Histone deacetylases.
\r\n\tThe WHO classification in 2007; was based on the histogenesis and cell origin of the tumor. In the latest classification made in 2016; to better characterize the tumor and obtain better data on its prognosis; The combination of molecular and genetic biomarkers and histopathological features of the tumor was used. Despite all current treatment approaches, the median survival time is around 12 months in most GBM patients. Compared with the situation of some types of successfully treated cancers; the survival time of GBM patients is not at an acceptable level today. In the treatment of CNS tumors; surgery, chemotherapy, and radiation treatments (x-rays, gamma rays, electron and proton beams) are used. The therapeutic potential of chemotherapy; New strategies are needed to increase drug concentration at the diseased site, as this largely depends on the ability of the chemotherapeutic agent to achieve effective concentrations at tumor localization. Based on our better understanding of the genetic and molecular characteristics of CNS tumors; Targeted therapies, including vaccines, and treatment protocols such as immunotherapy are promising developments.
\r\n\r\n\tThis book supposes to be written by many authors who have an internationally honored place in their field to share their ideas about the treatment of CNS tumors. Surgery, Radiotherapy, Chemotherapy and Antiangiogenic Therapy Protocols, Immunotherapy, Molecular Therapy, Specific target-agents therapy with Nanoparticles and Gene Therapy for CNS tumors among the book chapters.
\r\n\tIn these sections; there are many practical pieces of information that can help the students who graduated from the Medicine Faculty and specialist doctors who are interested in Neurosurgery.
Melanoma is responsible for 80% of all skin cancer deaths (Miller & Mihm, 2006), and it is the most common cause of cancer deaths between the age of 20 and 35 years old (Houghton & Polsky, 2002). Melanoma is a highly heterogeneous cancer that is caused by the accumulation of genetic and epigenetic defects allowing the cell to escape normal cellular controls. Genetic changes are caused by irreversible alterations in the DNA sequence, including chromosomal amplification or deletions and gene mutations that culminate in aberrant cellular functions, such as activation of oncogenes and inactivation of tumor suppressors. However, recent progress in cancer research has shown that epigenetic events may play a major role in establishing the correct program of gene expression. Epigenetics is defined as heritable changes in gene expression that are not due to any changes in the DNA sequence. Currently, four epigenetic drugs, vorinostat (Marks & Breslow, 2007), romidepsin (Campas-Moya, 2009), azacitidine (Mani & Herceg, 2010; Wijermans et al., 2005), and decitabine (Mani & Herceg, 2010), have been approved for the treatment of hematologic malignancies in the United States by the Food and Drug Administration (U.S. FDA).
\n\t\t\tIn a human cell, there are approximately two meters of diploid DNA that are packaged inside the nucleus with a volume of about 1000 μm3 (Kamakaka & Biggins, 2005). This packaging of DNA is facilitated by histones. Histones are a group of highly conserved, basic (positively-charged) proteins that are rich in arginine and lysine residues. This DNA-protein complex is called the chromatin. In chromatin, proteins account for more than half of the weight, from which, histone proteins being the most abundant. There are five distinct families of histones, each with numerous variants or individual genes. DNA is packaged into nucleomes comprising a histone octamer of two copies of each core histones (H2A, H2B, H3, and H4) (Luger et al., 1997). The core histones interact in pairs. Two H3:H4 dimers interact together forming a tetramer, and two H2A:H2B dimers associate with the H3:H4 tetramer to form a nucleosome. About 146 bp of DNA is wrapped around a histone octamer. One molecule of histone H1 associates at the position where the DNA enters and exits the nucleosome core, thus sealing the two turns of DNA (Luger et al., 1997).
\n\t\t\tThese core histones contain a conserved C-terminal histone fold domain and unique N-terminal tails. The histone N-terminal tails protrude from the nucleosome core and provide sites for posttranslational modifications, including acetylation, methylation, phosphorylation, and ubiquitination (Jenuwein & Allis, 2001). These distinct patterns of posttranslational modifications make up the histone code that is read by multiprotein chromatin remodelling complexes to determine the transcriptional status of the target gene (Strahl & Allis, 2000).
\n\t\tEpigenetic phenomena can be viewed as changes in the packaging and modifications of the DNA. In the case of DNA, it is modified only by methylation. Changes in the packaging of DNA include both histone modifications and chromatin remodeling. Histones can be modified by methylation, acetylation, phosphorylation, biotinylation, ubiquitination, sumoylation, and ADP-ribosylation. Lysine residues in the histone tails can be acetylated or methylated. Arginine residues can be methylated (Howell et al., 2009).
\n\t\t\tAmong all of the posttranslational modifications on histone tails, histone acetylation is among the most extensively studied. In normal cells, acetylation and deacetylation exist in equilibrium. Acetylation is a reaction that is catalyzed by histone acetyltransferases (HATs), and the deacetylation reaction is catalyzed by histone deacetylases (HDACs). These two families of enzymes regulate the delicate balance needed for maintaining the states of chromatin and chromatin dynamics (Figure 1).
\n\t\t\tAcetylation is a reversible reaction occurring on lysine residues within the N-terminal tails of core histones H3 and H4. For histone acetylation, one of the hydrogens in the free amino group of internal lysine is substituted with an acetyl (CH3CO) group. The addition of an acetyl group removes the positive charge from the NH3\n\t\t\t\t+ group on lysine, thus neutralizing the basic charge of the histone tails. This modification is suggested to reduce the affinity between histones and DNA, which, in turn, correlates with active gene expression. Acetylated histone is usually associated with transcriptionally active chromatin (Hebbes et al., 1992; Kouzarides, 2007; Turner, 1993). In addition, it is involved in many processes, such as replication, nucleosome assembly, higher-order chromatin packing and interactions of nonhistone proteins (Grant & Berger, 1999). Lysine at amino acid positions 9, 14, 18, and 23 for histone H3 and at amino acid positions 5, 8, 12, 16 for histone H4 are frequent targets for acetylation. These histone modifications facilitate access and binding of transcription factors.
\n\t\t\tHistone deacetylation is associated with an inactive (closed) state of chromatin and transcriptional repression (Kouzarides, 2007; Strahl & Allis, 2000). Deacetylation is catalyzed by histone deacetylases (HDAC). HDACs catalyze the removal of acetyl groups from lysine residues. HDACs and HATs are either part of a multiprotein transcriptional complex or interact with DNA binding proteins (Haberland et al., 2009; Jenuwein & Allis, 2001). Deregulation in the activity of HDACs and HATs may lead to alterations in gene expression and has been linked to diseases, particularly cancers. Fraga et al (2005) found that the loss of acetylation of histone H4 at K16 and K20 is a common hallmark of human cancer. Recently, Kondo et al. (2008) found, 5% of the genes are silenced by trimethylation of H3K27 independent of DNA methylation.
\n\t\t\tThe states of chromatin and regulation of gene expression. HAT: Histone acetyltransferase; HDAC: Histone deacetylase.
To date, 18 HDACs have been identified in humans. They are divided into four classes based on their homology to yeast HDACs (Table 1). Class I enzymes, which included HDACs 1, 2, 3, and 8, are related to the yeast RPD3 (de Ruijter et al., 2003; Paris et al., 2008). Class I HDACs 1, 2, and 3 are ubiquitously expressed and are almost exclusively found in the nuclei of cells in various cell lines and tissues (de Ruijter et al., 2003; Paris et al., 2008). Unlike HDACs 1-3, HDAC 8 is found only in cells with smooth muscle/myoepithelial differentiation. HDAC8 expression was found in smooth muscle cells where its expression is suggested to play a role in regulating the dynamics of smooth muscle cytoskeleton (Waltregny et al., 2004). These class I HDACs are involved in the regulation of proliferation, apoptosis, cardiac morphogenesis, and interferon (INF) expression through regulating gene expressions (Bernstein et al., 2000; Foglietti et al., 2006; Zupkovitz et al., 2006). Class II proteins, which included HDACs 4, 5, 6, 7, 9, and 10, share domains with the yeast HDAC-1 (de Ruijter et al., 2003; Paris et al., 2008). Class II HDACs can shuttle between the nucleus and the cytoplasm (Paris et al., 2008). Class II HDAC 6 is not seen in lymphocytes, stromal cells, and vascular endothelial cells (Yoshida et al., 2004; Zhang et al., 2004). It is localized mainly in the cytoplasm. This HDAC6 enzyme is also found on the perinuclear and leading-edge subcellular regions of cells. It is a microtubule-associated deacetylase (Hubbert et al., 2002). HDAC 7 inhibits the expression of Nur77, which is involved in the regulation of apoptosis and negative selection during developing thymocytes (Dequiedt et al., 2005). Unlike class I HDACs, class II HDACs are found only in some tissues. The recently described class IV, comprised solely of HDAC 11 enzyme, shares features of classes I and II HDACs, such as the dependence on zinc for their enzymatic activity. Classes I, II and IV are zinc dependent proteases (de Ruijter et al., 2003; Gao et al., 2002; Glozak & Seto, 2007). Class III HDACs (sirtuins) have been identified based on sequence homology with the yeast transcription repressor Sir2. To date, seven different sirtuins have been identified, and all of the enzymes of class III require NAD+ for their activity. This class of enzymes is localized in the nucleus (de Ruijter et al., 2003; Glozak & Seto, 2007). HDACs can deacetylase non-histone proteins, such as tumor suppressors (e.g., p53), and signaling molecules (e.g., STAT1 and STAT3) (Minucci & Pelicci, 2006).
\n\t\t\tHDAC | \n\t\t\t\t\t\tExample of Biological Functions | \n\t\t\t\t\t\tTissue Distribution | \n\t\t\t\t\t\tLocalization | \n\t\t\t\t\t\tReference | \n\t\t\t\t\t|
Class I | \n\t\t\t\t\t\tHDAC1 | \n\t\t\t\t\t\tessential in cell survival and proliferation | \n\t\t\t\t\t\tubiquitous | \n\t\t\t\t\t\tnucleus | \n\t\t\t\t\t\t(Bernstein et al., 2000; Paris et al., 2008; Sun & Hampsey, 1999) | \n\t\t\t\t\t
HDAC2 | \n\t\t\t\t\t\t(Foglietti et al., 2006; Paris et al., 2008) | \n\t\t\t\t\t||||
HDAC3 | \n\t\t\t\t\t\t(Lagger et al., 2002; Paris et al., 2008; Zupkovitz et al., 2006) | \n\t\t\t\t\t||||
HDAC8 | \n\t\t\t\t\t\t(Montgomery et al., 2007; Paris et al., 2008) | \n\t\t\t\t\t||||
Class IIa | \n\t\t\t\t\t\tHDAC4 | \n\t\t\t\t\t\tmediator of neuronal death | \n\t\t\t\t\t\theart; brain; skeletal muscle | \n\t\t\t\t\t\tnucleus/ cytoplasm | \n\t\t\t\t\t\t(Paris et al., 2008; Waltregny et al., 2004; Waltregny et al., 2005) | \n\t\t\t\t\t
HDAC5 | \n\t\t\t\t\t\tcardiac development | \n\t\t\t\t\t\theart; brain; skeletal muscle | \n\t\t\t\t\t\t(Bolger & Yao, 2005; Paris et al., 2008) | \n\t\t\t\t\t||
HDAC7 | \n\t\t\t\t\t\tregulation of apoptosis in developing thymocytes | \n\t\t\t\t\t\theart; skeletal muscle; pancreas; spleen | \n\t\t\t\t\t\t(Paris et al., 2008; Vega et al., 2004) | \n\t\t\t\t\t||
HDAC9 | \n\t\t\t\t\t\tcardiac development | \n\t\t\t\t\t\tbrain; skeletal muscle | \n\t\t\t\t\t\t(Bolger & Yao, 2005; Paris et al., 2008) | \n\t\t\t\t\t||
Class IIb | \n\t\t\t\t\t\tHDAC6 | \n\t\t\t\t\t\tregulation of tubulin and Hsp90 acetylation | \n\t\t\t\t\t\theart; liver; kidney; pancreas | \n\t\t\t\t\t\tmainly cytoplasm | \n\t\t\t\t\t\t(Chang et al., 2004; Dequiedt et al., 2003; Paris et al., 2008; Zhang et al., 2002) | \n\t\t\t\t\t
HDAC10 | \n\t\t\t\t\t\tregulation of thioredoxin-interacting protein expression | \n\t\t\t\t\t\tspleen; liver; kidney | \n\t\t\t\t\t\t(Lee et al., 2010) | \n\t\t\t\t\t||
Class V | \n\t\t\t\t\t\tHDAC11 | \n\t\t\t\t\t\tregulation of immune function | \n\t\t\t\t\t\theart; brain; skeletal muscle; kidney | \n\t\t\t\t\t\tnucleus/ cytoplasm | \n\t\t\t\t\t\t(Villagra et al., 2009) \n\t\t\t\t\t\t | \n\t\t\t\t\t
Histone deacetylases.
Given the association between HDAC enzymes and cancers, there is growing interest in using HDAC inhibitors (HDACI) as antitumor agents. Inhibition of HDAC activity should lead to chromatin decondensation and an increase in gene transcription (Figure 1) (Karagiannis & El-Osta, 2006). HDACIs have been shown to have pleiotropic effects, including cell cycle arrest, growth inhibition and chromatin decondensation. They interfere directly with the mitotic spindle checkpoint, differentiation, and apoptosis in cancer cell types (Choi et al., 2007; Marchion & Munster, 2007; Stearns et al., 2007; Xu et al., 2005). Imre et al. (2006) showed that HDACIs reduce the responsiveness of tumor cells to the tumor necrosis factor-α (TNF-α) mediated activation of the nuclear factor-kappa B (NF-kappa B). All HDACIs upregulate p21, an important mediator of growth arrest (Richon et al., 2000). Studies in clinical trials have attempted to use HDACIs in combination therapy with some successes (Johnstone, 2002). This combined strategy has shown promise in some malignancies (Bishton et al., 2007).
