored and energy cut-off levels were in the range of 38-42˚C, which was maintained for 1-3 minutes. The strong and sustained tissue heating during the procedure resulted in a thermal stimulation of the sub-dermal layer, the entire matrix of adipose tissue and the vertical and oblique fibrous septa, eliciting a powerful three-dimensional retraction and contraction of the entire soft tissue envelope.
All patients had their treatment area infiltrated with tumescent anesthesia prior to RFAL. Tumescent anesthesia is critical in the technique as the RF current travels through tissue most efficiently in a salinated environment.
The objective of this in-vivo study was to correlate treated soft tissue contraction results with procedure and patient variables including amount of deposed RF energy, body mass index, and amount of aspirated fat.
A zone measuring approximately 15 X 10cm (150cm2) can be heated to a critical target temperature within 3-8 minutes, depending on the thickness of the treated fat layer and then safely maintaining uniform volumetric heating to reach uniform temperature distribution over the entire treated volume.
All patients from the study were followed at 6 weeks, 3 months and 6 months. In order to measure linear two-dimensional contraction, the distance between two fixed points was measured preoperatively and then at the 6 months postoperative visits. Distances between incision ports and natural “fixed” anatomical registration points, such as moles or the umbilicus were measured before the treatment, after the treatment and at 3 and 6 months follow-up visits. The linear contraction was measured as the relative change of distance between two points over the curved surface of the body. Distances were measured using a flexible ruler applied over the skin surface [Figure 10]. For the abdominal area, at least 3 measurements were taken between 3 different points and an average linear contraction was calculated.
All RFAL patients demonstrated some level of contraction. From 8% to 15% linear tightening was observed at the end of the surgery on the operating table, which further increased dramatically during first week when most of the swelling was reduced. The linear and area contraction process continued over the subsequent weeks and maximum contraction was noted at the last follow-up visit 24 weeks after the treatment.
Linear contraction observed at 6 months follow-up were much more significant than reported with any other technology, and varied from 12.7% up to 47% depending on the patient and treatment variables. It is important to note that soft tissue area contraction can be estimated as the square of the linear contraction and represents much higher numbers.
The measured linear contraction was then correlated using three parameters:
Aspirated volume that was varied in the range of 0.5L to 3.4L with average volume of 2.0L.
BMI of the patients that varied from 20.8 to 31.7 with an average index of 25.7.
Deposited RF energy that was varied from 60kJ to 96kJ per abdominal area with an average number of 72kJ.
Before and After RFAL and intra-operative two point linear contraction registration points from pubic RFAL incision point to the lower point of the umbilicus.
For statistical analysis of the correlation between the measured variables and linear contraction, the coefficients were calculated. The closer the coefficient to the 1, the higher the linear correlation is between the measured variable and tissue contraction.
Analysis shows no or very weak correlation between aspirated volume and linear skin contraction. The Pearson coefficient is about 0.22. Figure 11 shows the correlation between these values, with a random distribution.
The Pearson coefficient for correlation between contraction and patient BMI is much higher and equals 0.64. It is easy to naturally come to the conclusion that a patient with a larger volume of adipose tissue would have more tissue available to undergo contraction thus providing a much stronger connection between these parameters [Figure 12].
The highest correlation (0.86) was obtained between deposed RF energy and skin contraction. Figure 13 shows the measured results that almost has a linear function between these two parameters. The more energy deposited, the more linear contraction that was observed.
Correlation between aspirated volume and linear contraction.
Correlation between BMI and linear contraction.
Correlation between total energy and linear contraction.
In spite of improved contraction obtained at higher energies, the amount of energy during the treatment should be measured and controlled to avoid negative side effects such as seromas and skin burns while still achieving optimal linear and area contraction.
Features of an ideal liposuction procedure would include reduced ecchymosis, pain, and edema from pre-aspiration coagulation of adipose and vascular tissue, followed by less forceful and traumatic extraction forces, as well as a significant soft tissue contraction when host tissue elasticity is compromised. Thermal based lipoplasty appears to hold this potential.
In the present study based on volumetric heating we reached an average local linear contraction of 31%. This is statistically significantly higher than that reported with other energy emitting liposuction technologies. Overall area contraction was much higher than the linear contraction. These in-vivo results confirm the proposed mechanism of RF based tissue tightening and recruitment of the vertical and oblique fibrous adipose matrix.
About 30% of patients noted minor weight loss, however, it is premature to correlate it with treatment procedure. Further studies are recommended to explore this relationship.
The study reported one seroma, which was treated with closed serial aspiration. Seroma is not a rare side effect for energy-assisted liposuction, especially for high volume treatment and may necessitate a lower threshold for closed drainage systems in selected patients.
The RFAL is a versatile procedure and provides advantages for a myriad of treatment concerns. Similar to UAL, RFAL has the ability to work through more fibrotic tissue common in the male chest [Figure 14] or characteristic of secondary liposuction cases. In addition, its ability to offer the highest contraction rate of all energy treatments allows RFAL to be considered for large volume patients [Figure 15] or patients with compromised skin laxity. The varied number of hand piece configurations also permits RFAL to be used for fat aspiration in combination with tightening, such as the body and breasts [Figure 16], or pure skin tightening procedures, where fat removal is a secondary concern, as desired in areas as arms, neck and face treatments [Figure 17].
Before and 3 months post treatment of a male patient with 13.6% reduction in waist circumference.
Before and 6 months post treatment of a large volume female patient.
Before and 4 months post treatment with 2500 cc removed to provide a breast lift.
Before and 3 months post treatment of the neck and face providing tightening and contour.
Pre and post-operative photography, weight and circumferential reduction data were obtained on all patients.
The skin histologies taken from biopsies immediately following the RFAL treatment show a canal created by the cannula, which thermally destructed adipocytes around the canal [Figure 18].
After RFAL, channels in the fat tissue are observed and surrounded by disrupted fat cells.
Skin biopsies taken from an RFAL study patient at 12 months, show normal dermal architecture, with healthy collagen and elastin fibers in the deep reticular dermis with no evidence of scar tissue or abnormal collagen fibers [Figures 19, 20].
A magnetic resonance imaging study of five patients before and three months after RFAL [18] showed a reduction in the thickness of adipose tissue in treated area and an increase of collageneus tissue in subcutaneous fat [Figure 21]. Signals of remaining edema could be observed 90 days after treatment, signaling the continued persistence of the reparatory process.
Normal skin histology 12 months following optimal RFAL thermal endpoint.
Data and feedback compiled from a few hundred RFAL patients illustrate that the treatment is safe for small and large areas [3, 4, 16-19]. Most patients were able to return to a regular routine a few days following the treatment. In addition, for single or small zone procedures, the treatment can be performed under local anesthesia thereby reducing the risks related to general anesthesia. Most patients were drawn to RFAL as there was a reduction of downtime caused by bruising or pain.
The main safety precautions are:
Limit deposited RF energy per zone of 150cm2 by 6-8kJ for thin skin less than 2.5cm thickness and by 12kJ per thick fat layer.
Observe skin reaction during treatment, the appearance of erythema indicates a strong effect for tumescent infiltrated tissue and should be considered an end point.
In many cases skin temperature up to 36-38oC is enough to get good results, especially for thick skin layers.
Avoid the return of the cannula to the same point. This can cause focal over-heating and can be prevented by moving the hand piece in a zig-zag pattern.
Move the cannula slowly to control its position and maintain its thermal effect.
The same RFAL patient as in
Magnetic resonance imaging of the abdomen before (left) and 3 months after (right) RFAL, showing significant reduction of the abdominal fat thickness and mild edema. Note the indentation of the mid-abdominal line at 3-month follow-up, which was absent prior to the procedure.
Acceptance by physicians can be quite high as there are only a few changes to the standard liposuction technique, these include reducing the speed of cannula movement and ensuring the cannula does not return to the same return point.
A comparison of RFAL aspiration speed with a standard Mercedes liposuction cannula, each with the same diameter, conducted on a split body treatment demonstrated a 17% higher aspiration speed with RFAL compared to a regular cannula. Measurements of aspirated tissue volume after 20 minutes of treatment showed 490ml fat extracted with RFAL, compared with 420ml with the regular cannula. The increased speed of RFAL over standard liposuction is likely the result of the lower viscosity and increased flow following Poiseuille’s law [3]. However, in a true treatment setting physicians using RFAL may see an increase in the treatment time by about 10-20% depending on number of treatment areas. Overall, the majority of energy based liposuction techniques require an increase in treatment time and thermal assisted procedures require more attention from physician to control in parallel thermal and contouring processes.
The skin tightening benefits demonstrated through the treatment results, is an advantage that standard liposuction and other thermal treatments are unable to reproduce. Often these results can only be provided with more extensive excisional surgeries. The ability of RFAL to provide the patient an alternative to abdominoplasty or brachioplasty provides the surgeon a highly sought after competitive advantage.
The main advantage of RFAL is consistent and substantial 3-dimensional tissue contraction resulting from the heating of subcutaneous tissue without significant increase in the length of the procedure. The tightening of the tissue with RFAL broadens the physicians ability to treat a more diverse population who may require stronger contraction in addition to fat reduction. It is the experience of the authors that RFAL provides a safe procedure with obvious tightening benefits for the aesthetic medical market.
There is potential of the RFAL technology in following specific cases where skin contraction is critical:
Treatment of overweight patients
Treatment of patients after weight loss
Treatment of areas with saggy skin and low fat content such as the upper arms, neck and face
High potential in the treatment of cellulite
While RFAL technology does not solve all the above mentioned problems, it greatly expands the horizon of liposuction technology to a broader patient demographic.
It is quite evident that extending or improving human senses has enabled human societies to prosper by acquiring information from their surroundings and gaining knowledge from it. Internet of Things (IoT) embody this trend today combining distributed sensing with high connectivity so that wise decisions and actions follow information gathering and analysis [1, 2]. Trillion Sensors is another paradigm onto which IoT is further exploited on the basis that the more extensive or intensive the deployment of sensor networks is, the more fruitful the knowledge that can be derived from them would be [3, 4].
Small dimensions (nanometers to micrometers) are appropriate in the sensitive part of sensors when they need to interact with phenomena or entities equally characterized by such small dimensions (light, molecules, living cells…). An overall small size for the sensors themselves is not devoid of interest either. The smaller they are, the more sustainable their fabrication is in terms of materials and energy, and the more cost-effective they become. Small size is also enabling in itself, e.g. medical implants, as well as convenient, e.g. payloads.
