1. Introduction
Plants are constantly exposed to a wide range of environmental stresses such as drought, high salt, heat and extremes of temperature. Growth constraints due to these abiotic stresses result in reduced productivity and significant crop losses globally. Drought and salinity affect more than 10% of arable land, which results in more than 50% decline in the average yields of important crops worldwide (Bray et al., 2000). Tolerance or susceptibility to these stresses is also a very intricate event as stress may affect multiple stages of plant development and often several stresses concurrently affect the plants (Chinnusamy et al., 2004). Therefore, the basic mechanisms of abiotic stress tolerance and adaptation have been the area of comprehensive research.
Plants counter adverse environmental conditions in a complex, integrated way depending on the timing and length that allows them to respond and adapt to the existing constraints present at a given time. Plant stress tolerance involves changes at whole-plant, tissue, cellular, physiological and molecular levels. Exhibition of a distinct or a combination of intrinsic changes ascertains the capacity of a plant to sustain itself under unfavorable environmental conditions (Farooq et al., 2009). This comprises a range of physiological and biochemical adjustments in plants including leaf wilting, leaf area reduction, leaf abscission, root growth stimulation, alterations in relative water content (RWC), electrolytic leakage (EL), production of reactive oxygen species (ROS) and accumulation of free radicals which disturb cellular homeostasis ensuing lipid peroxidation, membrane damage, and inactivation of enzymes thus influencing cell viability (Bartels and Sunkar, 2005). Other than these, abscissa acid (ABA), a plant stress hormone, induces leaf stomata closure, thus reducing transpirational water loss and photosynthetic rate which improves the water-use efficiency (WUE) of the plant. Molecular responses to abiotic stress on the other hand include perception, signal transduction, gene expression and ultimately metabolic changes in the plant thus providing stress tolerance (Agarwal et al., 2006).
Several genes are activated in response to abiotic stresses at the transcriptional level, and their products are contemplated to provide stress tolerance by the production of vital metabolic proteins and also in regulating the downstream genes (Kavar et al., 2007). Transcript profiling can be a significant tool for the characterization of stress-responsive genes. Extensive transcriptome analyses have divulged that these gene products can largely be classified into two groups (Bohnert et al., 2001; Seki et al., 2002; Fowler and Thomashow, 2002). First group comprises of genes that encode for proteins that defend the cells from the effects of water-deficit. These genes mainly include those that regulate the accumulation of compatible solutes (enzymes for osmolyte biosynthesis like proline, betaine, sugars, etc.); passive and active transport systems across membranes (water channel proteins and membrane transporters); and protection and stabilization of cell structures from damage by ROS (the detoxification enzymes such as glutathione
2. Role of transcription factors in abiotic stress responses
Transcription factors (TFs) are proteins that act together with other transcriptional regulators, including chromatin remodeling/modifying proteins, to employ or obstruct RNA polymerases to the DNA template (Udvardi et al., 2007). Plant genomes assign approximately 7% of their coding sequence to TFs, which proves the complexity of transcriptional regulation (Udvardi et al., 2007). The TFs interact with
The phytohormone ABA is the central regulator of abiotic stress particularly drought resistance in plants, and coordinates a complex gene regulatory network enabling plants to cope with decreased water availability (Cutler et al., 2010; Kim et al., 2010). ABA-dependent signaling systems have been illustrated as pathways that mediate stress adaptation by induction of atleast two separate regulons (a group of genes controlled by a certain TF): (1) the AREB/ABF (ABA-responsive element-binding protein/ ABA-binding factor) regulon; and (2) the MYC (myelocytomatosis oncogene)/MYB (myeloblastosis oncogene) regulon (Abe et al., 1997; Busk and Pagés, 1998; Saibo et al., 2009). While ABA-independent regulons are: (1) the CBF/DREB regulon; and (2) the NAC (NAM, ATAF and CUC) and ZF-HD (zinc-finger homeodomain) regulon (Nakashima et al. 2009; Saibo et al., 2009). However in addition, several studies have identified the existence of both ABA-dependent and –independent pathways of stress response that function through AP2/EREBP (ERF) family members (Yamaguchi-Shinozaki and Shinozaki, 1994; Kizis and Pagés, 2002). In addition to these well-known regulons, a large number of other TFs are also involved in abiotic stress responses, thereby playing a crucial role in imparting stress endurance to plants. Although
these different stress responsive TFs usually function independently, it is undoubtedly possible that some level of cross-talk exists between them.
This chapter focuses on these TFs and their role in regulating abiotic stress responses in plants (Table 1) as well as their utility in engineering stress tolerance for crop improvement programs (Table 2).
3. The AREB/ABF regulon
A conserved
The AREB or ABFs are bZIP (basic leucine zipper) TFs that bind to the ABRE motif and activate ABA-dependent gene expression were first isolated in a yeast one-hybrid screening (Choi et al., 2000; Uno et al., 2000). It was reported that in the ABA-deficient
AREB/ABF genes are mostly redundant in tissue-specific expression either in vegetative tissues or seeds (Choi et al., 2000; Uno et al., 2000).
Overexpression of
4. The MYC /MYB regulon
The MYC/MYB families of proteins are universally found in both plants and animals and known to have varied functions. Both MYC/MYB TFs participate in the ABA-dependent pathway of stress signaling for the upregulation of the abiotic stress responsive genes. The first MYB gene identified was the v-MYB gene of avian myeloblastosis virus (AMV) (Klempnauer et al., 1982). The first plant MYB gene, C1, was identified in
MYB TFs play important roles in many physiological processes under normal or unfavorable growth conditions (Jin and Martin, 1999; Chen et al., 2006; Yanhui et al., 2006) and also in secondary metabolism (Paz-Ares et al., 1987), cell morphogenesis (Higginson et al., 2003), meristem formation and floral and seed development (Kirik et al., 1998), cell cycle control (Araki et al., 2004), defense and stress responses (Abe et al., 2003), and hormone signaling (Newman et al., 2004). MYC and MYB TFs accumulate only after ABA accumulation.
