\r\n\t
\r\n\tComputer graphics are not entirely an original topic, because it defines and solves problems using some already established techniques such as geometry, algebra, optics, and psychology. The geometry provides a framework for describing 2D and 3D space, while the algebraic methods are used for defining and evaluating equality related to the specific space. The science of optics enables the application of the model for the description of the behavior of light, while psychology provides models for visualization and color perception.
\r\n\t
\r\n\t3D computer graphics (or 3D graphics, three-dimensional computer graphics, three-dimensional graphics) is a term describing the different methods of creating and displaying three-dimensional objects by using computer graphics.
\r\n\tThe first types of graphic interpretations were put in the plane (two-dimensional 2D). Requirements for a universal interpretation led to a three-dimensional (3D) interpretation content. From these creations have arisen applied mathematics and information disciplines of graphic interpretation of content - computer graphics. It relies on the principles of Mathematics, Descriptive Geometry, Computer Science and Applied Electronics.
\r\n\t
\r\n\t3D computer graphics or three-dimensional computer graphics use a three-dimensional representation of geometric data (often in terms of the Cartesian coordinate system) that is stored on a computer for the purpose of doing the calculation and creating 2D images. The images that are made can be stored for later use (probably as animation) or can be displayed in real-time.
\r\n\t
\r\n\tObjects within the 3D computer graphics are often called 3D models. Unlike rendered (generated) images, data that are ""tied"" to the model are inside graphic files. The 3D model is a mathematical representation of a random three-dimensional object. The model can be displayed visually as a two-dimensional image through a process called 3D rendering or can be used in non-graphical computer simulations and calculations. With 3D printing, models can be presented in real physical form.
\r\n\t
\r\n\tComputer graphics have remained one of the most interesting areas of modern technology, and it is the area that progresses the fastest. It has become an integral part of both application software, and computer systems in general. Computer graphics is routinely applied in the design of many products, simulators for training, production of music videos and television commercials, in movies, in data analysis, in scientific studies, in medical procedures, and in many other fields.
Many lives are lost due to heart diseases including myocardial infarction and cardiomyopathy. Recent reports have demonstrated that regenerative medicine has promising potential for recovering severe heart failure. Regenerative therapies for heart failure include cytokine, gene and cell therapy. Because many types of cardiovascular stem cells have been identified and their clinical potentials have been demonstrated for the past decade, cell injection therapy has most attracted both researchers and clinicians (Wollert 2008). On the other hand, significant cell loss due to washing out and cell death has become problematic in cell injection technique. So, as next generation of regenerative therapy for impaired heart, transplantation of myocardial patches fabricated by tissue engineering technology are emerging and are clinically applied. Furthermore, several challenges for fabricating functional myocardial tissues/organs, which are electrically communicated, pulsate synchronously and evoke contraction power, have also started (Zimmermann, Didie et al. 2006). These ambitious challenges may lead to reconstruction of malformed hearts and become alternative therapy for heart transplantation.
Heart tissues are composed of high-dense cylindrical cardiomyocytes and fibroblasts with abundant vascular network and collagen-based extracellular matrix (ECM). Cardiomyocytes pulsate via sodium and calcium ion transient through cell membrane. They are also electrically coupled by gap junctions composed of connexion 43 and rapid electrical propagation realizes simultaneous beating as a whole. Continuous blood flow supplies oxygen and nutrition, and withdraw the waste for high metabolic demand of heart tissues. These structure and function produce mechanical contractions as a blood pump. Therefore the researchers should take into account high density culture of cardiomyocyte and surrounding cells, sufficient micro blood vessel fabrication, cell/ECM orientation and proper cell-to-cell coupling for engineering heart tissues/organs.
Here, previous and current status of cell injection therapy, myocardial patch transplantation and pulsatile myocardial tissue fabrication is described with some future views.
Cell injection therapy for damaged heart has been researched since the early 1990’s. Many researchers have demonstrated the therapeutic potential of isolated cell transplantation into myocardium using various types of cell sources both in animal models and in some clinical trials (Puceat 2008). The mechanism of myocardial tissue regeneration has not been completely cleared, but most researchers have agreed that transplanted cells secrete several cytokines which promote neovascularization, prohibit fibrosis, decrease cell death and recruit stem cells, leading to heart function improvement. It has been also asserted that some of injected cells differentiate into functional cardiomyocytes and may directly contribute to heart contraction improvement. Although some differences may exist in according to cell types, multifactorial mechanisms seem to relate with myocardial tissue regeneration.
In addition to cell sourcing, different routes are used for cell administration. Systematic intravenous infusion is performed through a central or peripheral vein. This method is simple and less invasive, however widespread distribution cause low ratio of cell engraftment. Most popular approach is intracoronary cell infusion via a balloon-catheter. Injected cells are reached directly in the target myocardial region, however, cells have to transmigrate across endothelium wall. Intracardiac injection is performed via pericardium during open heart surgery and via endocardium by a catheter with a 3-D electromechanical mapping system (NOGA mapping system). These methods realize relatively targeted delivery, but myocardial damage and arrhythmia induction are problematic. Future clarification will be needed to decide which is the best approach for cell injection.
Skeletal myoblasts were the first cell source to enter the clinical application for heart tissue repair. They lie in a quiescent state on the basal membrane of myofibers and have the potential to start to proliferate and differentiate into functional skeletal muscle in response to muscle damage. They can be isolated autologously and be expanded from a single biopsy. In addition, skeketal myoblasts are relatively resistant to ischemia. Menasche and colleagues first applied skeletal myoblast injection via epicardium for patients undergoing coronary artery bypass grafting (CABG) (Menasche, Hagege et al. 2001). The phase I clinical study (MAGIC I) have shown the feasibility of skeletal myoblast implantation, however, increased risk of ventricular arrhythmias after the operation. Then, MAGIC II trial was performed to clarify the safety and efficacy, in which all patients received preventive medication and an implantable cardioverter-defibrillator for rescuing critical ventricular arrhythmias. In result, skeletal myoblast injection failed to significantly improve heart function, leading to sample size reduction (Menasche, Alfieri et al. 2008). On the other hand, the trial indicated the possibility that high dose cell injection might recover left ventricular dilatation. In addition, the other clinical trials of catheter-based myoblast implantation via endocardium have revealed functional efficacy (Opie and Dib 2006). According to these results, not the regenerative potential of myoblasts themselves but the amount of injected cells and delivery system may affect the efficacy. Therefore, it seems that skeletal myoblasts should not be excluded as a cell source for heart tissue repair. More optimization of cell delivery and comparison of cell sources can address these critical issues.