Sensing requires energy. A certain provision of energy autonomy is needed for sensors to be deployed in remote locations, harsh environments, or where they need to remain temporary unattended. Batteries is a common way to provide such autonomy, but their charge is finite impeding long-term autonomy scenarios. Moreover, their recharge, replacement and disposal imply a logistic and environmental burden that will not be affordable when IoT gets to its full extent mobilizing tens of billions of devices and an even larger number of sensors.
Secondary batteries can be kept recharged by coupling them with energy harvesters able to draw energy present in the environment [5]. Heat is abundant in natural scenarios, and waste heat is also abundant in human-made scenarios due to laws of thermodynamics and our profuse use of thermal machines. When such heat gives rise to temperature gradients (a situation as simple as a hot surface exposed to air), thermoelectricity is a convenient way to extract electric energy from them [6, 7].
For that extraction to be optimum, the external thermal gradient needs to be fully transposed into the thermoelectric generator itself. Physical interaction of small devices with their environment may exploit profitably some scale factors when going down in dimensions, but, sometimes, small sizes pose a handicap or challenge for such interaction, too. This is the case when trying to cool down locally a part of a small device by exchanging heat with the surrounding air. This chapter tries to illustrate this point by sharing the issues and strategies the authors have dealt, and are dealing with, in their quest for silicon-based miniaturized thermoelectric generators.
Silicon technology has been developed around an enabling and highly abundant semiconductor material. It is a mature technology apt to mass-production of devices with economy of scale and it is the champion technology of miniaturization. Not surprisingly, it boosted microelectronics in the XX century and nanoelectronics in the XXI century. In addition to the set of techniques that allow the fabrication of integrated circuits by depositing and patterning thin films on a silicon wafer, silicon technologies also developed micromachining techniques that allow carving and shaping the silicon wafers into structures that are able to interact with the environment. Sensors and actuators belong to the latter category. Since energy harvesters are environmental interacting devices and, application-wise, they should not be much larger than the sensors they will feed, it is only logical that their fabrication will similarly benefit from the silicon technologies toolbox. These technologies do not only excel in miniaturization but also in
The traditional thermoelectric generators mentioned above feature a π-architecture, where the π symbol gives a visual clue about how each thermocouple is built assembling vertically two semiconductor pellets (
Silicon technologies are of planar nature. They enable massive parallelism at
The main objective when defining the architecture and the technological route for a
The platform consists of a thin silicon area fabricated by eliminating the silicon beneath it. In order to preserve its thermal isolation from the surrounding bulk silicon, the physical connections between them should be minimized. Such connections are the mechanical supports that keep the platform in place (e.g. ancillary silicon bridges) and the thermoelectric materials themselves (and whatever supports they may need). In order to minimize the thermal conduction of these elements, they must be produced with
Figure 1 shows the schematics for such a device. Any hot surface in which this device is placed will act as a heat source. The top surface will be exposed to air acting as heat sink and will exchange heat with it. Due to their different thermal mass, the bulk rim area will hardly cool down, thus being the hot part of the device, while the platform will experience a larger decrease of temperature becoming the cold(er) part of it.
From left to right and top to bottom: 3D sketch of an integrated planar micro-thermocouple; SEM image of a fabricated device; schematic cross-section of the device identifying the thermally isolated platform and other relevant elements, and the expected heat flow from hot to cold areas in a transversal architecture. The typical area for the platform of the devices discussed is 1 mm2.
With respect to the thermoelectric material, the depicted device follows a uni-leg approach. Two thermoelectric materials are still at play, but a metal one replaces one of the semiconductor legs in order to close the circuit. Some thermoelectric performance is sacrificed because metals behave poorly thermoelectrically (they have higher thermal conductivities and close to zero Seebeck coefficients), but for the architecture presented and to keep processing simple, the use of a metal leg is technologically convenient.
Regarding the semiconductor thermoelectric material, one distinct feature of our approach is resourcing to silicon materials, namely arrays of silicon nanowires (Si NWs). The rationale behind this option is to attempt the fabrication of
Moreover, arrays of Si NWs can be conveniently grown as a post-process using a
The metal leg cannot be integrated in the same self-standing way. It is deposited as a thin film, so it needs a physical support. These ancillary supports need to be thermally optimized since they bridge the hot and cold areas. The nature of these supports has evolved across the different generations of our devices: from long and thin silicon bridges (400 μm x 100 μm x 15 μm) to wide and very thin Si3N4 membranes (100 μm x 1000 μm x 0.3 μm). Since thermal conductivity of Si3N4 is two orders of magnitude lower than the one of silicon, there is a net gain in thermal conductance, while enabling a shorter and wider (and less electrically resistive) metal leg.
The thermal impact on platform isolation of the
As said, longer NWs generally imply larger ΔT and, thus, a larger thermovoltage. However, a resulting larger voltage is not necessarily associated to a larger power. Power (
It must be noted that the heat transfer issues discussed in this chapter revolve about the challenge of exchanging heat in planar micromachined structures exhibiting very small exchange surfaces [18, 19, 20, 21, 22], while the particular nature of the thermoelectric material employed (e.g. NWs) is of no significance: the same conclusions will apply if silicon membranes, silicon-based thin films, or any other thermoelectric films of interest were considered instead.
When considering the optimum design for a thermoelectric microgenerator (μTEG) the generated power is the parameter which needs to be maximized. It is well known that for a given μTEG with its own internal resistance, the power that is transferred to the load is maximized when the internal resistance and the load resistance are equal. This case is usually known as load matching condition [23].
Considering the electrical circuit diagram shown in Figure 2, which represents a μTEG, formed by a voltage source (VOC) and its internal electrical resistance (RTEG), connected to a load resistance (RL), it is straightforward to evaluate the total dissipated power at the load as:
Equivalent circuit of a μTEG, formed by a voltage source (VOC) and its internal resistance (RTEG), connected in series with a load resistance (RL).
Finding the value of RL which maximizes PL implies after a few calculations the load matching condition, RTEG = RL. It is important to notice that the only parameter allowed to change in this optimization is the load resistance. Therefore, one can write the maximum power as:
As can be seen in Figure 3, where the output power of a μTEG is plotted versus load resistance for three different internal resistances, each curve has a maximum for the load matching condition. But now the influence of the internal resistance is highlighted, where the lower its value, the greater the power output. In Figure 3, for example, halving the internal resistance can double the power output at the load matching condition. This highlights the importance of reducing the internal resistance when designing a μTEG.
Power output of a μTEG versus load resistance for different RTEG values.
Some publications discussing load matching focus on the need to modify the internal resistance, increasing it, in order to match the load resistance [22]. According to Figure 3, this is in fact an error. It is always a better approach to minimize the internal resistance in order to increase the power output even further. Once the internal resistance is the minimum possible, then the load matching condition can be applied to maximize the power output. Actually, many integrated circuits exist which efficiently implement maximum power point tracking (MPPT) algorithms to extract the maximum power from a power source by modifying its load resistance.
This load matching approach can be analogously applied to the temperatures involved in the μTEG and is known as thermal matching. A simplified conductance network describing the μTEG (KTEG) in parallel with KLK accounting for parasitic thermal leakages and in series with KS representing the conductance to ambient (to both heat source and heat sink) is shown in Figure 4.
Simplified thermal conductance network describing the μTEG with parallel and series thermal conductances.
To explore which is the KTEG value that maximizes Pmax, as was done in the electrical case, Eq. (2) can be rewritten as:
Where
Where ΔTA is the total available temperature difference, Tamb-Thot. KTEG is the internal thermal conductance of the μTEG and KS represents the thermal conductance to the ambient.
When decreasing RTEG, as deemed appropriated in the previous paragraphs, it is important to keep in mind that KTEG is bound to increase, as they are inversely proportional. This is because of the implicit assumption that changing KTEG implies a geometry modification, not a material property change and the geometry change affects both electrical resistance and thermal conductance of the μTEG. Ignoring any leakage contribution (KLK = 0 W/K) in Eq. (4), the power output (solid) and ΔT (dotted) versus KTEG can be seen in Figure 5. Three different KS cases have been considered to highlight the fact that, the larger KS, the larger the power output, even for a constant KTEG. It can be seen that when KTEG = KS, the maximum power condition when KLK = 0, then the temperature drop across the μTEG is 50% of the available temperature difference.
Pmax (left, blue curves) and ΔT/ΔTA (right, red curves) versus KTEG for different KS values. For KTEG = 1, thermal matching conditions would call for KS = 1, but larger Pmax values are possible for larger values of KS.
Similar to the electrical case, many papers discussing thermal matching focus on reaching a temperature drop in the μTEG equal to the temperature drop across KS [5, 24, 25]. When this KS represents a heat exchanger, some authors suggest a low KS heat exchanger to match KTEG and therefore maximize the power output according. While this approach assures operation at the mathematical local maximum for a given KS, it is a bad practice because it ignores the absolute maximum, which takes place at larger KS values for a given KTEG.
Looking at Figure 5, if KTEG = 1 W/K, this reasoning would imply that KS = 1 W/K would be necessary, and 50% of the total available temperature difference would drop across the μTEG. However, with a better heat exchanger, KS = 10 W/K or even KS = 100 W/K, then ΔT will asymptotically approach ΔTA, and the power output will asymptotically reach:
In conclusion, both load matching and thermal matching are conditions that are mathematically true, but from a practical point of view, care must be taken when designing a μTEG to maximize its power output. First of all, its electrical internal resistance (RTEG) must be minimized, and after that, power output can be maximized by connecting a load which matches that of the μTEG, or simply an IC implementing an MPPT algorithm. On the thermal side, as RTEG is minimized, the thermal conductance (KTEG) is consequently maximized. Then, as the μTEG is already optimized, and it is not possible to further increase KTEG, the only option is to act on the external components, which in this case is the heat exchanger, and to choose one with an as large as possible KS, so that almost all of the available ΔT will be internally transferred to the μTEG.
As mentioned before, the performance of μTEG devices depends on the temperature difference ‘seen’ by the thermocouples. Therefore, minimizing thermal resistances in series with those elements would improve the performance of the device. In this section, such improvement is demonstrated by decreasing the thermal resistance between the suspended platform and the ambient, usually the cold part, by favoring the heat flow locally. Two methods have been used to increase such heat exchange: (i) by forcing heat convection onto the platform and (ii) by contacting it with a cold mass. The promising results obtained from the experiments described in the next two subsections call for optimizing this effect through the development of a procedure to integrate a heat exchanging structure, which will be shown in section 4.
As the working scenario for the μTEG devices is dominated by a temperature difference between the hot and the cold parts, heat convection could play also an important role on how these temperatures are established. Convection is a mechanism of heat flux originated from the movement of the surrounding fluid, which will be typically air for the usual applications of the presented devices. Depending on how this movement is induced, convection can be classified as natural or forced.