Overexpression of
5. The CBF/DREB regulon
The dehydration responsive element binding proteins (DREBs) are important AP2/ERF plant TFs that induce a set of abiotic stress-related genes, thus imparting stress tolerance to plants. These play an important role in the ABA-independent pathways that activates stress responsive genes. The first isolated cDNAs encoding DRE binding proteins, CBF1 (CRT binding factor1), DREB1A and DREB2A were identified through yeast one-hybrid screening from
The DREB TFs contain an extremely conserved AP2/ERF DNA-binding domain throughout plant kingdom. The domain consists of a three-stranded β-sheet and one α -helix running almost parallel to it that contacts DNA via Arg and Trp residues located in the β-sheet (Magnani et al., 2004). Two conserved functional amino acids (valine and glutamic acid) at 14th and 19th residues respectively, exist in the DNA binding domain, which are crucial sites for the binding of DREBs and DRE core sequences (Liu et al., 1998). An alkaline N-terminal amino acid region that serve as a nuclear localization signal (NLS) and a conserved Ser/Thr-rich region responsible for phosphorylation near the AP2/ERF DNA binding domain are also mostly present (Liu et al., 1998; Agarwal et al., 2006).The proteins contain an acidic C-terminal region which might be functional in
The activation of these transcripts is organ-specific and comparative to the extent of the stress given. When exposed to salt stress,
Transgenic
These studies indicate that the DREB proteins are important TFs in regulating abiotic stress-related genes and play a critical role in imparting stress endurance to plants.
6. The NAC (NAM, ATAF and CUC) and ZF-HD (zinc-finger homeodomain) regulon
The NAC family of plant-specific TFs is one of the largest in the plant genome, with 106 and 149 members in Arabidopsis and rice, respectively (Gong et al., 2004, Xiong et al., 2005). NAC family TFs contains a highly conserved N-terminal DNA-binding domain and a diversified C-terminal domain (Hu et al., 2008). NAC was derived from the names of the first three described TFs containing NAC domain, namely NAM (no apical meristem), ATAF1-2 and CUC2 (cup-shaped cotyledon) (Souer et al., 1996; Aida et al., 1997). The
Numerous studies have examined the involvement of several types of NAC TFs in plant developmental programs (Sablowski and Meyerowitz 1998; Xie et al. 2000; Weir et al. 2004), and disease resistance (Collinge and Boller, 2001; Oh et al., 2005; Nakashima et al., 2007). A few
Several target genes of the ANAC019, ANAC055, and ANAC072 transcriptional activators were identified in the Arabidopsis transgenic plants using cDNA microarray. These transgenic plants also exhibited improved drought tolerance (Tran et al., 2004). The
7. Other TFs in abiotic stress response and tolerance
There are a number of TFs which are involved in abiotic stress responses other than the TFs belonging to the well known regulons described above. A new class of homeodomain TF known as HIGHER EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 9 (HOS 9) and a R2R3-type MYB protein HOS 10 have been identified recently which are found to be associated with cold stress (Zhu et al., 2004, 2005).
WRKYs are another important class of plant TFs which have shown to possess multiple functions in plants including abiotic stress responses.
Zinc finger proteins (ZFPs) are one of the important TFs found abundantly in plants and animals. They contain sequence motifs in which cysteines and/or histidines coordinate zinc atom(s) forming local peptide structures required for their specific functions (Singh et al., 2010). Cys2/His2 (C2H2)-type ZFPs containing the EAR transcriptional repressor domain, play a key role in regulating the defense responses of plants to biotic and abiotic stress conditions (Singh et al., 2010). Over-expression of
8. Conclusion and future perspectives
In response to abiotic stresses such as, drought, salinity, heat, cold and mechanical wounding many genes are regulated, and their gene products function in providing stress tolerance to plants. Understanding the molecular mechanisms of plant responses to abiotic stresses is very important as it facilitates in exploiting them to improve stress tolerance and productivity. This review summarizes the role of important plant TFs namely; ABRE, MYC/MYB, CBF/DREBs and NAC that regulate various stress responsive gene expression. They play a crucial role in providing tolerance to multiple stresses generally in both ABA-dependent and -independent manner and through respective
Acknowledgments
This study was supported by the Department of Biotechnology, Govt. of India, New Delhi and core grant from the National Institute of Plant Genome Research (NIPGR). Ms Charu Lata acknowledges the award of SRF from the UGC, New Delhi. We are thankful to Prof. A. K. Tyagi (Director, NIPGR) for support and encouragement.
References
- 1.
Abe H. Yamaguchi-Shinozaki K. Urao T. Iwasaki T. Hosokawa D. Shinozaki K. 1997 Role of MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. The Plant Cell9 1859 1868 - 2.
Abe H. Urao T. Ito T. Seki M. Shinozaki K. Yamaguchi-Shinozaki K. 2003 Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell15 63 78 - 3.
Agarwal M. Hao Y. Kapoor A. Dong C. H. Fuji H. Zheng X. Zhu J. K. 2006 A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry281 37636 37645 - 4.
Agarwal P. K. Agarwal P. Reddy M. K. Sopory S. K. 2006 Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Reports25 1263 1274 - 5.
Agarwal P. Agarwal P. K. Nair S. Sopory S. K. Reddy M. K. 2007 Stress inducible DREB2A transcription factor from is a phosphoprotein and its phosphorylation negatively regulates its DNA binding activity. Molecular Genetics and Genomics277 189 198 - 6.
Agarwal P. Agarwal P. K. Joshi A. J. Sopory S. K. Reddy M. K. 2010 Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Molecular Biology Reports37 1125 1135 - 7.
Agarwal P. K. Jha B. 2010 Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biologia Plantarum54 201 212 - 8.
