Proposed bioprocess parameters and their levels
1. Introduction
Pure and/or mixed isolated microbial cultures, in the dairy sector known as starters, are widely used in the manufacture of numerous fermented (cultured) milk products as well as in butter and cheese making (Bylund, 1995). The starter is added to the sterilized milk-based fermentation media and allowed to grow under controlled and, if necessary, on-line regulated process conditions. During the fermentation, the pure or diversified microbial community produces organic substances which give the cultured milk products their characteristic organoleptic properties such as acidity (pH), flavour, aroma, colour and odour as well as consistency.
According to the basic definition known from the literature, the probiotics are food products and nutritional supplements containing live microorganisms and other components of microbial cells that have an extremely beneficial impact on the citizen’s live and well-being of the host (Lahteenmaki & Ledeboer, 2006; Salminen et al., 1999). Therefore, it is not surprising that during the last few years, there has been a significantly increase in the worldwide sales of cultured products containing probiotic bacteria (Ostlie et al., 2005).
One of the dairy cultured products is also kefir (known also as kephir, kiaphur, kefer knapon, kipi and kippi), i.e. unique self-carbonated viscous dairy beverage with small quantities of alcohol and can be made with any kind of animal milk, such as those of cows, goats, sheep, camels and buffalos as well as coconut, rice and soy milk (Abraham & De Antoni, 1999; Farnworth, 1999; Koroleva, 1988; Kwak et al., 1996; Loretan et al., 2003; Otles & Cagandi, 2003). Original kefir contains among others also numerous bioactive ingredients that give its unique health benefits, such as, for instance, strengthening immune system (Vinderola et al., 2005), antitumor activity (Liu et al., 2002), improving intestinal immunity (Thoreux & Schmucker, 2001), antimicrobial activity (Garrote et al., 2000; Rodriguez et al., 2005), regulation of cholesterol metabolism (Liu et al., 2006a), improving anti-allergic resistance (Liu et al., 2006b), improving sugars digestion (Hetzler & Clancy, 2003) and antioxidant activity (Liu et al., 2005). Those kefir’s health properties indicate that kefir may be an important, high quality and price-competitive targeted probiotic product.
Several methods for kefir production, which use pure and isolated starters, can be found in the literature (Assadi et al., 2000; Beshkova et al., 2003; Fontan et al., 2006). Nevertheless, the real and original kefir can only be produced using traditional methods of adding kefir grains to a quantity of milk (Otles & Cagandi, 2003; Tamine et al., 1999). Kefir grains are complex natural microbial community entrapped into matrix of protein and polysaccharide (kefiran) and is believed to have its origin in the Caucasian mountains (Bosch et al., 2006; Farnworth, 2005). They are white to light yellowish globular particles (masses) with a diameter (5–35) mm (Bosch et al., 2006; Garrote et al., 1997; Marshall, 1993). The shape of the grains is irregular. Plainly, they are similar to a piece of cauliflower. On the other side, their microflora is much more diverse and complex and therefore difficult to understand and scientifically prove.
During the last two decades, many studies have been focused on thorough analysis of kefir grains microbial composition (Angulo et al., 1993; Garrote et al., 2001; Irigoyen et al., 2005; Kwak et al., Loretan et al., 2003; 1996; Mainville et al., 2006; Marshall, 1993; Simova et al., 2002; Takizawa et al., 1998; Vancanneyt et al., 2004; Witthuhn et al., 2005; Witthuhn et al., 2004). Summarily, kefir grains contain gram-positive homo-fermentative and hetero-fermentative lactic and acetic acid bacteria (
The unique variegated microbial composition of kefir grains enables their application not only in large-scale kefir production but potentially also in another novel industrial food manufacturing bioprocesses or even in some specific innovative and visionary eco-efficient bioprocesses in sustainable production of safe, efficient as well as high quality fine biochemicals with the highest added value. For instance, different studies indicate that kefir grains can be used in bread production as a substitute for baker’s yeast (Plessas et al. 2005) polysaccharide production as a natural source of exopolysacharide (kefiran) (Rimada and Abraham, 2001; Rimada and Abraham, 2003) and bioalcohol production as a natural immobilized kefir yeast cells (Athanasiadis et al., 1999). Moreover, they can also be used as natural variegated microbial starter in production of fermented soy milk powder (Kubow, S. & Sheppard, WO/2007/087722 A1) as well as in production of novel fermented low-alcoholics drink from mixture of whey and raisin extract (Athanasiadis et al., 2004; Koutinas et al., 2007).
