1. Introduction
Aging is of critical interest in the medical, health, and social domains, especially in developed countries and newly industrializing countries. Because muscle atrophy in elderly individuals can cause falls, its prevention is important. Moreover, prevention of aging-related reduced skeletal muscle mass may allow a higher quality of life in the elderly, because reduced muscle function is linked to the occurrence of several chronic diseases (Handschin & Spiegelman, 2008).
High-intensity resistance training effectively maintains muscle mass and strength, but rigorous training is difficult for elderly people (Seynnes et al., 2007).
Acupuncture is a well-known traditional technique in eastern Asia that is used to maintain health and cure many diseases. Major acupuncture techniques utilize penetration of the skin by thin, solid metallic needles, which are manipulated manually or are stimulated electrically. This electrical needle stimulation is called electroacupuncture (EA) (Klein & Trachtenberg, 1997). EA is effective not only for pain but also for muscle problems, such as stiffness, exhaustion, and atrophy, in many patients including elderly people (Zhang, 2003).
Acupuncture studies have reported the nerve routes of acupuncture signal transmission, effects via the spinal reflex, and reactions in the brain (Cho et al., 1998; Murase & Kawakita, 2000; Uchida et al., 2000). Figure 1 is a schematic diagram showing the routes of EA stimuli between treated points and organs. In a previous investigation on acupuncture, only a neural mechanism of pain reduction was clear; endogenous opioid (beta endorphin and enkephalin) is induced under the acupuncture anesthesia (Chung & Dickenson, 1980).
However, the molecular mechanisms of other effects of acupuncture were as yet not defined (Acupuncture, 1997). Scientific evidence of efficacy is an important as for the CAM research, as for research in Western medicine. The enhancement of blood flow in target organs of acupuncture treatment, which is a major reason for the effectiveness of acupuncture (Niimi & Yuwono, 2000), cannot sufficiently explain the recovery of muscle from exhaustion because it is not clear how the supplied oxygen and nutrients would be used during the cellular recovery process. Many cellular and physiological processes are regulated at the transcription level of gene expression. The identification of genes specifically modulated during the process of acupuncture would provide an initial step toward elucidation of the underlying mechanisms of this technique.
We suggested that EA (Fig. 2) may be an appropriate choice for effective prevention of muscle atrophy, on the basis of our results from a transcriptome study (Fig. 3), which provided molecular evidence obtained from skeletal muscle of wild-type mice: EA suppressed expression of the myostatin gene (Fig. 4), an endogenous inhibitor of muscle growth and satellite cell-related muscle regeneration, and EA induced a proliferative reaction of muscle satellite cells (Fig. 4) (Takaoka et al., 2007). Thus, in view of our previous basic research, EA may be an effective method for retaining muscle mass.
To investigate the effect of EA on muscle atrophy, we used a hindlimb suspension model. Hindlimb-suspended (HS) rodents are a commonly used animal model for pathological studies of the loss of muscle mass, such as disuse muscle atrophy (Däpp et al., 2004; J.F. Desaphy et al., 2001; Dupont-Versteegden et al., 2006; Gallegly et al., 2004; Pisani & Dechesne, 2005; Stelzer & Widrick, 2003). In this model, mainly postural muscles such as the soleus demonstrate reduced mass (Thomason & Booth, 1990). In addition, studies of HS mice suggested that the cross-sectional muscle area was reduced (Nguyen & Tidball, 2003).
The aims of our study were to evaluate the effect of EA according to the measures of muscle mass and myofibre diameter in a murine HS model and in this murine model after repeated EA treatments, and to analyse expression of the myostatin gene and the ubiquitin ligase genes muscle RING finger 1 (MuRF-1), muscle atrophy F-box (MAFbx), and Casitus b-lineage lymphoma-b (Cbl-b) of insulin-like growth factor I (IGF-1)/thymoma viral proto-oncogene (AKT) pathway, as related to disuse muscle atrophy (Bodine et al., 2001; Centner et al., 2001; Keane et al., 1995; Sandri et al., 2004; Takaoka et al., 2007). This investigation corresponds to a preclinical stage in translational research, that is, preclinical development after basic research that we previously performed. In addition, this study had the potential to acquire direct experimental evidence from an EA-treated animal model.