Natural convection is based on the warming up of the air that is close to a heat source that, due to the lowering of its density, tends to move upwards, giving its place to colder air and so promoting the heat exchange. In forced convection, air is forced to move and then renew by an external force.
In order to demonstrate the improvement in the performance of the device, three different sets of experimental measurements have been performed on a device at three different convection conditions. The first one corresponds to natural convection, which occurs when the device is operated by letting it rest on top of a hot surface exposed to ambient at room conditions. The second and third sets of measurements correspond to forced convection regimes. In the second case, this is accomplished by the use of a standard CPU fan (see Figure 6) placed over the device, while in the third, an air jet, obtained through a syringe connected to the compressed air line in the laboratory, is directed towards the device. More details are available at [26].
Experimental setup used for the thermoelectrical characterization of μTEG devices under a forced convection regime induced by a CPU fan located on the top. The device is mounted on the thermal chuck of a Linkam station.
Such experimental measurements have been performed on two different devices, featuring 30 and 60 μm long silicon NWs (by filling 3 and 6 trenches as described in section 2.1). Consequently, each one of the devices has different electrical and thermal resistances.
The obtained experimental results are shown in Figure 7. The devices have been measured at different temperatures of the hot plate (from 50 to 200 °C in 25 °C steps).
Maximum power versus chip surface temperature for three different heat convection regimes and on two different devices (adapted from [
The measurement results show a very clear improvement in the performance as a result of forced convection. The maximum output power obtained when the device is mounted under the fan is multiplied by 3 when compared with the natural convection regime, while when under the more directed and higher flow air jet, the performance increases nearly three orders of magnitude: from a few nW to almost 0.7 μW. Moreover, the more performant air convection is, the less relevant become the thermal properties of the thermoelectric material. In natural and air forced convection cases, the larger output power corresponds to the longest nanowires, whereas in the air jet forced convection the opposite is true. This happens because the longer nanowires also have a larger electrical resistance, and its larger thermal resistance is not significant in this case where the platform to ambient thermal resistance is enough to assure a large ΔT.
In the previous subsection, it has been experimentally demonstrated how important a good thermal connection with the surrounding ambient is in order to improve the overall performance of μTEG devices. Nevertheless, forced convection scenarios are not always available and artificially forcing them needs additional energy consuming devices. Therefore, in order to explore a passive strategy to diminish the thermal resistance to the surrounding ambient, the effect of contacting the microplatform with a metallic probe has been assessed. With this experiment, the feasibility of the addition of a heat exchanging structure as a general strategy for the reduction of the thermal resistance to the ambient will be demonstrated.
The experimental setup consists of a metallic probe dipped in thermally conducting paste, which is carefully positioned on the micro-platform by the use of a micro-manipulator.
The performance improvement obtained by means of this approach can be observed in Figure 8, which shows a plot of the Seebeck voltage output of the device placed on a hot plate at 150 °C when the cold finger is being attached. It can be observed that the voltage increases rapidly after contact, and it rises even more when the applied force to the cold finger is increased slightly, so demonstrating the reduction of the thermal resistance when the physical contact is improved.
Voltage evolution while the cold finger is being attached and detached.
In Figure 9 the power curves obtained from the same device at a hot plate temperature of 250 °C with and without the cold finger are shown. It can be seen an important improvement in the performance of two orders of magnitude, from 1.3 to 142 nW, so proving the effectiveness of the cold finger approach as a proof of concept validating the further development of more effective heat exchanging structures.
Power curves for a device, with and without the cold finger, on a hot plate at 250 °C.
The previous section highlights the importance of physically contacting the platform in order to improve heat extraction, and thus cooling it more efficiently. According to section 2.2 and the results shown in section 3.2, the need for a heat exchanger has been proven. In this section, we study the implementation of such component on the μTEG. This poses several problems from the technological point of view, especially considering the starting device architecture used to expose the thermoelectric material to a thermal gradient. The thermally isolated platform is a fragile structure and physically contacting it without caution might break it. A proper methodology with auxiliary components needs to be developed components to provide such contact safely.
The approach implies to have a thermally conductive piece contacting the platform and interfacing this part of the device with a heat exchanger of appropriate size. For this reason, such piece will be dubbed as ‘adapter’. The contact needs to be compliant to absorb any excess vertical displacement with deformation. The compliant part of this contact will be a certain amount of silver paste. A rigid spacer (PMMA), sitting both on the silicon bulk rim and the platform, will also be necessary to limit the maximum excursion of the adapter over the platform so that pressure between the heat exchanger on top and the platform below can be applied in a safe way. Finally, the heat exchanger itself, a commercial one of similar footprint is assembled onto our chip. In this case, our chip is 7x7 mm2 and the smallest commercial heat exchanger found is 8x8 mm2. A PCB with a through-hole, to insert a copper plate improving the thermal conductance from the hot surface to the bulk silicon rim, and a slightly larger partial etch to fit the chip and facilitate the wire bonding to auxiliary copper traces, are included in the assembly as shown in Figure 10.
Isometric, cross section and detailed view of the proposed approach to safely contact the thin silicon platforms.
The feasibility of the approach has been first tested building a physical model and solving finite element simulations (COMSOL) to evaluate the expected improvement on performance. The thermal and electrical properties of the materials used in the model are listed in Table 1.
κ (W·m−1·K−1) | σ (S·m−1) | S (V·K−1) | |
---|---|---|---|
Silicon | 150 | 12·103 | |
Silicon oxide | 1.4 | — | |
Silicon nitride | 30 | — | |
Silicon NWs | 25 (1) | 12·103 (1) | 250·10−6 |
Tungsten | 174 | 7.76·106 (2) | |
Thermal paste | 5 | — | |
Copper | 401 | — | |
FR4 (PCB) | 0.3 | — | |
Spacer (PMMA) | 0.2 | — |
Thermal and electrical properties of the materials used in the model.
Silicon NWs are modeled as a block, not individual nanowires, and the block material properties assume an occupation of only 5% of the total area with nanowires, while the remaining 95% has air material properties.
Tungsten electrical conductivity is different from the bulk literature values. The sheet resistance on a real device has been measured to obtain this value.
The model boundary conditions include a constant hot temperature at the bottom (Thot = 100 °C) and natural convection on the vertical and horizontal walls of the heat exchanger through a heat exchange coefficient directly calculated in COMSOL for an air ambient temperature of 27 °C. When such element is not present, the heat exchange coefficient is applied directly on the platforms surface. Figure 11 shows the temperature distribution for the whole model under such conditions. As it can be seen, even with a heat exchanger, the lowest temperature reached in the cold part is slightly below 70 °C although the ambient temperature is 27 °C. This is because the thermal resistance from the heat exchanger to the ambient is approximately one third of the total thermal resistance while the thermal resistance from the bottom of the PCB (actually most of this is from the silicon chip) to the heat exchanger is approximately two thirds of it.
Temperature distribution for the whole model with Thot = 100 °C.
The internal temperature distribution for chips with four platforms with NW lengths of 10, 20, 30 and 40
Temperature distribution for each platform (from T1 to T4) without heat exchanger (left) and with heat exchanger (right).
On the other hand, for the case without heat exchanger (left), the temperature differences across the nanowires do not reach beyond 2 °C. In this case, the thermal resistance to the ambient is much larger than the nanowires thermal resistance, and a very small temperature drop develops across the active thermoelectric material.
If the temperature solution from the finite element model is coupled to an electrical model through the Seebeck coefficient of the nanowires, the I-V curves and power output for each platform considering both scenarios can be obtained.
These results are shown in Figure 13, where the power output has been plotted as power density considering a device area of 2 mm2, large enough to contain the whole platform (approximately 1 mm2) and space for additional contacts.
I-V curves (solid lines), and power output (dotted lines), versus current for T1-T4 devices, without (left) and with heat exchanger (right).
Clearly, a much larger power is obtained when the heat exchanger is in place due to the much higher ΔT perceived by the NWs. In addition, the behavior of the four platforms evolve differently. Without the heat exchanger, voltage and power scale with the length of nanowires since their thermal resistance is the dominant part of the total device thermal resistance and such length is directly determining the attained ΔT. However, when the presence of the heat exchanger secures most of ΔT, the positive effect of the lower thermal conductance of longer nanowires, which is still there, rapidly saturates and even reverse (see T4 vs. T3) because the detrimental impact of the increasing electrical resistance becomes dominant.
The significant increase in the generated power when applying a forced convection or a cold finger and the results from the simulations including a heat exchanger directed our efforts to the construction of the previously described heat exchanger assembly on our μTEGs (see Figure 10).
The preparation sequence of the required components is given in Figure 14a. A heat exchanger adapter is made from four Cu wires (one per on-chip a device), with diameter similar to the size of the suspended platform (which they will contact after the assembly) inserted in a square brass piece and machined to the appropriate length. The tips of the wires are dipped with thermal paste (Figure 14b) to fill the gap between the Cu wires and the suspended platforms to guarantee good thermal contact (Figure 14c). A PMMA spacer with a thickness appropriately matching the length of the protruding Cu wires is then assembled between the heat exchanger adapter and the μTEG, and finally, the aluminum heat exchanger is placed on top of adapter using a thermal paste (Figure 14d). Further details can be found in [27] from which Figures 14–17 have been adapted.
(a) Steps of the construction of the heat sink adapter. Optical microscope images of (b) the Cu wire dipped in thermal paste and (c) the footprint left on the platform of the test device. (d) An image of the final assembly.
Through the described integration scheme, a first evaluation of the performance improvement brought by a heat exchanger to the μTEG is enabled. In this study harvesting measurements with and without heat exchanger were performed by placing the assembled devices on a Linkam THMS 350 V heating stage at various temperatures in a natural convection environment. Three different cases were measured: without heat sink, with heat sink and with heat sink + pressing, where for the latter a force is applied on top of the assembly to reduce the thermal resistance of the thermal paste. Chips with different thermoelectric materials were measured: Si NWs, Si-Ge NWs and Si microbeams. At the current stage of technology maturity, a rather low number of devices has been measured, but the results shown in the next subsections correspond to significant devices of each category. In terms of measurement uncertainties, the most important source are thermal fluctuations that due to the thermoelectric nature of the device introduce variations in the measured V and I, which have been estimated to be below 10 μV and 1 μA, respectively.