Considering abovementioned scientifically proven potential industrial applications as well as other emerging innovative visionary applications which are currently under thorough screening, evaluation and assessment, it is realistic to expect that in the near future the global demand for grains will extremely increase. Therefore, the classical batch production of kefir grains using traditional propagation in milk with relatively low daily kefir grain increase mass fraction,
Traditionally, the impact of various significant bioprocess parameters on batch bioprocess performance has been determined experimentally using through planning and time consuming as well as cost ineffective implementing experiments on large industrial scale. With the technological development and growth of the society, however, the bioprocess parameters assessment has been progressively transferred to laboratory scale, which resulted in increased effectiveness and reduced planning cost. Consequently, today almost all bioprocess development activities, which among others include also determination of the relative impact of various significant bioprocess parameters, are practically carried out in laboratory or pilot scale and afterwards, only scale up and tech-transfer into production line is performed.
The technique for the determination and investigation of the influential experiment (bioprocess) parameters at different levels is called the ‘design of experiments’ (DoE) (Ranjit, 1990). The selection of relevant DoE technique depends especially on the number of parameters influencing the product quality, and the type of the investigated problem. However, conventional full factorial DoE techniques involve altering of one parameter at a time keeping all other parameters constant. When we want to study any given system with a set of independent variables (bioprocess parameters) over a specific region of interest (levels region) and intend to improve the process planning strategy and quality optimization of the bioprocess parameters at the same time, we use the so-called ‘Taguchi’s approach’ (Ranjit, 1990). The use of its algorithm is observed in various optimization problems, starting with optimization of diesel engine parameters (Nataraj et al., 2005), the leaching of non–sulphide zinc ore in the ammonium–sulphate solution (Moghaddam et al., 2005), to the production of clavulanic (Saudagar & Singhal, 2007) and citric acid (Shojaosadati & Babaeipour, 2002) as well as laccase by
This chapter examines the traditional batch propagation of kefir grains in fresh high temperature pasteurized (HTP) whole fat cow’s milk with some additions (glucose and baker’s yeast) under different bioprocess conditions. The main objective of the contribution is to present and describe an experimental determination of the relative impacts of various significant bioprocess parameters that influence traditional batch propagation of kefir grains and daily kefir grain increase mass using the Taguchi’s experiment design methodology.
2. Materials and methods
2.1. Equipment
Determination of the relative impact of various significant bioprocess parameters that influence traditional batch propagation of kefir grains and daily kefir grain increase mass using the Taguchi design methodology requires the performance of a series of experiments. In order to ensure the highest quality as well as repeatability of raw experimental data, it is desired to perform those experiments (batch propagations of kefir grains in enriched milk under different bioprocess conditions) in computer controlled state-of-the-art laboratory reactor or fermentor.