Bone marrow-derived cells are the most used cells in clinical trials for myocardial tissue repair (Wollert 2008). The discovery of circulating progenitor cells originated from human bone marrow has stimulated research and clinical use of bone marrow-derived cells (Asahara, Murohara et al. 1997). Bone marrow cells contain different stem and progenitor cells which will differentiate into various types of cells including endothelial cells, smooth muscle cells and cardiomyocytes. Bone marrow mononuclear cells (BMNCs), which can be isolated simply by gradient sedimentation after bone marrow aspiration without culture expansion, have been clinically injected via coronary artery from the first. BMNCs include heterogeneous cell population of monocytes, hematopoietic stem cells and endothelial progenitor cells (EPCs). Therefore, some groups have used BMNCs selected by surface markers (CD34+, CD133+) and demonstrated more efficacy of their injection. As another cell population, mesenchymal stem cells (MSCs) have been researched and clinically used. Although, MSCs represent between 0.01 and 0.001% of all nucleated cells in bone marrow, they can be readily expanded in culture. MSCs have the potential to differentiate into various types of cells and injected MSCs in heart seem to differentiate into myocardial composing cells. Recent studies have revealed rare happening of cardiomyocyte differentiation, therefore MSCs seem to recover heart function via their cytokine secretion and partial differentiation into vascular cells. As a unique feature, MSCs have the potential to escape from immune detection due to the direct inflammatory inhibition and the lack of cell-surface molecules. This property has realized allogenic mesenchymal stem cell transplantation in clinic and has given high impact on cell therapy research field.
Recent randomized controlled trials of bone marrow-derived cell injection revealed overall feasibility and safety. However the data has revealed only marginal increases of ejection fraction (EF) even in positive studies (0-5%) (Martin-Rendon, Brunskill et al. 2008). For establishing more effective bone marrow-derived cell therapy, optimization of cell source, cell dose, delivery method and deliver timing will be needed.
In addition to bone marrow-derived MSCs, stem cells isolated from the stroma of adipose tissues have represented regenerative potential for heart tissues (Psaltis, Zannettino et al. 2008). Adipose tissue-derived stem cells (ASCs) display features similar to that of bone marrow-derived MSCs and their angiogenic potential have been reported. Some studies have also revealed cardiomyocyte differentiation from ASCs. It has not been clarified which mesenchymal stem cells are superior to other cell types, however, reatively easy isolation of adipose tissue may push the clinical application of ASCs.
Cardiac stem cells (CSCs) are also possible cell source for myocardial tissue regeneration. Two groups first reported CSC existence in 2003 (Beltrami, Barlucchi et al. 2003; Oh, Bradfute et al. 2003). Until then, it was common knowledge that heart was a post mitotic organ, but those reports accelerated the researches for identifying surface marker of CSCs and culturing them. Islet-1, Sca-1 and c-kit have been known as CSC markers. Recently, it has been also confirmed that heart has renewal ability at normal state and the annual rate of turning over is 1% at the age of 25 (Bergmann, Bhardwaj et al. 2009). Although the ability of CSCs may increase after heart injury, newly formed cardyomyocytes are not sufficient for replacing damaged muscle tissues. Therefore isolation and expansion of CSCs have been extensively examined. Some groups have used a different approach to make cardiospheres from biopsied myocardium, which lead to efficient CSC expansion (Lee, White et al. 2011). Clinical trials for injection therapy of autologous CSCs isolated from biopsy sample are now on going.
Although abundant studies demonstrated that MSCs, ASCs and CSCs have the potential of cardiomyocyte differentiation regarding gene and protein expression, there are no studies clearly showing beating cardiomyocytes differentiated from those stem cells. On the other hand, many researchers have confirmed that embryonic stem cells (ESCs) can differentiate into beating cardiomyocytes in vitro and implantation of ESC-derived cardiomyocytes improves damaged heart function. Several signal pathways for cardiac differentiation have been already clarified and various molecules have been reported as its promoters. For example, noggin increased cardiac differentiation efficacy via regulation of Bone morphogenetic protein (BMP) signalling pathway (Yuasa, Itabashi et al. 2005) and insulin-like growth-factor-binding protein 4 (IGFBP4) promotes cardiogenesis by inhibitor of canonical Wnt signalling (Zhu, Shiojima et al. 2008). In addition, fibloblast growth factor (FGF), retinoic acid, ascorbic acid and cyclosporine A have been reported to have the potential to enhance cardiac differentiation from ESCs. The important issue as well as cardiac differentiation is purification of cardiomyocytes from heterogeneous cell mixture, because contamination of immature cells leads to teratoma formation. Although gene-modified ESCs harboring neomycin resistance gene or green fluorescent protein (GFP) gene in the cardiac-specific gene locus are very useful in non-clinical experiments, safe and efficient isolation technologies will be needed for clinical application. Culture media control focusing on the differences of cell metabolism may be useful for safe cell selection. Moreover immune response of the host is another critical issue. Nucler transfer or cell banking is possible approach avoiding immunoreaction.
Electrical communication and simultaneous beating of implanted ESC-derived cardiomyocytes should be also requested for improving damaged heart function without arrhythmia. In vivo electrophisiological analyses and the transplantation technology for synchronization will be essential for clinical application of these cells.
Induced pluripotent stem cells (iPSCs) also hold great promise for myocardial tissue engineering (Vunjak-Novakovic, Tandon et al. 2010). Terminally differentiated cells can be reprogrammed to have the same potential as ESCs by introducing 3 or 4 transcriptional factor genes. Furthemore none-gene transfer technologies have been developed in the world. The superiority of iPSCs to ESCs is autologous cells, which do not cause immune response. Cardiac differentiation of human iPSCs has been reported in the same manner with ESCs.
Several critical issues must be clarified for clinical use, but ESCs/iPSCs-derived cardiomyocytes should contribute to myocardial tissue engineering in the view point of their pulsatile function and scaling-up.
Cell injection therapies for heart failure are now world-widely performed. While moderate success of direct cell injection has been observed, the efficacies seem not to reach the level that general clinicians think cell therapy a reliable treatment for heart failure. More optimization of cell source, cell preparation process, injection route, injection timing and patient population may increase the effectiveness; however one of the essential issues is cell delivery methodology. Cell injection therapy has significant difficulties about cell retention in the target tissue. The shape, size, and position of the grafted cells are often uncontrollable and large amount of the cells are washed-out. Moreover, once retaining cells die due to necrosis and apoptosis. Time course quantification with TUNEL assay demonstrated that a large number of the grafted cells die within a few days after injection in rat models (Zhang, Methot et al. 2001). In the clinical trial using bone marrow-derived cells, it has been also demonstrated that only 1-3% of the cells infused via coronary arteries could be detected by 3D positron emission tomography (PET) imaging of the patient heart. In this study, a large percentage of cells were found in the liver and spleen immediately after the procedures (Hofmann, Wollert et al. 2005). To clear the problem of cell loss, hydrogel-cell mixture injection has been pursued. Fibrin, collagen and alginate hydrogels are now used. Hydrogels with cells are injected as a liquid phase through syringe or catheter, then, they are polymerized and fixed in the target tissues (Kofidis, de Bruin et al. 2004). In hydrogel-cell mixture injection therapy, local tissue damage due to space occupation of hydrogel itself and inflammatory reaction due to hydrogel biodegradation are problematic.
Therefore, more advanced cell delivery systems have been requested to spread the regenerative therapy as one of the reliable treatments for heart failure.