Aida M. Ishida T. Fukaki H. Fujisawa H. Tasaka M. 1997 Genes involved in organ separation in : an analysis of the cup-shaped cotyledon mutant. The Plant Cell9 841 857 - 9.
Almoguera C. Prieto-Dapena P. Díaz-Martín J. Espinosa J. M. Carranco R. Jordano J. 2009 The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9. BMC Plant Biology 9:75 doi: - 10.
Araki S. Ito M. Soyano T. Nishihama R. Machida Y. 2004 Mitotic cyclins stimulate the activity of c-Myb-like factors for transactivation of G2/M phase-specific genes in tobacco. Journal of Biological Chemistry279 32979 88 - 11.
Archana K. Rama N. Mamrutha H. M. Nataraja K. N. 2009 Down-regulation of an abiotic stress regulated WRKY transcription factor induces physiological abnormalities. Indian Journal of Biotechnology8 53 60 - 12.
Bartels D. Sunkar R. 2005 Drought and salt tolerance in plants. Critical Reviews in Plant Science21 1 36 - 13.
Behnam B. Kikuchi A. Celebi-Toprak F. Yamanaka S. Kasuga M. Yamaguchi-Shinozaki K. Watanabe K. N. 2006 The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (). Plant Biotechnology23 169 177 - 14.
Bensmihen S. Rippa S. Lambert G. Jublot D. Pautot V. Granier F. Giraudat J. Parcy F. 2002 The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell14 1391 1403 - 15.
Bhatnagar-Mathur P. Devi M. J. DS Reddy Vadez. V. Yamaguchi-Shinozaki K. Sharma K. K. 2006 Overexpression of DREB1A in transgenic peanut (Arachis hypogaea L.) for improving tolerance to drought stress (poster presentation). In: Arthur M. Sackler Colloquia on ‘‘From Functional Genomics of Model Organisms to Crop Plants for Global Health’’, April3 5 National Academy of Sciences, Washington, DC. - 16.
Bihani P. Char B. Bhargava S. 2011 Transgenic expression of sorghum in rice improves tolerance and yield under water limitation. The Journal of Agricultural Science149 95 101 - 17.
Bohnert H. J. Ayoubi P. Borchert C. Bressan R. A. Burnap R. L. Cushman J. C. MA Cushman Deyholos. M. Fisher R. Galbraith D. W. Hasegawa P. M. Jenks M. Kawasaki S. Koiwa H. Kore-eda S. Lee-H B. Michalowski C. B. Misawa E. Nomura M. Ozturk N. Postier B. Prade R. Song-P C. Tanaka Y. Wang H. Zhu J. K. 2001 A genomic approach towards salt stress tolerance. Plant Physiology and Biochemistry39 295 311 - 18.
Borevitz J. O. Xia Y. J. Blount J. Dixon R. A. Lamb C. 2000 Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. The Plant Cell12 2383 2393 - 19.
Bray E. A. Bailey-Serres J. Weretilnyk E. 2000 Responses to abiotic stresses. In Biochemistry and Molecular Biology of Plants, Buchanan BB, Gruissem W, and Jones RL, eds (Rockville, MD: American Society of Plant Biologists),1158 1203 - 20.
Bray EA 1994 Alterations in gene expression in response to water deficit. In Stress-Induced Gene Expression in Plants (Basra, A.S., ed.). Amsterdam: Harwood Academic,1 23 - 21.
Busk P. K. Pagès M. 1998 Regulation of abscisic acid-induced transcription. Plant Molecular Biology37 425 435 - 22.
Casaretto J. Ho T. H. 2003 The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell15 271 284 - 23.
Chen J. Xia X. Yin W. 2009 Expression profiling and functional characterization of a DREB2-type gene from . Biochemical and Biophysical Research Communications378 483 487 - 24.
Chen J. Q. Meng X. P. Zhang Y. Xia M. Wang X. P. 2008 Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letter30 2191 2198 - 25.
Chen M. Wang Q. Y. Cheng X. G. Xu Z. S. Li L. C. Ye X. G. Xia L. Q. Ma Y. Z. 2007 , a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications353 299 305 - 26.
Chen Y. Yang X. He K. Liu M. Li J. Gao Z. Lin Z. Zhang Y. Wang X. Qiu X. Shen Y. Li Z. Deng X. Luo J. Deng-W X. Chen Z. Gu H. Qu-J L. 2006 The MYB transcription factor superfamily of : Expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology60 107 124 - 27.
Cheong Y. H. Chang H. S. Gupta R. Wang X. Zhu T. Luan S. 2002 Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology129 661 677 - 28.
Chinnusamy V. Schumaker K. Zhu J. 2004 Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. Journal of Experimental Botany55 225 236 - 29.
Choi H. Hong J. Ha J. Kang J. Kim S. Y. 2000 ABFs, a family of ABA responsive element binding factors. Journal of Biological Chemistry275 1723 1730 - 30.
Ciftci-Yilmaz S. Morsy M. R. Song L. Coutu A. BA Krizek Lewis. M. W. Warren D. Cushman J. Connolly E. L. Mittler R. 2007 The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of to salinity stress. Journal of Biological Chemistry282 9260 9268 - 31.
Collinge M. Boller T. 2001 Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by and to wounding. Plant Molecular Biology46 521 529 - 32.
Cominelli E. Galbiati M. Vavasseur A. Conti L. Sala T. Vuylsteke M. Leonhardt N. Dellaporta S. L. Tonelli C. 2005 A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Current Biology15 1196 1200 - 33.
Cominelli E. Sala T. Calvi D. Gusmaroli G. Tonelli C. 2008 Overexpression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. The Plant Journal53 53 64 - 34.
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR 2010 Abscisic acid: Emergence of a core signaling network. Annual Reviews in Plant Biology61 651 679 - 35.