The Seebeck voltage vs. hotplate temperature curves for the Si NWs-based μTEGs with different number of trenches are shown in Figure 15. As anticipated, all the devices presented output voltages that scaled with the number of trenches (i.e. length of NWs). However, the reduction of the thermal resistance between the cold side (suspended platform) and the ambient when a heat exchanger is integrated resulted in a large increase of ∆T across the NWs and hence higher overall voltages.
Seebeck voltage vs. hot plate temperature for Si NWs-based μTEGs with different number of trenches (T1-T4) with and without heat exchanger.
In terms of power, the maximum power densities obtained at hot plate temperatures of 100 °C without the heat exchanger were in the range of 0.05–0.1 μWcm−2. As expected, a tremendous increase in power density was observed after the integration of the heat exchanger + pressing, and values in the range 7–42 μWcm−2 were observed. No clear trends were observed with the number of trenches.
For devices with SiGe NWs, considerable higher Seebeck voltages were observed when compared to Si NWs (Figure 16), due to the higher thermal resistance resulting from the lower intrinsic thermal conductivity of the former. With and without heat exchanger, the devices performed better with increasing number of trenches. Also, power densities rose considerably with the integration of the heat exchanger. As already observed for the Si NWs, the voltage and generated power improved further when a slight pressure was applied to the heat exchanger, It is worth noticing that the maximum power thus obtained does not differ much for Si and SiGe NWs: 41.6 μWcm−2 vs. 45.2 μWcm−2, respectively, considering a T3 device on a hotplate at 100 °C. This points to the dilution of the effect of better starting thermal properties when the heat exchanger is present.
Seebeck voltage vs. hot plate temperature for SiGe NWs-based μTEGs with different number of trenches (T1-T3) with and without heat exchanger.
Si microbeams devices were fabricated to compare the performance of bulk Si with Si NWs. After the integration of the heat exchanger + pressing, the results presented in Figure 17 show a remarkable three orders of magnitude increase in the generated power from ∼650 pW to ∼690 nW for a T1 device, i.e. from 32.5 nWcm−2 to 34.5 μWcm−2. This result evidences again that once the heat exchanger is in place, the thermal properties of the thermoelectric material become second order. Hence, by optimizing their electrical properties and ensuring a good ∆T with the aid of a heat exchanger, it is possible to obtain high power densities even with high thermal conductivity thermoelectric materials such as Si microbeams.
I-V and power curves for the Si microbeams based μTEGs without heat exchanger (left) and with heat exchanger and pressing (right) for a hot plate temperature of 100 °C.
In order to translate the promising power densities of a single structure into useful absolute power levels, a certain number of thermocouples needs to be integrated and connected. The μTEGs design was modified to attain a higher integration density by reducing the number of active sides. The new thermocouple has a rectangular shape with one side featuring the membrane providing mechanical support and metallic connection, and the opposite side composed of the trenches to be filled with NWs. In Figure 18, a 3D schematic of the new unitary thermocouple is shown. The same cross-section profile of Figure 1 still applies. With this new design, many elements can be integrated in the same chip: up to fifty thermocouples (each with an approximate size of 5 x 0.6 mm2) fit in series or series–parallel configuration in a 49 mm2 chip, as shown in Figure 19. Both configurations would lead to the same harvested power, but the series one will scale up voltage while the parallel one will scale up current.
3D schematic of the new thermocouple design (left) and an optical microscope image of the fabricated micromachined platform.
Layout of the new compact design featuring 50 thermocouples in serial connection (left) and serial connection of 10 arrangements of 5 thermocouples in parallel configuration (right).
This compact design requires new components and a novel and more efficient approach for the integration of the heat exchanger in order to boost their thermal performance. A micromachined Si adapter (substituting the Cu wires, brass plate and PMMA spacer of the previous section) is necessary for the distribution of the force exerted on the platform by the heat exchanger, and different designs featuring the corresponding serial or parallel arrangements were fabricated. Figure 20 (left) depicts the Si adapter designs where the central columns contact the platform of each thermocouple in the chip and the ones at the corners act as force distributers. Similar to the previous section, a commercial Al mini heat exchanger will be placed on top of the Si adapter to help the circulation of heat from the Si rim of the μTEG (warm side) through the thermoelectric material to the platform (cold side) to achieve the desired larger ΔT. The heat flux representation through the assembly is shown in Figure 20 (right).
Schematic of the different designs of the micromachined Si adapter (left). Heat flux through a parallel type μTEG, the adapter and the heat exchanger (right).
To achieve a good thermal contact, which is key for a maximum generated power, a thermal interface material (TIM) needs to be placed between the thermocouple and the adapter. To this aim, an inkjet printer (Dimatix) was chosen to deposit a controlled amount of TIM only on the columns of the adapter.
After dispensing the TIM, the adapter is placed face-down onto the thermocouple chip already wirebonded on a PCB. This is done with the help of a pick & place machine (Finetech) that enables proper chip alignment and attachment with a controlled gentle force (0.1 N). A holder with a removable lid for the adequate handling of the Si adapter during the process has been designed and 3D-printed. It allows accessing the corresponding side of the adapter, first to the inkjet printer, and then to the pick & place machine. The whole assembly process is depicted in Figure 21.
New assembly route of the heat exchanger Si adapter onto the encapsulated μTEGs chip.
This is a still ongoing process. Two different inks are being tested to act as TIM between the adapter and the suspended platforms: a conductive silver nanoparticle ink (Agfa Orgacon SI-J20X) and a SU8 based polymeric ink (Micro Chem Prielex). The tests involve the assessment of the adequacy of the viscosity and adhesion of the TIM and the evaluation of the endurance of the μTEGs platforms during the assembly. Other TIM materials already used for the mainstream attachment of heat exchangers onto microprocessors can be also evaluated, as well as other ways of locally dispensing them, such as stamping. In any case, the goal is to obtain an integration route for the heat exchanger, without which no workable ∆T would be possible in such miniaturized devices, that is prone to the automatic handling of the involved chips and it is compatible with their dimensional and mechanical endurance constraints.
With this chapter, the authors have tried to show the challenges to sort out when fabricating microgenerators (μTEGs) with planar silicon technologies. Such technologies offer a cost effective way of mass-production of miniaturized devices. However, the very nature of such technologies, the high thermal conductivity of bulk silicon and the typical thickness of the layers involved advises using silicon micromachining to enable areas of lateral thermal contrast. Such transversal architectures helps to translate naturally occurring vertical thermal gradients into internal lateral ones. In this way, a temperature difference will develop across a horizontally and self-standing laid thermoelectric material whose length is a design parameter. A material properties trade-off ensues: the longer the material, the higher its thermal resistance, increasing the attainable ΔT and the obtained Seebeck voltage, but the larger will be its electrical resistance, reducing the power obtainable from that voltage. In addition, it has been shown that the overall attainable ΔT is heavily influenced by the very poor heat exchange capabilities with the environment of small bare surfaces. Simulations and experiments show that the presence of a heat exchanger largely increase the effective ΔT, but brings into play interesting heterogeneous integration challenges still to be fully solved in terms of an effective but gentle attachment of an intermediate adapter that needs to be designed ad hoc for proper heat flow handling. The presence of the heat exchanger also affects the tilting point of the previously mentioned thermal/electrical trade-off, and thus on the final choice of materials. In the examples given, silicon-based materials have been used (silicon microbeams, silicon and silicon germanium nanowires), but similar structures could be devised for instance for any thermoelectric material in thin film form.
This manuscript contains work supported by projects FP7-NMP-2013-SMALL-7 (Contract n. 604169) SiNERGY, TEC2016-78284-C3-1-R (AEI/FEDER, EU) MINAUTO and TEC2016-78284-C3-2-R (AEI/FEDER, EU) SIGGNAL. This research has made use of the infrastructure of the Spanish ICTS Network MICRONANOFABS (CNM site) partially supported by MINECO. I. Donmez-Noyan thanks the ‘Programa de Doctorat en Ciència de Materials de la UAB’ for the support in her formative activities.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6581},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12507},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12507},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"11434",title:"Indigenous Populations - Perspectives From Scholars and Practitioners in Contemporary Times",subtitle:null,isOpenForSubmission:!0,hash:"c0d1c1c93a36fd9d726445966316a373",slug:null,bookSignature:"Dr. Sylvanus Gbendazhi Barnabas",coverURL:"https://cdn.intechopen.com/books/images_new/11434.jpg",editedByType:null,editors:[{id:"293764",title:"Dr.",name:"Sylvanus",surname:"Barnabas",slug:"sylvanus-barnabas",fullName:"Sylvanus Barnabas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11440",title:"Aggression and Violent Behaviour",subtitle:null,isOpenForSubmission:!0,hash:"7f1d671b6a9e4df140f63d940ee2a1e1",slug:null,bookSignature:"Dr. Catherine Athanasiadou-Lewis",coverURL:"https://cdn.intechopen.com/books/images_new/11440.jpg",editedByType:null,editors:[{id:"287692",title:"Dr.",name:"Catherine",surname:"Lewis",slug:"catherine-lewis",fullName:"Catherine Lewis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11441",title:"Psychometrics - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"c0fb1dfb98e0ae76496610595407145e",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/11441.