Recent advance of tissue engineering technologies have realized the transplantation of tissue-engineered construct “myocardial patch” covering over damaged heart surface instead of simple cell injection into myocardium. Grafted cells within myocardial patches can survive more and secrete more cytokines, resulting in more heart function improvement. Furthermore pulsatile myocardial tissues have been successfully engineered by using cardiomyocytes as a seeding cell source. These tissues may directly help heart contraction and total heart wall replacement may be possible in future. There are several contexts of tissue engineering.
Most popular technology of tissue engineering is to seed cells into 3-D pre-fabricated biodegradable scaffolds which are made from synthetic polymer and biological material. Hydrogel formation after mixing cells and scaffold solution is another approach. Decellularized tissues have been also used as scaffolds. These scaffolds play as alternatives for extra cellular matrix (ECM), therefore, their cell-adhesiveness and porosity affect survived cell amount and engineered tissue quality. Scaffold modification can control its biodegradation and tissue formation. Growth factor linkage leads to accelerating tissue formation. Now these scaffold-based tissue engineering has been widely applied to cardiovascular tissue regeneration as well as other tissue repair (Vunjak-Novakovic, Tandon et al. 2010).
In contrast to scaffold-based tissue engineering, our group have developed unique technique involving cell sheet stacking to fabricate 3-D tissues (Shimizu, Yamato et al. 2003). Cell sheets are 2-D connecting pure cells without any scaffolds, therefore cell-dense 3-D tissues can be fabricated by stacking cell sheets. Cell sheets are harvested from intelligent culture surface “temperature-responsive culture surface”, which are covalently grafted with temperature-responsive polymer, poly (
According to the spread of the concept fabricating 3-D tissues from 2-D confluent cells, several other technologies using this concept have emerged. Cell sheet fabrication techniques using fibrin coated dishes or nanofibrous polycaprolactone meshes have been reported (Shin, Ishii et al. 2004; Itabashi, Miyoshi et al. 2005). Cell sheet-like constructs have been also engineered using magnetite nanoparticles (Ito, Hibino et al. 2005). Magnetically labelled cells are attached on culture materials by magnetic force and confluent cells are harvested as a cell sheet by magnetic force release. Thus, cell sheet-based tissue engineering has now spread in the world as scaffold-free tissue engineering.
Both scaffold-based and cell sheet-based tissue engineering have been used for myocardial patch fabrication. Not only cardiomyocytes but also other types of cells have been used for creating myocardial patches and some myocardial patches using non-cardiomyocytes have been already clinically transplanted over damaged hearts. (Fig. 1.)
In myocardial patch fabrication, synthetic polymer, biological material and decellularized tissue have been used as prefabricated scaffolds. Li and colleagues, who were one of the pioneer groups of myocardial tissue engineering, first demonstrated that gelatine sponges seeded with cardiac cells have therapeutic potentials for cryoinjured rat hearts (Li, Jia et al. 1999). Leor and colleagues reported that bioengineered heart grafts using porous alginate scaffolds attenuated left ventricular dilatation and heart function deterioration in infarction model (Leor, Aboulafia-Etzion et al. 2000). Eschenhagen and Zimmermann’s group have developed innovative myocardial tissue engineering approach (Zimmermann, Schneiderbanger et al. 2002). They have fabricated 3-D tissues by gelling mixture of cardiac cells and collagen solution. The constructs induced systolic wall thickening of the left ventricle infracted area and improved fractional shortening of damaged hearts in rat myocardial infarction model (Zimmermann, Melnychenko et al. 2006). Small intestinal submucosa (SIS) has also been used as a scaffold for myocardial patch. MSC-seeded SIS improved heart contraction in rabbit infarction model (Tan, Zhi et al. 2009). There have been various types of myocardial patches using different scaffolds and different cell sources. Although implantable human myocardial patches using beating cardiomyocytes have not been established now, clinical trials of collagen-based myocardial patch with bone marrow cells (MAGNUM trial) (Chachques, Trainini et al. 2007) and vicryl mesh-based myocardial patches with fibroblasts (Anginera) ((Mirsadraee, Wilcox et al. 2006)) have revealed feasibility and safety of myocardial patch transplantation.
Tissue engineering (TE) strategies for myocardial patch fabrication
Many types of cell sheets have been reported to improve impaired heart function (Shimizu, Sekine et al. 2009). Cell sheets are transplanted onto heart surface directly via open heart surgery and cells can be more effectively delivered as thin, but large-area cell-dense grafts than isolated cell injection. Scaffold-based myocardial patches are usually transplanted on myocardium with suture, on the other hand, cell sheets are transplanted with no suture because biological adhesive proteins underneath cell sheets promote the attachment. When neonatal rat cardiac cell sheets were transplanted onto infracted rat hearts, grafted cardiomyocytes communicated with host myocardium via gap junctions and blood vessels formed within the graft, resulting in significant improvement of heart function (Miyagawa, Sawa et al. 2005; Sekine, Shimizu et al. 2006).
Sawa and colleagues have started to use skeletal myoblasts for cell sheet fabrication, because myoblasts can be isolated autologously and are relatively resistant to ischemic condition. The recovery of heart function by skeletal myoblast transplantation has been confirmed in rat ischemic model, in dilated cardiomyopathy hamster model, in pacing-induced canine heart failure model and in pig infarction model (Memon, Sawa et al. 2005; Hata, Matsumiya et al. 2006; Kondoh, Sawa et al. 2006; Miyagawa, Saito et al. 2010). Regarding stacking cell sheet number, 3-5 layers are optimal and more layering cause primary necrosis of the constructs (Sekiya, Matsumiya et al. 2009). They have demonstrated more hematopoietic stem cells and less fibrosis in cell sheet transplantation than in isolated cell injection in accordance with more expression of stromal-derived factor 1 (SDF-1), hepatocyte growth factor (HGF), and vascular endothelial growth factor (VEGF). Based on these results, clinical trial of autologous myoblast sheet transplantation for severe heart failure has started and the detailed results will appear soon.
In the same manner with cell injection therapy, MSCs are used as a candidate cell source for human implantable cell sheet. Adipose tissue-derived MSCs and menstrual blood-derived MSCs have improved damaged heart function in rat infarction model (Miyahara, Nagaya et al. 2006; Hida, Nishiyama et al. 2008). MSCs can gradually grow to form a thick stratum containing newly formed blood vessels and some cells seem to differentiate into cardiomyocytes at least by histological analyses. Further studies will be needed to confirm the differentiation into functional beating cardiomyocytes and possibilities to differentiate into unexpected cell types.
As emerging cell source, cell sheets of stem cell antigen 1-positive (Sca-1-positive) CSCs ameliorates cardiac dysfunction in mouse infarction model through cardiomyocyte differentiation and paracrine mechanisms mediated via soluble vascular cell adhesion molecule 1 (VCAM-1)/very late antigen-4 (VLA-4) signaling pathway (Matsuura, Honda et al. 2009). In addition, cardiac cell sheets originated from ESCs/iPSCs have been successfully fabricated and their transplantation into animal models is now ongoing.