\n\t\t\t\tTo date, more than 18 HDACIs have been tested in clinical trials for cancer therapy (Carew et al., 2008; Paris et al., 2008). In the United States, two histone deacetylase inhibitors, namely vorinostat (Zolinza) and romidepsin (Istodax), have been approved for the treatment of cutaneous T-cell lymphoma. HDACIs are usually classified into various groups based on their structures, including hydroxamic acids, cyclic peptides, short chain fatty acids, and benzamides. Hydroxamic acid derived compounds (trichostatin A, oxamflatin) have been used in clinical trials for treating both hematologic malignancies and solid tumors. These compounds contain an acid moiety that can fit into the catalytic site and bind to the zinc atom, thus inhibiting the HDAC enzyme (Marchion & Munster, 2007; Marks et al., 2000). For cyclic peptide group (depsipeptide, trapoxin), HDACIs are effective in nanomolar range. On the other hand, short chain fatty acid compounds (butyrate, trybutyrin) require relatively high concentrations for their action. A member of this group, valproic acid has been used in antiepileptic treatment. The use of valproic acid as an anti-epileptic underlines the wide functional distribution of HDACs, contributing to problems targeting the cancer treatments using histone deacetylase inhibitors. The benzamide group molecules (MS-275, CI-994) exert their action at micromolar concentrations. Since the enzymatic pocket is highly conserved in nature, most HDACIs do not selectively inhibit individual HDAC enzymes. Rather, HDACIs inhibit several HDAC enzymes simultaneously. They target mainly classes I and II HDACs (Marks & Xu, 2009; Paris et al., 2008). Table 2 shows the histone deacetylase inhibitors.
\n\t\t\t\tHistone deacetylase inhibitors have been investigated in clinical trials for melanoma (Table 3). A multicenter, phase II clinical trial was conducted to evaluate the efficacy, safety, and pharmacokinetics of the histone deacetylase inhibitor, pyridylmethyl-N-{4-[(2-aminophenyl)-carbamoyl]-benzyl}-carbamate (MS-275) in 28 patients with pretreated metastatic melanoma. MS-275 is an oral benzamide HDACI. In the study, patients with unresectable American Joint Committee on Cancer (AJCC) stage IV melanoma, refractory to at least one earlier systemic therapy, were randomized to receive MS-275 3 mg bi-weekly or 7 mg weekly on a 28-day cycle. The primary endpoint of the study was objective tumor response, and the secondary study endpoints were safety and time-to-progression. No objective responses were observed in pretreated metastatic melanoma patients. The median time-to-progession was comparable in both arms of the study. MS-275 was well tolearted, with nausea, diarrhea, and hypophosphatemia as the most frequently reported adverse events (Hauschild et al., 2008).
\n\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
Sodium butyrate | \n\t\t\t\t\t\t\tShort-chain fatty acid | \n\t\t\t\t\t\t\tmM | \n\t\t\t\t\t\t\tClass I, IIa | \n\t\t\t\t\t\t\tApoptosis Cell-cycle arrest | \n\t\t\t\t\t\t\t(Bhalla, 2005; Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Valproic acid (VPA) | \n\t\t\t\t\t\t\tShort-chain fatty acid | \n\t\t\t\t\t\t\tmM | \n\t\t\t\t\t\t\tClass I, IIa | \n\t\t\t\t\t\t\tApoptosis Differentiation | \n\t\t\t\t\t\t\t(Bhalla, 2005; Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Trichostatin A (TSA) | \n\t\t\t\t\t\t\tHydroxamic acid | \n\t\t\t\t\t\t\tnM | \n\t\t\t\t\t\t\tClass I, IIa | \n\t\t\t\t\t\t\tApoptosis Cell-cycle arrest Differentiation | \n\t\t\t\t\t\t\t(Bhalla, 2005; Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Suberoylanilide hydroxamic acid (SAHA) or vorinostat | \n\t\t\t\t\t\t\tHydroxamic acid | \n\t\t\t\t\t\t\tµM | \n\t\t\t\t\t\t\tClass I, II | \n\t\t\t\t\t\t\tApoptosis Cell-cycle arrest | \n\t\t\t\t\t\t\t(Bhalla, 2005; Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Depsipeptide (FK 228) | \n\t\t\t\t\t\t\tCyclic tetrapeptide | \n\t\t\t\t\t\t\tnM | \n\t\t\t\t\t\t\tClass I | \n\t\t\t\t\t\t\tApoptosis Cell-cycle arrest | \n\t\t\t\t\t\t\t(Bhalla, 2005; Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Apicidin | \n\t\t\t\t\t\t\tCyclic tetrapeptide | \n\t\t\t\t\t\t\tnM | \n\t\t\t\t\t\t\tHDACs 1 and 3 | \n\t\t\t\t\t\t\tApoptosis Cell-cycle arrest | \n\t\t\t\t\t\t\t(Bolden et al., 2006; Johnstone, 2002; Schwabe & Lubbert, 2007; Vannini et al., 2004) | \n\t\t\t\t\t\t
MS-275 | \n\t\t\t\t\t\t\tBenzamide | \n\t\t\t\t\t\t\tµM | \n\t\t\t\t\t\t\tClass I | \n\t\t\t\t\t\t\tCell-cycle arrest | \n\t\t\t\t\t\t\t(Bolden et al., 2006; Hu et al., 2003; Johnstone, 2002; Schwabe & Lubbert, 2007) | \n\t\t\t\t\t\t
Histone deacetylase inhibitors
Due to the low response rates of HDACIs as single-agent therapies, HDACIs have also been investigated in combination with other therapeutic agents (Table 3). In a phase I/II clinical trial for patients with stage IV melanoma, the combination of valproic acid and the topoisomerase I inhibitor karenitecin associated with disease stabilization in 47% of patients. The median overall survival and time-to-progression were 32.8 and 10.2 weeks, respectively. In addition, histone hyperacetylation was observed in peripheral blood mononuclear cells (Daud et al., 2009).
\n\t\t\t\tHDACIs have also been investigated in combination with other treatment modalities. A phase I/II study of HDACI valproic acid with standard chemoimmunotherapy in patients with advanced melanoma was conducted to evaluate its clinical activity and to assess toxicity. In the study, patients were treated initialy with valproic acid alone for 6 weeks. After the treatment with valproic acid alone, dacarbazine plus interferon-α therapy was started in combination with the valproic acid. However, the results showed that the combination of valproic acid and chemoimmunotherapy did not produce superior results as compared to standard therapy (Rocca et al., 2009).
\n\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t||||
Valproic acid | \n\t\t\t\t\t\t\tKarenitecin (topoisomerase I inhibitor) | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI, II | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
Vorinostat (Zolinza) | \n\t\t\t\t\t\t\tNPI-0052 (proteasome inhibitor) | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
Vorinostat (Zolinza) | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | Unresectable Metastatic Melanoma (Stage IV) | \n\t\t\t\t\t\t\tII | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
MS-275 | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | Melanoma | \n\t\t\t\t\t\t\tII | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
Romidepsin | \n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\t | Nonresectable Intraocular Melanoma or Unresectable Stage III or Stage IV Melanoma | \n\t\t\t\t\t\t\tII | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t||||
5-azacytidine (Vidaza) | \n\t\t\t\t\t\t\tRecombinant Interferon α-2b | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
5-aza-2-deoxycytidine (Dacogen) | \n\t\t\t\t\t\t\tTemozolomide | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI, II | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
Pegylated Interferon α-2b | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI, II | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t|
Panobinostat, Temozolomide | \n\t\t\t\t\t\t\tMelanoma | \n\t\t\t\t\t\t\tI, II | \n\t\t\t\t\t\t\t(Cang et al., 2009; Howell et al., 2009; Sigalotti et al., 2010) | \n\t\t\t\t\t\t
Current epigenetic agents used in clinical trials for melanoma patients
DNA methylation is carried out by different DNA methyltransferases (DNMT). DNMT1 involves in the maintenance of established methylation patterns. DNMT3a and DNMT3b are implicated in
\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\n\t\t\t\t\t\t\t | \n\t\t\t\t\t
APAF1(apoptotic protease activating factor 1) | \n\t\t\t\t\t\tApoptosis | \n\t\t\t\t\t\t(Soengas et al., 2001) | \n\t\t\t\t\t
MT2A (methallothionein 2A) | \n\t\t\t\t\t\tApoptosis | \n\t\t\t\t\t\t(Gallagher et al., 2005) | \n\t\t\t\t\t
HSPB1 (heat shock 27 kDa protein) | \n\t\t\t\t\t\tApoptosis | \n\t\t\t\t\t\t(Gallagher et al., 2005) | \n\t\t\t\t\t
MAGE-A1(melanoma antigen, family A1) | \n\t\t\t\t\t\tImmune recognition | \n\t\t\t\t\t\t(De Smet et al., 1996; Karpf et al., 2004; Sigalotti et al., 2010) | \n\t\t\t\t\t
ER-α (estrogen receptor alpha) | \n\t\t\t\t\t\tSignaling | \n\t\t\t\t\t\t(Mori et al., 2006) | \n\t\t\t\t\t
WFDC1 (wap 4-disulfide core domain 1) | \n\t\t\t\t\t\tProliferation | \n\t\t\t\t\t\t(Muthusamy et al., 2006) | \n\t\t\t\t\t
CDKN1B (cyclin-dependent kinase inhibitor 1B | \n\t\t\t\t\t\tCell cycle | \n\t\t\t\t\t\t(Worm et al., 2000) | \n\t\t\t\t\t
CDKN1C (cyclin-dependent kinase inhibitor 1C) | \n\t\t\t\t\t\tCell cycle | \n\t\t\t\t\t\t(Shen et al., 2007) | \n\t\t\t\t\t
APC (adenomatous polyposis coli gene) | \n\t\t\t\t\t\tCell fate determination | \n\t\t\t\t\t\t(Worm et al., 2004) | \n\t\t\t\t\t
GDF15 (growth/differentiation factor 15) | \n\t\t\t\t\t\tDifferentiation | \n\t\t\t\t\t\t(Muthusamy et al., 2006) | \n\t\t\t\t\t
TPM1 (tropomyosin 1) | \n\t\t\t\t\t\tAnchorage-independent growth | \n\t\t\t\t\t\t(Liu et al., 2008) | \n\t\t\t\t\t
MIB2 (skeletrophin) | \n\t\t\t\t\t\tCell fate determination | \n\t\t\t\t\t\t(Takeuchi et al., 2006) | \n\t\t\t\t\t
MGMT (06-methylguanine-DNA-methyltransferase) | \n\t\t\t\t\t\tDNA repair | \n\t\t\t\t\t\t(Hoon et al., 2004) | \n\t\t\t\t\t
CDH1 (E-cadherin) | \n\t\t\t\t\t\tInvasion/metastasis | \n\t\t\t\t\t\t(Liu et al., 2008) | \n\t\t\t\t\t
CDH8 (cadherin 8) | \n\t\t\t\t\t\tInvasion/metastasis | \n\t\t\t\t\t\t(Muthusamy et al., 2006) | \n\t\t\t\t\t
Genes with an altered DNA methylation status in melanoma
DNA methylation is a reversible epigenetic event and can be nullified by specific DNA demethylating agents (DNA methyltransferase inhibitors). Several ongoing clinical trials are conducted to investigate their clinical effectiveness and safety in melanoma patients (Table 3). In these studies, DNA demethylating agents 5-azacytidine (Vidaza) and 5-aza-2-deoxycytidine (decitabine, Dacogen) are the most intensively studied. Azacytidine is a pyrimidine nucleoside analog of cytidine, and decitabine is a cytosine nucleoside (cytidine) analog. These epigenetic agents were approved by the FDA for the treatment of myelodysplastic syndromes and acute myeloid leukemia. Agents that inhibit DNA methyltransferases can reactivate silenced genes and induce apoptosis of cancerous cells (Howell et al., 2009). Since epigenetic modifications affect cellular pathways, epigenetic agents also display pleiotropic activities (Howell et al., 2009). In a phase I trial, Gollob et al. (2006) found that a low dose of 5-aza-2\'-deoxycytidine (decitabine) can be safely administered with high-dose interleukin to cancer patients and has antitumor activity in melanoma. The inclusion of decitabine resulted in DNA hypomethylation. In addition, Appleton et al. (2007) showed that decitabine reduces DNA methylation and can be combined safely with carboplatin for the treatment of melanoma.
\n\t\t\t\tIn addition to therapeutic applications, modifications of DNA methylation may serve as biomarkers in clinical use for melanoma (Howell et al., 2009). Mori et al. (2006) showed that methylated ER-α can be detected in paraffin-embedded primary and metastatic melanoma tumors. In addition, methylated ER-α DNA was detected in the serum of melanoma patients with AJCC stage I to IV disease. Methylated ER-α was detected in 42% of stage III and 86% of stage IV metastatic melanomas. Serum methylated ER-α is an unfavorable prognostic factor. Liu et al (2008) found that SOCS1, SOCS2, RARβ2, DcR1, and DcR2 genes were the most frequently methylated genes in melanoma. The investigators also found that RECK, IRF7, PAWR, DR5, and Rb were not methylated in melanoma although these genes were found to be highly methylated in other cancers (Howell et al., 2009; Liu et al., 2008), suggesting that different cancers have distinct methylated genes. This is important since biomarkers must be specific and be able to differentiate between different forms of malignancies.
\n\t\t\tMelanoma is a complex disease that is caused by aberrant genetic and epigenetic events.
\n\t\t\tEpigenetic modifications play a significant role in the biology of melanoma, and epigenetic therapy emerges as a promising treatment modality for melanoma as well as for dignostic developments for the malignancy. A major difference between the two events is that epigenetic changes can be reversed by chemical and/or environmental modalities. Histone modifications and DNA methylation are extensively studied epigenetic events that affect the expression of genes. Currently, four epigentic agents have been approved by the U.S. FDA for hematologic malignancies and many HDACIs and DNMTIs are being investigated in clinical trials for solid tumors, such as melanoma. However, there have not been any FDA-approved epigenetic agents for solid tumors. Consequently, further investigations are required to find successful treatment strategies or protocols involving epigenetic agents. Future developments would address the issues of systemic toxicities, nonspecific epigenetic effect, and low bioavailability. In addition, a promising strategy is combination therapy. In tumors, DNA methylation and histone acetylation can act synergistically to silence tumor suppressor genes. This approach could potentially enhance the reversal of epigenetic silencing. Although in its infancy, epigenetic therapy has been shown to be an effective treatment modality for cancers, as evident by the approval of 4 epigenetic drugs by the U.S. FDA. Encouraging results from preclinical and clinical trials prompts further investigations into designing new drugs or strategy that are more suitable for epigenetic therapies for melanoma patients, with the goal of improving patient outcomes.