Dai X. Xu Y. Ma Xu Q. Wang W. Xue T. Chong Y. K. 2007 Overexpression of an R1R2R3 MYB gene, , increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiology143 1739 1751 - 36.
Davletova S. Schlauch K. Coutu J. Mittler R. 2005 The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in . Plant Physiology139 847 856 - 37.
Denekamp M. Smeekens S. C. 2003 Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiology132 1415 1423 - 38.
Ding Z. Li S. An X. Liu X. Qin H. Wang D. 2009 Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in . Journal of Genetics & Genomics36 17 29 - 39.
Dubouzet J. G. Sakuma Y. Ito Y. Kasuga M. Dubouzet E. G. Miura S. Seki M. Shinozaki K. Yamaguchi-Shinozaki K. 2003 genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. The Plant Journal33 751 763 - 40.
Egawa C. Kobayashi F. Ishibashi M. Nakamura T. Nakamura C. Takumi S. 2006 Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. Genes & Genetic Systems81 77 91 - 41.
Farooq M. Wahid A. Kobayashi N. Fujita D. Basra S. M. A. 2009 Plant drought stress: effects, mechanisms and management. Agronomy of Sustainable Development29 185 212 - 42.
Fowler S. Thomashow M. F. 2002 Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell14 1675 1690 - 43.
Fujita M. Mizukado S. Fujita Y. Ichikawa T. Nakazawa M. Seki M. Matsui M. Yamaguch-Shinozaki K. Shinozaki K. 2007 Identification of stress-tolerance-related transcription-factor genes via mini-scale full length cDNA over-eXpressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications364 250 257 - 44.
Fujita Y. Fujita M. Satoh R. Maruyama K. MM Parvez Seki. M. Hiratsu K. Masaru O. T. Kazuo S. Kazuko Y. S. 2005 AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. The Plant Cell17 3470 3488 - 45.
Furihata T. Maruyama K. Fujita Y. Umezawa T. Yoshida R. Shinozaki K. Yamaguchi-Shinozaki K. 2006 Abscisic acid dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences USA103 1988 1993 - 46.
Gigolashvili T. Yatusevich R. Berger B. Muller C. Flugge U. I. 2007 The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine derived glucosinolate biosynthesis in Arabidopsis thaliana. The Plant Journal51 247 261 - 47.
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF 2000 Overexpression of Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiology124 1854 1865 - 48.
Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF 1998 Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal16 433 442 - 49.
Giraudat J. Parcy F. Bertauche N. Gosti F. Leung J. Morris P. Bouvier-Durand M. Vartanian N. 1994 Current advances in abscisic acid action and signaling. Plant Molecular Biology26 1557 1577 - 50.
Gong W. Shen Y. P. Ma Pan L. G. Du Y. Wang Y. L. Yang D. H. Hu J. Y. L. D. Liu X. F. Dong C. X. Ma Chen L. Yang Y. H. Gao X. Y. Zhu Y. Tan D. Mu X. Zhang J. Y. Liu D. B. Dinesh-Kumar Y. L. Li S. P. Wang Y. Gu X. P. Qu H. Y. Bai L. J. Lu S. N. Li Y. T. Zhao J. Y. JD Zuo J. Huang H. Deng X. W. Zhu Y. X. 2004 Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes. Plant Physiology135 773 782 - 51.
Guo Y. Gan S. 2006 AtNAP, a NAC family transcription factor, has an important role in leaf senescence The Plant Journal46 601 612 - 52.
Gupta K. Agarwal P. K. Reddy M. K. Jha B. 2010 SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte confers abiotic stress tolerance in Escherichia coli. Plant Cell Reports29 1131 1137 - 53.
Haake V. Cook D. Riechmann J. L. Pineda O. Thomashow M. F. Zhang J. Z. 2002 Transcription factor CBF4 is a regulator of drought adaptation in . Plant Physiology130 639 648 - 54.
He X-J, Mu R-L, Cao W-H, Zhang Z-G, Zhang J-S, Chen S-Y(2005 AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal44 903 916 - 55.
Hegedus D. Yu M. Baldwin D. Gruber M. Sharpe A. Parkin I. Whitwill S. Lydiate D. 2003 Molecular characterization of NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Molecular Biology53 383 397 - 56.
Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT 2002 Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiology129 1086 1094 - 57.
Higginson T. Li S. F. Parish R. W. 2003 AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. The Plant Journal35 177 192 - 58.
Hobo T. Kowyama Y. Hattori T. 1999 A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Proceedings of the National Academy of Sciences USA96 15348 15353 - 59.
Hong JP, Kim WT 2005 Isolation and functional characterization of the gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv Pukang). Planta220 875 888 - 60.
Hu H. Dai M. Yao J. Xiao B. Li Xianghua. Zhang Q. Xiong L. 2006 Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences, USA103 12987 12992 - 61.
Hu H. You J. Fang Y. Zhu X. Qi Z. Xiong L. 2008 Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Molecular Biology67 169 181 - 62.
Hussain S. S. MA Kayani Amjad. M. 2011 Transcription factors as tools to engineer enhanced drought tolerance in plants. American Institute of Chemical EngineersDOI: btpr.514. - 63.
Ito Y. Katsura K. Maruyama K. Taji T. Kobayashi M. Shinozaki K. Yamaguchi-Shinozaki K. 2006 Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiology47 141 153 - 64.
Jaglo-Ottosen K. R. Gilmour S. J. Zarka D. G. Schabenberger O. Thomashow M. F. 1998 CBF1 overexpression induces cor genes and enhances freezing tolerance. Science280 104 106 - 65.
Jain D. Roy N. Chattopadhyay D. 2009 CaZF, a plant transcription factor functions through and parallel to HOG and calcineurin pathways in to provide osmotolerance. PLoS One 4:e5154 - 66.
Jakoby M. Weisshaar B. Dröge-Laser W. Vicente-Carbajosa J. Tiedemann J. Kroj T. Parcy F. 2002 bZIP transcription factors in Arabidopsis. Trends in Plant Science7 106 111 - 67.