Perhaps one of the most user-friendly and at the same time the most efficient high quality aforementioned equipment is heat flow reaction calorimeter RC1 (Mettler Toledo, Greifensee, Switzerland). Basically, the RC1 system is actually both – state-of-the-art computer controlled, electronically safe-guarded bench-scale ‘model’ of a batch/semi-batch reactor or fermentor from pilot and/or industrial plant (automated lab reactor (ALR)) and at the same time a heat-flow reaction calorimeter. The RC1 system allows real time measurement, monitor and control of all important bioprocess parameters such as rotational frequency of the stirrer, temperature of reaction or fermentation media, reactor jacket temperature, pH value of reaction or fermentation media, mass concentration of dissolved oxygen, amount of added (dosed) material, etc. Primarily, it is designed for determination of the complete mass and heat balance over the course of the entire chemical reaction or physical transformation (e.g. crystallization, dissolution, etc.). In addition, using specific modifications, it can be employed for investigating thermal effects during bioprocess (Marison et al., 1998). This means that by using RC1 system it is possible to gain and/or determine wide range of process thermal data and constants such as specific heat capacity of reaction mixture, heat flow profile of the reaction or physical transformation, reaction enthalpy, maximum heat flow due to reaction or physical transformation, potential adiabatic temperature increase in case of cooling failure, heat accumulation, etc.. All obtained time-depended calorimetric data (heat flow data) can be further used for kinetic studies, etc. The RC1 system enables performance of chemical and also bio(chemical) reactions or physical transformation under different modes such as isothermal conditions, adiabatic conditions, etc. Using RC1 it is possible to perform distillations and reactions (transformations) under reflux with heat balancing. Last but not least, the RC1 system is a recipe driven (managed) which means that all process operations can be programmed or written by recipe beforehand and thus its maximum flexibility is assured. Finally, it is worldwide recognized as an industrial standard to gain safety data for a later scale-up to pilot or production plant.
2.2. Chemicals, kefir culture and culture medium
Daily kefir grain increase mass was studied using fresh HTP whole fat cow’s milk (Ljubljanske mlekarne d.d.) as a culture medium. Its chemical composition is 3.2 % proteins, 4.6 % carbohydrates, 3.5 % fat and 0.13 % calcium. 3D-(+) Glucose anhydrous (Fluka) was obtained from commercial sources. Kefir grains, used as inocolum in this study, originate from Caucasian Mountain and were acquired from an internationally recognized local dairy (Kele & Kele d.o.o.). Their detailed microbial composition was not analyzed. Importantly, the microbial population (bacteria and yeasts) of kefir grains depends on many different factors (age, storage conditions and fermentation medium) and varies with the season. It is almost impossible to assure equal microbial composition during long term period, therefore for sets of experiments within one research, kefir grains with the same viability should be used.
2.3. Kefir grain biomass activation
Kefir grain biomass activation was performed in a glass lab beaker. The collected inactive kefir grains (
2.4. Analytical determination of kefir grain mass
For the determination of kefir grain mass, the gravimetric method was used. Therefore, kefir grains were separated first from the fermentation medium with plastic household sieve. Then the grains were washed with cold water and dried on filter paper to remove of bulk of adhered water. Finally, kefir grain mass was determined by weighting on Mettler-Toledo analytical balance (PG5002–S).
2.5. Taguchi’s experiment design methodology
Dr. Genichi Taguchi has defined the optimization criterion quality as a consistency in achieving the desired or targeted value and minimization of the deviation (Ranjit, 1990). This goal is connected with the performance of a series of experiments with different bioprocess parameters at different levels. The bioprocess parameter is a factor affecting the optimization criterion quality, and its value is called the ‘level’. The number of experiments and their sequence are determined by standard OA. When planning the experiments using four bioprocess parameters at four levels, we use the OA L16. Such a plan envisages the performance of 16 experiments, which is significantly less when compared to the full factorial DoE with 44 = 128 experiments.
Due to performing only a part of the envisaged experiments using the traditional full factorial DoE methodology, it is necessary to include an analysis of the results confidence. The standard statistical technique is used for this purpose, the so-called ‘analysis of variance’ (ANOVA), which recognizes the relative impact of the bioprocess parameters for the optimization criterion (in our case daily kefir grain increase mass) value.
The mathematical algorithm of the ANOVA statistical technique is based on calculation of the variance, which is an indicator of the optimization criterion quality. The ratio between the variance of the bioprocess parameter and the error variance shows whether the parameter affect on the product’s quality. The equations required for calculating the relative impact of various significant bioprocess parameters affecting the optimization criterion are presented bellow. The meanings of symbols are described in the sub-chapter “Nomenclature”.