\n\t\tCocoa beans (
The part used of the cacao tree
The fermentation process of cocoa is characterized by a microbial succession in which according to various authors [3, 4, 5, 6, 7, 8, 9], the yeasts participate first, then the lactic acid bacteria (LAB) act and, finally, the acetic bacteria (AAB) intervene. Additionally, spore-forming bacilli of the genus Bacillus, and filamentous fungi. This process is essential both to modify the beans, eliminating the mucilage, and to prepare the grain that requires a battery of enzymes responsible for modifying its color, taste and smell.
They have been reported [3, 4, 5, 6, 10, 11, 12] more than 100 microbial species that show different metabolic properties, identifying themselves new species due to the improvement in cultivation techniques together with the use of molecular biology tools. Two dominant bacterial species
The term cocobiota, was introduced [13] to refer to the microbial association of bacteria and fungi involved in the spontaneous fermentation of cocoa beans, which originate metabolites present in cocoa powder and dark chocolate, which can have beneficial effects on health. Five main groups of microorganisms participate in cocoa fermentation: filamentous fungi, yeasts, lactic acid bacteria, acetic acid bacteria, and various Bacillus species [5].
Venezuela has specimens of cacao (
In most producing countries, including Venezuela, cocoa fermentation is a process that is carried out in an artisanal way, using systems such as plastic baskets, wooden drawers, and staggered wooden boxes. These systems are generally covered with leaves of Musaceae or heliconia. Specifically, in Venezuela, some localities use a fermentation system in plastic containers for a time that is between 12 and 24 hours. This fermentation system in Venezuela has allowed women’s inclusion in the workplace, thereby achieving gender equality that has caused so many problems worldwide. It is fulfilled with the fifth (5th) Goal to Transform Our World proposed by the United Nations for its 2015–2030 plan.
According to the fermenter used, cocoa beans’ fermentation is done in quantities of 25 kg up to groups of approximately 200–250 kg—the type of cocoa influences the time and the technique used. Forastero and Trinitario cocoa require between 5 to 7 days of fermentation, while Criollo requires 2 to 3 days. After seven days of fermentation, some off-flavors may be formed by some fungal species. During fermentation, temperature changes occur that favor both the evolution of microorganisms and a set of enzymes [14]. The changes result in the formation of cocoa aroma precursors (amino acids and reducing sugars). Precursors are enhanced in the stages of drying and roasting.
The fermentation process is characterized by a well-known microbial succession. The initial pH (3.6) of the pulp caused by the presence of citric acid, together with low oxygen levels, favors yeasts’ colonization. The proliferation of these leads to the production of ethanol and the secretion of pectinolytic enzymes.
The yeast population increases in number within the first 24 h of fermentation, after which it slowly decreases. Studies in cocoa fermentation from different areas of Venezuela show that the behavior of the yeasts (Table 1) occurs in a similar way when it has been fermented for three days for Criollo cocoa (from Sur del Lago, Zulia state) and five to seven days for Forastero cocoa (from Barlovento, Miranda state).
Fermentation time (Days) | ||||||
---|---|---|---|---|---|---|
Sample | 0 | 1 | 2 | 3 | 4 | 5 |
A | 3.48 ± 0.03c | 3.27 ± 0.23a | 1.67 ± 0.06a | 1.00 ± 0.01a | 4.17 ± 0.17a | 3.61 ± 0.08a |
B1 | 4.42 ± 0.21b | 1.00 ± 0.01b | 1.80 ± 0.07a | 1.83 ± 0.07a | 4.55 ± 0.30a | 1.67 ± 0.15b |
B2 | 1.00 ± 0.01e | 1.69 ± 0.04b | 1.73 ± 0.05a | 1.74 ± 0.06a | 3.21 ± 0.12b | 4.33 ± 0.10a |
C1 | 2.49 ± 0.17d | 1.69 ± 0.07b | 1.00 ± 0.01a | 1.00 ± 0.01a | ||
C2 | 2.76 ± 0.09d | 1.33 ± 0.05b | 1.00 ± 0.01a | 1.00 ± 0.01a | ||
C3 | 5.31 ± 0.06a | 1.00 ± 0.01b | 1.00 ± 0.01a | 1.35 ± 0.03a |
Log CFU/g of yeasts during the fermentation of cocoa beans from one location and five experimental stations.
Different letters for each row indicate significant differences (p < 0,05).
Mean ± standard deviation.
A: La Trinidad fermented cocoa, Miranda state B1 and B2: INIA Tapipa fermented cocoa, Miranda state C1, C2, C3: INIA Chama fermented cocoa, Zulia state. 1,2,3: indicates the replica number.
Table 1 shows the log CFU/g of the yeasts found in the fermented cocoa beans in the different sampled sites. The yeast population was present from the beginning of fermentation in all samples, with counts from 1.00 LogUFC/g for replica 2 (B2) from the INIA Tapipa experimental station, Miranda state, to 5.31 LogUFC/g for replica 3 (C3) of the INIA Chama experimental station, Zulia state. The yeasts’ behavior was variable, finding maximum counts of 1.69 LogUFC/g for the first day of fermentation (C1) up to 1.00 LogUFC/g (C1 and C2). Likewise, for the Miranda state’s replicas, various behaviors were observed, which experienced increases or decreases according to the days of fermentation.
According [15], there is an increase in the number of yeasts by 103 CFU/g around the sixth to the seventh day of fermentation. This is possibly due to the growth of thermotolerant yeasts that use some of the acids, coinciding with an increase in oxygen content in the mass and survivors in the fermentation system’s colder external zones. The experimental stations in Zulia showed initial values of 5.31 Log CFU/g and a significant decrease in the population at the end of the process. The variations found in the yeast population count for the studied sites could probably be due to deviations inherent in each locality’s fermentation process. Genetic variations of the plantations, fermentation methods; plastic baskets (used in the fermentation of cocoa beans from the Miranda experimental stations) or wooden crates (used in the fermentation of cocoa beans from the Zulia experimental stations), failures in the control of the artisanal process, fermentation incomplete, excessive turning of the grains, changes in oxygen content, pH, accumulation of ethanol and other compounds can affect the fermentation system.
Studying the chemical and microbiological composition [16] during the fermentation process of cocoa beans from the Chuao area in Aragua state, found a yeast count for the first days of fermentation in the order of 3.77 to 5.38 Log CFU/g, while [17], in Venezuelan cocoa beans of the Carenero variety, grown in Merecure, Miranda State, reports yeast populations of 8.21 Log CFU/g, at week 1 of fermentation reaching a population density of 6.80 CFU/g at week 3 fermentation, decreasing its number to 3.00 Log CFU/g at the end of the fermentation process. The yeasts are predominant at 12 and 36 hours after the start of the fermentation of cocoa beans [3, 17].
In fermented cocoa beans in the Southeast region of Ivory Coast [17], found a rapid increase in the yeast population, going from 106 CFU/g to 107 CFU/g at 36 h, after 84 h, this decreased to 101 CFU/g. Studying [18] the diversity of yeasts involved in the fermentation of cocoa from six of the principal producing regions of Ivory Coast founded a yeast population of 104–105 CFU/g up to 107–108 CFU/g between 12 and 24 hours of fermentation. Growth kinetics were very similar for the six regions, with an increase in the yeast population during the first 24 hours of fermentation and a progressive decrease after 24 hours after starting the fermentation process.
Table 2 shows the macroscopic morphological characteristics of fourteen (14) yeast strains isolated at the sampled sites. 4 isolated from the cocoa beans fermented in A1,2 from the beans fermented in B1, 2 from B2, 2 from C1, C2, and C3. In most isolates, the morphology found agrees with the described by [19].
Strain | Shape | Margin | Elevation | Surface | Color | Brightness | Texture |
---|---|---|---|---|---|---|---|
A | Oval | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
A | Oval | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
A | Ovoid | Whole | Flat | Smooth | Cream | Brilliant | Butyrose |
A | Elliptical | Whole | Flat | Smooth | Cream | Opaque | Butyrose |
B1 | Ovala | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
B1 | Elliptical | Whole | Flat | Smooth | Cream | Opaque | Butyrose |
B2 | Oval | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
B2 | Oval | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
C1 | Spherical | Whole | Convex | Smooth | Pink | Brilliant | Butyrose |
C1 | Round | Rhizoid | Umbilicada | Smooth | Cream | Opaque | Butyrose |
C2 | Oval | Curly | Umbilicada | Rough | Crema | Opaque | Butyrose |
C2 | Oval | Rhizoid | Umbilicada | Smooth | White | Opaque | Butyrose |
C3 | Spherical | Whole | Convex | Smooth | Pink | Brilliant | Butyrose |
C3 | Oval | Curly | Umbilicada | Rough | Cream | Opaque | Butyrose |
Morphological characteristics of yeasts isolated from fermented cocoa beans in one location and five experimental stations.
A: La Trinidad fermented cocoa, Miranda state B1 and B2: INIA Tapipa fermented cocoa, Miranda state C1, C2, C3: INIA Chama fermented cocoa, Zulia state. 1,2,3: indicates the replica number.
At a macroscopic level, we could observe six (6) different phenotypic of yeast in the isolated colonies’ morphology. Most (8) colonies with oval shape, wavy margin, umbilicated, cream-colored, rough surface, opaque, and butyric texture were found in all the studied sites. Specifically, from sample A, there was (1) one ovoid colony, whole, flat, smooth cream-colored isolated and another colony (1) with an elliptical shape, a whole margin, flat, smooth, shiny, cream-colored, and butirose. For samples C1 and C3. Two (2) isolates with a spherical shape, entire margin, convex, smooth, shiny, and pinkish color. One (1) colony with a round shape, with rhizoid margin, umbilicated, smooth, opaque, cream-colored for sample C2. Finally, one isolated yeast colony of sample C3 oval, with rhizoid margin, smooth, opaque. Existence of at least six different yeast genera in the fermented cocoa beans [19]. The isolates identified would correspond to the genus
However, to confirm this, more biochemical tests must be performed and correlated with molecular tests. All these genera and many others have been found in cocoa beans’ fermentation from different countries [4, 6, 10, 20, 21, 22, 23, 24]. The macroscopic characteristics found in the isolates are due to the fact that during cocoa fermentation an ecological succession occurs with micro-environmental changes such as the availability of nutrients, changes in pH, temperature, oxygen, among others. The yeasts are capable of changing their characteristics and behavior, according to the environmental conditions in the substrate that they are [25, 26, 27].
In relation to the physiological identification of the 6 groups of yeasts isolated from the fermented cocoa beans in the studied sites, Table 3 shows the results obtained for the sugar fermentation. Glucose positively ferments for all genera with the exception of the strain identified as L2, which fermented it slowly and weakly, and the L4 strain gave a negative result for both glucose fermentation and the other seven sugars used in the test Likewise, the strain identified as L1 was the only one that showed positive fermentation for maltose, galactose and sucrose and weakly for raffinose, cellobiose was only slowly fermented by L3, while strains L5 and L6 only managed to ferment positively glucose. Lactose and xylose could not be fermented by any of the 6 groups of yeasts isolated and characterized in this study.
Strain | Glucose | D-Xilose | Maltose | Galactose | Lactose | Sacarose | Raffinose | Cellobiose |
---|---|---|---|---|---|---|---|---|
L1 | + | — | + | + | — | + | W | — |
L2 | S | — | — | L | — | L | S | — |
L3 | + | — | — | — | — | S | — | +/− |
L4 | — | — | — | — | — | — | — | — |
L5 | + | — | — | — | — | — | — | — |
L6 | + | — | — | — | — | — | — | — |
Fermentation properties of eight (8) sugars from 6 yeasts isolated from cocoa beans fermented in one locations of Venezuela.
+: positive, L: positive delayed, S: slow positive, W: weak positive, −: negative.
Investigating yeasts’ diversity and role in the spontaneous fermentation of cocoa beans from Indonesia [22]. Isolated seven yeast strains that they identified based on similar phenotypic characteristics with eight reference strain
The L1 strain was the only one that positively fermented sucrose. It has been shown that this sugar is converted to glucose and fructose in species such as
Sugars such as maltose, galactose, cellobiose, and raffinose could also be used by these yeasts, although to a lesser extent than glucose and sucrose. Could tentatively identify This group of isolates identified as L1 as belonging to the species
The isolates identified as L2 were the only ones that fermented glucose slowly after 14 days, as did galactose and sucrose slowly. These could be the
Cellobiose was fermented only by the L3 strain. Depending on the species, different strategies have been observed among yeasts to use cellobiose. One of them consists of the expression of extracellular β-glucosidases on the cell surface; cellobiose is hydrolyzed extracellularly. After this, glucose is transported and metabolized inside the cell. The second strategy consists of the phosphorolytic pathway; cellobiose is transported into the cell by cellodextrins. An intracellular phosphorylase cuts the disaccharide with an inorganic phosphate, producing a glucose molecule and an α-glucose-1-phosphate that can be metabolized quickly. The hydrolytic pathway is the third strategy. Sugar is transported into the cell by cellodextrins to later be hydrolyzed by a β-glucosidase into two glucose molecules that can be easily metabolized by the cell [23].
According to [19], these isolates could be identified as
The isolates grouped as L4 did not show fermentation for any of the eight sugars used; however, they could grow in the tubes. According to [19], several species of yeasts grow aerobically on sugars that fail to ferment. From the pattern found for this isolate, L4 could be classified as
L5 and L6 showed a very similar fermentation pattern for sugars used, which allows us to presume that they could be the same species,
None of the isolated and identified species could ferment xylose; this is because the yeasts involved in cocoa ferments cannot operate the proton-symport system, subject to catabolic repression and the facilitated diffusion system for the transport and use of this sugar. Neither species could ferment lactose; this sugar [47] can be assimilated or fermented by yeasts through the transport via induction of a lactose-permease and its subsequent hydrolyzation to glucose and galactose by an intracellular β-glucosidase.
The values of the Log CFU/g of the LAB are shown in Table 4. A low population was obtained from 1.00 CFU/g to 2.75 CFU/g at the beginning of the fermentation process. LAB increased after two days and decreased in the last days of the cocoa beans’ fermentation process. LAB population for the cocoa samples from the Zulia region (C1-C3) was 2.00 Log CFU/g, a logarithmic cycle above the representatives from the Miranda region (A and B1). B2 was in the same order of C1-C3.