Jia Z. Lian Y. Zhu Y. He J. Cao Z. Wang G. 2009 Cloning and characterization of a putative transcription factor induced by abiotic stress in . African Journal of Biotechnology8 6764 6771 - 68.
Jin H. Martin C. 1999 Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology41 577 585 - 69.
Jin-F X. Jiong-S A. Peng-H R. Liu-G J. Gao F. Chen-M J. Yao-H Q. 2010 OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Reports43 34 39 - 70.
Jung C. Seo J. S. Han S. W. Koo Y. J. Kim C. H. Song S. I. Nahm B. H. Choi Y. D. Cheong-J J. 2008 Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology146 623 635 - 71.
Kamei A. Seki M. Umezawa T. Ishida J. Satou M. Akiyama K. Zhu J. K. Shinozaki K. 2005 Analysis of gene expression profiles in Arabidopsis salt overly sensitive mutants sos2-1 and sos3-1. Plant, Cell & Environment28 1267 1275 - 72.
Kang JY, Choi HI, Im MY, Kim SY 2002 Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. The Plant Cell14 343 357 - 73.
Karaba A. Dixit S. Greco R. Aharoni A. Trijatmiko K. R. Marsch-Martinez N. Krishnan A. Nataraja K. A. Udayakumar M. Pereira A. 2007 Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences USA104 15270 15275 - 74.
Kasuga M. Liu Q. Miura S. Yamaguchi-Shinozaki K. Shinozaki K. 1999 Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnology17 287 291 - 75.
Kasuga M. Miura S. Shinozaki K. Yamaguchi-Shinozaki K. 2004 A combination of the DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiology45 346 350 - 76.
Kavar T. Maras M. Kidric M. Sustar-Vozlic J. Meglic V. 2007 Identification of genes involved in the response of leaves of to drought stress. Molecular Breeding21 159 172 - 77.
Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC, Lee SY, Lim CO, Cho MJ 2001 A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. The Plant Journal25 247 259 - 78.
Kim S. Kang J. Y. Cho D. I. Park J. H. Kim S. Y. 2004 ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant Journal40 75 87 - 79.
Kim SG, Lee AK, Yoon HK, Park CM 2008 A membrane bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in seed germination. The Plant Journal55 77 88 - 80.
Kim-H T. Bo°hmer M. Hu H. Nishimura N. Schroeder J. I. 2010 Guard cell signal transduction network: Advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Reviews in Plant Biology61 561 591 - 81.
Kirik V. Ko°lle K. Mise´ra S. Ba°umlein H. 1998 Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Molecular Biology37 819 827 - 82.
Kizis D. Pagès M. 2002 Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. The Plant Journal30 679 689 - 83.
Klempnauer K.-H, TJ Gonda, JM Bishop 1982 Nucleo- tide sequence of the retroviral leukemia gene and its cellular progenitor c-myb: The architecture of a transduced oncogene. The Cell31 453 463 - 84.
Kobayashi F. Maeta E. Terashima A. Kawaura K. Ogihara Y. Takumi S. 2008 Development of abiotic stress tolerance via bZIP-type transcription factor LIP19 in common wheat. Journal of Experimental Botany59 891 905 - 85.
Lata C. Bhutty S. Bahadur R. P. Majee M. Prasad M. 2011 Association of a SNP in a novel DREB2 like gene with stress tolerance in foxtail millet [Setaria italica (L.)]. Journal of Experimental BotanyDOI: jxb/err016. - 86.
Lee SJ, Kang JY, Park HJ, Kim MD, Bae MS, Choi HI, Kim SY 2010 DREB2C interacts with ABF2, a bZIP protein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acid sensitivity. Plant Physiology153 716 727 - 87.
Li XP, Tian AG, Luo GZ, Gong ZZ, Zhang JS, Chen SY 2005 Soybean DRE-binding transcription factors that are responsive to abiotic stresses. Theoretical and Applied Genetics110 1355 1362 - 88.
Liang Y. K. Dubos C. Dodd I. C. Holroyd G. H. Hetherington A. M. MM Campbell 2005 AtMYB61, an R2R3-MYB transcription factor controlling stomatal aperture in Arabidopsis thaliana. Current Biology15 1201 1206 - 89.
Liao Y. Zhang-S J. Chen-Y S. Zhang-K W. . 2008b Role of soybean GmbZip132 under abscisic acid and salt stresses. Journal of Integrative Plant Biology50 221 230 - 90.
Liao Y. Zou H. Wei W. Hao Y. J. Tian A. G. Huang J. Liu-F Y. Zhang-S J. Chen-Y S. 2008a Soybean , GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta228 225 240 - 91.
Liao Y. Zou-F H. Wang-W H. Zhang-K W. Ma Zhang B. -S J. 2008c Soybean , GmMYB92, and GmMYB177 genes confer stress tolerance in transgenic Arabidopsis plants. Cell Research18 1047 1060 - 92.
Lim C. J. Hwang J. E. Chen H. Hong J. K. Yang K. A. Choi M. S. Lee K. O. Chung W. S. Lee S. Y. Lim C. O. 2007 Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance. Biochemical and Biophysical Research Communications362 431 436 - 93.
Lippold F. Sanchez D. H. Musialak M. Schlereth A. Scheible W. R. Hincha D. K. Udvardi M. K. 2009 AtMyb41 Regulates Transcriptional and Metabolic Responses to Osmotic Stress in Arabidopsis[W][OA]. Plant Physiology149 1761 1772 - 94.
Hincha and Michael K. UdvardiDiego H. Magdalena Musialak. Armin Schlereth. Wolf-Ruediger Scheible. Dirk K. - 95.
Liu Q. Kasuga M. Sakuma Y. Abe H. Miura S. Goda H. Shimada Y. Yoshida S. Shinozaki K. Yamaguchi-Shinozaki K. 1998 Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in . The Plant Cell10 391 406 - 96.