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11443",title:"Empathy - Advanced Research and Applications",subtitle:null,isOpenForSubmission:!0,hash:"4c1042dfe15aa9cea6019524c4cbff38",slug:null,bookSignature:"Ph.D. Sara Ventura",coverURL:"https://cdn.intechopen.com/books/images_new/11443.jpg",editedByType:null,editors:[{id:"227763",title:"Ph.D.",name:"Sara",surname:"Ventura",slug:"sara-ventura",fullName:"Sara Ventura"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11444",title:"Happiness - Biopsychosocial and Anthropological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"fa84e7fc3611e5428e070239dcf5a93f",slug:null,bookSignature:"Dr. Floriana Irtelli and Prof. Fabio Gabrielli",coverURL:"https://cdn.intechopen.com/books/images_new/11444.jpg",editedByType:null,editors:[{id:"174641",title:"Dr.",name:"Floriana",surname:"Irtelli",slug:"floriana-irtelli",fullName:"Floriana Irtelli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11478",title:"Recent Advances in the Study of Dyslexia",subtitle:null,isOpenForSubmission:!0,hash:"26764a18c6b776698823e0e1c3022d2f",slug:null,bookSignature:"Prof. Jonathan Glazzard",coverURL:"https://cdn.intechopen.com/books/images_new/11478.jpg",editedByType:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11777",title:"LGBT Communities",subtitle:null,isOpenForSubmission:!0,hash:"e08bb222c250dcebf093b7ab595a14a7",slug:null,bookSignature:"Dr. Deborah Woodman",coverURL:"https://cdn.intechopen.com/books/images_new/11777.jpg",editedByType:null,editors:[{id:"463750",title:"Dr.",name:"Deborah",surname:"Woodman",slug:"deborah-woodman",fullName:"Deborah Woodman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11781",title:"Family Therapy - Recent Advances in Clinical and Crisis Settings",subtitle:null,isOpenForSubmission:!0,hash:"8c5b7d5e4233594de70d2f830209b757",slug:null,bookSignature:"Dr. Oluwatoyin Olatundun Ilesanmi",coverURL:"https://cdn.intechopen.com/books/images_new/11781.jpg",editedByType:null,editors:[{id:"440049",title:"Dr.",name:"Oluwatoyin Olatundun",surname:"Ilesanmi",slug:"oluwatoyin-olatundun-ilesanmi",fullName:"Oluwatoyin Olatundun Ilesanmi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11782",title:"Personality Traits - The Role in Psychopathology",subtitle:null,isOpenForSubmission:!0,hash:"d3a491e5194cad4c59b900dd57a11842",slug:null,bookSignature:" Vladimir V. Kalinin",coverURL:"https://cdn.intechopen.com/books/images_new/11782.jpg",editedByType:null,editors:[{id:"31572",title:null,name:"Vladimir V.",surname:"Kalinin",slug:"vladimir-v.-kalinin",fullName:"Vladimir V. Kalinin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11783",title:"Motivation and Success",subtitle:null,isOpenForSubmission:!0,hash:"f660b7cd35b9af94bdfc3564df138161",slug:null,bookSignature:"Dr. Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/11783.jpg",editedByType:null,editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12109",title:"Occupational Stress",subtitle:null,isOpenForSubmission:!0,hash:"2dc8ab0bc980393022adbacd9a23d219",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12109.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:20},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:16},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"15",title:"Mathematics",slug:"mathematics",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:63,numberOfSeries:0,numberOfAuthorsAndEditors:1070,numberOfWosCitations:842,numberOfCrossrefCitations:692,numberOfDimensionsCitations:1273,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"15",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10474",title:"Recent Developments in the Solution of Nonlinear Differential Equations",subtitle:null,isOpenForSubmission:!1,hash:"2c2ede74fb69da638858683eca553cd2",slug:"recent-developments-in-the-solution-of-nonlinear-differential-equations",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10474.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9965",title:"Computational Optimization Techniques and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d2c7d240aed947e7780605dab6dde1c3",slug:"computational-optimization-techniques-and-applications",bookSignature:"Muhammad Sarfraz and Samsul Ariffin Abdul Karim",coverURL:"https://cdn.intechopen.com/books/images_new/9965.jpg",editedByType:"Edited by",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!1,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:"advances-in-dynamical-systems-theory-models-algorithms-and-applications",bookSignature:"Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:"Edited by",editors:[{id:"92921",title:"Dr.",name:"Bruno",middleName:null,surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9325",title:"Mathematical Theorems",subtitle:"Boundary Value Problems and Approximations",isOpenForSubmission:!1,hash:"38c88a4ec0ff6c0184a6694c21ddedc5",slug:"mathematical-theorems-boundary-value-problems-and-approximations",bookSignature:"Lyudmila Alexeyeva",coverURL:"https://cdn.intechopen.com/books/images_new/9325.jpg",editedByType:"Edited by",editors:[{id:"232525",title:"Prof.",name:"Lyudmila",middleName:"Alexeyevna",surname:"Alexeyeva",slug:"lyudmila-alexeyeva",fullName:"Lyudmila Alexeyeva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8241",title:"Novel Trends in the Traveling Salesman Problem",subtitle:null,isOpenForSubmission:!1,hash:"b673e3dadd9d6bc4d1ae0e14521c3aeb",slug:"novel-trends-in-the-traveling-salesman-problem",bookSignature:"Donald Davendra and Magdalena Bialic-Davendra",coverURL:"https://cdn.intechopen.com/books/images_new/8241.jpg",editedByType:"Edited by",editors:[{id:"2961",title:"Prof.",name:"Donald",middleName:null,surname:"Davendra",slug:"donald-davendra",fullName:"Donald Davendra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8521",title:"Multicriteria Optimization",subtitle:"Pareto-Optimality and Threshold-Optimality",isOpenForSubmission:!1,hash:"05baea741edde509bab2259dad7f6384",slug:"multicriteria-optimization-pareto-optimality-and-threshold-optimality",bookSignature:"Nodari Vakhania and Frank Werner",coverURL:"https://cdn.intechopen.com/books/images_new/8521.jpg",editedByType:"Edited by",editors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8142",title:"Number Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"90d1376ab2f3b8554ef8002ddf380da0",slug:"number-theory-and-its-applications",bookSignature:"Cheon Seoung Ryoo",coverURL:"https://cdn.intechopen.com/books/images_new/8142.jpg",editedByType:"Edited by",editors:[{id:"230100",title:"Prof.",name:"Cheon Seoung",middleName:null,surname:"Ryoo",slug:"cheon-seoung-ryoo",fullName:"Cheon Seoung Ryoo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7428",title:"Advances on Tensor Analysis and their Applications",subtitle:null,isOpenForSubmission:!1,hash:"2339ac5eb978557d01451489e961b102",slug:"advances-on-tensor-analysis-and-their-applications",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/7428.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9218",title:"Bayesian Inference on Complicated Data",subtitle:null,isOpenForSubmission:!1,hash:"5cf83c23db5b0ae47192d34ec8091162",slug:"bayesian-inference-on-complicated-data",bookSignature:"Niansheng Tang",coverURL:"https://cdn.intechopen.com/books/images_new/9218.jpg",editedByType:"Edited by",editors:[{id:"221831",title:"Prof.",name:"Niansheng",middleName:null,surname:"Tang",slug:"niansheng-tang",fullName:"Niansheng Tang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:63,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"59209",doi:"10.5772/intechopen.73690",title:"Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials",slug:"utilization-of-response-surface-methodology-in-optimization-of-extraction-of-plant-materials",totalDownloads:5289,totalCrossrefCites:47,totalDimensionsCites:76,abstract:"Experimental design plays an important role in several areas of science and industry. Experimentation is an application of treatments applied to experimental units and is then part of a scientific method based on the measurement of one or more responses. It is necessary to observe the process and the operation of the system well. For this reason, in order to obtain a final result, an experimenter must plan and design experiments and analyzes the results. One of the most commonly used experimental designs for optimization is the response surface methodology (RSM). Because it allows evaluating the effects of multiple factors and their interactions on one or more response variables it is a useful method. In this section, recent studies have been compiled which aim to extraction of plant material in high yield and quality and determine optimum conditions for this extraction process.",book:{id:"5856",slug:"statistical-approaches-with-emphasis-on-design-of-experiments-applied-to-chemical-processes",title:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes",fullTitle:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes"},signatures:"Alev Yüksel Aydar",authors:[{id:"218870",title:"Dr.",name:"Alev Yüksel",middleName:null,surname:"Aydar",slug:"alev-yuksel-aydar",fullName:"Alev Yüksel Aydar"}]},{id:"56460",doi:"10.5772/intechopen.69501",title:"Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes",slug:"application-of-taguchi-based-design-of-experiments-for-industrial-chemical-processes",totalDownloads:3157,totalCrossrefCites:23,totalDimensionsCites:47,abstract:"Design of experiment is the method, which is used at a very large scale to study the experimentations of industrial processes. It is a statically approach where we develop the mathematical models through experimental trial runs to predict the possible output on the basis of the given input data or parameters. The aim of this chapter is to stimulate the engineering community to apply Taguchi technique to experimentation, the design of experiments, and to tackle quality problems in industrial chemical processes that they deal with. Based on years of research and applications, Dr. G. Taguchi has standardized the methods for each of these DOE application steps. Thus, DOE using Taguchi approach has become a much more attractive tool to practicing engineers and scientists. And since the last four decades, there were limitations when conventional experimental design techniques were applied to industrial experimentation. And Taguchi, also known as orthogonal array design, adds a new dimension to conventional experimental design. Taguchi method is a broadly accepted method of DOE, which has proven in producing high-quality products at subsequently low cost.",book:{id:"5856",slug:"statistical-approaches-with-emphasis-on-design-of-experiments-applied-to-chemical-processes",title:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes",fullTitle:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes"},signatures:"Rahul Davis and Pretesh John",authors:[{id:"199438",title:"Mr.",name:"Rahul",middleName:null,surname:"Davis",slug:"rahul-davis",fullName:"Rahul Davis"}]},{id:"14634",doi:"10.5772/15998",title:"The Application of FT-IR Spectroscopy in Waste Management",slug:"the-application-of-ft-ir-spectroscopy-in-waste-management",totalDownloads:6613,totalCrossrefCites:18,totalDimensionsCites:34,abstract:null,book:{id:"1574",slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",title:"Fourier Transforms",fullTitle:"Fourier Transforms - New Analytical Approaches and FTIR Strategies"},signatures:"Ena Smidt, Katharina Böhm and Manfred Schwanninger",authors:[{id:"20376",title:"Dr.",name:"Katharina",middleName:null,surname:"Böhm",slug:"katharina-bohm",fullName:"Katharina Böhm"},{id:"22840",title:"Dr.",name:"Ena",middleName:null,surname:"Smidt",slug:"ena-smidt",fullName:"Ena Smidt"},{id:"22915",title:"Dr.",name:"Manfred",middleName:null,surname:"Schwanninger",slug:"manfred-schwanninger",fullName:"Manfred Schwanninger"}]},{id:"15157",doi:"10.5772/15959",title:"Fourier Transform Mass Spectrometry for the Molecular Level Characterization of Natural Organic Matter: Instrument Capabilities, Applications, and Limitations",slug:"fourier-transform-mass-spectrometry-for-the-molecular-level-characterization-of-natural-organic-matt",totalDownloads:4317,totalCrossrefCites:6,totalDimensionsCites:33,abstract:null,book:{id:"122",slug:"fourier-transforms-approach-to-scientific-principles",title:"Fourier Transforms",fullTitle:"Fourier Transforms - Approach to Scientific Principles"},signatures:"Rachel L. Sleighter and Patrick G. Hatcher",authors:[{id:"22676",title:"Dr.",name:"Rachel L.",middleName:null,surname:"Sleighter",slug:"rachel-l.-sleighter",fullName:"Rachel L. Sleighter"},{id:"23168",title:"Dr.",name:"Patrick G.",middleName:null,surname:"Hatcher",slug:"patrick-g.