Fermentation time (Days) | ||||||
---|---|---|---|---|---|---|
Sample | 0 | 1 | 2 | 3 | 4 | 5 |
A | 1.00 ± 0.01c | 2.79 ± 0.13ab | 3.27 ± 0.08ab | 2.92 ± 0.06a | 2.44 ± 0.16a | 1.33 ± 0.05a |
B1 | 1.53 ± 0.09bc | 2.45 ± 0.23b | 2.48 ± 0.19cd | 2.49 ± 0.21ab | 1.99 ± 0.08a | 1.73 ± 0.06a |
B2 | 1.87 ± 0.08abc | 1.63 ± 0.12c | 2.36 ± 0.14cd | 2.49 ± 0.17ab | 1.58 ± 0.13a | 1.33 ± 0.05a |
C1 | 2.27 ± 0.15ab | 3.22 ± 0.21a | 1.68 ± 0.04b | 3.75 ± 0.12a | ||
C2 | 2.75 ± 0.08a | 1.73 ± 0.15c | 2.19 ± 0.087d | 2.50 ± 0.04ab | ||
C3 | 2.45 ± 0.17ab | 2.75 ± 0.03ab | 2.88 ± 0.06bc | 2.32 ± 0.09ab |
Log CFU/g of LAB during the fermentation of cocoa beans.
Different letters for each row indicate significant differences (p < 0,05). Mean ± standard deviation.
A: La Trinidad fermented cocoa, Miranda state B1 and B2: INIA Tapipa fermented cocoa, Miranda state C1, C2, C3: INIA Chama fermented cocoa, Zulia state. 1,2,3: indicates the replica number.
The LAB growth dynamics found for the regions of Miranda and Zulia could be due to several factors. The frequency of turning or removal of the mass of grains in fermentation, a process that It involves aeration or ventilation of the cocoa mass, generating exposure to oxygen and an increase in its concentration in the cocoa mass; in this investigation, this process was carried out every 24 hours. This fact could cause a significant reduction in the number of the LAB population during the last days of the fermentation process. In general, LAB are facultative anaerobic microorganisms. Their optimal growth conditions are in oxygen-free atmospheres, but they can tolerate low concentrations; therefore, oxygen is one of the various factors that generate microbial “stress” in this group. Similar results have been reported for different fermentation processes of cocoa beans from different regions of the world [21, 48].
In cocoa beans’ fermentation, LABs exhibit the fastest growth rate during the 16–48 hours of fermentation and are present in large numbers, but not necessarily in biomass than yeasts for a short period [15].
The preliminary identification of LAB (Table 5) was selected colonies with bacillary or rounded shape, creamy white or beige color, positive Gram stain, catalase/oxidase negative. According to the results, there were four (4) different BAL phenotypes within the isolated strains. Presented Most of them (12) as long bacilli (BAL1), eight (8) isolated were short bacilli (BAL2), two (2) in the shape of coccobacilli (BAL3), and in the form of cocci, only three (3) isolated (BAL4). Similar results have been reported for different fermentation processes of cocoa beans from different regions of the world [7, 18, 21, 27, 30, 49].
Morphology/Gram positive | Catalase | Oxidase | Glucose Gas | 15°C | 47°C | |
---|---|---|---|---|---|---|
BAL1-A | Short bacillus | — | — | + | + | — |
BAL2-A | Short bacillus | — | — | + | + | — |
BAL3-A | Long bacillus | — | — | + | + | — |
BAL4-A | Long bacillus | — | — | + | + | + |
BAL1-B1 | Short bacillus | — | — | + | + | + |
BAL2-B1 | Coccobacilli | — | — | — | — | — |
BAL3-B1 | Long bacillus | — | — | + | + | — |
BAL4-B1 | Long bacillus | — | — | + | + | — |
BAL5-B1 | Short bacillus | — | — | + | + | — |
BAL1-B2 | Long bacillus | — | — | + | + | — |
BAL2-B2 | Cocci | — | — | — | + | — |
BAL3-B2 | Long bacillus | — | — | + | + | — |
BAL4-B2 | Bacilluscocco | — | — | + | + | — |
BAL5-B2 | Cocci | — | — | — | + | — |
BAL1-C1 | Long bacillus | — | — | + | + | — |
BAL2-C1 | Long bacillus | — | — | + | + | — |
BAL3-C1 | Short bacillus | — | — | + | + | — |
BAL1-C2 | Long bacillus | — | — | + | + | — |
BAL2-C2 | Long bacillus | — | — | + | + | — |
BAL3-C2 | Short bacillus | — | — | + | + | + |
BAL1-C3 | Short bacillus | — | — | + | + | — |
BAL2-C3 | Long bacillus | — | — | + | + | — |
BAL3-C3 | Short bacillus | — | — | + | + | + |
BAL4-C3 | Long bacillus | — | — | + | + | — |
Morphological and biochemical characteristics of BAL isolated from fermented cocoa beans.
+: Growth, −: no growth.
According to these results, we could classify 22 isolates as Lactobacilli, belonging to the genus Lactobacillus and three (3) as Lactococci, genus Lactococcus. Twenty-one (21) of the isolates showed growth at 15° C, while only four (4) could grow at 15 and 47° C. Most of the twenty-two isolates (22) produced gas from glucose fermentation. Accordingly, the former could be heterofermenting LAB and the latter homofermenting LAB.
The quantification of AAB (Table 6) shows that populations between 2.32–3.62 Log CFU/g and 1.33–5.31 Log CFU/g were obtained in the first days of fermentation for samples from the Miranda and Zulia experimental stations, respectively.
Fermentation time (Days) | ||||||
---|---|---|---|---|---|---|
Sample | 0 | 1 | 2 | 3 | 4 | 5 |
A | 2.32 ± 0.14c | 2.25 ± 0.22d | 3.37 ± 0.20b | 3.41 ± 0.12b | 4.75 ± 0.12a | 5.27 ± 0.20a |
B1 | 3.62 ± 0.24b | 1.73 ± 0.06d | 1.00 ± 0.01d | 1.76 ± 0.09c | 1.86 ± 0.074b | 5.44 ± 0.16a |
B2 | 2.52 ± 0.16c | 6.18 ± 0.18a | 6.36 ± 0.07a | 6.04 ± 0.06a | 1.33 ± 0.05b | 1.00 ± 0.01b |
C1 | 2.18 ± 0.18c | 3.43 ± 0.16c | 2.68 ± 0.21c | 3.60 ± 0.01b | ||
C2 | 1.33 ± 0.06d | 4.39 ± 0.09b | 3.19 ± 0.19b | 3.31 ± 0.14b | ||
C3 | 5.31 ± 0.20a | 4.26 ± 0.22bc | 3.56 ± 0.08b | 2.42 ± 0.11b |
Log CFU/g of AAB during the fermentation of cocoa beans.
Different letters for each row indicate significant differences (p < 0,05). Mean ± standard deviation.
A: La Trinidad fermented cocoa, Miranda state B1 and B2: INIA Tapipa fermented cocoa, Miranda state C1, C2, C3: INIA Chama fermented cocoa, Zulia state. 1,2,3: indicates the replica number.
AAB carry out the transformation of the ethanol produced by the yeasts into acetic acid. The conversion of ethanol into acetic acid is an exothermic reaction. Ethanol and acetic acid diffuse into the cocoa beans, which finally generates the embryo’s impossibility to develop a new cocoa plant.
The macroscopic, physiological, and biochemical morphological characteristics of twenty (20) BAA isolated from the fermented cocoa beans are shown in Table 7. Five (5) strains were isolated from A, two (2) from B1, four (4) from B2, three (3) from C1, two (2) from C2, and four (4) from C3. 100% of the isolates were catalase positive, oxidase negative, and capable of oxidizing acetate, a characteristic behavior of Acetobacter species. Except for A. peroxydans [50].
Morphology/Gram negative | Catalase | Oxidase | 10% Ethanol Growth | 30% D-glucose Growth | Acetate oxidation | |
---|---|---|---|---|---|---|
BAA1-A | Bacillus | + | — | — | — | + |
BAA2-A | Bacillus | + | — | — | + | + |
BAA3-A | Coccobacilli | + | — | — | — | + |
BAA4-A | Bacillus | + | — | + | — | + |
BAA5-A | Bacillus | + | — | — | — | + |
BAA1-B1 | Bacillus | + | — | + | + | + |
BAA2-B1 | Bacillus | + | — | — | + | + |
BAA1-B2 | Bacillus | + | — | — | + | + |
BAA2-B2 | Bacillus | + | — | + | + | + |
BAA3-B2 | Bacillus | + | — | — | + | + |
BAA4-B2 | Bacillus | + | — | — | — | + |
BAA1-C1 | Bacillus | + | — | — | + | + |
BAA2-C1 | Bacillus | + | — | — | — | + |
BAA3-C1 | Bacillus | + | — | — | — | + |
BAA1-C2 | Coccobacilli | + | — | — | — | + |
BAA2-C2 | Bacillus | + | — | — | — | + |
BAA1-C3 | Bacillus | + | — | — | + | + |
BAA2-C3 | Bacillus | + | — | — | + | + |
BAA3-C3 | Bacillus | + | — | + | + | + |
BAA4-C3 | Bacillus | + | — | + | — | + |
Morphological and biochemical characteristics of BAL isolated from fermented cocoa beans.
+: Growth, −: no growth.
Two (2) morphotypes were found. Bacilli (BAA1), colonies with a point shape, 5 mm in diameter, convex, creamy beige, and coccobacilli (BAA2) elongated colonies, 2 mm, connected, shiny, beige; both Gram-negative, catalase-positive, and oxidase negative. From the above, there are four (4) subtypes. Eight (8) isolates cannot grow in 10% ethanol and 30% D-glucose; identified as BAc1, they could be the species
Once the cocoa is fermented, typing analysis is done to classify it. The cut test (Figure 1) is to identify cocoa beans that have been well-fermented, lightly fermented, and non-fermented. However, it will allow you to observe the grains that present problems, including; over-fermented, slaty, sprouts, affected by insects.
Cutting test of cocoa beans from various cocoa-producing areas of Venezuela, representing fermented, slightly fermented, unfermented, and damaged beans.
Figure 1 schematizes the portion of a cutting test (carried out manually with the help of a knife) of cocoa beans. This test seeks to know the percentage of fermentation that specific cocoa has—the determination to be made in at least five (5) replicas of 100 grains each.
Cocoa is classified commercially according to the percentage of fermentation. In Venezuela, the established classification [51, 52] in Extra Fine (EF: 95%), Fine First (F1: 80%), Fine Second (F2: 20%). It is known as ordinary cocoa beans with fermentation percentages lower than F2.
It is an international consensus that cocoa beans with brown coloration and well-defined streaks on their cotyledons are fully fermented. Grains with violet/brown colorations are associated with slightly fermented grains. Grains purplish, compact, or very little change in the violet color (typical of Trinitarios and Forasteros) may be unfermented. Figures 2–4 show cocoa beans with these characteristics.
Unfermented cocoa beans (upper and lower left) and well-fermented cocoa beans (upper and lower right).
Slate cocoa bean with insect attack.
Slightly or partially fermented cocoa beans.
In Figure 2, cocoa beans with violet coloration are shown, indicating that they are not fermented. In the dissection of these beans, it is observed that there are no well-defined cracks or channels, which are formed due to the microbiological succession and enzymatic reactions that occur during the fermentation process. The bean shown in the upper left part has a dark, blackish coloration, which indicates that it is a slate grain, not desirable in transforming from cocoa to chocolate. The dissection of the lower-left grain shows a violet coloration and compaction in it, indicative of non-fermented grains; it also presents white areas that could indicate the presence of fungi or attack by insects.
The upper-right grain has a brown color and a notable presence of cracks or channels in its cotyledons that indicate that it has completed the fermentation process. Another indication of a well-fermented grain is observed in the lower-right grain, in which, although cracks and channels are not perfectly evident, it presents the separation or opening of its cotyledons, which allows classifying them as well or completely fermented.
Slate cocoa beans (Figure 3) generally appear due to a lack of fermentation or incomplete fermentation (which is interrupted by the producer for various reasons). Slate grains are associated with increased bitterness and astringency. Attributes that later affect the cocoa paste (liquor) and, therefore, the production of chocolate.
This bean also has a compact appearance (not fermented). The bean shown a cavity in the center indicates that insects have attacked it. Generally, this occurs because there are poor storage conditions (relative humidity and temperature). Proliferating species such as
Figure 4 shows cocoa beans that have passed the fermentation process; however, it has not been complete for them. Obtaining slightly or partially fermented grains occurs because the fermentation mass is excessive; there are no controlled processes for removing the fermentation mass or due to the location of the grains in the drawers or fermentation systems, in addition to the amount of mucilage that each grain has. In this image (Figure 4), the dissection of the upper-right grain is an excellent example of partially fermented. The periphery of the grain is purple, and the center of the grain is brown, with the appearance of channels.
Forasteros-type grains, as they present a natural intense violet color, can often pass as unfermented or partially fermented. Therefore, it is necessary to know the evaluation criteria very well to avoid incurring classification errors.
Finally, it is essential to note that the purpose of the cutting test is to establish a commercial classification and does not establish a precise and exact indicator of what the aromatic or flavor quality of the cocoa beans will be.
Another parameter to consider in fermented cocoa is the percentage of acidity because many times high fermentation percentages (greater than 90%) generate a higher content of acetic acid (predominant acid in cocoa due to the action of acetic acid bacteria). The high acidity makes cocoa paste/liquor require long working times in chocolate conching machines. In the case of Venezuela, the relationship between cocoa producer-chocolatier-artisan’s increases day by day. With this, criteria can be established regarding the final fermentation percentages that are desired for a specific type of cocoa.
Fermentation is a crucial stage in the post-harvest processing of cocoa. The succession of yeasts, lactic acid bacteria, acetic acid bacteria, and others more involved, together with the system’s conditions and the enzymes, allows the formation of aroma precursors (sugars and amino acids). Finally, the precursors are magnified in the roasting, resulting in a diversity of aromas in the final derived products.
It is necessary to deepen each type of cocoa fermentation to know and standardize the percentage or degree of fermentation that each bean requires. It is important to note that 100% fermented grains often provide an acetic acid index that ultimately translates into longer working time in chocolate conching machines.