2. Materials and methods
We first compared the effects of EA, as evidenced by muscle mass and myofibre diameter, in HS mice and HS mice treated with EA (EA/HS). Then we used real-time quantitative RT-PCR to analyse myostatin and ubiquitin ligase gene expression in atrophic muscles of HS mice and in muscles of EA/HS mice. In this research, all mice used were treated according to the Standards Relating to the Care and Management, etc. of Experimental Animals (Ministry of the Environment, Tokyo, Japan). This study was approved by the Institutional Animal Care and Use Committees, at the University of Tsukuba (Permission number 200) and Kobe University (Permission number P080913) and was carried out according to the Animal Experimentation Regulations of these Committees. It was also approved by the Committee for Safe Handling of Living Modified Organisms at Kobe University (Permission number 17-21) and carried out according to the Guidelines of the Committee.
2.1. Murine hindlimb suspension model and EA stimulation
We used 8-week-old Crlj:CD1(ICR) male mice (each weighing 30–35 g; Charles River Japan, Yokohama, Japan) for three groups: control, 7 days of HS, and 7 days of EA/HS. HS mice were prepared by using a modified version of the apparatus of Miyazaki et al. (Miyazaki et al., 2006). A sigmoid hook connected to a metal fitting was fastened to the tail with adhesive tape, so that hindlimbs could not touch the floor. The suspension height was adjusted for the forelimbs so that the mice could move. All groups of mice had
For EA stimulation, EA/HS mice were anesthetized by means of an intraperitoneal injection of pentobarbital sodium (2.5µg/g); control and HS mice were similarly anesthetized. Stainless-steel acupuncture needles (two needles, each 40 mm long and 0.16 mm in diameter; Seirin Co. Ltd., Shizuoka, Japan) were then inserted into the anesthetized EA/HS mice at the origin and insertion of the soleus muscle. The needles were stimulated with an electrical stimulator (Ohm Pulser LFP4000A; Zen-iryoki Co. Ltd., Fukuoka, Japan), as in our previous study (Takaoka et al., 2007). Every other day, on days 1, 3, 5, and 7, mice received EA for 30 min with 10-Hz pulse wave repetitions. After 7 days, animals were evaluated (Fig. 5).
2.2. Relative soleus muscle mass and Histochemical analysis
All mice (
For histochemical analysis of muscle fibres, soleus cryosections, after having been frozen in 2-methylbutane, were sectioned with a cryostat (CM3050; Leica, Wetzlar, Germany). Frozen sections were stained with hematoxylin and eosin (H&E) according to our previous report (Takaoka et al., 2004). They were then examined with a light microscope (BX51 Research Microscope; Olympus, Tokyo, Japan) equipped with a digital camera (MicroPublisher 5.0; Roper Japan, Tokyo, Japan). To obtain myofibre diameters, an image-based software (MicroAnalyzer; Nihon Poladigital, K.K., Tokyo, Japan) was used. These values are given as means ± S.D. Soleus mass and myofibre diameter for each time point for the three groups are given as percentages of the control at day 0. Student’s
2.3. Gene expression analysis
To examine myostatin gene expression in three experimental groups (control, HS, and EA/HS;
Three internal control genes for this research were chosen from six housekeeping genes, β-actin (
3. Results
In view of our previous research indicating that EA-induced myostatin gene suppression may help prevent muscle atrophy, we continued our investigations of this effect of EA by using a pathological animal model in a preclinical study: hindlimb-suspended (HS) mice in the disuse muscle atrophy model. We first compared the effects of EA, as evidenced by muscle mass and myofibre diameter, in HS mice and HS mice treated with EA (EA/HS). We found that EA/HS mice maintained a soleus muscle mass that was not significantly different from that of control mice, whereas HS mice had significantly reduced muscle mass. Also, the diameters of myofibres in EA/HS mice, which were not significantly different from control values, were significantly larger than those in HS mice. We then used real-time quantitative RT-PCR to analyse myostatin and ubiquitin ligase gene expression in atrophic muscles of HS mice and in muscles of EA/HS mice. Repeated EA treatment suppressed expression of these genes in skeletal muscle of EA/HS mice but induced expression of them in HS mice.
3.1. Relative wet weight of the soleus muscle
To determine the relative wet weight of the soleus muscle, we measured the wet weight of the soleus muscle and the body weight of each mouse (total
These data suggest that hindlimb suspension led to muscle atrophy. Comparison of EA/HS mice with the control group showed no significant differences in relative soleus muscle wet weight at 7 days. EA/HS mice had a significantly higher relative soleus muscle weight than did HS mice (
3.2. Diameters of muscle fibres in cross section
Soleus muscles from all groups of mice were stained with H&E and muscle fibre diameters were measured. HS mice had significantly reduced cross-sectional muscle fibre diameters when compared with control mice. EA/HS mice had significantly larger muscle fibre diameters than HS mice (Fig. 6b). These findings suggest that EA prevented the muscle atrophy that was caused by hindlimb suspension. EA maintained muscle diameter sizes similar to those of control mice. No abnormality was observed in H&E-stained muscle tissues (data not shown).