-hatcher",fullName:"Patrick G. Hatcher"}]},{id:"60097",doi:"10.5772/intechopen.75381",title:"Robust Optimization: Concepts and Applications",slug:"robust-optimization-concepts-and-applications",totalDownloads:2509,totalCrossrefCites:21,totalDimensionsCites:28,abstract:"Robust optimization is an emerging area in research that allows addressing different optimization problems and specifically industrial optimization problems where there is a degree of uncertainty in some of the variables involved. There are several ways to apply robust optimization and the choice of form is typical of the problem that is being solved. In this paper, the basic concepts of robust optimization are developed, the different types of robustness are defined in detail, the main areas in which it has been applied are described and finally, the future lines of research that appear in this area are included.",book:{id:"6587",slug:"nature-inspired-methods-for-stochastic-robust-and-dynamic-optimization",title:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization",fullTitle:"Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization"},signatures:"José García and Alvaro Peña",authors:[{id:"227809",title:"Ph.D.",name:"Jose",middleName:null,surname:"Garcia",slug:"jose-garcia",fullName:"Jose Garcia"},{id:"240407",title:"Dr.",name:"Alvaro",middleName:null,surname:"Peña",slug:"alvaro-pena",fullName:"Alvaro Peña"}]}],mostDownloadedChaptersLast30Days:[{id:"59209",title:"Utilization of Response Surface Methodology in Optimization of Extraction of Plant Materials",slug:"utilization-of-response-surface-methodology-in-optimization-of-extraction-of-plant-materials",totalDownloads:5300,totalCrossrefCites:47,totalDimensionsCites:76,abstract:"Experimental design plays an important role in several areas of science and industry. Experimentation is an application of treatments applied to experimental units and is then part of a scientific method based on the measurement of one or more responses. It is necessary to observe the process and the operation of the system well. For this reason, in order to obtain a final result, an experimenter must plan and design experiments and analyzes the results. One of the most commonly used experimental designs for optimization is the response surface methodology (RSM). Because it allows evaluating the effects of multiple factors and their interactions on one or more response variables it is a useful method. In this section, recent studies have been compiled which aim to extraction of plant material in high yield and quality and determine optimum conditions for this extraction process.",book:{id:"5856",slug:"statistical-approaches-with-emphasis-on-design-of-experiments-applied-to-chemical-processes",title:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes",fullTitle:"Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes"},signatures:"Alev Yüksel Aydar",authors:[{id:"218870",title:"Dr.",name:"Alev Yüksel",middleName:null,surname:"Aydar",slug:"alev-yuksel-aydar",fullName:"Alev Yüksel Aydar"}]},{id:"74096",title:"Time Frequency Analysis of Wavelet and Fourier Transform",slug:"time-frequency-analysis-of-wavelet-and-fourier-transform",totalDownloads:1158,totalCrossrefCites:6,totalDimensionsCites:8,abstract:"Signal processing has long been dominated by the Fourier transform. However, there is an alternate transform that has gained popularity recently and that is the wavelet transform. The wavelet transform has a long history starting in 1910 when Alfred Haar created it as an alternative to the Fourier transform. In 1940 Norman Ricker created the first continuous wavelet and proposed the term wavelet. Work in the field has proceeded in fits and starts across many different disciplines, until the 1990’s when the discrete wavelet transform was developed by Ingrid Daubechies. While the Fourier transform creates a representation of the signal in the frequency domain, the wavelet transform creates a representation of the signal in both the time and frequency domain, thereby allowing efficient access of localized information about the signal.",book:{id:"10065",slug:"wavelet-theory",title:"Wavelet Theory",fullTitle:"Wavelet Theory"},signatures:"Karlton Wirsing",authors:[{id:"325178",title:"Dr.",name:"Karlton",middleName:null,surname:"Wirsing",slug:"karlton-wirsing",fullName:"Karlton Wirsing"}]},{id:"60864",title:"Statistical Methodology for Evaluating Business Cycles with the Conditions of Their Synchronization and Harmonization",slug:"statistical-methodology-for-evaluating-business-cycles-with-the-conditions-of-their-synchronization-",totalDownloads:1288,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"The importance of the topic of business cycle research and their interaction is due to the fact that the cyclical nature of development is a universal feature of the market economy (regardless of the level of development of the country’s economy and the principles of its organization). In all cases, cyclical ups and downs depend not only on internal system cyclical processes and their factors in countries but also on the consequences of intercountry interaction. The ability to measure and predict business cycles, taking into account their mutual influence, is a prerequisite for the development of an adequate business policy of countries and their associations.",book:{id:"6703",slug:"statistics-growing-data-sets-and-growing-demand-for-statistics",title:"Statistics",fullTitle:"Statistics - Growing Data Sets and Growing Demand for Statistics"},signatures:"Elena Zarova",authors:null},{id:"54366",title:"Solution of Differential Equations with Applications to Engineering Problems",slug:"solution-of-differential-equations-with-applications-to-engineering-problems",totalDownloads:6750,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Over the last hundred years, many techniques have been developed for the solution of ordinary differential equations and partial differential equations. While quite a major portion of the techniques is only useful for academic purposes, there are some which are important in the solution of real problems arising from science and engineering. In this chapter, only very limited techniques for solving ordinary differential and partial differential equations are discussed, as it is impossible to cover all the available techniques even in a book form. The readers are then suggested to pursue further studies on this issue if necessary. After that, the readers are introduced to two major numerical methods commonly used by the engineers for the solution of real engineering problems.",book:{id:"5513",slug:"dynamical-systems-analytical-and-computational-techniques",title:"Dynamical Systems",fullTitle:"Dynamical Systems - Analytical and Computational Techniques"},signatures:"Cheng Yung Ming",authors:[{id:"191017",title:"Dr.",name:"Cheng",middleName:null,surname:"Y.M.",slug:"cheng-y.m.",fullName:"Cheng Y.M."}]},{id:"56538",title:"Stochastic Resonance and Related Topics",slug:"stochastic-resonance-and-related-topics",totalDownloads:1675,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The stochastic resonance (SR) is the phenomenon which can emerge in nonlinear dynamic systems. In general, it is related with a bistable nonlinear system of Duffing type under additive excitation combining deterministic periodic force and Gaussian white noise. It manifests as a stable quasiperiodic interwell hopping between both stable states with a small random perturbation. Classical definition and basic features of SR are regarded. The most important methods of investigation outlined are: analytical, semi-analytical, and numerical procedures of governing physical systems or relevant Fokker-Planck equation. Stochastic simulation is mentioned and experimental way of results verification is recommended. Some areas in Engineering Dynamics related with SR are presented together with a particular demonstration observed in the aeroelastic stability. Interaction of stationary and quasiperiodic parts of the response is discussed. Some nonconventional definitions are outlined concerning alternative operators and driving processes are highlighted. The chapter shows a large potential of specific basic, applied and industrial research in SR. This strategy enables to formulate new ideas for both development of nonconventional measures for vibration damping and employment of SR in branches, where it represents an operating mode of the system itself. Weaknesses and empty areas where the research effort of SR should be oriented are indicated.",book:{id:"6128",slug:"resonance",title:"Resonance",fullTitle:"Resonance"},signatures:"Jiří Náprstek and Cyril Fischer",authors:[{id:"207472",title:"Dr.",name:"Jiri",middleName:null,surname:"Naprstek",slug:"jiri-naprstek",fullName:"Jiri Naprstek"},{id:"213311",title:"Dr.",name:"Cyril",middleName:null,surname:"Fischer",slug:"cyril-fischer",fullName:"Cyril Fischer"}]}],onlineFirstChaptersFilter:{topicId:"15",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81784",title:"Practical and Optimal Crossover Designs for Clinical Trials",slug:"practical-and-optimal-crossover-designs-for-clinical-trials",totalDownloads:0,totalDimensionsCites:0,doi:"10.5772/intechopen.104694",abstract:"Crossover designs have received great attention in clinical trials, as they allow subjects to serve as their own controls and gain such advantage as higher efficiency and smaller sample size over parallel designs, because the within-subject variability is in general smaller than between-subject variability. Response-adaptive crossover designs allow clinical trials to adapt and respond to the information acquired during the trials to achieve various objectives. Adaptive designs have been considered to allocate more subjects to superior treatments, improve statistical efficiency, reduce the sample size for cost savings, increase the sample size to maintain prespecified statistical power, or include auxiliary information. We focus on an adaptive allocation scheme to maximize the benefits from superior treatments, while maintaining a sufficiently high level of statistical efficiency, controlled by a suitable weight parameter. We review and discuss the strategy of incorporating multiple objectives, while advocating a regression type estimation approach via the Generalized Estimating Equations method. We show that the multiple objectives can be successfully incorporated to construct a spectrum of designs, ranging over various efficiencies and trial outcomes of success. Moreover, the adaptive allocation scheme successfully constructs designs with a desired efficiency, as illustrated by practical two- and three-period designs.",book:{id:"10678",title:"Biostatistics",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg"},signatures:"Su Hwan Kim and Keumhee Chough Carriere"},{id:"81710",title:"Spatial Modeling in Epidemiology",slug:"spatial-modeling-in-epidemiology",totalDownloads:5,totalDimensionsCites:0,doi:"10.5772/intechopen.104693",abstract:"The objective of this chapter is to present the methodology of some of the models used in the area of epidemiology, which are used to study, understand, model and predict diseases (infectious and non-infectious) occurring in a given region. These models, which belong to the area of geostatistics, are usually composed of a fixed part and a random part. The fixed part includes the explanatory variables of the model and the random part includes, in addition to the error term, a random term that generally has a multivariate Gaussian distribution. Based on the random effect, the spatial correlation (or covariance) structure of the data will be explained. In this way, the spatial variability of the data in the region of interest is accounted for, thus avoiding that this information is added to the model error term. The chapter begins by introducing Gaussian processes, and then looks at their inclusion in generalized spatial linear models, spatial survival analysis and finally in the generalized extreme value distribution for spatial data. The review also mentions some of the main packages that exist in the R statistical software and that help with the implementation of the mentioned spatial models.",book:{id:"10678",title:"Biostatistics",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg"},signatures:"María Guzmán Martínez, Eduardo Pérez-Castro, Ramón Reyes-Carreto and Rocio Acosta-Pech"},{id:"81608",title:"Matrix as an Alternative Solution for Evaluating Sentence Reordering Tasks",slug:"matrix-as-an-alternative-solution-for-evaluating-sentence-reordering-tasks",totalDownloads:13,totalDimensionsCites:0,doi:"10.5772/intechopen.102868",abstract:"Although sentence reordering is a popular practice in educational contexts its scoring method has virtually remained ‘all-or-nothing’. The author proposed a more psychologically valid means of partial scoring called MRS (Maximal Relative Sequence) where a point