Researchers thank the staff of the Tapia and Chama experimental stations of the National Agricultural Research Institute (INIA) for their valuable collaboration in obtaining cocoa specimens. We thank the producers of the state of Miranda for being involved in developing the fermentation study.
The authors whose names are listed in this paper certify that they have NO affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135275},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"19"},books:[{type:"book",id:"11690",title:"COVID-19 Drug Development - Recent Advances, New Perspectives, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"f8092a491f68ca0b63cc6d40936a010a",slug:null,bookSignature:"Dr. Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/11690.jpg",editedByType:null,editors:[{id:"72288",title:"Dr.",name:"Arli Aditya",surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11813",title:"RNA Therapeutics - History, Design, Manufacturing, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"fbffd7b2f97a65ffb0901de38a65bed0",slug:null,bookSignature:"Prof. Irina Vlasova-St. Louis",coverURL:"https://cdn.intechopen.com/books/images_new/11813.jpg",editedByType:null,editors:[{id:"211159",title:"Dr.",name:"Irina",surname:"Vlasova-St. Louis",slug:"irina-vlasova-st.-louis",fullName:"Irina Vlasova-St. Louis"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11814",title:"Liposomes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"62d8542d18b8cddcf507f7948b2ae74b",slug:null,bookSignature:"Dr. Rajeev K. Tyagi",coverURL:"https://cdn.intechopen.com/books/images_new/11814.jpg",editedByType:null,editors:[{id:"269120",title:"Dr.",name:"Rajeev",surname:"Tyagi",slug:"rajeev-tyagi",fullName:"Rajeev Tyagi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12205",title:"Photodynamic Therapy",subtitle:null,isOpenForSubmission:!0,hash:"8099dd8f660b401e5ecfa85ce3f0df81",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12205.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12206",title:"Antibiotic Resistance - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"708d9c997d91bdbe75c55cb5d9f7b526",slug:null,bookSignature:"Dr. Ghulam Mustafa",coverURL:"https://cdn.intechopen.com/books/images_new/12206.jpg",editedByType:null,editors:[{id:"298756",title:"Dr.",name:"Ghulam",surname:"Mustafa",slug:"ghulam-mustafa",fullName:"Ghulam Mustafa"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12209",title:"Vitamin B Complex",subtitle:null,isOpenForSubmission:!0,hash:"56e8be78a5a1aed62dbc6e8f3c1371f8",slug:null,bookSignature:"Prof. Juber Akhtar, Dr. Mohammad Ahmad, Dr. Mohammad Irfan Khan and Dr. Badruddeen",coverURL:"https://cdn.intechopen.com/books/images_new/12209.jpg",editedByType:null,editors:[{id:"345595",title:"Prof.",name:"Juber",surname:"Akhtar",slug:"juber-akhtar",fullName:"Juber Akhtar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12212",title:"Hypoxia",subtitle:null,isOpenForSubmission:!0,hash:"c7561177210ce5982b54d46a48666012",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12212.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12315",title:"Cosmetic Products and Industry",subtitle:null,isOpenForSubmission:!0,hash:"4730ab11e05d70d04ea88d87983a5cef",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12315.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12316",title:"Biosimilars",subtitle:null,isOpenForSubmission:!0,hash:"a1b73e32f785b40296c7b8def525c99f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12316.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12324",title:"Aspirin",subtitle:null,isOpenForSubmission:!0,hash:"9af8f557ac54627e386caa7cd6015d96",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12324.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12326",title:"Drug Formulation Design",subtitle:null,isOpenForSubmission:!0,hash:"be61949c97a884e4342d41ec7414e678",slug:null,bookSignature:"Dr. Rahul Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/12326.jpg",editedByType:null,editors:[{id:"319705",title:"Dr.",name:"Rahul",surname:"Shukla",slug:"rahul-shukla",fullName:"Rahul Shukla"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:7},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:42},{group:"topic",caption:"Environmental Sciences",value:12,count:5},{group:"topic",caption:"Immunology and Microbiology",value:13,count:8},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:68},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4798},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"751",title:"Nano Electronics",slug:"nano-electronics",parent:{id:"116",title:"Electrical and Electronic Engineering",slug:"electrical-and-electronic-engineering"},numberOfBooks:5,numberOfSeries:0,numberOfAuthorsAndEditors:50,numberOfWosCitations:98,numberOfCrossrefCitations:63,numberOfDimensionsCitations:107,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"751",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10073",title:"Recent Advances in Nanophotonics",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"aceca7dfc807140870a89d42c5537d7c",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",bookSignature:"Mojtaba Kahrizi and Parsoua A. Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:"Edited by",editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8539",title:"Nanogenerators",subtitle:null,isOpenForSubmission:!1,hash:"91a10b2cf3671816d028eb8dceaa236c",slug:"nanogenerators",bookSignature:"Sang Jae Kim, Arunkumar Chandrasekhar and Nagamalleswara Rao Alluri",coverURL:"https://cdn.intechopen.com/books/images_new/8539.jpg",editedByType:"Edited by",editors:[{id:"81419",title:"Prof.",name:"Sang-Jae",middleName:null,surname:"Kim",slug:"sang-jae-kim",fullName:"Sang-Jae Kim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6124",title:"Micro/Nanolithography",subtitle:"A Heuristic Aspect on the Enduring Technology",isOpenForSubmission:!1,hash:"c94caf617c31b349bd3d9dd054a022a3",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/6124.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5746",title:"Quantum-dot Based Light-emitting Diodes",subtitle:null,isOpenForSubmission:!1,hash:"8fb72b46f25ab676b1b1d52b691a80dc",slug:"quantum-dot-based-light-emitting-diodes",bookSignature:"Morteza Sasani Ghamsari",coverURL:"https://cdn.intechopen.com/books/images_new/5746.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3635",title:"Polymer Thin Films",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"polymer-thin-films",bookSignature:"Abbass A Hashim",coverURL:"https://cdn.intechopen.com/books/images_new/3635.jpg",editedByType:"Edited by",editors:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58424",doi:"10.5772/intechopen.72860",title:"Large-Area Nanoimprint Lithography and Applications",slug:"large-area-nanoimprint-lithography-and-applications",totalDownloads:2069,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"Large-area nanoimprint lithography (NIL) has been regarded as one of the most promising micro/nano-manufacturing technologies for mass production of large-area micro/nanoscale patterns and complex 3D structures and high aspect ratio features with low cost, high throughput, and high resolution. That opens the door and paves the way for many commercial applications not previously conceptualized or economically feasible. Great progresses in large-area nanoimprint lithography have been achieved in recent years. This chapter mainly presents a comprehensive review of recent advances in large-area NIL processes. Some promising solutions of large-area NIL and emerging methods, which can implement mass production of micro-and nanostructures over large areas on various substrates or surfaces, are described in detail. Moreover, numerous industrial-level applications and innovative products based on large-area NIL are also demonstrated. Finally, prospects, challenges, and future directions for industrial scale large-area NIL are addressed. An infrastructure of large-area nanoimprint lithography is proposed. In addition, some recent progresses and research activities in large-area NIL suitable for high volume manufacturing environments from our Labs are also introduced. This chapter may provide a reference and direction for the further explorations and studies of large-area micro/nanopatterning technologies.",book:{id:"6124",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",title:"Micro/Nanolithography",fullTitle:"Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology"},signatures:"Hongbo Lan",authors:[{id:"6642",title:"Prof.",name:"Hongbo",middleName:null,surname:"Lan",slug:"hongbo-lan",fullName:"Hongbo Lan"}]},{id:"72277",doi:"10.5772/intechopen.92614",title:"Surface-Enhanced Raman Scattering: Introduction and Applications",slug:"surface-enhanced-raman-scattering-introduction-and-applications",totalDownloads:1530,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Scattering of light by molecules can be elastic, Rayleigh scattering, or inelastic, Raman scattering. In the elastic scattering, the photon’s energy and the state of the molecule after the scattering events are unchanged. Hence, Rayleigh scattered light does not contain much information on the structure of molecular states. In inelastic scattering, the frequency of monochromatic light changes upon interaction with the vibrational states, or modes, of a molecule. With the advancement in the laser sources, better and compact spectrometers, detectors, and optics Raman spectroscopy have developed as a highly sensitive technique to probe structural details of a complex molecular structure. However, the low scattering cross section (10−31) of Raman scattering has limited the applications of the conventional Raman spectroscopy. With the discovery of surface-enhanced Raman scattering (SERS) in 1973 by Martin Fleischmann, the interest of the research community in Raman spectroscopy as an analytical method has been revived. This chapter aims to familiarize the readers with the basics of Raman scattering phenomenon and SERS. This chapter will also discuss the latest developments in the SERS and its applications in various fields.",book:{id:"10073",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",title:"Recent Advances in Nanophotonics",fullTitle:"Recent Advances in Nanophotonics - Fundamentals and Applications"},signatures:"Samir Kumar, Prabhat Kumar, Anamika Das and Chandra Shakher Pathak",authors:null},{id:"9620",doi:"10.5772/8403",title:"Surface Wetting Characteristics of Rubbed Polyimide Thin Films",slug:"surface-wetting-characteristics-of-rubbed-polyimide-thin-films",totalDownloads:5435,totalCrossrefCites:6,totalDimensionsCites:10,abstract:null,book:{id:"3635",slug:"polymer-thin-films",title:"Polymer Thin Films",fullTitle:"Polymer Thin Films"},signatures:"Wenjun Zheng",authors:null},{id:"55311",doi:"10.5772/intechopen.69177",title:"Recent Developments in Applications of Quantum-Dot Based Light-Emitting Diodes",slug:"recent-developments-in-applications-of-quantum-dot-based-light-emitting-diodes",totalDownloads:1878,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"Quantum dot-based light-emitting diodes (QD-LEDs) represent a form of light-emitting technology and are regarded like a next generation of display technology after the organic light-emitting diodes (OLEDs) display. QD-LEDs are different from liquid crystal displays (LCDs), OLEDs, and plasma displays due to the fact that QD-LEDs present an ideal blend of high brightness, efficiency with long lifetime, flexibility, and low-processing cost of organic LEDs. So, QD-LEDs show theoretical performance limits which surpass all other display technologies. The goal of this chapter is, firstly, to provide a historical prospective study of QD-LEDs applications in display and lighting technologies, secondly, to present the most recent improvements in this field, and finally, to discuss about some current directions in QD-LEDs research that concentrate on the realization of the next-generation displays and high-quality lighting with superior color gamut, higher efficiency, and high color rendering index.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Anca Armăşelu",authors:[{id:"189080",title:"Dr.",name:"Anca",middleName:null,surname:"Armăşelu",slug:"anca-armaselu",fullName:"Anca Armăşelu"}]},{id:"70813",doi:"10.5772/intechopen.90951",title:"Triboelectric Nanogenerators: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications",slug:"triboelectric-nanogenerators-design-fabrication-energy-harvesting-and-portable-wearable-applications",totalDownloads:1588,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"Scavenging energy from our day-to-day activity into useful electrical energy be the best solution to solve the energy crisis. This concept entirely reduces the usage of batteries, which have a complex issue in recycling and disposal. For electrical harvesting energy from vibration energy, there are few energy harvesters available, but the fabrication, implementation, and maintenances are quite complicated. Triboelectric nanogenerators (TENG) having the advantage of accessible design, less fabrication cost, and high energy efficiency can replace the battery in low-power electronic devices. TENGs can operate in various working modes such as contact-separation mode, sliding mode, single-electrode mode, and free-standing mode. The design of TENGs with the respective operating modes employed in generating electric power as well as can be utilized as a portable and wearable power source. The fabrication of triboelectric layers with micro-roughness could enhance the triboelectric charge generation. The objective of this chapter is to deal with the design of triboelectric layers, creating micro structured roughness using the soft-lithographic technique, fabrication of TENGs using different working modes, energy harvesting performance analysis, powering up commercial devices (LEDs, displays, and capacitors), and portable-wearable applications.",book:{id:"8539",slug:"nanogenerators",title:"Nanogenerators",fullTitle:"Nanogenerators"},signatures:"Venkateswaran Vivekananthan, Arunkumar Chandrasekhar, Nagamalleswara Rao Alluri, Yuvasree Purusothaman, Gaurav Khandelwal and Sang-Jae Kim",authors:[{id:"81419",title:"Prof.",name:"Sang-Jae",middleName:null,surname:"Kim",slug:"sang-jae-kim",fullName:"Sang-Jae Kim"},{id:"226214",title:"Dr.",name:"Nagamalleswara Rao",middleName:null,surname:"Alluri",slug:"nagamalleswara-rao-alluri",fullName:"Nagamalleswara Rao Alluri"},{id:"226215",title:"Prof.",name:"Arunkumar",middleName:null,surname:"Chandrasekhar",slug:"arunkumar-chandrasekhar",fullName:"Arunkumar Chandrasekhar"},{id:"313713",title:"Mr.",name:"Venkateswaran",middleName:null,surname:"Vivekananthan",slug:"venkateswaran-vivekananthan",fullName:"Venkateswaran Vivekananthan"},{id:"313714",title:"Dr.",name:"Yuvasree",middleName:null,surname:"Purusothaman",slug:"yuvasree-purusothaman",fullName:"Yuvasree Purusothaman"},{id:"313715",title:"Mr.",name:"Gaurav",middleName:null,surname:"Khandelwal",slug:"gaurav-khandelwal",fullName:"Gaurav Khandelwal"}]}],mostDownloadedChaptersLast30Days:[{id:"72277",title:"Surface-Enhanced Raman Scattering: Introduction and Applications",slug:"surface-enhanced-raman-scattering-introduction-and-applications",totalDownloads:1529,totalCrossrefCites:5,totalDimensionsCites:10,abstract:"Scattering of light by molecules can be elastic, Rayleigh scattering, or inelastic, Raman scattering. In the elastic scattering, the photon’s energy and the state of the molecule after the scattering events are unchanged. Hence, Rayleigh scattered light does not contain much information on the structure of molecular states. In inelastic scattering, the frequency of monochromatic light changes upon interaction with the vibrational states, or modes, of a molecule. With the advancement in the laser sources, better and compact spectrometers, detectors, and optics Raman spectroscopy have developed as a highly sensitive technique to probe structural details of a complex molecular structure. However, the low scattering cross section (10−31) of Raman scattering has limited the applications of the conventional Raman spectroscopy. With the discovery of surface-enhanced Raman scattering (SERS) in 1973 by Martin Fleischmann, the interest of the research community in Raman spectroscopy as an analytical method has been revived. This chapter aims to familiarize the readers with the basics of Raman scattering phenomenon and SERS. This chapter will also discuss the latest developments in the SERS and its applications in various fields.",book:{id:"10073",slug:"recent-advances-in-nanophotonics-fundamentals-and-applications",title:"Recent Advances in Nanophotonics",fullTitle:"Recent Advances in Nanophotonics - Fundamentals and Applications"},signatures:"Samir Kumar, Prabhat Kumar, Anamika Das and Chandra Shakher Pathak",authors:null},{id:"55768",title:"Quantum Dot-Based Light Emitting Diodes (QDLEDs): New Progress",slug:"quantum-dot-based-light-emitting-diodes-qdleds-new-progress",totalDownloads:2571,totalCrossrefCites:4,totalDimensionsCites:6,abstract:"In recent years, the display industry has progressed rapidly. One of the most important developments is the ability to build flexible, transparent and very thin displays by organic light emitting diode (OLED). Researchers working on this field try to improve this area more and more. It is shown that quantum dot (QD) can be helpful in this approach. In this chapter, writers try to consider all the studies performed in recent years about quantum dot-based light emitting diodes (QDLEDs) and conclude how this nanoparticle can improve performance of QDLEDs. In fact, the existence of quantum dots in QDLEDs can cause an excellent improvement in their efficiency and lifetime resulted from using improved active layer by colloidal nanocrystals. Finally, the recent progresses on the quantum dot-based light emitting diodes are reviewed in this chapter, and an important outlook into challenges ahead is prepared.