For enhancing the efficacy of cell sheet transplantation, gene-modified cell sheets have been examined. Bcl-2 expressed myoblast sheets prolonged survival, increased production of proangiogenic paracrine mediators, and enhanced the therapeutic efficacy (Kitabayashi, Siltanen et al. 2010). HGF overexpression in myoblast sheets enhances their angiogenic potential in rat chronic heart failure model (Siltanen, Kitabayashi et al. 2011). As another concept, cell sheets co-cultured with endothelial cell sources have been transplanted in rat infarction models. Transplantation of EPC co-cultured fibroblast sheet improved heart function more than only fibroblast sheet implantation or EPC injection (Kobayashi, Shimizu et al. 2008). Furthermore, endothelial cell co-culture within cardiomyocyte sheets induced more neovascularization and more improvement of cardiac function than only cardiomyocyte sheets (Sekine, Shimizu et al. 2008). These studies indicate advanced strategies of cell sheet transplantation.
As mentioned previously, it is considered that the main mechanism of heart function improvement is neovascularization, fibrosis inhibition, apoptosis inhibition and stem cell recruitment due to various cytokines secreted from grafted cells. In comparison with cell injection approach, increase of cell survival within myocardial patches leads to more cytokine secretion, then, resulting in more function improvement. In addition to cytokine secretion, myocardial patches may have girdling effect and prohibit heart dilatation. Therefore, myocardial patch transplantation is quite different cell delivery method from cell injection and has more potential to rescue diseased hearts. In the case of myocardial patches using beating cardiomyocytes, direct enhancement of contraction power is additionally expected, however, electrical synchronization between host hearts and transplanted patches is a critical issue to be clarified.
Beyond myocardial patch fabrication, several research groups have challenged to fabricate pulsatile myocardial tissues by their original tissue engineering strategies. Bioengineered contractile myocardial tissues may realize new therapeutics for severe heart diseases and be useful as alternatives for animal models.
The first approach for engineering functional myocardial tissue is seeding cardiomyocytes into synthetic or biological 3-D scaffolds. Vunjak-Novakovic and colleagues first reported that seeding primary cultured cardiomyocytes onto disc-shaped polyglycolic acid (PGA) scaffolds in rotating bioreactor system resulted in spontaneously pulsatile myocardial tissues (Papadaki, Bursac et al. 2001). Optimization of cell population, serum concentration and scaffold coating improved electrical conduction velocity of engineered constructs. Radisc and colleagues seeded rat cardiomyocytes in Matrigel onto collagen sponges and stimulated the constructs electrically. The stimulation improved the conductive and contractile properties in accordance with increased expression of myosin heavy chain and connexion 43. Furthermore, cardiomyocytes in the electrically stimulated constructs were more aligned and elongated as same as those in native heart tissue (Radisic, Park et al. 2007).
Following these studies, many research groups have started to engineer myocardial tissue in vitro by using various types of scaffolds. Scaffold porosity is one of the critical factors for pre-fabricated scaffold-based tissue engineering. High porosity increases seeded cell number and facilitates mass transport. Surface modyfication is also important for cell attachment and survival. Laminin coating improved cardiomyocyte adhesiveness. In addition, scaffold elasticity and degradability affect contraction property of engineered myocardium. Further studies are ongoing to development appropriate scaffold materials for myocardial tissue engineering.
The second approach is to form 3-D tissues by gelling of cardiac cell and matrix solution mixture. Eschenhagen and Zimmermann have continuously developed this strategy using collagen gel and successfully engineered macroscopically beating cardiac tissues (Zimmermann and Cesnjevar 2009). First, neonatal rat cardiomyocytes were suspended in collagen I solution and the mixture was poured into the mold. After gelling, the constructs were unidirectionally stretched with the mechanical devise. They have also realized contraction force measurement. Cyclic stretch introduced cell alignment along the stretching direction and increased mitochondrial density, leading to native heart-like tissue. The contraction force of engineered myocardium was comparative with native heart tissue and responded to pharmacological agents properly. Ring-shaped myocardial tissues were also fabricated and combined 5 constructs were transplanted onto infarcted rat hearts. Interestingly, the constructs synchronized to each other and improved damaged heart function. They have also confirmed that co-culture constructs including cardiomyocytes, fibroblasts and endothelial cells were superior to cardiomyocyte rich constructs in morphology and function. Recently, they have also started to utilize human cardiomyocytes differentiated from ESC/iPSC as cell source and challenged to create human myocardial tissues (Zimmermann 2011). In contrast to pre-fabricated scaffold usage, relatively homogeneous myocardial tissues are engineered by hydrogel-based approach. Therefore collagen gel-based myocardial tissue engineering has now become popular in the world.
The third approach is to engineer 3-D pulsatile myocardial tissues by stacking cardiac cell sheets. As mentioned previously, 2-D cell sheets can be harvested from temperature-responsive culture dishes only by lowering temperature and do not include any materials. 3-D tissues are constructed by layering cell sheets. Because 2-D confluent cells are directly stacked without any scaffolds, resulting constructs are cell-dense 3-D tissues. It is well-known that 2-D confluent cardiomyocytes connect to each other electrically via gap junctions resulting in synchronized beating. Cardiac cell sheets harvested from temperature-responsive culture dishes maintain this synchronized pulsation (Shimizu, Yamato et al. 2002). For creating 3-D functional heart tissues by layering cardiac cell sheets, morphological and electrical communications between cell sheets are critical. Multiple-electrode extracellular recording system revealed that double-layer rat cardiac cell sheets coupled electrically about one hour after layering and histological analysis showed the existence of connexin 43 between two cardiac cell sheets. Adhesive proteins deposited on cell sheet surface are considered to promote these rapid electrical communications (Haraguchi, Shimizu et al. 2006). Stacked cardiac cell sheets beat synchronously in macroscopic view and the constructs transplanted into rat subcutaneous tissues also pulsated continuously at least up to one year and eight months after implantation. Morphological analyses showed elongated cardiomyocytes, well-differentiated sarcomeres, gap junctions and multiple blood vessels, which were characteristic structure of native heart tissue (Shimizu, Yamato et al. 2002). Long-term observation revealed that their size, conduction velocity, and contractile force increased in proportion to the host growth (Shimizu, Sekine et al. 2006). Recently, fabrication of cardiac cell sheets using ESC-originated cardiomyocytes have just started and human cardiac cell sheets will appear in near future.
One of the major obstacles in myocardial tissue engineering is scaling-up of the constructs. Insufficient supply of oxygen and nutrient, and waste accumulation limit their thickness. Actually, cells are sparse in the central area, on the other hand, cells are dense in the outer surface (100-200μm) area in scaffold-based myocardial tissue engineering. In the case of cell sheet-based myocardial tissue engineering, thickness limit is approximately 80μm (3 layers) (Shimizu, Sekine et al. 2006). Several approaches have been examined in the point of view overcoming diffusion limit. Perfusion of culture media through the constructs using porous scaffolds is one possible approach. Media penetration increased cell migration depth and improved cell metabolism. However shear stress due to media flow may prohibit tight cell attachment on the scaffold material. Media perfusion with oxygen carrier, perfluorocarbon (PFC) has been also examined for improving oxygen transport. PFC usage increased cell proliferation and improved pulsatile function. Media penetration is useful to some extent, however, it becomes more difficult as cell density increases.