is counted for each ascending run in the answer sequence allowing gaps and the final score reflects the length of the longest sequence of ascending elements. This scoring method, together with an additional consideration of recovery distances, was woven into an executable programme, and then transplanted to Excel without having to understand a programming language. However, the use of Excel was severely limited by the number of columns available. This chapter reviews the past practices of evaluating partial scoring of reordering tasks and proposes an alternative solution LM (Linearity Matrix), also executable on Excel, with far smaller consumption of columns and with the idea of calculating the recovery distances as well as MRS scores. Although LM and MRS are different scoring procedures, they both reflect psychological complexity of the task involved. Furthermore, LM is versatile as to the adjustability of adjacency weights as an extended model of Kendall’s tau. Some reflections on practical application are referred to as well as future directions of the study.",book:{id:"11151",title:"Matrix Theory - Classics and Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11151.jpg"},signatures:"Amma Kazuo"},{id:"81531",title:"Bayesian Inference as a Tool to Optimize Spectral Acquisition in Scattering Experiments",slug:"bayesian-inference-as-a-tool-to-optimize-spectral-acquisition-in-scattering-experiments",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.103850",abstract:"Nowadays, an increasing number of scattering measurements rely on the use of large-scale research facilities, which is usually granted after highly competitive peer-reviewing and typically for short-time lapses. The optimal use of the allocated time requires rigorous estimates on the reliability of the data analysis, as inferred from the limited statistical accuracy of the measurement. Bayesian inference approaches can significantly help this endeavor by providing investigators with much-needed guidance under challenging decisions on experimental time management. We propose here a method based on the real-time data analysis of running experiments, which fully exploits the core strengths of Bayes theorem. The procedure is implemented in sequential steps in which the spectral measurement is adjourned by summing to it successive acquisition runs, and the spectral modeling is upgraded accordingly. At each stage, the statistical accuracy of the measurement improves, and a more grounded joint posterior distribution is drawn and used as a prior in the subsequent data acquisition stage. The gradual reduction in the model parameters’ uncertainty down to the targets set a priori by experimenters provides a quantitative “success criterion,” which helps prevent oversampling during acquisition. A similar “on the fly” data modeling, might substantially change the way large-scale facilities operate.",book:{id:"11152",title:"Bayesian Inference",coverURL:"https://cdn.intechopen.com/books/images_new/11152.jpg"},signatures:"Alessio De Francesco, Luisa Scaccia, Martin Bohem and Alessandro Cunsolo"},{id:"81492",title:"Clustering Network Data Using Mixed Integer Linear Programming",slug:"clustering-network-data-using-mixed-integer-linear-programming",totalDownloads:23,totalDimensionsCites:0,doi:"10.5772/intechopen.104760",abstract:"Network clustering provides insights into relational data and feeds certain machine learning pipelines. We present five integer or mixed-integer linear programming formulations from literature for a crisp clustering. The first four clustering models employ an undirected, unweighted network; the last one employs a signed network. All models are coded in Python and solved using Gurobi solver. Codes for one of the models are explained. All codes and datasets are made available. The aim of this chapter is to compare some of the integer or mixed-integer programming network clustering models and to provide access to Python codes to replicate the results. Mathematical programming formulations are provided, and experiments are run on two different datasets. Results are reported in terms of computational times and the best number of clusters. The maximum diameter minimization model forms compact clusters including members with a dominant affiliation. The model generates a few clusters with relatively larger size. Additional constraints can be included to force bounds on the cluster size. The NP-hard nature of the problem limits the size of the dataset, and one of the models is terminated after 6 days. The models are not practical for networks with hundreds of nodes and thousands of edges or more. However, the diversity of models suggests different practical applications in social sciences.",book:{id:"10676",title:"Recent Applications in Graph Theory",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg"},signatures:"Harun Pirim, Amin Aghalari and Mohammad Marufuzzaman"},{id:"81490",title:"Quaternion MPCEP, CEPMP, and MPCEPMP Generalized Inverses",slug:"quaternion-mpcep-cepmp-and-mpcepmp-generalized-inverses",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.103087",abstract:"A generalized inverse of a matrix is an inverse in some sense for a wider class of matrices than invertible matrices. Generalized inverses exist for an arbitrary matrix and coincide with a regular inverse for invertible matrices. The most famous generalized inverses are the Moore–Penrose inverse and the Drazin inverse. Recently, new generalized inverses were introduced, namely the core inverse and its generalizations. Among them, there are compositions of the Moore–Penrose and core inverses, MPCEP (or MP–Core–EP) and EPCMP (or EP–Core–MP) inverses. In this chapter, the notions of the MPCEP inverse and CEPMP inverse are expanded to quaternion matrices and introduced new generalized inverses, the right and left MPCEPMP inverses. Direct method of their calculations, that is, their determinantal representations are obtained within the framework of theory of quaternion row-column determinants previously developed by the author. In consequence, these determinantal representations are derived in the case of complex matrices.",book:{id:"11151",title:"Matrix Theory - Classics and Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11151.jpg"},signatures:"Ivan I. Kyrchei"}],onlineFirstChaptersTotal:47},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:9,paginationItems:[{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus Between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",hash:"2bd98244cd9eda2107f01824584c1eb4",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"March 17th 2022",isOpenForSubmission:!0,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:0,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81533",title:"Prenylation of Natural Products: An Overview",doi:"10.5772/intechopen.104636",signatures:"Kantharaju Kamanna and Aravind Kamath",slug:"prenylation-of-natural-products-an-overview",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kantharaju",surname:"Kamanna"}],book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:44,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81188",title:"Structure- and Design-Based Difficulties in Recombinant Protein Purification in Bacterial Expression",doi:"10.5772/intechopen.103958",signatures:"Kubra Acikalin Coskun, Nazlıcan Yurekli, Elif Cansu Abay, Merve Tutar, Mervenur Al and Yusuf Tutar",slug:"structure-and-design-based-difficulties-in-recombinant-protein-purification-in-bacterial-expression",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Yusuf",surname:"Tutar"},{name:"Nazlican",surname:"Yurekli"},{name:"Merve",surname:"Tutar"},{name:"Mervenur",surname:"Al"},{name:"Elif Cansu",surname:"Abay"},{name:"Kubra",surname:"Acikalin Coskun"}],book:{title:"Protein Detection",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",subseries:{id:"18",title:"Proteomics"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:8,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:19,group:"subseries"}],publishedBooks:{paginationCount:8,paginationItems:[{type:"book",id:"10859",title:"Data Mining",subtitle:"Concepts and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10859.jpg",slug:"data-mining-concepts-and-applications",publishedDate:"March 30th 2022",editedByType:"Edited by",bookSignature:"Ciza Thomas",hash:"63a4e514e537d3962cf53ef1c6b9d5eb",volumeInSeries:8,fullTitle:"Data Mining - Concepts and Applications",editors:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",slug:"ciza-thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10651",title:"Machine Learning",subtitle:"Algorithms, Models and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10651.jpg",slug:"machine-learning-algorithms-models-and-applications",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Jaydip Sen",hash:"6208156401c496e0a4ca5ff4265324cc",volumeInSeries:7,fullTitle:"Machine Learning - Algorithms, Models and Applications",editors:[{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",institutionString:"Praxis Business School",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",institutionString:"Tecnalia Research & Innovation",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Evolutionary Computation",value:25,count:1},{group:"subseries",caption:"Machine Learning and Data Mining",value:26,count:3},{group:"subseries",caption:"Applied Intelligence",value:22,count:4}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:2},{group:"publicationYear",caption:"2019",value:2019,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"81493",title:"Rust Disease Classification Using Deep Learning Based Algorithm: The Case of Wheat",doi:"10.5772/intechopen.104426",signatures:"Shivani Sood, Harjeet Singh and Suruchi Jindal",slug:"rust-disease-classification-using-deep-learning-based-algorithm-the-case-of-wheat",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81428",title:"Observatory of Sustainable Development in Postgraduate Study Programs in Baja California",doi:"10.5772/intechopen.104641",signatures:"Rodolfo Martinez-Gutierrez, Maria Marcela Solis-Quinteros, Maria Esther Ibarra-Estrada and Angel Ernesto Jimenez-Bernardino",slug:"observatory-of-sustainable-development-in-postgraduate-study-programs-in-baja-california",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"81235",title:"Global Food System Transformation for Resilience",doi:"10.5772/intechopen.102749",signatures:"Jasper Okoro Godwin Elechi, Ikechukwu U. Nwiyi and Cornelius Smah Adamu",slug:"global-food-system-transformation-for-resilience",totalDownloads:30,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80749",title:"Analysis of the Nexus Between Coping Strategies and Resilience to Food Insecurity Shocks: The Case of Rural Households in Boricha Woreda, Sidama National Regional State, Ethiopia",doi:"10.5772/intechopen.102613",signatures:"Adane Atara Debessa, Degefa Tolossa and Berhanu Denu",slug:"analysis-of-the-nexus-between-coping-strategies-and-resilience-to-food-insecurity-shocks-the-case-of",totalDownloads:45,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80753",title:"Toward Safe Food Systems: Analyses of Mycotoxin Contaminants in Food and Preventive Strategies Thereof for Their Formation and Toxicity",doi:"10.5772/intechopen.101461",signatures:"Dikabo Mogopodi, Mesha Mbisana, Samuel Raditloko, Inonge Chibua and Banyaladzi Paphane",slug:"toward-safe-food-systems-analyses-of-mycotoxin-contaminants-in-food-and-preventive-strategies-thereo",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80388",title:"Social Resilience in Local Food Systems: A Foundation for Food Security during a Crisis",doi:"10.5772/intechopen.101998",signatures:"Tanya Zerbian, Mags Adams and Neil Wilson",slug:"social-resilience-in-local-food-systems-a-foundation-for-food-security-during-a-crisis",totalDownloads:52,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"80098",title:"Bundling Weather Index Insurance with Microfinance: Trekking the Long Road between Expectations and Reality. A Study on Sub-Saharan Africa",doi:"10.5772/intechopen.101742",signatures:"Dorcas Stella