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Neda Heydari, Seyed Mohammad Bagher Ghorashi, Wooje Han and\nHyung-Ho Park",authors:[{id:"199095",title:"Prof.",name:"Hyung-Ho",middleName:null,surname:"Park",slug:"hyung-ho-park",fullName:"Hyung-Ho Park"},{id:"202100",title:"Dr.",name:"Neda",middleName:null,surname:"Heydari",slug:"neda-heydari",fullName:"Neda Heydari"},{id:"202684",title:"Dr.",name:"Seyed Mohammad Bagher Ghorashi",middleName:null,surname:"Ghorashi",slug:"seyed-mohammad-bagher-ghorashi-ghorashi",fullName:"Seyed Mohammad Bagher Ghorashi Ghorashi"},{id:"209683",title:"Mr.",name:"Wooje",middleName:null,surname:"Han",slug:"wooje-han",fullName:"Wooje Han"}]},{id:"70813",title:"Triboelectric Nanogenerators: Design, Fabrication, Energy Harvesting, and Portable-Wearable Applications",slug:"triboelectric-nanogenerators-design-fabrication-energy-harvesting-and-portable-wearable-applications",totalDownloads:1588,totalCrossrefCites:6,totalDimensionsCites:6,abstract:"Scavenging energy from our day-to-day activity into useful electrical energy be the best solution to solve the energy crisis. This concept entirely reduces the usage of batteries, which have a complex issue in recycling and disposal. For electrical harvesting energy from vibration energy, there are few energy harvesters available, but the fabrication, implementation, and maintenances are quite complicated. Triboelectric nanogenerators (TENG) having the advantage of accessible design, less fabrication cost, and high energy efficiency can replace the battery in low-power electronic devices. TENGs can operate in various working modes such as contact-separation mode, sliding mode, single-electrode mode, and free-standing mode. The design of TENGs with the respective operating modes employed in generating electric power as well as can be utilized as a portable and wearable power source. The fabrication of triboelectric layers with micro-roughness could enhance the triboelectric charge generation. The objective of this chapter is to deal with the design of triboelectric layers, creating micro structured roughness using the soft-lithographic technique, fabrication of TENGs using different working modes, energy harvesting performance analysis, powering up commercial devices (LEDs, displays, and capacitors), and portable-wearable applications.",book:{id:"8539",slug:"nanogenerators",title:"Nanogenerators",fullTitle:"Nanogenerators"},signatures:"Venkateswaran Vivekananthan, Arunkumar Chandrasekhar, Nagamalleswara Rao Alluri, Yuvasree Purusothaman, Gaurav Khandelwal and Sang-Jae Kim",authors:[{id:"81419",title:"Prof.",name:"Sang-Jae",middleName:null,surname:"Kim",slug:"sang-jae-kim",fullName:"Sang-Jae Kim"},{id:"226214",title:"Dr.",name:"Nagamalleswara Rao",middleName:null,surname:"Alluri",slug:"nagamalleswara-rao-alluri",fullName:"Nagamalleswara Rao Alluri"},{id:"226215",title:"Prof.",name:"Arunkumar",middleName:null,surname:"Chandrasekhar",slug:"arunkumar-chandrasekhar",fullName:"Arunkumar Chandrasekhar"},{id:"313713",title:"Mr.",name:"Venkateswaran",middleName:null,surname:"Vivekananthan",slug:"venkateswaran-vivekananthan",fullName:"Venkateswaran Vivekananthan"},{id:"313714",title:"Dr.",name:"Yuvasree",middleName:null,surname:"Purusothaman",slug:"yuvasree-purusothaman",fullName:"Yuvasree Purusothaman"},{id:"313715",title:"Mr.",name:"Gaurav",middleName:null,surname:"Khandelwal",slug:"gaurav-khandelwal",fullName:"Gaurav Khandelwal"}]},{id:"56681",title:"Valley Polarized Single Photon Source Based on Transition Metal Dichalcogenides Quantum Dots",slug:"valley-polarized-single-photon-source-based-on-transition-metal-dichalcogenides-quantum-dots",totalDownloads:1940,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Photonic quantum computer, quantum communication, quantum metrology, and optical quantum information processing require a development of efficient solid‐state single photon sources. However, it still remains a challenge. We report theoretical framework and experimental development on a novel kind of valley‐polarized single‐photon emitter (SPE) based on two‐dimensional transition metal dichalcogenides (TMDCs) quantum dots. In order to reveal the principle of the SPE, we make a brief review on the electronic structure of the TMDCs and excitonic behavior in photoluminescence (PL) and in magneto‐PL of these materials. We also discuss coupled spin and valley physics, valley‐polarized optical absorption, and magneto‐optical absorption in TMDC quantum dots. We demonstrate that the valley‐polarization is robust against dot size and magnetic field, but optical transition energies show sizable size‐effect. Three versatile models, including density functional theory, tight‐binding and effective k⋅p method, have been adopted in our calculations and the corresponding results have been presented.",book:{id:"5746",slug:"quantum-dot-based-light-emitting-diodes",title:"Quantum-dot Based Light-emitting Diodes",fullTitle:"Quantum-dot Based Light-emitting Diodes"},signatures:"Fanyao Qu, Alexandre Cavalheiro Dias, Antonio Luciano de Almeida\nFonseca, Marco Cezar Barbosa Fernandes and Xiangmu Kong",authors:[{id:"99666",title:"Prof.",name:"Fanyao",middleName:null,surname:"Qu",slug:"fanyao-qu",fullName:"Fanyao Qu"}]},{id:"58480",title:"Optical Proximity Correction (OPC) Under Immersion Lithography",slug:"optical-proximity-correction-opc-under-immersion-lithography",totalDownloads:1551,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"As advanced technology nodes continue scaling down into sub-16 nm regime, optical microlithography becomes more vulnerable to process variations. As a result, overall lithographic yield continuously degrades. Since next-generation lithography (NGL) is still not mature enough, the industry relies heavily on resolution enhancement techniques (RETs), wherein optical proximity correction (OPC) with 193 nm immersion lithography is dominant in the foreseeable future. However, OPC algorithms are getting more aggressive. Consequently, complex mask solutions are outputted. Furthermore, this results in long computation time along with mask data volume explosion. In this chapter, recent state-of-the-art OPC algorithms are discussed. Thereafter, the performance of a recently published fast OPC methodology—to generate highly manufactured mask solutions with acceptable pattern fidelity under process variations—is verified on the public benchmarks.",book:{id:"6124",slug:"micro-nanolithography-a-heuristic-aspect-on-the-enduring-technology",title:"Micro/Nanolithography",fullTitle:"Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology"},signatures:"Ahmed Awad, Atsushi Takahashi and Chikaaki Kodaman",authors:[{id:"220602",title:"Dr.",name:"Ahmed",middleName:"Nassouh",surname:"Awad",slug:"ahmed-awad",fullName:"Ahmed Awad"},{id:"227583",title:"Prof.",name:"Atushi",middleName:null,surname:"Takahashi",slug:"atushi-takahashi",fullName:"Atushi Takahashi"},{id:"227584",title:"Dr.",name:"Chikaaki",middleName:null,surname:"Kodama",slug:"chikaaki-kodama",fullName:"Chikaaki Kodama"}]}],onlineFirstChaptersFilter:{topicId:"751",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"23",title:"Education and Human Development",doi:"10.5772/intechopen.100360",issn:null,scope:"\r\n\tEducation and Human Development is an interdisciplinary research area that aims to shed light on topics related to both learning and development. This Series is intended for researchers, practitioners, and students who are interested in understanding more about these fields and their applications.
",coverUrl:"https://cdn.intechopen.com/series/covers/23.jpg",latestPublicationDate:"August 1st, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"280770",title:"Dr.",name:"Katherine K.M.",middleName:null,surname:"Stavropoulos",slug:"katherine-k.m.-stavropoulos",fullName:"Katherine K.M. Stavropoulos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRdFuQAK/Profile_Picture_2022-05-24T09:03:48.jpg",biography:"Katherine Stavropoulos received her BA in Psychology from Trinity College, in Connecticut, USA and her Ph.D. in Experimental Psychology from the University of California, San Diego. She completed her postdoctoral work at the Yale Child Study Center with Dr. James McPartland. Dr. Stavropoulos’ doctoral dissertation explored neural correlates of reward anticipation to social versus nonsocial stimuli in children with and without autism spectrum disorders (ASD). She has been a faculty member at the University of California, Riverside in the School of Education since 2016. Her research focuses on translational studies to explore the reward system in ASD, as well as how anxiety contributes to social challenges in ASD. She also investigates how behavioral interventions affect neural activity, behavior, and school performance in children with ASD. She is also involved in the diagnosis of children with ASD and is a licensed clinical psychologist in California. She is the Assistant Director of the SEARCH Center at UCR and is a faculty member in the Graduate Program in Neuroscience.",institutionString:null,institution:{name:"University of California, Riverside",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,annualVolume:11415,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,annualVolume:11417,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:47,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82654",title:"Atraumatic Restorative Treatment: More than a Minimally Invasive Approach?",doi:"10.5772/intechopen.105623",signatures:"Manal A. Ablal",slug:"atraumatic-restorative-treatment-more-than-a-minimally-invasive-approach",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Caries - The Selection of Restoration Methods and Restorative Materials",coverURL:"https://cdn.intechopen.com/books/images_new/11565.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7139",title:"Current Approaches in Orthodontics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7139.jpg",slug:"current-approaches-in-orthodontics",publishedDate:"April 10th 2019",editedByType:"Edited by",bookSignature:"Belma Işık Aslan and Fatma Deniz Uzuner",hash:"2c77384eeb748cf05a898d65b9dcb48a",volumeInSeries:2,fullTitle:"Current Approaches in Orthodontics",editors:[{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null}]},{type:"book",id:"7572",title:"Trauma in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7572.jpg",slug:"trauma-in-dentistry",publishedDate:"July 3rd 2019",editedByType:"Edited by",bookSignature:"Serdar Gözler",hash:"7cb94732cfb315f8d1e70ebf500eb8a9",volumeInSeries:3,fullTitle:"Trauma in Dentistry",editors:[{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",institutionURL:null,country:{name:"Turkey"}}}]},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"12086",title:"Cattle Diseases - Molecular and Biochemical Approach",coverURL:"https://cdn.intechopen.com/books/images_new/12086.jpg",hash:"afdbf57e32d996556a94528c06623cf3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 5th 2022",isOpenForSubmission:!0,editors:[{id:"219081",title:"Dr.",name:"Abdulsamed",surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 8th 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:10,paginationItems:[{id:"82903",title:"Walking Accessibility to Primary Healthcare Services: An Inequity Factor for Olders in the Lisbon Metropolitan Area (Portugal)",doi:"10.5772/intechopen.106265",signatures:"Eduarda Marques da Costa, Ana Louro, Nuno Marques da Costa, Mariana Dias and Marcela Barata",slug:"walking-accessibility-to-primary-healthcare-services-an-inequity-factor-for-olders-in-the-lisbon-met",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82622",title:"Contemporary Geographical Gerontology: Reconciling Space and Place in Population Ageing",doi:"10.5772/intechopen.105863",signatures:"Hamish Robertson",slug:"contemporary-geographical-gerontology-reconciling-space-and-place-in-population-ageing",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hamish",surname:"Robertson"}],book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"82610",title:"Perspective Chapter: The Role of Learning Styles in Active Learning",doi:"10.5772/intechopen.105964",signatures:"Armando Lozano-Rodríguez, Fernanda Inez García-Vázquez and José Luis García-Cué",slug:"perspective-chapter-the-role-of-learning-styles-in-active-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81909",title:"Educational Paradigm with Ubuntu Mindset: Implications for Sustainable Development Goals in Education",doi:"10.5772/intechopen.104929",signatures:"George Frempong and Raavee Kadam",slug:"educational-paradigm-with-ubuntu-mindset-implications-for-sustainable-development-goals-in-education",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82243",title:"The Language that Grade R Students Use to Achieve the Envisaged Mathematics Outcomes, a South African Perspective",doi:"10.5772/intechopen.105446",signatures:"Shakespear M. Chiphambo and Nosisi N. Feza",slug:"the-language-that-grade-r-students-use-to-achieve-the-envisaged-mathematics-outcomes-a-south-african",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82394",title:"Learning by Doing Active Social Learning",doi:"10.5772/intechopen.105523",signatures:"Anat Raviv",slug:"learning-by-doing-active-social-learning",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82310",title:"Knowledge of Intergenerational Contact to Combat Ageism towards Older People",doi:"10.5772/intechopen.105592",signatures:"Alice Nga Lai Kwong",slug:"knowledge-of-intergenerational-contact-to-combat-ageism-towards-older-people",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Social Aspects of Ageing - Selected Challenges, Analyses, and Solutions",coverURL:"https://cdn.intechopen.com/books/images_new/11479.jpg",subseries:{id:"90",title:"Human Development"}}},{id:"81993",title:"Emergent Chemistry: Using Visualizations to Develop Abstract Thinking and a Sense of Scale Within the Preschool Setting",doi:"10.5772/intechopen.105216",signatures:"Karina Adbo",slug:"emergent-chemistry-using-visualizations-to-develop-abstract-thinking-and-a-sense-of-scale-within-the",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"82252",title:"Early Childhood: Enriched Environments and Roles of Caring Adults",doi:"10.5772/intechopen.105157",signatures:"Analía Mignaton",slug:"early-childhood-enriched-environments-and-roles-of-caring-adults",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}},{id:"81996",title:"Perspective