We compare variance ratio of bioprocess parameter
3. Experimental work
Experimentally determining the relative impact of various significant bioprocess parameters on the daily kefir grain increase mass, during 24 h incubation in cow’s milk, based on Taguchi’s fractional factorial design approach, requires the performance of a series experiments. It was established (Harta et al., 2004; Schoevers and Britt, 2003) that culture medium temperature, , glucose mass concentration, γG, baker’s yeast mass concentration,
Bioprocess parameter | Level | |||||
1 | 2 | 3 | 4 | |||
A: | Culture medium temperature | 20 | 22 | 24 | 26 | |
B: | Baker’s yeast mass concentration | 0 | 5 | 10 | 15 | |
C: | Glucose mass concentration | 0 | 10 | 20 | 30 | |
D: | Rotational frequency of the stirrer | 0 | 50 | 70 | 90 |
Experiment | Bioprocess parameter | ||||
A | B | C | D | E | |
1 | 1 | 1 | 1 | 1 | 1 |
2 | 2 | 1 | 2 | 3 | 4 |
3 | 1 | 2 | 2 | 2 | 2 |
4 | 4 | 1 | 4 | 2 | 3 |
5 | 1 | 4 | 4 | 4 | 4 |
6 | 2 | 2 | 1 | 4 | 3 |
7 | 4 | 2 | 3 | 1 | 4 |
8 | 4 | 4 | 1 | 3 | 2 |
9 | 4 | 3 | 2 | 4 | 1 |
10 | 3 | 1 | 3 | 4 | 2 |
11 | 2 | 3 | 4 | 1 | 2 |
12 | 3 | 4 | 2 | 1 | 3 |
13 | 1 | 3 | 3 | 3 | 3 |
14 | 2 | 4 | 3 | 2 | 1 |
15 | 3 | 3 | 1 | 2 | 4 |
16 | 3 | 2 | 4 | 3 | 1 |
During the first stage of the experimental work, it is necessary to prepare the design of experiments. The DoE envisages determining the number of experiments, their performance conditions, and their sequence. Based on the assumption that the daily kefir grain increase mass would be affected by four bioprocess parameters being considered at four levels, we chose the
During the second stage of the experimental work, we implemented the proposed DoE by performing the 24 h kefir grain biomass incubations in the RC1 system. The incubation procedure was the same for all experiments. Individual experiments were implemented by means of first charging the reactor by 1 L of fresh HTP whole fat cow’s milk and adding the mass of glucose previously defined by the DoE. This fermentation medium was heated up to working temperature under the defined rotational frequency of the stirrer. After establishing the temperature steady state and dissolved glucose, we inoculated the fermentation medium with the mass of the baker’s yeast also defined by DoE and with 40 g of active kefir grains, which corresponds to initial kefir grain mass concentration, γKG = 40 g/L. After the 24 h incubation was completed, the kefir grain increase mass was determined using the gravimetric method.
4. Results and discussion
The final kefir grain mass concentration in the culture medium,
Experiment | |||
1 | 40.40 | 0.40 | 1.00 |
2 | 45.83 | 5.83 | 14.58 |
3 | 46.51 | 6.51 | 16.28 |
4 | 45.44 | 5.44 | 13.60 |
5 | 43.39 | 3.39 | 8.48 |
6 | 45.55 | 5.55 | 13.88 |
7 | 42.06 | 2.06 | 5.15 |
8 | 53.10 | 13.10 | 32.75 |
9 | 50.14 | 10.14 | 25.35 |
10 | 60.62 | 20.62 | 51.55 |
11 | 41.70 | 1.70 | 4.25 |
12 | 41.90 | 1.90 | 4.75 |
13 | 52.60 | 12.60 | 31.50 |
14 | 58.06 | 18.06 | 45.15 |
15 | 55.93 | 15.93 | 39.83 |
16 | 52.56 | 12.56 | 31.40 |
Table 3 shows that the highest daily kefir grain increase mass fraction (
Moreover, the average impacts of the bioprocess parameters along with interactions at the assigned levels on the daily kefir grain increase mass are shown on Fig. 1. The difference between levels of each bioprocess parameters indicates their relative impact (Prasad et al., 2005). The larger the difference, the stronger is the influence.