3.3. Real-time quantitative RT-PCR analysis
To identify proper internal control genes for real-time quantitative RT-PCR analysis, we analysed the expression of six housekeeping genes according to a previous report (Vandesompele et al., 2002). We first investigated the gene expression level of these housekeeping genes via real-time quantitative RT-PCR in samples prepared from the same amount of RNA for each gene. The result revealed that no gene showed a constant expression level in both HS and EA/HS groups (Fig. 7).
Because we found no housekeeping gene with expression stability in all groups, we calculated the gene expression stability of these genes by using geNorm (
We next analysed changes in myostatin and ubiquitin ligase gene expression in HS mice to examine the effect of EA in HS mice and compared the expression level with the control. Figure 8a shows that the myostatin gene was induced in HS mice but that its expression was significantly suppressed in EA/HS mice. In addition, the two ubiquitin ligase genes,
4. Discussion
The HS model is characterized by a muscle disorder—disuse muscle atrophy—that was previously established in rabbits (Anzil et al., 1991; Sancesario et al., 1992), rats (Morey-Holton & Globus, 2002; Riley et al., 1990; Thomason & Booth, 1990), and mice (Stelzer & Widrick, 2003; Thomason & Booth, 1990). For the present preclinical study, we confirmed the molecular evidence of the effect of EA by using a pathological murine model of disuse muscle atrophy involving hindlimb suspension. Our previous basic research indicated that EA suppresses myostatin gene expression in skeletal muscle and causes a satellite cell-related proliferative reaction (Takaoka et al., 2007). In this study, the myostatin gene and three ubiquitin ligase genes were evaluated by means of real-time quantitative RT-PCR analysis.
First, to examine the possibility that EA prevented muscle atrophy, we determined relative soleus muscle mass and cross-sectional diameters of soleus myofibres. Relative wet weights of muscles and myofibre diameters in EA/HS mice were significantly larger than those in HS mice (Figs. 6a and b). In addition, values of both relative wet weights and cross-sectional myofibre diameters for EA/HS mice were not significantly different from those of control mice. These results indicate that EA prevented muscle atrophy induced by hindlimb suspension.
Then, to investigate the molecular mechanisms governing the effect of EA in prevention of disuse muscle atrophy, the expression of the myostatin gene and three ubiquitin ligase genes (
For microgravity-induced muscle atrophy, the ubiquitin-proteasome pathway plays the most important role in the protein degradation system (Ikemoto et al., 2001). Therefore, this ubiquitin-proteasome-related protein degradation system can be rate-limiting for degradation of proteins in the muscle atrophy found in our HS mice. Indeed, expression of the three ubiquitin ligase genes that we examined in this study was reportedly up-regulated in HS rats (Haddad et al., 2006; Nikawa et al., 2004). In our experiment, these genes except
Our results from the myostatin and ubiquitin ligase gene expression study were mostly consistent with results from previous reports on HS mice and rats (Haddad et al., 2006; Kawada et al., 2001; Nikawa et al., 2004; Stevenson et al., 2003)), except for the finding for HS mice at 7 days which showed no significant difference from the control. The differences between our findings and those of previous HS studies may result from differences in the kinds of rodents or mouse strains. For example, our previous studies of transgenic mice showed amyloid deposition in C57BL/6 mice (Takaoka et al., 2004) but not in C57BL/6 × C3H F1 mice (Sasaki et al., 1986). In our HS ICR strain mice with the phenotype of muscle atrophy, ubiquitin ligase genes were expressed at 7 days at the level of controls, whereas myostatin gene expression was significantly greater than that of controls (Fig. 8a). This result suggests that the muscle atrophy was caused because the myostatin gene expression was induced, which led to suppression of satellite cell proliferation and a degree of protein degradation was not changed from that of controls.