Chapter: New Active Learning Models in Africa",doi:"10.5772/intechopen.105217",signatures:"Fred Awaah, Cosmas Lambini Kombat and Emmanuel Okyere Ekwam",slug:"perspective-chapter-new-active-learning-models-in-africa",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Active Learning - Research and Practice",coverURL:"https://cdn.intechopen.com/books/images_new/11481.jpg",subseries:{id:"89",title:"Education"}}}]},subseriesFiltersForOFChapters:[{caption:"Human Development",value:90,count:3,group:"subseries"},{caption:"Education",value:89,count:7,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Pollution",value:38,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:754,paginationItems:[{id:"310674",title:"Dr.",name:"Pravin",middleName:null,surname:"Kendrekar",slug:"pravin-kendrekar",fullName:"Pravin Kendrekar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310674/images/system/310674.jpg",biography:"Dr. Pravin Kendrekar, MSc, MBA, Ph.D., is currently a visiting scientist at the Lipid Nanostructure Laboratory, University of Central Lancashire, England. He previously worked as a post-doctoral fellow at the Ben-Gurion University of Negev, Israel; University of the Free State, South Africa; and Central University of Technology Bloemfontein, South Africa. He obtained his Ph.D. in Organic Chemistry from Nagaoka University of Technology, Japan. He has published more than seventy-four journal articles and attended several national and international conferences as speaker and chair. Dr. Kendrekar has received many international awards. He has several funded projects, namely, anti-malaria drug development, MRSA, and SARS-CoV-2 activity of curcumin and its formulations. He has filed four patents in collaboration with the University of Central Lancashire and Mayo Clinic Infectious Diseases. His present research includes organic synthesis, drug discovery and development, biochemistry, nanoscience, and nanotechnology.",institutionString:"Visiting Scientist at Lipid Nanostructures Laboratory, Centre for Smart Materials, School of Natural Sciences, University of Central Lancashire",institution:null},{id:"428125",title:"Dr.",name:"Vinayak",middleName:null,surname:"Adimule",slug:"vinayak-adimule",fullName:"Vinayak Adimule",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/428125/images/system/428125.jpg",biography:"Dr. Vinayak Adimule, MSc, Ph.D., is a professor and dean of R&D, Angadi Institute of Technology and Management, India. He has 15 years of research experience as a senior research scientist and associate research scientist in R&D organizations. He has published more than fifty research articles as well as several book chapters. He has two Indian patents and two international patents to his credit. Dr. Adimule has attended, chaired, and presented papers at national and international conferences. He is a guest editor for Topics in Catalysis and other journals. He is also an editorial board member, life member, and associate member for many international societies and research institutions. His research interests include nanoelectronics, material chemistry, artificial intelligence, sensors and actuators, bio-nanomaterials, and medicinal chemistry.",institutionString:"Angadi Institute of Technology and Management",institution:null},{id:"284317",title:"Prof.",name:"Kantharaju",middleName:null,surname:"Kamanna",slug:"kantharaju-kamanna",fullName:"Kantharaju Kamanna",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284317/images/21050_n.jpg",biography:"Prof. K. Kantharaju has received Bachelor of science (PCM), master of science (Organic Chemistry) and Doctor of Philosophy in Chemistry from Bangalore University. He worked as a Executive Research & Development @ Cadila Pharmaceuticals Ltd, Ahmedabad. He received DBT-postdoc fellow @ Molecular Biophysics Unit, Indian Institute of Science, Bangalore under the supervision of Prof. P. Balaram, later he moved to NIH-postdoc researcher at Drexel University College of Medicine, Philadelphia, USA, after his return from postdoc joined NITK-Surthakal as a Adhoc faculty at department of chemistry. Since from August 2013 working as a Associate Professor, and in 2016 promoted to Profeesor in the School of Basic Sciences: Department of Chemistry and having 20 years of teaching and research experiences.",institutionString:null,institution:{name:"Rani Channamma University, Belagavi",country:{name:"India"}}},{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",biography:"Prof. Dr. Yusuf Tutar conducts his research at the Hamidiye Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Division of Biochemistry, University of Health Sciences, Turkey. He is also a faculty member in the Molecular Oncology Program. He obtained his MSc and Ph.D. at Oregon State University and Texas Tech University, respectively. He pursued his postdoctoral studies at Rutgers University Medical School and the National Institutes of Health (NIH/NIDDK), USA. His research focuses on biochemistry, biophysics, genetics, molecular biology, and molecular medicine with specialization in the fields of drug design, protein structure-function, protein folding, prions, microRNA, pseudogenes, molecular cancer, epigenetics, metabolites, proteomics, genomics, protein expression, and characterization by spectroscopic and calorimetric methods.",institutionString:"University of Health Sciences",institution:null},{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",biography:"Hiroyuki Kagechika received his bachelor’s degree and Ph.D. in Pharmaceutical Sciences from the University of Tokyo, Japan, where he served as an associate professor until 2004. He is currently a professor at the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU). From 2010 to 2012, he was the dean of the Graduate School of Biomedical Science. Since 2012, he has served as the vice dean of the Graduate School of Medical and Dental Sciences. He has been the director of the IBB since 2020. Dr. Kagechika’s major research interests are the medicinal chemistry of retinoids, vitamins D/K, and nuclear receptors. He has developed various compounds including a drug for acute promyelocytic leukemia.",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",country:{name:"Japan"}}},{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",biography:"Martins Emeje obtained a BPharm with distinction from Ahmadu Bello University, Nigeria, and an MPharm and Ph.D. from the University of Nigeria (UNN), where he received the best Ph.D. award and was enlisted as UNN’s “Face of Research.” He established the first nanomedicine center in Nigeria and was the pioneer head of the intellectual property and technology transfer as well as the technology innovation and support center. Prof. Emeje’s several international fellowships include the prestigious Raman fellowship. He has published more than 150 articles and patents. He is also the head of R&D at NIPRD and holds a visiting professor position at Nnamdi Azikiwe University, Nigeria. He has a postgraduate certificate in Project Management from Walden University, Minnesota, as well as a professional teaching certificate and a World Bank certification in Public Procurement. Prof. Emeje was a national chairman of academic pharmacists in Nigeria and the 2021 winner of the May & Baker Nigeria Plc–sponsored prize for professional service in research and innovation.",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",country:{name:"Nigeria"}}},{id:"436430",title:"Associate Prof.",name:"Mesut",middleName:null,surname:"Işık",slug:"mesut-isik",fullName:"Mesut Işık",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/436430/images/19686_n.jpg",biography:null,institutionString:null,institution:{name:"Bilecik University",country:{name:"Turkey"}}},{id:"268659",title:"Ms.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/268659/images/8143_n.jpg",biography:"Dr. Zhan received his undergraduate and graduate training in the fields of preventive medicine and epidemiology and statistics at the West China University of Medical Sciences in China during 1989 to 1999. He received his post-doctoral training in oncology and cancer proteomics for two years at the Cancer Research Institute of Human Medical University in China. In 2001, he went to the University of Tennessee Health Science Center (UTHSC) in USA, where he was a post-doctoral researcher and focused on mass spectrometry and cancer proteomics. Then, he was appointed as an Assistant Professor of Neurology, UTHSC in 2005. He moved to the Cleveland Clinic in USA as a Project Scientist/Staff in 2006 where he focused on the studies of eye disease proteomics and biomarkers. He returned to UTHSC as an Assistant Professor of Neurology in the end of 2007, engaging in proteomics and biomarker studies of lung diseases and brain tumors, and initiating the studies of predictive, preventive, and personalized medicine (PPPM) in cancer. In 2010, he was promoted to Associate Professor of Neurology, UTHSC. Currently, he is a Professor at Xiangya Hospital of Central South University in China, Fellow of Royal Society of Medicine (FRSM), the European EPMA National Representative in China, Regular Member of American Association for the Advancement of Science (AAAS), European Cooperation of Science and Technology (e-COST) grant evaluator, Associate Editors of BMC Genomics, BMC Medical Genomics, EPMA Journal, and Frontiers in Endocrinology, Executive Editor-in-Chief of Med One. He has\npublished 116 peer-reviewed research articles, 16 book chapters, 2 books, and 2 US patents. His current main research interest focuses on the studies of cancer proteomics and biomarkers, and the use of modern omics techniques and systems biology for PPPM in cancer, and on the development and use of 2DE-LC/MS for the large-scale study of human proteoforms.",institutionString:null,institution:{name:"Xiangya Hospital Central South University",country:{name:"China"}}},{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",biography:"Dr. Rizwan Ahmad is a University Professor and Coordinator, Quality and Development, College of Medicine, Imam Abdulrahman bin Faisal University, Saudi Arabia. Previously, he was Associate Professor of Human Function, Oman Medical College, Oman, and SBS University, Dehradun. Dr. Ahmad completed his education at Aligarh Muslim University, Aligarh. He has published several articles in peer-reviewed journals, chapters, and edited books. His area of specialization is free radical biochemistry and autoimmune diseases.",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",country:{name:"Saudi Arabia"}}},{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",biography:"Farid A. Badria, Ph.D., is the recipient of several awards, including The World Academy of Sciences (TWAS) Prize for Public Understanding of Science; the World Intellectual Property Organization (WIPO) Gold Medal for best invention; Outstanding Arab Scholar, Kuwait; and the Khwarizmi International Award, Iran. He has 250 publications, 12 books, 20 patents, and several marketed pharmaceutical products to his credit. He continues to lead research projects on developing new therapies for liver, skin disorders, and cancer. Dr. Badria was listed among the world’s top 2% of scientists in medicinal and biomolecular chemistry in 2019 and 2020. He is a member of the Arab Development Fund, Kuwait; International Cell Research Organization–United Nations Educational, Scientific and Cultural Organization (ICRO–UNESCO), Chile; and UNESCO Biotechnology France",institutionString:"Mansoura University",institution:{name:"Mansoura University",country:{name:"Egypt"}}},{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",biography:"Dr. Singh received a BPharm (2003) and MPharm (2005) from Panjab University, Chandigarh, India, and a Ph.D. (2013) from Punjab Technical University (PTU), Jalandhar, India. He has more than sixteen years of teaching experience and has supervised numerous postgraduate and Ph.D. students. He has to his credit more than seventy papers in SCI- and SCOPUS-indexed journals, fifty-five conference proceedings, four books, six Best Paper Awards, and five projects from different government agencies. He is currently an editorial board member of eight international journals and a reviewer for more than fifty scientific journals. He received Top Reviewer and Excellent Peer Reviewer Awards from Publons in 2016 and 2017, respectively. He is also on the panel of The International Reviewer for reviewing research proposals for grants from the Royal Society. He also serves as a Publons Academy mentor and Bentham brand ambassador.",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",country:{name:"India"}}},{id:"142388",title:"Dr.",name:"Thiago",middleName:"Gomes",surname:"Gomes Heck",slug:"thiago-gomes-heck",fullName:"Thiago Gomes Heck",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/142388/images/7259_n.jpg",biography:null,institutionString:null,institution:{name:"Universidade Regional do Noroeste do Estado do Rio Grande do Sul",country:{name:"Brazil"}}},{id:"336273",title:"Assistant Prof.",name:"Janja",middleName:null,surname:"Zupan",slug:"janja-zupan",fullName:"Janja Zupan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/336273/images/14853_n.jpeg",biography:"Janja Zupan graduated in 2005 at the Department of Clinical Biochemistry (superviser prof. dr. Janja Marc) in the field of genetics of osteoporosis. Since November 2009 she is working as a Teaching Assistant at the Faculty of Pharmacy, Department of Clinical Biochemistry. In 2011 she completed part of her research and PhD work at Institute of Genetics and Molecular Medicine, University of Edinburgh. She finished her PhD entitled The influence of the proinflammatory cytokines on the RANK/RANKL/OPG in bone tissue of osteoporotic and osteoarthritic patients in 2012. From 2014-2016 she worked at the Institute of Biomedical Sciences, University of Aberdeen as a postdoctoral research fellow on UK Arthritis research project where she gained knowledge in mesenchymal stem cells and regenerative medicine. She returned back to University of Ljubljana, Faculty of Pharmacy in 2016. She is currently leading project entitled Mesenchymal stem cells-the keepers of tissue endogenous regenerative capacity facing up to aging of the musculoskeletal system funded by Slovenian Research Agency.",institutionString:null,institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"357453",title:"Dr.",name:"Radheshyam",middleName:null,surname:"Maurya",slug:"radheshyam-maurya",fullName:"Radheshyam Maurya",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/357453/images/16535_n.jpg",biography:null,institutionString:null,institution:{name:"University of Hyderabad",country:{name:"India"}}},{id:"418340",title:"Dr.",name:"Jyotirmoi",middleName:null,surname:"Aich",slug:"jyotirmoi-aich",fullName:"Jyotirmoi Aich",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038Ugi5QAC/Profile_Picture_2022-04-15T07:48:28.png",biography:"Biotechnologist with 15 years of research including 6 years of teaching experience. Demonstrated record of scientific achievements through consistent publication record (H index = 13, with 874 citations) in high impact journals such as Nature Communications, Oncotarget, Annals of Oncology, PNAS, and AJRCCM, etc. Strong research professional with a post-doctorate from ACTREC where I gained experimental oncology experience in clinical settings and a doctorate from IGIB where I gained expertise in asthma pathophysiology. A well-trained biotechnologist with diverse experience on the bench across different research themes ranging from asthma to cancer and other infectious diseases. An individual with a strong commitment and innovative mindset. Have the ability to work on diverse projects such as regenerative and molecular medicine with an overall mindset of improving healthcare.",institutionString:"DY Patil Deemed to Be University",institution:null},{id:"349288",title:"Prof.",name:"Soumya",middleName:null,surname:"Basu",slug:"soumya-basu",fullName:"Soumya Basu",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035QxIDQA0/Profile_Picture_2022-04-15T07:47:01.jpg",biography:"Soumya Basu, Ph.D., is currently working as an Associate Professor at Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India. With 16+ years of trans-disciplinary research experience in Drug Design, development, and pre-clinical validation; 20+ research article publications in journals of repute, 9+ years of teaching experience, trained with cross-disciplinary education, Dr. Basu is a life-long learner and always thrives for new challenges.