It can be observed from Fig.1 that among bioprocess parameters studied rotational frequency of stirrer showed the strongest influence and followed by glucose mass concentration, culture medium temperature and baker’s yeast mass concentration. However, the relative impact of the proposed influencing bioprocess parameters on daily kefir grain increase mass were estimated by ANOVA. The sum of squares or deviation,
The degrees of freedom of bioprocess parameter
Bioprocess parameter | |||||
A: | 102.52 | 3 | 34.17 | 1.893 | |
B: | 29.18 | 3 | 9.73 | 0.539 | |
C: | 156.58 | 3 | 52.19 | 2.891 | |
D: | 269.57 | 3 | 89.86 | 4.978 | |
Error | 54.16 | 3 | 18.05 | 1.000 | |
Total | 612.01 | 15 | – | – |
Pooling of the baker’s yeast as an insignificant bioprocess parameter requires a repeated variance analysis, whereby the sum of squares and the degree of freedom of the pooled bioprocess parameter are added to the error sum of squares and the degree of freedom of error variance, respectively. The results in Table 5 show that, consequently, the variance ratios of the remaining bioprocess parameters increase. In spite of this, a repeated comparison of variance ratio of each bioprocess parameter indicated in Table 5 with the F–statistics value,
Bioprocess parameter | ||||||
A: | 102.52 | 3 | 34.17 | 2.460 | 9.9 | |
B: | pooled | |||||
C: | 156.58 | 3 | 52.19 | 3.758 | 18.8 | |
D: | 269.57 | 3 | 89.86 | 6.469 | 37.3 | |
Error | 83.34 | 6 | 13.89 | 1.000 | 34.0 | |
Total | 612.01 | 15 | – | – | 100.0 |
The results, shown in Table 5, assign the highest relative influence on the daily kefir grain increase mass (37.3 %) during 24 h incubation to the rotational frequency of the stirrer. The impact of glucose mass contraction and culture medium temperature within the observed ranges (
It is well known that kefir grains are bulky and awkward to handle (Bylund, 1994). Despite extensive and careful kefir grain biomass activation, their variegated symbiotic microbial community makes it impossible to retain the constant viability over a long time period. This fact, together with neglecting of possible secondary interactions between bioprocess parameters, mainly explains the relatively high error influence on daily kefir grain increase mass (34.0 %).
5. Conclusion
Using the Taguchi’s fractional factorial design approach we analyzed the bioprocess parameters impacts on daily kefir grain increase mass during 24 h incubation in fresh high temperature pasteurized whole fat cow milk. Experiments proposed by the design of experiments (OA
Summarily, this chapter deals with the experimental determination of the relative impacts of various significant bioprocess parameters, that influence one of the most difficult bioprocesses in the dairy industry. The presented results confirm and, even more importantly, upgrade well-known findings about influence of various bioprocess parameters on kefir grain increase mass. On the other side, the presented results also confirm the tremendous importance of optimal kefir grain biomass managements. In addition, the results also clearly verify the fact, that inadequate combination of different significant critical bioprocess parameters has a strong negative influence on daily kefir grain increase mass. For instance, in the worst case the kefir grains growth is almost totally stopped. Last but not least, the presented chapter presents important cutting-edge and, in scientific and commercial society, shortfall basic knowledge needed either for kefir grains mass growth kinetic studies or designing, optimization and commercialization of modern batch or continuous industrial kefir grains production processes.
6. Nomenclature
ALR Automatic Lab Reactor
ANOVA ANalysis Of VAriance
DoEDesign of Experiments
HTPHigh Temperature Pasteurized
References
- 1.