In this study, the molecular evidence that EA suppressed induction of the expression of the myostatin gene and the three ubiquitin ligase genes in HS mice was consistent with the phenotype, and EA prevented muscle atrophy. Figure 9 provides schematic diagrams of the molecular mechanisms of the effects of EA on inhibition of disuse muscle atrophy, as based on the previous reports (Sandri et al., 2004; Takaoka et al., 2007; Workman et al., 2006) and our data from this study. After the myostatin gene induction in our HS mice, the expression of ubiquitin ligase genes of the IGF-1/AKT pathway was facilitated (Fig. 9a and b).
When HS mice received EA every other day, expression of the myostatin,
In the present study, we used 10-Hz pulses for EA, not 1-Hz pulses as in our previous study, because we determined that in the range of 1–40 Hz, 10 Hz provided the best myostatin gene suppression (Fig. 10). Onuma et al. (Onuma et al., 2008) reported on the effect of electrical stimulation applied by using electrodes on the skin (no needles were inserted) to prevent muscle atrophy. They compared electrical pulse sizes and found that 20 and 30 Hz effectively prevented atrophy. Another research group reported, however, that electrical stimulation at 50 Hz caused muscle atrophy (Kanno et al., 1999). These data suggest the existence of other more effective stimulation conditions than 10 Hz, which we chose for our experiment, to prevent muscle atrophy. Understanding the relationship between EA microcurrent pulse conditions and reactions of skeletal muscle is important, and investigations to determine the best stimulation conditions are needed.
Certain physical therapy techniques involve types of pulse stimulation that differ from EA stimulation. In rehabilitation medicine, electrotherapies such as transcutaneous electrical nerve stimulation (TENS) and electrical muscle stimulation (EMS) are used for relief of pain, reduction of inflammation, and improvement of muscle function (Hurley & Bearne, 2008; Maffiuletti et al., 2003). In these electrotherapies, pulses pass from the skin surface through motor nerves to skeletal muscles to cause muscle contractions (Collins et al., 2002). In EA, a stainless-steel needle, which is inserted into a muscle, stimulates and electrifies the muscle directly by means of a pulse wave of a low-frequency microcurrent (−0.14 to +0.30 A in mouse muscle), the result being muscle contraction (Takaoka et al., 2007). Indeed, unlike TENS and EMS, EA can clearly electrify a targeted muscle that has had an acupuncture needle inserted and can also stimulate tissues distant from the skin (Ishimaru et al., 1995). In addition, the direct microcurrent may induce growth signal transduction in the cell (Mc Caig et al., 2005). Therefore, EA probably induces cell growth (Takaoka et al., 2007) by direct application of electrical current, which is superior to the electrical stimulation through the skin such as that provided by TENS and EMS. Thus, EA is likely to enhance muscle function during rehabilitation.
Long-term rehabilitation is needed for complete recovery from muscle atrophy. For example, complete recovery after a 2-week hindlimb suspension required 3–4 weeks (J. Desaphy et al., 2005). In view of this finding, preventing muscle atrophy is important, to avoid the need for such rehabilitation. Although the efficacy of resistance training for disuse muscle atrophy has been reported (Kannus et al., 1998; Suetta et al., 2008), development of methods other than exercise to prevent muscle atrophy is important for individuals such as elderly people and patients on long-term bed rest after surgery.
5. Conclusion
In this study, we demonstrated that EA was an effective option to prevent muscle atrophy, as evidenced by molecular data showing suppression of myostatin and ubiquitin ligase gene expression. Additional research is now under way to analyse EA-related differences in functions such as muscle contraction and relaxation.
Acknowledgments
This study was supported by a 20th Grant-in-aid of the Nakatomi Foundation and grant-in-aid for Scientific Research (C) from the Japan Society for the Promotion of Science (grant no. 22590653). We also thank Mr. Kenji Miura (Kobe University), Dr. Sachiko Ikemune and Mr. Toshikazu Miyamoto (Tsukuba University) for their technical assistance.
References
- 1.
Acupuncture. 1997 15 1 34 - 2.
Anzil A. P. Sancesario G. Massa R. Bernardi G. 1991 Myofibrillar disruption in the rabbit soleus muscle after one-week hindlimb suspension.14 4 358 369 - 3.
Bodine S. C. Latres E. Baumhueter S. Lai V. K. Nunez L. Clarke B. A. Poueymirou W. T. Panaro F. J. Na E. Dharmarajan K. Pan Z. Q. Valenzuela D. M. De Chiara T. M. Stitt T. N. Yancopoulos G. D. Glass D. J. 2001 Identification of ubiquitin ligases required for skeletal muscle atrophy.294 5547 1704 1708 - 4.