\r\nHer research area is the design and synthesis of small molecule partial agonists of PPAR-γ in lung cancer. She is also using artificial intelligence and deep learning methods to understand the exosomal miRNA’s role in cancer metastasis. Dr. Basu is the recipient of many awards including the Early Career Research Award from the Department of Science and Technology, Govt. of India. She is a reviewer of many journals like Molecular Biology Reports, Frontiers in Oncology, RSC Advances, PLOS ONE, Journal of Biomolecular Structure & Dynamics, Journal of Molecular Graphics and Modelling, etc. She has edited and authored/co-authored 21 journal papers, 3 book chapters, and 15 abstracts. She is a Board of Studies member at her university. She is a life member of 'The Cytometry Society”-in India and 'All India Cell Biology Society”- in India.",institutionString:"Dr. D.Y. Patil Vidyapeeth, Pune",institution:{name:"Dr. D.Y. Patil Vidyapeeth, Pune",country:{name:"India"}}},{id:"354817",title:"Dr.",name:"Anubhab",middleName:null,surname:"Mukherjee",slug:"anubhab-mukherjee",fullName:"Anubhab Mukherjee",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y0000365PbRQAU/ProfilePicture%202022-04-15%2005%3A11%3A18.480",biography:"A former member of Laboratory of Nanomedicine, Brigham and Women’s Hospital, Harvard University, Boston, USA, Dr. Anubhab Mukherjee is an ardent votary of science who strives to make an impact in the lives of those afflicted with cancer and other chronic/acute ailments. He completed his Ph.D. from CSIR-Indian Institute of Chemical Technology, Hyderabad, India, having been skilled with RNAi, liposomal drug delivery, preclinical cell and animal studies. He pursued post-doctoral research at College of Pharmacy, Health Science Center, Texas A & M University and was involved in another postdoctoral research at Department of Translational Neurosciences and Neurotherapeutics, John Wayne Cancer Institute, Santa Monica, California. In 2015, he worked in Harvard-MIT Health Sciences & Technology as a visiting scientist. He has substantial experience in nanotechnology-based formulation development and successfully served various Indian organizations to develop pharmaceuticals and nutraceutical products. He is an inventor in many US patents and an author in many peer-reviewed articles, book chapters and books published in various media of international repute. Dr. Mukherjee is currently serving as Principal Scientist, R&D at Esperer Onco Nutrition (EON) Pvt. Ltd. and heads the Hyderabad R&D center of the organization.",institutionString:"Esperer Onco Nutrition Pvt Ltd.",institution:null},{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",biography:"Manash K. Paul is a Principal Investigator and Scientist at the University of California Los Angeles. He has contributed significantly to the fields of stem cell biology, regenerative medicine, and lung cancer. His research focuses on various signaling processes involved in maintaining stem cell homeostasis during the injury-repair process, deciphering lung stem cell niche, pulmonary disease modeling, immuno-oncology, and drug discovery. He is currently investigating the role of extracellular vesicles in premalignant lung cell migration and detecting the metastatic phenotype of lung cancer via machine-learning-based analyses of exosomal signatures. Dr. Paul has published in more than fifty peer-reviewed international journals and is highly cited. He is the recipient of many awards, including the UCLA Vice Chancellor’s award, a senior member of the Institute of Electrical and Electronics Engineers (IEEE), and an editorial board member for several international journals.",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",country:{name:"United States of America"}}},{id:"311457",title:"Dr.",name:"Júlia",middleName:null,surname:"Scherer Santos",slug:"julia-scherer-santos",fullName:"Júlia Scherer Santos",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311457/images/system/311457.jpg",biography:"Dr. Júlia Scherer Santos works in the areas of cosmetology, nanotechnology, pharmaceutical technology, beauty, and aesthetics. Dr. Santos also has experience as a professor of graduate courses. Graduated in Pharmacy, specialization in Cosmetology and Cosmeceuticals applied to aesthetics, specialization in Aesthetic and Cosmetic Health, and a doctorate in Pharmaceutical Nanotechnology. Teaching experience in Pharmacy and Aesthetics and Cosmetics courses. She works mainly on the following subjects: nanotechnology, cosmetology, pharmaceutical technology, aesthetics.",institutionString:"Universidade Federal de Juiz de Fora",institution:{name:"Universidade Federal de Juiz de Fora",country:{name:"Brazil"}}},{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",slug:"abdulsamed-kukurt",fullName:"Abdulsamed Kükürt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",biography:"Dr. Kükürt graduated from Uludağ University in Turkey. He started his academic career as a Research Assistant in the Department of Biochemistry at Kafkas University. In 2019, he completed his Ph.D. program in the Department of Biochemistry at the Institute of Health Sciences. He is currently working at the Department of Biochemistry, Kafkas University. He has 27 published research articles in academic journals, 11 book chapters, and 37 papers. He took part in 10 academic projects. He served as a reviewer for many articles. He still serves as a member of the review board in many academic journals. He is currently working on the protective activity of phenolic compounds in disorders associated with oxidative stress and inflammation.",institutionString:null,institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"178366",title:"Dr.",name:"Volkan",middleName:null,surname:"Gelen",slug:"volkan-gelen",fullName:"Volkan Gelen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178366/images/system/178366.jpg",biography:"Volkan Gelen is a Physiology specialist who received his veterinary degree from Kafkas University in 2011. Between 2011-2015, he worked as an assistant at Atatürk University, Faculty of Veterinary Medicine, Department of Physiology. In 2016, he joined Kafkas University, Faculty of Veterinary Medicine, Department of Physiology as an assistant professor. Dr. Gelen has been engaged in various academic activities at Kafkas University since 2016. There he completed 5 projects and has 3 ongoing projects. He has 60 articles published in scientific journals and 20 poster presentations in scientific congresses. His research interests include physiology, endocrine system, cancer, diabetes, cardiovascular system diseases, and isolated organ bath system studies.",institutionString:"Kafkas University",institution:{name:"Kafkas University",country:{name:"Turkey"}}},{id:"418963",title:"Dr.",name:"Augustine Ododo",middleName:"Augustine",surname:"Osagie",slug:"augustine-ododo-osagie",fullName:"Augustine Ododo Osagie",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/418963/images/16900_n.jpg",biography:"Born into the family of Osagie, a prince of the Benin Kingdom. I am currently an academic in the Department of Medical Biochemistry, University of Benin. Part of the duties are to teach undergraduate students and conduct academic research.",institutionString:null,institution:{name:"University of Benin",country:{name:"Nigeria"}}},{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",biography:"Prof. Shagufta Perveen is a Distinguish Professor in the Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Dr. Perveen has acted as the principal investigator of major research projects funded by the research unit of King Saud University. She has more than ninety original research papers in peer-reviewed journals of international repute to her credit. She is a fellow member of the Royal Society of Chemistry UK and the American Chemical Society of the United States.",institutionString:"King Saud University",institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"49848",title:"Dr.",name:"Wen-Long",middleName:null,surname:"Hu",slug:"wen-long-hu",fullName:"Wen-Long Hu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49848/images/system/49848.jpg",biography:"Wen-Long Hu is Chief of the Division of Acupuncture, Department of Chinese Medicine at Kaohsiung Chang Gung Memorial Hospital, as well as an adjunct associate professor at Fooyin University and Kaohsiung Medical University. Wen-Long is President of Taiwan Traditional Chinese Medicine Medical Association. He has 28 years of experience in clinical practice in laser acupuncture therapy and 34 years in acupuncture. He is an invited speaker for lectures and workshops in laser acupuncture at many symposiums held by medical associations. He owns the patent for herbal preparation and producing, and for the supercritical fluid-treated needle. Dr. Hu has published three books, 12 book chapters, and more than 30 papers in reputed journals, besides serving as an editorial board member of repute.",institutionString:"Kaohsiung Chang Gung Memorial Hospital",institution:{name:"Kaohsiung Chang Gung Memorial Hospital",country:{name:"Taiwan"}}},{id:"298472",title:"Prof.",name:"Andrey V.",middleName:null,surname:"Grechko",slug:"andrey-v.-grechko",fullName:"Andrey V. Grechko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/298472/images/system/298472.png",biography:"Andrey Vyacheslavovich Grechko, Ph.D., Professor, is a Corresponding Member of the Russian Academy of Sciences. He graduated from the Semashko Moscow Medical Institute (Semashko National Research Institute of Public Health) with a degree in Medicine (1998), the Clinical Department of Dermatovenerology (2000), and received a second higher education in Psychology (2009). Professor A.V. Grechko held the position of Сhief Physician of the Central Clinical Hospital in Moscow. He worked as a professor at the faculty and was engaged in scientific research at the Medical University. Starting in 2013, he has been the initiator of the creation of the Federal Scientific and Clinical Center for Intensive Care and Rehabilitology, Moscow, Russian Federation, where he also serves as Director since 2015. He has many years of experience in research and teaching in various fields of medicine, is an author/co-author of more than 200 scientific publications, 13 patents, 15 medical books/chapters, including Chapter in Book «Metabolomics», IntechOpen, 2020 «Metabolomic Discovery of Microbiota Dysfunction as the Cause of Pathology».",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",biography:'Natalia Vladimirovna Beloborodova was educated at the Pirogov Russian National Research Medical University, with a degree in pediatrics in 1980, a Ph.D. in 1987, and a specialization in Clinical Microbiology from First Moscow State Medical University in 2004. She has been a Professor since 1996. Currently, she is the Head of the Laboratory of Metabolism, a division of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russian Federation. N.V. Beloborodova has many years of clinical experience in the field of intensive care and surgery. She studies infectious complications and sepsis. She initiated a series of interdisciplinary clinical and experimental studies based on the concept of integrating human metabolism and its microbiota. Her scientific achievements are widely known: she is the recipient of the Marie E. Coates Award \\"Best lecturer-scientist\\" Gustafsson Fund, Karolinska Institutes, Stockholm, Sweden, and the International Sepsis Forum Award, Pasteur Institute, Paris, France (2014), etc. Professor N.V. Beloborodova wrote 210 papers, five books, 10 chapters and has edited four books.',institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null},{id:"354260",title:"Ph.D.",name:"Tércio Elyan",middleName:"Azevedo",surname:"Azevedo Martins",slug:"tercio-elyan-azevedo-martins",fullName:"Tércio Elyan Azevedo Martins",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/354260/images/16241_n.jpg",biography:"Graduated in Pharmacy from the Federal University of Ceará with the modality in Industrial Pharmacy, Specialist in Production and Control of Medicines from the University of São Paulo (USP), Master in Pharmaceuticals and Medicines from the University of São Paulo (USP) and Doctor of Science in the program of Pharmaceuticals and Medicines by the University of São Paulo. Professor at Universidade Paulista (UNIP) in the areas of chemistry, cosmetology and trichology. Assistant Coordinator of the Higher Course in Aesthetic and Cosmetic Technology at Universidade Paulista Campus Chácara Santo Antônio. Experience in the Pharmacy area, with emphasis on Pharmacotechnics, Pharmaceutical Technology, Research and Development of Cosmetics, acting mainly on topics such as cosmetology, antioxidant activity, aesthetics, photoprotection, cyclodextrin and thermal analysis.",institutionString:null,institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"334285",title:"Ph.D. Student",name:"Sameer",middleName:"Kumar",surname:"Jagirdar",slug:"sameer-jagirdar",fullName:"Sameer Jagirdar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334285/images/14691_n.jpg",biography:"I\\'m a graduate student at the center for biosystems science and engineering at the Indian Institute of Science, Bangalore, India. I am interested in studying host-pathogen interactions at the biomaterial interface.",institutionString:null,institution:{name:"Indian Institute of Science Bangalore",country:{name:"India"}}},{id:"329248",title:"Dr.",name:"Md. Faheem",middleName:null,surname:"Haider",slug:"md.-faheem-haider",fullName:"Md. Faheem Haider",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329248/images/system/329248.jpg",biography:"Dr. Md. Faheem Haider completed his BPharm in 2012 at Integral University, Lucknow, India. In 2014, he completed his MPharm with specialization in Pharmaceutics at Babasaheb Bhimrao Ambedkar University, Lucknow, India. He received his Ph.D. degree from Jamia Hamdard University, New Delhi, India, in 2018. He was selected for the GPAT six times and his best All India Rank was 34. Currently, he is an assistant professor at Integral University. Previously he was an assistant professor at IIMT University, Meerut, India. He has experience teaching DPharm, Pharm.D, BPharm, and MPharm students. He has more than five publications in reputed journals to his credit. Dr. Faheem’s research area is the development and characterization of nanoformulation for the delivery of drugs to various organs.",institutionString:"Integral University",institution:{name:"Integral University",country:{name:"India"}}},{id:"329795",title:"Dr.",name:"Mohd Aftab",middleName:"Aftab",surname:"Siddiqui",slug:"mohd-aftab-siddiqui",fullName:"Mohd Aftab Siddiqui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/329795/images/system/329795.png",biography:"Dr. Mohd Aftab Siddiqui is an assistant professor in the Faculty of Pharmacy, Integral University, Lucknow, India, where he obtained a Ph.D. in Pharmacology in 2020. He also obtained a BPharm and MPharm from the same university in 2013 and 2015, respectively. His area of research is the pharmacological screening of herbal drugs/natural products in liver cancer and cardiac diseases. He is a member of many professional bodies and has guided many MPharm and PharmD research projects. Dr. Siddiqui has many national and international publications and one German patent to his credit.",institutionString:"Integral University",institution:null}]}},subseries:{item:{id:"3",type:"subseries",title:"Bacterial Infectious Diseases",keywords:"Antibiotics, Biofilm, Antibiotic Resistance, Host-microbiota Relationship, Treatment, Diagnostic Tools",scope:"