Liu L. Zhu K. Yang Y. Wu J. Chen F. Yu D. 2008 Molecular cloning, expression profiling and trans-activation property studies of a DREB2-like gene from chrysanthemum (). Journal of Plant Research121 215 226 - 97.
Lu-L P. Chen-Z N. An R. Su Z. Qi-S B. Ren F. Chen J. Wg-C X. 2007 A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in . Plant Molecular Biology63 289 305 - 98.
Ma Sun L. Liu N. Jiao X. Zhao Y. Deng H. X. W. 2005 Organ-specific expression of Arabidopsis genome during development. Plant Physiology138 80 91 - 99.
Magnani E. Sjölander K. Hake S. 2004 From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. The Plant Cell16 2265 2277 - 100.
Matsukura S. Mizoi J. Yoshida T. Todaka D. Ito Y. Maruyama K. Shinozaki K. Yamaguch-Shinozaki K. 2010 Comprehensive analysis of rice -type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics283 185 196 - 101.
Mattana M. Biazzi E. Consonni R. Locatelli F. Vannini C. Provera S. Coraggio I. 2005 Overexpression of Enhances Compatible Solute Accumulation and Increases Stress Tolerance of Arabidopsis thaliana. Physiologia Plantarum125 212 223 - 102.
Medina J. Bargues M. Terol J. P´erez-Alonso M. Salinas J. 1999 The gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiology119 463 469 - 103.
Mei Z. Wei L. Yu-Ping B. Zi-Zhang W. 2009 Isolation and Identification of : A New DREB Transcription Factor from Peanut (Arachis hypogaea L.) Acta Agronomica Sinica35 1973 1980 - 104.
Morishita T. Kojima Y. Maruta T. Nishizawa-Yokoi A. Yabuta Y. Shigeoka S. 2009 Arabidopsis NAC transcription factor, ANAC078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiology50 2210 2222 - 105.
Mukhopadhyay A. Vij S. Tyagi A. K. 2004 Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proceedings of National Academy Sciences USA101 6309 6314 - 106.
Mustilli A. C. Merlot S. Vavasseur A. Fenzi F. Giraudat J. 2002 Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. The Plant Cell14 3089 3099 - 107.
Nakano T. Suzuki K. Fujimura T. Shinshi H. 2006 Genome-Wide Analysis of the ERF Gene Family in Arabidopsis and Rice. Plant Physiology140 411 432 - 108.
Nakashima K. Ito Y. Yamaguchi-Shinozaki K. 2009 Transcriptional Regulatory Networks in Response to Abiotic Stresses in Arabidopsis and Grasses. Plant Physiology149 88 95 - 109.
Nakashima K. Shinwar Z. K. Sakuma Y. Seki M. Miura S. Shinozaki K. Yamaguchi-Shinozaki K. 2000 Organization and expression of two genes encoding DRE-binding proteins involved in dehydration- and high salinity-responsive gene expression. Plant Molecular Biology42 657 665 - 110.
Nakashima K. Tran-S L. Nguyen P. Fujita D. V. Maruyama M. Todaka K. Ito D. Hayashi Y. Shinozaki N. Yamaguchi-Shinozaki K. K. 2007 Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal51 617 630 - 111.
Nakashima K. Yamaguchi-Shinozaki K. 2006 Regulons involved in osmotic stress-responsive and cold stress responsive gene expression in plants. Physiologia Plantarum126 62 71 - 112.
Newman L. J. Perazza D. E. Juda L. MM Campbell 2004 Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark-photomorphogenic components of the det3 mutant phenotype. The Plant Journal37 239 50 - 113.
Oh S. J. Song S. I. Kim Y. S. Jang H. J. Kim S. Y. Kim M. Kim Y. K. Nahm B. H. Kim J. K. 2005 CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiology138 341 351 - 114.
Oh-K S. Lee S. Yu S. H. Choi D. 2005 Expression of a novel NAC domain containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta222 876 887 - 115.
Pasquali G. Biricolti S. Locatelli F. Baldoni E. Mattana M. . 2008 expression improves adaptive responses to drought and cold stress in transgenic apples. Plant Cell Reports27 1677 1686 - 116.
Paz-Ares J. Ghosal D. Wienand U. Peterson P. A. Saedler H. 1987 The regulatory cl locus of encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO f.6 3553 3558 - 117.
Pellegrineschi A. Reynolds M. Pacheco M. Brito R. M. Almeraya R. Yamaguchi-Shinozaki K. Hoisington D. 2004 Stress-induced expression in wheat of the gene delays water stress symptoms under greenhouse conditions. Genome47 493 500 - 118.
Peng H. Cheng H. Y. Yu X. W. Shi Q. H. Zhang H. Li J. G. Ma H. 2009 Characterization of a chickpea ( L.) NAC family gene, CarNAC5, which is both developmentally- and stress-regulated. Plant Physiology & Biochemistry47 1037 45 - 119.
Pinheiro GL, Marques CS, Costa MDBL, Reis PAB, Alves MS, Carvalho CM, Fietto LG, Fontes EPB 2009 Complete inventory of soybean NAC transcription factors: Sequence conservation and expression analysis uncover their distinct roles in stress response. Gene444 10 23 - 120.
Puranik S. Bahadur R. P. Srivastava P. S. Prasad M. 2011 Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [ (L.) P. Beauv.]. Molecular BiotechnologyDOI: s12033-011-9385-7. - 121.
Qin F. Kakimoto M. Sakuma Y. Maruyama K. Osakabe Y. Tran L. S. Shinozaki K. Yamaguchi-Shinozaki K. 2007 Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in L. The Plant Journal50 54 69 - 122.
Qiu Y. Yu D. 2009 Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany65 35 47 - 123.