Abraham A. G. De Antoni G. L. 1999 Characterization of Kefir Grains Grown in Cow’s Milk and in Soya milk. ,66 2 327 333 0022-0299 - 2.
Angulo L. Lopez E. Lema C. 1993 Microflora Present in Kefir Grains of the Galician Region (North West of Spain). ,60 2 263 267 0022-0299 - 3.
Assadi M. M. Pourahmad R. Moazami N. 2000 Use of Isolated Kefir Starter Cultures in Kefir Production. ,16 6 541 543 0959-3993 - 4.
Athanasiadis I. Boskou D. Kanellaki M. Koutinas A. A. 1999 Low-Temperature Alcoholic Fermentation by Delignified Cellulosic Material Supported Cells of Kefir Yeast. ,47 10 4474 4477 0021-8561 - 5.
Athanasiadis I. Paraskevopoulou A. Blekas G. Kiosseoglou V. 2004 Development of a Novel Whey Beverage by Fermentation with Kefir Granules: Effect of Various Treatments. ,20 4 1091 1095 8756-7938 - 6.
Beshkova D. M. Simova E. D. frengova G. I. Simov Z. I. Dimitrov Z. P. 2003 Production of Volatile Aroma Compounds by Kefir Starter Cultures. ,13 7 529 535 0958-6946 - 7.
Bosch A. Golowczyc M. A. Abraham A. G. Garrote G. L. De Antoni G. L. Yantorno O. 2006 Rapid Discrimination of isolated from Kefir grains by FT-IR spectroscopy. International Journal of Food Microbiology,111 3 280 287 0168-1605 - 8.
Bylund G. 1995 , Tetra Pak Processing systems AG, Lund, Sweden - 9.
Farnworth E. R. 1999 Kefir: From Folklore to Regulatory Approval. ,1 4 57 68 1089-4179 - 10.
Farnworth E. R. 2005 Kefir- A Complex Probiotic. ,2 1 1 17 1476-2137 - 11.
Fontan M. C. G. Martinez S. Franco I. Carballo J. 2006 Microbiological and Chemical Changes during the Manufacture of Kefir Made from Cows’ Milk, Using a Commercial Starter Culture, ,16 7 762 767 0958-6946 - 12.
Garrote G. L. Abraham A. G. De Antoni G. L. 2000 Inhibitory Power of Kefir: The Role of Organic Acids. ,63 3 364 369 0036-2028 X - 13.
Garrote G. L. Abraham A. G. De Antoni G. L. 2001 Chemical and Microbiological Characterisation of Kefir Grains. ,68 4 639 652 0022-0299 - 14.
Garrote G. L. Abraham A. G. De Antoni G. L. 1997 Preservation of Kefir Grains, a Comperative Study. ,30 1 77 84 0023-6438 - 15.
Harta O. Iconomopoulou M. Bekatorou A. Nigam P. Kontominas M. Koutinas A. A. 2004 Effect of Various Carbohydrate Substrates on the Production of Kefir Grains for Use as a Novel Baking Starter. ,88 2 237 242 0308-8146 - 16.
Hetzler S. R. Clancy S. M. 2003 Kefir Improves Lactose Digestion and Tolerance in Adults. ,103 5 582 587 0002-8223 - 17.
Irigoyen A. Arana I. Castiella M. Torre P. Ibanez F. C. 2005 Microbiological, Physicochemical, and Sensory Characteristics of Kefir during Storage. ,90 4 613 620 0308-8146 - 18.
Koroleva N. S. 1988 Technology of kefir and Kumys. ,227 96 100 0250-5118 - 19.
Koutinas A. A. Athanasiadis I. Bekatorou A. Psarianos C. Kanellaki M. Agouridis N. Blekas G. 2007 Kefir-Yeast Technology: Industrial Scale-up of Alcoholic Fermentation of Whey, Promoted by Raisin Extracts, Using kefir-Yeast Granular Biomass. y,41 5 576 582 0141-0229 - 20.