To overcome this problem, it has been requested to develop new technologies for introducing vasculature or vascular-like structure into engineered tissues. Several researchers have tried to generate microchannel network within porous 3-D scaffolds by microfabrication techniques including CO2 laser ablation. The technology has not reached to mimicking native micro capillary network. On the other hand, recent studies have revealed that co-cultured endothelial cells within cardiac constructs can spontaneously form vascular-like network in vitro and tubular formation has been found in some parts. It has been also confirmed that this pre-vascular structure connected to host blood vessels immediately after transplantation and the newly developed vessels within the constructs were blood-supplied within a few days (Sekiya, Shimizu et al. 2006). We have already demonstrated that the tissue thickness of cardiac cell sheets co-cultured with endothelial cells were just twice as the thickness of cardiac cell sheets without endothelial cells (Sekine, Shimizu et al. 2008). Although endothelial cell co-culture is helpful for accelerating blood vessel formation, more scaling-up is still limited due to primary ischemia until sufficient vascularization.
One possible idea for scaling-up is utilizing in vivo vascularization power. Our group has reported that triple-layer cardiac cell sheets were repeatedly implanted after waiting enough vascular formation within previously implanted tissues. In result, synchronously beating thick myocardial tissues with sufficient micro capillaries were successfully fabricated and 10-times transplantation of triple-layer constructs (totally 30 sheets) formed 1-mm thick, pulsatile myocardial tissues. Furthermore, when triple-layer grafts were transplanted repeatedly over a surgically connectable artery and vein in leg, the multilayer constructs were blood-supplied from the thick artery and vein. The constructs were successfully resected with the connectable blood vessels and were ectopically transplanted in neck with direct vessel anastomoses (Shimizu, Sekine et al. 2006). Recently several groups have also utilized in vivo power for myocardial tissue engineering. Cardiomyocytes, ECM alternatives and native blood vessels were packed in the special chamber and incubated in vivo. Vascularized heart-like tissues were created in the body (Morritt, Bortolotto et al. 2007; Birla, Dhawan et al. 2009).
Furthemore, next challenge is now in vitro fabrication of vascularized myocardial tissues. Kofidis and colleagues have constructed fibrin gel-based myocardial tissues containing rat aortas (1-2mm), through which culture media was perfused (Kofidis, Lenz et al. 2003). Cell survival and metabolism were improved, however formation of functional blood vessels connecting with central aortas were not clear. We are now trying to promote endothelial cell tubular formation within in vitro engineered cardiac tissues and to perfuse culture media through the newly formed vessels using perfusion bioreactors. Further studies will be needed to break through the obstacles for in vitro scaling up.
For future organ engineering, some groups have challenged to engineer myocardial constructs with pumping function. Ott and colleagues have used decellularized organ as a scaffold. They decellularized rat whole hearts and re-seeded cardiac cells into decellularized hearts. Heart contraction was recovered and pump function was generated (Ott, Matthiesen et al. 2008). Zimmermann’s group developed pouch-like myocardial tissue by their technology as previously described and covered heart with pouch-like constructs (Yildirim, Naito et al. 2007).
Regarding cell sheet technology, myocardial tubes have been fabricated by wrapping rat cardiac cell sheets around fibrin tubes and rat resected aortas. The engineered myocardial tubes revealed spontaneous, synchronized pulsation and small but significant inner pressure changes (about 0.1 mmHg) in vitro (Kubo, Shimizu et al. 2007). On the other hand, resected rat aortas wrapped with cardiac cell sheets were micro surgically transplanted in place of the abdominal aorta. After 1 month, in vivo myocardial tubes demonstrated spontaneous beating and evoked independent blood pressures (about 6 mm Hg). The value of in vivo myocardial tubes was much bigger than in vitro myocardial tubes (Sekine, Shimizu et al. 2006). Comparing in vitro and in vivo, it was considered that pulsation due to host blood flow has induced cardiomyocyte hypertrophy, leading to improvement of pumping function. Therefore pulsatile perfusion bioreactors may improve pumping function of in vitro engineered myocardial tubes.
Thus, small size myocardial constructs evoking pumping function have been realized. Expansion and selection of cardiomyocytes, and sufficient blood vessel formation for scaling-up are now critical issues for organ engineering.
As the first generation of cardiac regenerative therapy, many clinical trials of cell injection therapy have been already performed. The controversial arguments about its effectiveness will be settled in next several years. Tissue engineered myocardial patches have now emerged as the second generation and previous studies indicate promising potential for rescuing damaged heart. As the third generation, tissue-engineered pulsatile myocardial tissues should support heart contraction physically. Furthermore, future development of cell sourcing and scaling-up technologies may realize “bioengineered hearts”.
This work is granted by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program),” initiated by the Council for Science and Technology Policy (CSTP).
Among all kinds of low-dimensional materials [1, 2, 3, 4, 5, 6, 7, 8], using carbon-based low-dimensional materials to improve their physical, mechanical, and electrical properties has become a trend [9]. These carbon-based nano/micron additives include carbon fibers (CF), single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) [10, 11, 12], graphene oxide (GO) [13, 14, 15], and graphene nanoplates (GNP) [16]. The results show that the composites with high strength ductility, dimensional stability, and economy can be produced. They have an attractive application prospect in the fields of microelectronic devices, aerospace, energy, chemical industry, etc.
\nDifferent carbon material units have various structures and mechanical, thermal, and electrical properties. By combining with different material composite methods, carbon composite materials with different structures can be prepared. Through the optimization of material structure, carbon composite materials with high performance can be obtained [17, 18]. This chapter mainly introduces the preparation methods, properties, and application fields of carbon-based nanomaterials, such as CNTs, CF, and GBFs, which are commonly used to assemble macro carbon composites. The preparation methods of GBFs and their composite fibers, as well as their applications in sensors, energy storage, energy conversion, and other aspects, such as supercapacitors, lithium-ion batteries (LIBs), actuators, and solar cells, are mainly introduced. Finally, the existing problems and future development of carbon-matrix composites are summarized.
\nCNTs were first discovered under TEM in 1991. It is a one-dimensional tubular material made of SP2 hybrid carbon atoms. Its diameter ranges from several nanometers to tens of nanometers, and its length can reach centimeter-level at most. According to the wall layer, it can be divided into single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) (Figure 1). It is the most commercialized nanofiber with the highest strength and the smallest diameter [19, 20, 21]. Moreover, CNTs have good toughness, which can withstand 40% of tensile strain without brittle behavior or fracture phenomenon, thus improving the toughness of matrix composite [22]. CNTs with super high aspect ratio and excellent mechanical and physical properties, such as high strength, high thermal conductivity, high conductivity, and low thermal expansion coefficient, are regarded as the ideal functional modifier for preparing high-performance composite materials [23, 24, 25].