Riechmann J. L. Heard J. Martin G. Reuber L. Jiang C. Keddie J. Adam L. Pineda O. Ratcliffe O. J. Samaha R. R. Creelman R. Pilgrim M. Broun P. Zhang J. Z. Ghandehari D. Sherman B. K. Yu G. 2000 transcription factor: genome wide comparative analysis among eukaryotes. Science290 2105 2110 - 124.
Rosinski JA, Atchley WR 1998 Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. Journal of Molecular Evolution46 74 83 - 125.
Sablowski RW, Meyerowitz EM 1998 A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. The Cell92 93 103 - 126.
Saibo N. J. M. Lourenc¸o T. MM Oliveira 2009 Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany103 609 623 - 127.
Sakuma Y. Maruyama K. Qin F. Osakabe Y. Shinozaki K. Yamaguchi-Shinozaki K. 2006 Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of National Academy of Sciences USA103 18822 18827 - 128.
Savitch L. V. Allard G. Seki M. Robert L. S. Tinker N. A. Huner N. P. A. Shinozaki K. Singh J. 2005 The effect of overexpression of two -like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant Cell Physiology46 1525 1539 - 129.
Seki M. Narusaka M. Ishida J. Nanjo T. Fujita M. Oono Y. Kamiya A. Nakajima M. Enju A. Sakurai T. Satou M. Akiyama K. Taji T. Yamaguchi-Shinozaki K. Carninci P. Kawai J. Hayashizaki Y. Shinozaki K. 2002 Monitoring the expression profiles of 7000 genes under drought, cold and high salinity stresses using a full-length cDNA microarray. The Plant Journal31 279 292 - 130.
Seki M. Kamei A. Satou M. Sakurai T. Fujita M. Oono Y. Yamaguch-Shinozaki K. Shinozaki K. 2003 Transcriptome analysis in abiotic stress conditions in higher plants. Topics Curr Genet4 271 295 - 131.
Shan-P D. Huang-G J. Yang-T Y. Guo-H Y. Wu-A C. Yang-D G. Gao Z. Zheng-C C. 2007 Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytologist176 70 81 - 132.
Shen Q. Zhang P. Ho T. 1996 Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell8 1107 1119 - 133.
Shen Y. G. Zhang W. K. He S. J. Zhang J. S. Liu Q. Chen S. Y. 2003a An EREBP/AP2-type protein in was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theoretical and Applied Genetics106 923 930 - 134.
Shen Y. G. Zhang W. K. Yan D. Q. Du B. X. Zhang J. S. Liu Q. Chen S. Y. 2003b Characterization of a DRE-binding transcription factor from a halophyte . Theoretical and Applied Genetics107 155 161 - 135.
Shin D. Moon-J S. Han S. Kim-G B. Park S. R. Lee-K S. Yoon-J H. Lee-E H. Kwon-B H. Baek D. Yi B. Y. Byun-O M. 2011 Expression of -1, a novel potato single MYB-like domain transcription factor, increases drought tolerance. Plant Physiology155 421 432 - 136.
Shinozaki K. Yamaguchi-Shinozaki K. 2007 Gene networks involved in drought stress tolerance and response. Journal of Experimental Botany58 221 227 - 137.
Shukla R. K. Raha S. Tripathi V. Chattopadhyay D. 2006 Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. Plant Physiology142 113 123 - 138.
Shukla R. K. Tripathi V. Jain D. Yadav R. K. Chattopadhyay D. 2009 CAP2 enhances germination of transgenic tobacco seeds at high temperature and promotes heat stress tolerance in yeast. FEBS Journal276 5252 5262 - 139.
Singh A. K. Sopory S. K. Wu R. Singla-Pareek S. L. 2010 Transgenic Approaches. In: Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation, A Pareek, SK Sopory, HJ Bohnert and Govindjee (eds.),417 450 - 140.
Souer E. Van Houwelingen A. Kloos D. Mol J. Koes R. 1996 The no apical meristem gene of is required for pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. The Cell85 159 170 - 141.
Stockinger EJ, Gilmour SJ, Thomashow MF 1997 Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proceedings of the National Academy of Sciences USA94 1035 1040 - 142.
Stracke R. Werber M. Weisshaar B. 2001 The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology4 447 456 - 143.
Sugano S. Kaminaka H. Rybka Z. Catala R. Salinas J. Matsui K. Ohme-Takagi M. Takatsuji H. 2003 Stress-responsive zinc finger gene ZPT2-3 plays a role in drought tolerance in petunia. The Plant Journal36 830 841 - 144.
Tran-S L. Nakashima P. Sakuma K. Simpson Y. Fujita S. D. Maruyama Y. Fujita K. Seki M. Shinozaki M. Yamaguchi-Shinozaki K. K. 2004 Isolation and functional analysis of stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell16 2481 2498 - 145.
Tran L. S. Nakashima K. Sakuma Y. Osakabe Y. Qin F. Simpson S. D. Maruyama K. Fujita Y. Shinozaki K. Yamaguchi-Shinozaki K. 2007 Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis. The Plant Journal49 46 63 - 146.
Trujillo L. E. Sotolongo M. Menendez C. ME Ochogava Coll. Y. Hernandez I. Borras-Hidalgo O. Thomma B. P. H. J. Vera P. Hernandez L. 2008 SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when over-expressed in tobacco plants. Plant Cell Physiology49 512 515 - 147.
Udvardi M. K. Kakar K. Wandrey M. Montanri O. Murray J. Andraiankaja A. Zhang-Y J. Benedito V. Hofer J. M. I. Cheng F. Town C. D. 2007 Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiology144 538 549 - 148.
Umezawa T. Fujita M. Fujita Y. Yamaguchi-Shinozaki K. Shinozaki K. 2006 Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology17 113 122 - 149.
Umezawa T. Yoshida R. Maruyama K. Yamaguchi-Shinozaki K. Shinozaki K. 2004 SRK2C. A SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA101 17306 17311 - 150.