Kubow S. Sheppard J. 2007 Use of Soy Kefir Powder for Reducing Pain, Blood pressure and Inflammation, KLCM Research in Nutrition Inc. Canada, WO/2007/087722, World Intellectual Property Organization, 2007-08-09 - 21.
Kwak H. S. Park S. K. Kim D. S. 1996 Biostabilization of Kefir with a Nonlactose-Fermenting Yeast. ,79 6 937 942 0022-0302 - 22.
Lahteenmaki L. Ledeboer A. M. 2006 Probiotics- The Consumer Perspective. ,3 5 47 50 1476-2137 - 23.
Libudzisz Z. Piatkiewicz A. 1990 Kefir Production in Poland. ,55 7 31 33 0308-8197 - 24.
Liu J. R. Chen M. J. Lin C. W. 2005 Antimutagenic and Antioxidant properties of Milk-Kefir and Soymilk-Kefir. ,53 7 2467 2474 0021-8561 - 25.
Liu J. R. Wang S. Y. Chen M. J. Chen H. L. Yueh P. Y. Lin C. W. 2006a Hypocholesterolaemic Effects of Milk-Kefir and Soyamilk-Kefir in Cholesterol-Fedhamsters. ,95 5 939 946 0007-1145 - 26.
Liu J. R. Wang S. Y. Chen M. J. Yueh P. Y. Lin C. W. 2006b The Anti-Allergenic Properties of Milk Kefir and Soymilk Kefir and Their Beneficial Effects on the Intestinal Microflora. ,86 15 2527 2533 0022-5142 - 27.
Liu J. R. Wang S. Y. Lin Y. Y. Lin C. W. 2002 Antitumor Activity of Milk Kefir and Soy Milk. ,44 2 182 187 1532-7914 - 28.
Lopitz-Otsoa F. Rementeria A. Elguezabal N. Garaizar I. 2006 Kefir: A Symbiotic Yeast-Bacteria Community with Alleged Healthy Capabilities. ,23 2 67 74 1130-1406 - 29.
Loretan T. Mostert J. F. Viljoen B. C. 2003 Microbial Flora Associated with South African Household Kefir. ,99 92 94 0038-2353 - 30.
Mainville I. Robert N. Lee B. Farnworth E. R. 2006 Polyphasic Characterization of the Lactic Acid bacteria in Kefir. ,29 1 59 68 0723-2020 - 31.
Marison I. Liu J. S. Ampuero S. Von Stockar U. Schenker B. 1998 Biological Reaction Calorimetry: Development of High Sensitivity Bio-Calorimeters. ,309 1-2 157 173 0040-6031 - 32.
Marshall V. M. 1993 Starter Cultures for Milk Fermentation and Their Characteristics. ,46 2 49 56 0037-9840 - 33.
Moghaddam J. Sarraf-Mamoory R. Yamini Y. Abdollahy M. 2005 Determination of the Optimum Conditions for the Leaching of Nonsulfide zinc ores (High-SiO2) in Ammonium Carbonate Media. ,44 24 8952 8958 0888-5885 - 34.
Nataraj M. Arunachalam V. P. Dhandapani N. 2005 Optimizing Diesel Engine Parameters for Emission Reduction Using Taguchi Method: Variation Risk Analysis Approach- Part II. ,12 6 505 514 0971-4588 - 35.
Ostlie H. M. Treimo J. Narvhus J. A. 2005 Effect of Temperature on Growth and Metabolism of Probiotic Bacteria in Milk. ,15 10 989 997 0958-6946 - 36.
Otles S. Cagandi O. 2003 Kefir: A Probiotic Dairy-Composition, Nutritional and Therapeutic Aspects. ,2 2 54 59 1680-5194 - 37.
Plessas S. Pherson L. Bekatorou A. Nigam P. koutinas A. A. 2005 Bread Making Using Kefir Grains as Baker’s Yeast. ,93 4 585 589 0308-8146 - 38.