\nSchematic diagrams of fullerene single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) [
The preparation methods of CNTs include chemical vapor deposition (CVD), arc discharge (AD), and laser ablation (LA) [26]. CVD is the most commonly used method to prepare CNTs in the laboratory. Generally, CNTs are grown under the action of the catalyst after carbon source cracking at a certain temperature. This method has a series of advantages, such as simple equipment, fast preparation speed, large output, and controllable quality. The catalysts are generally transition metals such as iron, cobalt, and nickel, and the carbon sources are generally carbon-containing organics such as methane, ethylene, acetylene, ethanol, and xylene. The morphology (diameter, wall layer, length, density, curvature, crystallinity, etc.) of CNTs can be tuned by controlling the type and concentration of catalyst, the ratio of carbon source and injection speed, the temperature, pressure, and time of CVD [27, 28, 29, 30].
\nThe AD method is also the main method to produce CNTs. Usually, in the low-pressure arc chamber of inert gas, hydrogen, or other gases, the graphite material is used as the electrode to generate a continuous arc between the electrodes, which makes the graphite react with the catalyst to generate CNTs. The AD method has a high yield, and the CNT’s crystal structure is relatively complete [31, 32].
\nLaser ablation is a method to prepare CNTs by bombarding the surface of graphite target doped with iron, cobalt, nickel, and other transition metals in an inert gas environment at 1200°C [33]. The advantage of this method is that the CNTs produced are of high purity and convenient for continuous production, but this method is not suitable for large-scale macro production due to its high energy consumption, complex equipment, and high preparation cost [34, 35]. In addition to the above three main preparation methods, CNTs can also be prepared by template method, flame method, solar energy method, and electrolytic alkali metal halide method [36].
\nBecause of its special tubular structure and the strong binding force between SP2 hybrid carbon atoms, CNTs have high strength, fracture toughness, and elastic modulus, which are superior to any one-dimensional fiber [37]. The tensile strength of CNTs can reach 50–800 GPa, nearly 100 times of that standard steel, about 200 times higher than that of other polymer fibers, and its structure can be kept intact under 1 million atmospheric pressure. CNTs will not break obviously under large bending, while graphite fiber will break when bending 1% (volume fraction). The maximum elastic modulus of CNTs is 1 TPa, which is equivalent to that of diamond and about five times to that of steel. Due to defects, the actual elastic modulus of MWCNTs is in the range of 20–50 GPa [38, 39, 40]. Fiber is usually used to strengthen composite materials. In addition to its own strength, a high aspect ratio (>20) is also a key factor to obtain high-strength composite materials. The aspect ratio of CNTs is generally >1000. Therefore, through CNT-reinforced composite materials, it can show good mechanical strength and fatigue resistance [10, 41].
\nThe carbon atoms in CNTs are arranged in a six-membered ring network structure, which is very conducive to phonon vibration. Therefore, CNTs have good thermal conductivity. Due to the anisotropy of the structure, the thermal conductivity of CNTs along the length direction is much higher than that in the vertical direction. Theoretically, the thermal conductivity of SWCNTs can reach 10,000 W/mK at room temperature. Due to the presence of impurities, the highest experimental values of SWCNTs and MWCNTs are 3500 and 3000 W/mK, respectively [42, 43, 44]. Theoretical calculation and experimental results show that with the increase of CNT diameter, the thermal conductivity of CNTs shows a downward trend (Figure 2) [45]. This is because the increase of diameter inevitably increases the defect content, which leads to more phonon scattering.
\nThe relationship between thermal conductivity and diameter of CNTs [
CNTs are widely used in various electronic devices due to their high conductivity and chemical stability [46]. For SWCNTs, the specific surface area of SWNTs can reach 240–1250 m2 · g−1, which can generate 180 F · g−1 specific capacitance, 20 kW · kg−1 power density, and 6.5–7 Wh · kg−1 energy density. At the same time, high-temperature heat treatment can reduce the electrode impedance and increase the specific capacitance of SWNTs. The increase of capacitance is considered to be caused by the increase of specific surface area and a large number of 3–5 nm pore distribution [47, 48]. For MWCNTs, they usually have a high specific surface area (about 430 m2 · g−1), a specific capacitance of up to 180 F · g−1, a power density of 8 kW · kg−1, and an energy density of 0.56 Wh · kg−1. CNTs of different shapes (such as direct growth, porous, array, and crimp) have been tested as electrodes. The array CNT is the most suitable electrode because of its small internal resistance, good reaction rate, regular gap structure, and stable conductive channel [49, 50, 51].
\nCarbon fiber is a kind of fiber material with high strength and high modulus. Its carbon content is more than 90%, and CF with carbon content more than 99% is also called graphite fiber, which is mainly composed of disordered graphite microcrystals stacked along the axial direction of the fiber [52]. CF is not only flexible and acid and alkali resistant but also stronger than steel, which makes it an important material for national defense, military industry, and civil use [53].
\nCF can be classified into polyacrylonitrile-based (PAN-based) CF, asphalt-based CF, viscose-based CF, and gas-phase growth CF according to the source of precursors [52]. As shown in Figure 3, according to the basic morphology, it can be divided into filament CF and short CF, wherein filament CF can be woven into two-dimensional CF fabric and three-dimensional CF fabric. Based on the mechanical properties, it can be divided into general CF and high-performance CF which can also be divided into high-strength type (strength >2000 MPa) and high model type (modulus >300 GPa) CF. With the rapid development of aerospace, automobile manufacturing, and sports facilities, the performance of CF has been increased, and the outputs have been improved continuously. Currently, the largest amount of polyacrylonitrile-based CF is used in the real world [54].
\nThe pictures of (a) filament CF, (b) short CF, (c) CF cloth, and (d) 3D CF braid.
The industrial production of CF mainly includes polyacrylonitrile-based CF, asphalt-based CF, and viscose-based CF. Among them, the preparation process of viscose-based CF must be graphitized by high-temperature stretching. Because of its complex equipment and technical difficulties, it has not been effectively developed. The production process of polyacrylonitrile-based CF mainly includes two processes: raw silk production and carbonization. The production process of raw silk mainly consists of polymerization of acrylonitrile monomer, solution defoaming, wire spraying, traction, water washing, oiling, drying, and reeling. Moreover, the carbonization process mainly includes pre-oxidation, low-temperature carbonization, high-temperature carbonization, surface treatment, sizing and drying, winding, and other processes. Note that the pre-oxidation refers to heating the precursor fiber in the air to about 270°C, holding for a period of time, so that the polyacrylonitrile linear polymer will be oxidized, pyrolyzed, cross-linked, and cyclized to form a heat-resistant ladder polymer. In order to prevent melting and deformation of polyacrylonitrile fiber during high-temperature carbonization, the color of polyacrylonitrile fiber gradually changes from white to yellow, then brown, and finally black. The pre-oxidized fiber is carbonized in inert gas with high temperature, and then the cross-linking reaction arises further. With the removal of hydrogen, nitrogen, and oxygen atoms, CF with disordered graphite structure is formed.
\nThe raw material of asphalt-based CF is petroleum asphalt or coal asphalt. The preparation process mainly includes refining, spinning, pre-oxidation, carbonization, or graphitization of asphalt. Among them, mesophase asphalt is a kind of nematic liquid crystal (LC) material composed of disk-shaped or rod-shaped molecules formed by heavy aromatics during heat treatment. The asphalt-based CF prepared by mesophase asphalt is easy to graphitize and usually has a high modulus [52, 55, 56, 57].