Uno Y. Furihata T. Abe H. Yoshida R. Shinozaki K. Yamaguchi-Shinozaki K. 2000 Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proceedings of National Academy of Sciences USA97 11632 11637 - 151.
Urao T. Yamaguchi-Shinozaki K. Urao S. Shinozaki K. 1993 An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell5 1529 1539 - 152.
Vannini M. Campa M. Iriti M. Genga A. Faoro F. Carravieri S. Rotino G. L. Rossoni M. Spinardi A. Bracale M. 2007 Evaluation of transgenic tomato plants ectopically expressing the rice gene. Plant Science173 231 239 - 153.
Vannini C. Locatelli F. Bracale M. Magnani E. Marsoni M. Osnato M. Mattana M. Baldoni E. Coraggio I. 2004 Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. The Plant Journal37 115 127 - 154.
Wang H. Hao J. Chen X. 2007 Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology65 799 815 - 155.
Wang Q. Guan Y. Wu Y. Chen H. Chen F. Chu C. 2008 Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology67 589 602 - 156.
Weir I. Lu J. Cook H. Causier B. Schwarz-Sommer Z. Davies B. . 2004 CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development131 915 922 - 157.
Winicov I. Bastola D. R. 1999 Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. Plant Physiology120 473 480 - 158.
Xia N. Zhang G. Liu-Y X. Deng L. Cai-L G. Zhang Y. Wang-J X. Zhao J. Huang-L L. Kang-S Z. 2010 Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Molecular Biology Reports37 3703 3712 - 159.
Xiang Y. Tang N. Du H. Ye H. Xiong L. 2008 Charaterization of Osb-ZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology148 1938 1952 - 160.
Xie Q. Frugis G. Colgan D. Chua N. H. 2000 Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes & Development14 3024 3036 - 161.
Xie D. Y. Sharma S. B. Wright E. Wang Z. Y. Dixon R. A. 2006 Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. The Plant Journal45 895 907 - 162.
Xiong Y. Liu T. Tian C. Sun S. Li J. Chen M. 2005 Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Molecular Biology59 191 203 - 163.
Xu QJ, Cui CR 2007 Genetic transformation of OSISAP1 gene to onion ( L.) mediated by amicroprojectile bombardment. Journal of Plant Physiology and Molecular Biology (Article in Chinese)33 188 96 - 164.
Xu Z. S. Ni Z. Y. Li Z. Y. Li L. C. Chen M. Gao D. Y. Yu X. D. Liu P. Ma Y. Z. 2009 Isolation and functional characterization of HvDREB1-a gene encoding a dehydration-responsive element binding protein in Journal of Plant Research122 121 130 - 165.
Xue GP, Loveridge CW 2004 HvDRF1 is involved in abscisic acid mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. The Plant Journal37 326 339 - 166.
Yamaguchi-Shinozaki K. Shinozaki K. 1994 A novel -acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell6 251 264 - 167.
Yamaguchi-Shinozaki K. Shinozaki K. 1993 The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of , a gene responsive to dehydration-stress in Arabidopsis thaliana. Molecular and General Genetics238 17 25 - 168.
Yang Y. Wu J. Zhu K. Liu L. Chen F. Yu D. 2009 Identification and characterization of two chrysanthemum ( morifolium) DREB genes, belonging to the AP2/EREBP family. Molecular Biology Reports36 71 81 - 169.
Yanhui C. Xiaoyuan Y. Kun H. Meihua L. Jigang L. Zhaofeng G. Zhiqiang L. Yunfei Z. Xiaoxiao W. Xiaoming Q. Yunping S. Xiaohui D. Jingchu L. Xing-Wang D. Zhangliang C. Hongya G. Li-Jia Q. 2006 The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology60 107 124 - 170.
Yoshida T. Fujita Y. Sayama H. Kidokoro S. Maruyama K. Mizoi J. Shinozaki K. Yamaguchi-Shinozaki K. 2010 AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal61 672 685 - 171.
Yoshida R. Hobo T. Ichimura K. Mizoguchi T. Takahashi F. Alonso J. Ecker J. R. Shinozaki K. 2002 ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant Cell Physiology43 1473 1483 - 172.
Yu H. Chen X. Hong-Y Y. Wang Y. Xu P. Ke-D S. Liu-Y H. Zhu-K J. Oliver D. J. Xiang-B C. 2008 Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. The Plant Cell20 1134 1151 - 173.
Zhang G. Chen M. Li L. Xu Z. Chen X. Guo J. Ma Y. 2009 Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco. Journal of Experiment Botany60 3781 3796 - 174.
Zhang JZ, Creelman RA, Zhu JK 2004 From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiology135 615 621 - 175.
Zhao C. Avci U. Grant E. H. Haigler C. H. Beers E. P. 2008 XND1, a member of the NAC domain family in , negatively regulates lignocellulose synthesis and programmed cell death in xylem. The Plant Journal53 425 436 - 176.
Zheng X. Chen B. Lu G. Han B. 2009 Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications379 985 989 - 177.
Zhou Q. Y. Tian A. G. Zou H. F. Xie Z. M. Lei G. Huang J. Wang C. M. Wang H. W. Zhang J. S. Chen S. Y. 2008 Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal6 486 503 - 178.
Zhu J. Shi H. Lee B. H. Damsz B. Cheng S. Stirm V. Zhu-K J. Hasegawa P. M. Bressan R. A. 2004 An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences, USA101 9873 9878 - 179.
Zhu J. Verslues P. E. Zheng X. Lee-H B. Zhan X. Manabe Y. Sokolchik I. Zhu Y. Dong-H C. Zhu-K J. Hasegawa P. M. Bressan R. A. 2005 HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences, USA102 9966 9971 - 180.
Zou M. Guan Y. Ren H. Zhang F. Chen F. 2008 A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Molecular Biology66 675 683