Centner T. Yano J. Kimura E. Mc Elhinny A. S. Pelin K. Witt C. C. Bang M. L. Trombitas K. Granzier H. Gregorio C. C. Sorimachi H. Labeit S. 2001 Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain.306 4 717 726 - 5.
Cho Z. H. Chung S. C. Jones J. P. Park J. B. Park H. J. Lee H. J. Wong E. K. Min B. I. 1998 New findings of the correlation between acupoints and corresponding brain cortices using functional MRI.95 2670 2673 - 6.
Chung S. H. Dickenson A. 1980 Pain, enkephalin and acupuncture.283 243 244 - 7.
Collins D. F. Burke D. Gandevia S. C. 2002 Sustained contractions produced by plateau-like behaviour in human motoneurones.538 289 301 - 8.
Däpp C. Schmutz S. Hoppeler H. Flück M. 2004 Transcriptional reprogramming and ultrastructure during atrophy and recovery of mouse soleus muscle.20 1 97 107 - 9.
Desaphy J. Pierno S. Liantonio A. De Luca A. Didonna M. Frigeri A. Nicchia G. Svelto M. Camerino C. Zallone A. Camerino D. 2005 Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile.18 2 356 365 - 10.
Desaphy J. F. Pierno S. Léoty C. George A. L. Jr De Luca A. Camerino D. C. 2001 Skeletal muscle disuse induces fibre type-dependent enhancement of Na+ channel expression.124 6 1100 1113 - 11.
Dupont-Versteegden E. E. Fluckey J. D. Knox M. Gaddy D. Peterson C. A. 2006 Effect of flywheel-based resistance exercise on processes contributing to muscle atrophy during unloading in adult rats.101 1 202 212 - 12.
Gallegly J. C. Turesky N. A. Strotman B. A. Gurley C. M. Peterson C. A. Dupont-Versteegden E. E. 2004 Satellite cell regulation of muscle mass is altered at old age.97 3 1082 1090 - 13.
Haddad F. Adams G. R. Bodell P. W. Baldwin K. M. 2006 Isometric resistance exercise fails to counteract skeletal muscle atrophy processes during the initial stages of unloading.100 2 433 441 - 14.
Handschin C. Spiegelman B. M. 2008 The role of exercise and PGC1α in inflammation and chronic disease.454 463 469 - 15.
Hurley M. V. Bearne L. M. 2008 Non-exercise physical therapies for musculoskeletal conditions.22 3 419 433 - 16.
Ikemoto M. Nikawa T. Takeda S. Watanabe C. Kitano T. Baldwin K. M. Izumi R. Nonaka I. Towatari T. Teshima S. Rokutan K. Kishi K. 2001 Space shuttle flight (STS-90) enhances degradation of rat myosin heavy chain in association with activation of ubiquitin-proteasome pathway.15 7 1279 1281 - 17.
Ishimaru K. Kawakita K. Sakita M. 1995 Analgesic effects induced by TENS and electroacupuncture with different types of stimulating electrodes on deep tissues in human subjects.63 2 181 187 - 18.
Kanno S. Oda N. Abe M. Saito S. Hori K. Handa Y. Tabayashi K. Sato Y. 1999 Establishment of a simple and practical procedure applicable to therapeutic angiogenesis.99 20 2682 2687 - 19.
Kannus P. Jozsa L. Järvinen T. L. Kvist M. Vieno T. Järvinen T. A. Natri A. Järvinen M. 1998 Free mobilization and low- to high-intensity exercise in immobilization-induced muscle atrophy.84 4 1418 1424 - 20.
Kawada S. Tachi C. Ishii N. 2001 Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading.22 8 627 633 - 21.
Keane M. M. Rivero-Lezcano O. M. Mitchell J. A. Robbins K. C. Lipkowitz S. 1995 Cloning and characterization of cbl-b: a SH3 binding protein with homology to the c-cbl proto-oncogene.10 12 2367 2377 - 22.
Klein J. L. Trachtenberg I. A. Acupuncture 97 6 January, Available from http://www.nlm.nih.gov/pubs/cbm/acupuncture.html - 23.
Maffiuletti N. A. Pensini M. Scaglioni G. Ferri A. Ballay Y. Martin A. 2003 Effect of electromyostimulation training on soleus and gastrocnemii H- and T-reflex properties.90 601 607 - 24.
Mc Caig C. D. Rajnicek A. M. Song B. Zhao M. 2005 Controlling cell behavior electrically: current views and future potential.85 3 943 978 - 25.