\nDue to the carbonization and orientation at high temperatures, the carbon atoms of CF are arranged very closely, and the disordered graphite is closely connected. In addition, the diameter of CF is smaller, which can reduce the content of defects, so it has very high mechanical strength and modulus. The tensile strength and modulus of CF can reach 7 and 700 GPa, which are much higher than those of glass fiber and Kevlar fiber. CF can withstand high temperature above 3000°C without contact with air. Therefore, CF has outstanding heat-resistant performance. The higher is the temperature, the greater is the fiber strength. After graphitization, the density of mesophase asphalt-based CF increases, and the carbon content exceeds 99%. Most of the carbon atoms in the fiber form a large area of graphite sheet structure along the fiber axis by SP2 hybridization, which is very conducive to the phonon vibration. Therefore, the thermal conductivity of the graphite fiber can reach up to 1000 W/mK [45, 58, 59]. It is worth noting that the electrical properties of CF are not ideal, because of the inherent polycrystalline structure and a large number of grain boundaries inevitably formed during the pyrolysis of organic precursors [21].
\nGraphene is a two-dimensional (2D) crystalline sheet with a monolayer of carbon atoms densely packed in an SP2-bonded honeycomb lattice and can be considered as a single layer of the graphitic film in graphite. Thus, graphene is the thinnest nanomaterial known [60, 61]. As shown in Figure 4, the length of carbon–carbon bond in graphene is about 0.142 nm; all carbon atoms are connected with three surrounding carbon atoms by σ bond; the remaining P electron orbit is perpendicular to the plane of graphene to form delocalized π bond because π electron can move freely in the plane, rendering graphene holding excellent electrical properties [62, 63].
\n(a) Schematic diagram of a honeycomb crystal lattice of graphene, and (b) a single-layer suspended graphene sheet exhibits intrinsic microscopic roughening.
Since graphene was found in 2004 [61], because of its unique physical and chemical characteristics, such as extraordinary thermal conductivity [64], mechanical strength (\n
At present, the manufacturing methods of GBFs are mainly influenced by traditional synthetic fiber production methods, including melt spinning and solution spinning [63]. However, due to the high-temperature stability of graphene, its melting temperature is even higher than that of fullerene and carbon nanotubes. Therefore, melt spinning is not the choice for manufacturing GBFs, while solution spinning is [81, 82]. Solution spinning mainly includes wet spinning, dry jet wet spinning, and dry spinning. In addition to these traditional solution spinning methods, some new methods, including electrophoresis, template hydrothermal method, and chemical vapor deposition-assisted assembly, have been developed recently. In this part, the common methods of preparing GBFs will be introduced in detail.
\nWet spinning is one of the main methods to prepare chemical fiber. The important step is to prepare a spinning solution. Because graphene is not easily dispersed in water or other organic solvents, it is difficult to prepare a spinning solution, so it is not possible to prepare fibers from graphene by wet spinning [83, 84, 85]. As an important precursor of graphene, graphene oxide can be well dispersed in polar solvents (such as water), so it is expected to prepare fibers by wet spinning [86]. The steps of preparing GBFs by wet spinning are as follows: first, GO dispersions are injected into a stable aqueous solution to form GO spinning dope and then injected into the coagulation bath to form a gel-like fiber to prepare GO dope. After solidification for a period of time, GO fiber can be obtained by extracting colloidal fiber and drying, and then GO fiber can be reduced to produce GBFs, as shown in Figure 5. An rGO fiber can be further produced by reducing the GO fiber when needed [86, 87]. To ensure uniform and continuous formation of gelatinous fibers, the fibers after solidification should be kept at a certain speed. They can be drawn through a rotating bath or using a collecting unit, as shown in Figure 5. The highest strength rGO fiber is made by the method shown in Figure 5a. This method includes an easy spin of a small amount of fiber, but it lacks accurate control of fiber moving speed. In contrast, the method shown in Figure 5b can provide constant traction and determined moving speed to synthesize fibers, so the method is more suitable for producing fibers with accurate tensile ratio and good scalability [88].
\n(a) The synthesis of graphene oxide fiber by wet spinning in rotating coagulation bath and (b) collection unit [
Zhen et al. prepared liquid crystal GO aqueous solution for the first time in 2011, taking NaOH/methanol solution as coagulation bath, obtaining GO fiber through wet spinning, and then reducing GO fiber in hydroiodic acid to produce GBFs. This method can make GO sheets form liquid crystals, which can enhance the strength and flexibility of GBFs. The tensile strength of the fiber is 140 MPa, and the conductivity is 2.5 × 104 S · m−1 [86]. Then, Zhen et al. further tried to increase the lamella of the raw material GO, using N,N-dimethylformamide (DMF) as the solvent, acetone, and ethyl acetate mixture as the coagulation bath. After that, the mechanical ability of GBFs was improved by spinning drafting and high-temperature treatment at 3000°C, making its strength reach 1.45 GPa [89]. On the other hand, the conductivity of GBFs can be improved by ion doping, and the conductivity of potassium doped GBFs can reach 2.24 × 107 S · m−1 [90]. In addition, Shaohua et al. prepared non-liquid crystal GO aqueous solution to achieve a high concentration of spinning solution to improve the fiber yield. The concentration of a spinning solution can reach 2%, and then GBFs were obtained through a similar wet spinning process and reduction by hydrocodone. The mechanical and electrical properties of the fiber were 208 MPa and 1.53 × 103 S · m−1 [91], respectively.
\nIn addition to GBFs, graphene composite fibers can also be prepared by wet spinning, so as to effectively improve the fiber performance and expand the application field. Conducting polymer monomers are polymerized in situ during spinning to prepare composite fibers [92, 93], or oxides or other materials are added directly into the spinning solution to increase the capacity of fiber-shaped supercapacitors [94, 95]. Wujun et al. used GO to disperse the water-insoluble activated carbon in the aqueous solution, spinning and reducing to obtain graphene/activated carbon composite fiber. The fiber has a specific surface area of 1476.5 m2 · g−1 and a capacity of 43.8 F · g−1 [96]. Similarly, the graphene/manganese dioxide composite fiber can be spun by a similar process, and the capacity of the supercapacitor can reach 66.1 F · cm−3 [97]. In addition to inorganic materials, GO and polyvinyl alcohol (PVA) also have good compatibility. Adding sodium hydroxide to non-liquid crystal GO aqueous solution for a pH = 11. Then, adding PVA can significantly increase the affinity between fiber and electrolyte [98]. Similarly, the surface of the fiber with a large number of hydroxyl groups can significantly increase the hydrophilicity and strength of the fiber, which is caused by a large number of oxygen-containing functional groups on its surface [99]. Mochen et al. developed a method to improve the strength of graphene fiber. They spun GO and phenolic resin together. After carbonization under the condition on 1000°C, the C–C covalent bond was formed between graphene sheets, and the fiber strength reached 1.45 GPa [100]. The tensile strength and elongation at break of graphene fiber with 10% phenolic resin are 1.45 GPa and 1.8%, respectively, which are better than most GBFs reported before. The increase of strength, toughness, and elongation can be attributed to the formation of a C–C bond between the graphene sheet and phenolic carbon, which provides sliding space for the graphene sheet before fracture. Yang et al. developed a simple but effective method for continuous manufacturing of neat, morphologically defined, graphene-based hollow fibers (HFs) with coaxial capillary spinning strategy. As shown in Figure 6, the preparation method of GO-HFs is to use coaxial capillary spinneret to spray silk in 3 mol · L−1 KCl methanol solution and use compressed air to replace the internal fluid of KCl/methanol solution to successfully prepare GO-HFs with necklace structure (nGO-HF). Experiments show that nGO-HF has a large elongation of about 6% when it breaks, which indicates that nGO-HF has a strong ability to bear compression, which is caused by the elastic deformation of hollow microspheres [101]. Therefore, the physical properties of GBFs can be controlled by adjusting the spinning conditions.