Prasad K. K. Mohan S. V. Rao R. S. Pati B. R. Sarma P. N. 2005 Laccase Production by : Optimization of Submerged Culture Conditions by Taguchi DoE Methodology. Biochemical Engineeing Journal,24 1 17 26 0136-9703 X - 39.
Ranjit K. R. 1990 , Van Nostrand Reinhold,087263468 New York, Unites States of America - 40.
Rimada P. S. Abraham A. G. 2003 Comparative Study of Different Methodologies to Determine the Exopolysaccharide Produced by Kefir Grains in Milk and Whey, ,83 1 79 87 0023-7302 - 41.
Rimada P. S. Abraham A. G. 2001 Polysaccharide Production by Kefir Grains during Whey Fermentation, ,68 4 653 661 0022-0299 - 42.
Rodriguez K. L. Caputo L. R. G. Carvalho J. C. T. Evangelista J. Schneeforf J. M. 2005 Antimicrobial and Healing Activity of Kefir and Kefiran Extract. ,25 5 404 408 0924-8579 - 43.
Salminen S. Ouwehand A. Benno Y. Lee Y. K. 1999 Probiotics: How Should be They Defined. ,10 3 107 110 0924-2244 - 44.
Saudagar P. S. Singhal R. S. 2007 Optimization of Nutritional Requirements and Feeding Strategies for Clavulanic Acid Production by Streptomyces Clavuligerus. ,98 10 2010 2017 0960-8524 - 45.
Shojaosadati S. A. Babaeipour V. 2002 Citric Acid Production from Apple Pomace in Multi-Layer Packed Bed Solid-State Bioreactor. ,37 8 909 914 1359-5113 - 46.
Schoevers A. Britz T. J. 2003 Influence of Different Culturing Conditions on Kefir Grain Increase, ,56 3 183 187 0136-4727 X - 47.
Simova E. Beshkova D. Angelov A. Hristozova T. Frengova G. Spasov Z. 2002 Lactic Acid Bacteria and Yeasts in Kefir Grains and Kefir Made from Them. ,28 1 1 6 1367-5435 - 48.
Taguchi G. 1987 , UNIPUB/Kraus International Publications,0-52791-621-8 York, Unites States of America - 49.
Takizawa S. Kojima S. Tamura S. Fujinaga S. Benno Y. Nakase T. 1998 The Composition of the Flora in Kefir Grains, Systematic and Applied Microbiology,21 1 121 127 0723-2020 - 50.
Tamine A. Y. Muir D. D. Wszolek M. 1999 Kefir, Koumiss and Kishk. ,64 5 32 33 0308-8197 - 51.
Thoreux K. Schmucker D. L. 2001 Kefir Milk Enhances Interstinal Immunity in Young but not Old Rats. ,131 3 807 812 0022-3166 - 52.
Vancanneyt M. Mengaud J. Cleenwerck I. Vanhonacker K. Hoste B. Dawyndt . P. Degivry M. C. Ringuet D. Janssens D. Swings J. 2004 Reclassification of Takizawa et al. 1994 as Lactobacillus Kefiranofaciens Subsp. Kefirgranum Subsp. Nov. and Emended Description of L. Kefiranofaciens Fujisawa et al.. International Journal of Systematic and Evolutionary Microbiology,72 551 556 1466-5026 - 53.
Vinderola C. G. Duarte J. Thangavel D. Perdigon G. Farnworth E. Matar C. 2005 Immunomodulating Capacity of Kefir. ,72 2 195 202 0022-0299 - 54.
Witthuhn R. C. Schoeman T. Britz T. J. 2005 Characterisation of the Microbial Population at Different Stages of Kefir Production and Kefir Grain Mass Cultivation. ,15 4 383 389 0958-6946 - 55.
Witthuhn R. C. Schoeman T. Britz T. J. 2004 Isolation and Characterization of the Microbial Population of Different South African Kefir Grains. ,57 1 33 37 0136-4727 X