Miyazaki M. Hitomi Y. Kizaki T. Ohno H. Katsumura T. Haga S. Takemasa T. 2006 Calcineurin-mediated slow-type fiber expression and growth in reloading condition.38 6 1065 1072 - 26.
Morey-Holton E. R. Globus R. K. 2002 Hindlimb unloading rodent model: technical aspects.92 4 1367 1377 - 27.
Murase K. Kawakita K. 2000 Diffuse noxious inhibitory controls in anti-nociception produced by acupuncture and moxibustion on trigeminal caudalis neurons in rats.50 133 140 - 28.
Nguyen H. X. Tidball J. G. 2003 Null mutation of gp91phox reduces muscle membrane lysis during muscle inflammation in mice.553 3 833 841 - 29.
Niimi H. Yuwono H. S. 2000 Asian traditional medicine: from molecular biology to organ circulation.23 123 125 - 30.
Nikawa T. Ishidoh K. Hirasaka K. Ishihara I. Ikemoto M. Kano M. Kominami E. Nonaka I. Ogawa T. Adams G. R. Baldwin K. M. Yasui N. Kishi K. Takeda S. 2004 Skeletal muscle gene expression in space-flown rats.18 3 522 524 - 31.
Onuma B. Naoki K. Kiyoji M. Shinji M. 2008 Effect of electrical stimulation to prevent muscle atrophy on morphologic and histologic properties of hindlimb suspended rat hindlimb muscles.87 pp. (Epub ahead of print;doi: - 32.
Pisani D. F. Dechesne C. A. 2005 Skeletal muscle HIF-1α expression is dependent on muscle fiber type.126 2 173 178 - 33.
Riley D. A. Slocum G. R. Bain J. L. W. Sedlak F. R. Sowa T. E. Mellender J. W. 1990 Rat hindlimb unloading: soleus histochemistry, ultrastructure, and electromyography.69 1 58 66 - 34.
Sancesario G. Massa R. Anzil A. P. Bernardi G. 1992 Active muscle length reduction progressively damages soleus in hindlimb-suspended rabbits.15 9 1002 1015 - 35.
Sandri M. Sandri C. Gilbert A. Skurk C. Calabria E. Picard A. Walsh K. Schiaffino S. Lecker S. H. Goldberg A. L. 2004 Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy.117 3 399 412 - 36.
Sasaki H. Tone S. Nakazato M. Yoshioka K. Matsuo H. Kato Y. Sakaki Y. 1986 Generation of transgenic mice producing a human transthyretin variant: a possible mouse model for familial amyloidotic polyneuropathy.139 2 794 799 - 37.
Seynnes O. R. de Boer M. Narici M. V. 2007 Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training.102 1 368 373 - 38.
Stelzer J. E. Widrick J. J. 2003 Effect of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice.95 6 2425 2433 - 39.
Stevenson E. J. Giresi P. G. Koncarevic A. Kandarian S. C. 2003 Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle.551 1 33 48 - 40.
Suetta C. Andersen J. L. Dalgas U. Berget J. Koskinen S. Aagaard P. Magnusson S. P. Kjaer M. 2008 Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients.105 1 180 186 - 41.
Takaoka Y. Ohta M. Ito A. Takamatsu K. Sugano A. Funakoshi K. Takaoka N. Sato N. Yokozaki H. Arizono N. Goto S. Maeda E. 2007 Electroacupuncture suppresses myostatin gene expression: cell proliferative reaction in mouse skeletal muscle.30 102 110 - 42.
Takaoka Y. Ohta M. Miyakawa K. Nakamura O. Suzuki M. Takahashi K. Yamamura K. Sakaki Y. 2004 Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met.164 337 345 - 43.
Thomason D. B. Booth F. W. 1990 Atrophy of the soleus muscle by hindlimb unweighting.68 1 1 12 - 44.
Uchida S. Kagitani F. Suzuki A. Aikawa Y. 2000 Effect of acupuncture-like stimulation on cortical cerebral blood flow in anesthetized rats.50 5 495 507 - 45.
Vandesompele J. De Preter K. Pattyn F. Poppe B. Van Roy N. De Paepe A. Speleman F. 2002 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.3 7 research0034 research0034.11 - 46.
Workman P. Clarke P. A. Guillard S. Raynaud F. I. 2006 Drugging the PI3 kinome.24 7 794 796 - 47.
Zhang, X. Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials, Available from http://apps.who.int/medicinedocs/en/d/Js4926e/