Shumba",slug:"bundling-weather-index-insurance-with-microfinance-trekking-the-long-road-between-expectations-and-r",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"79696",title:"How to Build Food Safety Resilience in Commercial Restaurants?",doi:"10.5772/intechopen.101481",signatures:"Rayane Stephanie Gomes De Freitas and Elke Stedefeldt",slug:"how-to-build-food-safety-resilience-in-commercial-restaurants",totalDownloads:107,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"79604",title:"Perspective Chapter: Food System Resilience - Towards a Joint Understanding and Implications for Policy",doi:"10.5772/intechopen.99899",signatures:"Bart de Steenhuijsen Piters, Emma Termeer, Deborah Bakker, Hubert Fonteijn and Herman Brouwer",slug:"perspective-chapter-food-system-resilience-towards-a-joint-understanding-and-implications-for-policy",totalDownloads:121,totalCrossrefCites:1,totalDimensionsCites:2,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},publishedBooks:{paginationCount:10,paginationItems:[{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8094",title:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8094.jpg",slug:"aflatoxin-b1-occurrence-detection-and-toxicological-effects",publishedDate:"June 3rd 2020",editedByType:"Edited by",bookSignature:"Xi-Dai Long",hash:"44f4ad52d8a8cbb22ef3d505d6b18027",volumeInSeries:14,fullTitle:"Aflatoxin B1 Occurrence, Detection and Toxicological Effects",editors:[{id:"202142",title:"Prof.",name:"Xi-Dai",middleName:null,surname:"Long",slug:"xi-dai-long",fullName:"Xi-Dai Long",profilePictureURL:"https://mts.intechopen.com/storage/users/202142/images/system/202142.jpeg",institutionString:"Youjiang Medical University for Nationalities",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8004",title:"Nitrogen Fixation",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8004.jpg",slug:"nitrogen-fixation",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Everlon Cid Rigobelo and Ademar Pereira Serra",hash:"02f39c8365ba155d1c520184c2f26976",volumeInSeries:11,fullTitle:"Nitrogen Fixation",editors:[{id:"39553",title:"Prof.",name:"Everlon",middleName:"Cid",surname:"Rigobelo",slug:"everlon-rigobelo",fullName:"Everlon Rigobelo",profilePictureURL:"https://mts.intechopen.com/storage/users/39553/images/system/39553.jpg",institutionString:"São Paulo State University",institution:{name:"Sao Paulo State University",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8028",title:"Flavonoids",subtitle:"A Coloring Model for Cheering up Life",coverURL:"https://cdn.intechopen.com/books/images_new/8028.jpg",slug:"flavonoids-a-coloring-model-for-cheering-up-life",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Farid A. Badria and Anthony Ananga",hash:"6c33178a5c7d2b276d2c6af4255def64",volumeInSeries:10,fullTitle:"Flavonoids - A Coloring Model for Cheering up Life",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8170",title:"Chemical Properties of Starch",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8170.jpg",slug:"chemical-properties-of-starch",publishedDate:"March 11th 2020",editedByType:"Edited by",bookSignature:"Martins Emeje",hash:"0aedfdb374631bb3a33870c4ed16559a",volumeInSeries:9,fullTitle:"Chemical Properties of Starch",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Emeje",slug:"martins-emeje",fullName:"Martins Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8019",title:"Alginates",subtitle:"Recent Uses of This Natural Polymer",coverURL:"https://cdn.intechopen.com/books/images_new/8019.jpg",slug:"alginates-recent-uses-of-this-natural-polymer",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Leonel Pereira",hash:"61ea5c1aef462684a3b2215631b7dbf2",volumeInSeries:7,fullTitle:"Alginates - Recent Uses of This Natural Polymer",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira",profilePictureURL:"https://mts.intechopen.com/storage/users/279788/images/system/279788.jpg",institutionString:"University of Coimbra",institution:{name:"University of Coimbra",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8504",title:"Pectins",subtitle:"Extraction, Purification, Characterization and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/8504.jpg",slug:"pectins-extraction-purification-characterization-and-applications",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Martin Masuelli",hash:"ff1acef627b277c575a10b3259dd331b",volumeInSeries:6,fullTitle:"Pectins - Extraction, Purification, Characterization and Applications",editors:[{id:"99994",title:"Dr.",name:"Martin",middleName:"Alberto",surname:"Masuelli",slug:"martin-masuelli",fullName:"Martin Masuelli",profilePictureURL:"https://mts.intechopen.com/storage/users/99994/images/system/99994.jpg",institutionString:"National University of San Luis",institution:{name:"National University of San Luis",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",institutionString:"Kogakuin University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 9th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:6,numberOfPublishedChapters:86,numberOfPublishedBooks:8,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},subseries:[{id:"22",title:"Applied Intelligence",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",annualVolume:11418,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13633",title:"Prof.",name:"Abdelhamid",middleName:null,surname:"Mellouk",fullName:"Abdelhamid Mellouk",profilePictureURL:"https://mts.intechopen.com/storage/users/13633/images/1567_n.jpg",institutionString:null,institution:{name:"Paris 12 Val de Marne University",institutionURL:null,country:{name:"France"}}},{id:"109268",title:"Dr.",name:"Ali",middleName:null,surname:"Al-Ataby",fullName:"Ali Al-Ataby",profilePictureURL:"https://mts.intechopen.com/storage/users/109268/images/7410_n.jpg",institutionString:null,institution:{name:"University of Liverpool",institutionURL:null,country:{name:"United Kingdom"}}},{id:"3807",title:"Dr.",name:"Carmelo",middleName:"Jose Albanez",surname:"Bastos-Filho",fullName:"Carmelo Bastos-Filho",profilePictureURL:"https://mts.intechopen.com/storage/users/3807/images/624_n.jpg",institutionString:null,institution:{name:"Universidade de Pernambuco",institutionURL:null,country:{name:"Brazil"}}},{id:"38850",title:"Dr.",name:"Efren",middleName:null,surname:"Gorrostieta Hurtado",fullName:"Efren Gorrostieta Hurtado",profilePictureURL:"https://mts.intechopen.com/storage/users/38850/images/system/38850.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},{id:"239041",title:"Prof.",name:"Yang",middleName:null,surname:"Yi",fullName:"Yang Yi",profilePictureURL:"https://mts.intechopen.com/storage/users/239041/images/system/239041.jpeg",institutionString:"Virginia Tech",institution:{name:"Virginia Tech",institutionURL:null,country:{name:"United States of America"}}}]},{id:"23",title:"Computational Neuroscience",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",annualVolume:11419,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"13818",title:"Dr.",name:"Asim",middleName:null,surname:"Bhatti",fullName:"Asim Bhatti",profilePictureURL:"https://mts.intechopen.com/storage/users/13818/images/system/13818.jpg",institutionString:null,institution:{name:"Deakin University",institutionURL:null,country:{name:"Australia"}}},{id:"151889",title:"Dr.",name:"Joao Luis Garcia",middleName:null,surname:"Rosa",fullName:"Joao Luis Garcia Rosa",profilePictureURL:"https://mts.intechopen.com/storage/users/151889/images/4861_n.jpg",institutionString:null,institution:{name:"University of Sao Paulo",institutionURL:null,country:{name:"Brazil"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",fullName:"Yalcin Isler",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",institutionURL:null,country:{name:"Turkey"}}}]},{id:"24",title:"Computer Vision",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",annualVolume:11420,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"1177",title:"Prof.",name:"Antonio",middleName:"J. R.",surname:"Neves",fullName:"Antonio Neves",profilePictureURL:"https://mts.intechopen.com/storage/users/1177/images/system/1177.jpg",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"220565",title:"Dr.",name:"Jucheng",middleName:null,surname:"Yang",fullName:"Jucheng Yang",profilePictureURL:"https://mts.intechopen.com/storage/users/220565/images/5988_n.jpg",institutionString:null,institution:{name:"Tianjin University of Technology",institutionURL:null,country:{name:"China"}}},{id:"29299",title:"Prof.",name:"Serestina",middleName:null,surname:"Viriri",fullName:"Serestina Viriri",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOalQAG/Profile_Picture_1620817405517",institutionString:null,institution:{name:"University of KwaZulu-Natal",institutionURL:null,country:{name:"South Africa"}}},{id:"315933",title:"Dr.",name:"Yalın",middleName:null,surname:"Baştanlar",fullName:"Yalın Baştanlar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002qpr7hQAA/Profile_Picture_1621430127547",institutionString:null,institution:{name:"Izmir Institute of Technology",institutionURL:null,country:{name:"Turkey"}}}]},{id:"25",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",annualVolume:11421,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer",middleName:"P.",surname:"Dadios",fullName:"Elmer Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},{id:"26",title:"Machine Learning and Data Mining",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",annualVolume:11422,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:null,institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"43680",title:"Prof.",name:"Ciza",middleName:null,surname:"Thomas",fullName:"Ciza Thomas",profilePictureURL:"https://mts.intechopen.com/storage/users/43680/images/system/43680.jpeg",institutionString:null,institution:{name:"Government of Kerala",institutionURL:null,country:{name:"India"}}},{id:"16614",title:"Prof.",name:"Juan Ignacio",middleName:null,surname:"Guerrero Alonso",fullName:"Juan Ignacio Guerrero Alonso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6HB8QAM/Profile_Picture_1627901127555",institutionString:null,institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}},{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",fullName:"Kenji Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/3095/images/1592_n.jpg",institutionString:null,institution:{name:"University of Chicago",institutionURL:null,country:{name:"United States of America"}}},{id:"214067",title:"Dr.",name:"W. David",middleName:null,surname:"Pan",fullName:"W. David Pan",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEI9QAO/Profile_Picture_1623656213532",institutionString:null,institution:{name:"University of Alabama in Huntsville",institutionURL:null,country:{name:"United States of America"}}},{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",fullName:"Yves Rybarczyk",profilePictureURL:"https://mts.intechopen.com/storage/users/72920/images/system/72920.jpeg",institutionString:"Dalarna University, Faculty of Data and Information Sciences",institution:{name:"Dalarna University",institutionURL:null,country:{name:"Sweden"}}}]},{id:"27",title:"Multi-Agent Systems",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",annualVolume:11423,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"275140",title:"Dr.",name:"Dinh Hoa",middleName:null,surname:"Nguyen",fullName:"Dinh Hoa Nguyen",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRbnKQAS/Profile_Picture_1622204093453",institutionString:null,institution:{name:"Kyushu University",institutionURL:null,country:{name:"Japan"}}},{id:"20259",title:"Dr.",name:"Hongbin",middleName:null,surname:"Ma",fullName:"Hongbin Ma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRhDJQA0/Profile_Picture_2022-05-02T08:25:21.jpg",institutionString:null,institution:{name:"Beijing Institute of Technology",institutionURL:null,country:{name:"China"}}},{id:"28640",title:"Prof.",name:"Yasushi",middleName:null,surname:"Kambayashi",fullName:"Yasushi Kambayashi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYOQxQAO/Profile_Picture_1625660525470",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/19138",hash:"",query:{},params:{id:"19138"},fullPath:"/chapters/19138",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()