\nSchematic of the setup that used a dual-capillary spinneret to directly spin GO-HFs [
In the dry spinning of GBFs, GO dispersion (mainly dispersed in water) is also used as a spinning assistant rather than a coagulation bath. Instead, the GO dispersion is injected and sealed in a pipe, and the GO dispersion is precipitated in the form of gel state fiber at high temperature by heating or chemical reduction, and then dried rGO fibers can be obtained by further solvent removal. GO dispersions are considered to be colloids with large-size dispersants [102, 103, 104]. The study of Dong et al. and Yu et al. shows that high temperature can promote the rapid movement of GO dispersant and increase the possibility of collision and precipitation of GO plate. At the same time, high temperature or chemical reduction can also separate the oxygen-containing groups in GO and reduce the zeta absolute potential of GO dispersion. Finally, due to the lack of sufficient electrostatic repulsion, GO sheets’ precipitate is assembled into fibers. The fibers in the gelatinous state expand in the solvent, but the diameter of the fibers can be reduced by about 80% after drying [105, 106].
\nIn the process of dry spinning, the precipitate of GO sheet under the condition of 220–230°C is actually a solvothermal process (the water is used as the solvent to disperse GO). The process flow is shown in Figure 7 [107], and the fibers made in this way are actually rGO fibers. It is reported that 27% of oxygen in GO can be removed at 180°C and most hydroxyl, epoxy, and carboxyl groups begin to separate at 200°C [108, 109]. Therefore, GBFs synthesized by the hydrothermal method has considerable conductivity, without post-reduction treatment [105, 110]. In addition to the hydrothermal method, Jihao et al. also use the chemical reduction method of CO to produce rGO fiber. First, the GO and vitamin C (VC) solution was injected into the polypropylene (PP) tube, then heated to 80°C, and kept for 1 h, while GO was reduced and assembled into gel-like rGO fibers. After extraction and drying, the fiber diameter decreased by 95–97%, which was due to the shrinkage of the fiber due to the removal of moisture. Finally, the conductivity of the rGO fiber is about 8 S · cm−1 [111].
\nSchematic illustration of the dry spinning process with a concentrated organic dispersion of GO [
In the dry spinning process, GO dispersion does not necessarily exist in the form of liquid crystal [106]. The randomly dispersed low-concentration GO dopes (8 mg · ML−1) composed of small-diameter GO (
Dry jet wet spinning is another important spinning method of conventional synthetic fiber. The results show that PAN-based carbon fibers can be spun with high concentration coating by this method and the mechanical properties of the fiber are better than that of wet spinning [52, 114]. Shayan et al. use dry jet wet spinning to improve the strength of the fiber. The existence of the air layer effectively reduces the speed gradient of the spinning liquid from the spinneret to the coagulation bath, so that the fiber has a better arrangement. However, if the air layer is too long, it will affect the tensile property of the fiber and control the diameter of the needle and the distance of the air layer. Then, the high-strength GBFs with circular cross section can be spun (Figure 8a) [115].
\n(a) A digital photo showing the setup for dry jet wet spinning of GBFs [
\nFigure 8b and c shows the surface and cross-sectional images of dry jet wet spinning fiber, which indicates that the GBFs with smooth surface and circular cross section can be produced by dry jet wet spinning with proper solvent coalescent pair (chlorosulfonic acid and diethyl ether), which is not realized in both wet spinning and dry spinning.
\nIn the production of graphene made by chemical vapor deposition, the composition of graphene can be easily changed by changing the composition of the gas phase. Xinming et al. reported in 2011 a method of self-assembly of two-dimensional CVD grown films into one-dimensional GBFs in ethanol, acetone, and other organic solvents through the change of surface tension. The resulting fibers have a high conductivity of about 1000 S · m−1 [116]. Seyed et al. reported another method of film assembly. They first scraped and coated the GO dispersion into multiple film strips, dried and twisted it to get GO fiber, and then put it through thermal reduction to get GBFs. The GO fiber made by this method has high elongation at break (8.3–78.3%) and excellent fracture toughness (1.3–17.4 J · m−3), but its strength is low (9.7–85.9 MPa) due to many defects in the fiber section [117]. Jiali et al. also developed a method for preparing GBFs by film shrinkage, as shown in Figure 9. First, graphene was produced on copper foil by CVD with methane as a carbon source. In order to obtain a complete and independent graphene film, a layer of polymethyl methacrylate (PMMA) is spin-coated on the surface of graphene. The copper foil is etched with 1 M ammonium persulfate solution, and the PMMA layer is washed off with acetone to obtain the laminated graphene film. Second, the film is pulled out of the solution with tweezers to shrink to form GBFs with uniform diameter [118]. The graphene film can be directly used to prepare GBFs by film shrinkage method, and the obtained fiber generally has more pores. However, the CVD method needs a lot of instrument investment and strict gas conditions, and the cost is high, so it is difficult to promote.
\nSchematic illustration of GBFs prepared by film assembly [
Zelin et al. reported a template hydrothermal method to prepare GBFs. GO dispersion was injected into the stripping pipe, sealed at both ends, and then heat-treated in water at 230°C for 2 h to form continuous GBFs. The structure of GBFs can be adjusted by controlling the concentration of GO dispersion and the inner diameter of a glass tube. The graphene fiber has a porous structure, has a density of only 0.23 g · cm−3, and has a good flexibility [105]. Yunming et al. used a simple low-temperature-induced self-assembly method to synthesize GBFs. They mixed GO and ascorbic acid evenly and sealed them in a specific straight glass tube. They carried out the hydrothermal reaction at 90°C and 120°C, respectively, until the fiber was completely formed and then obtained GBFs with layered porous structure. Its conductivity can reach 1.3 × 104 S · m−1. After heating, it has excellent mechanical properties and can be easily woven into the spinning products [119]. Lizhi et al. further developed on the basis of previous methods, and the specific preparation process is shown in Figure 10.
\nSchematic illustration of graphene hybrid fibers prepared by hydrothermal method [
First, the dispersion of GO is sprayed into liquid nitrogen through a spout to prepare a layer bridging GO dispersion - interconnected graphene oxide ribbons (IGOR). Then, a certain concentration of GO dispersion is uniformly mixed with IGOR dispersion and injected into a quartz capillary with an inner diameter of 0.4 mm. The two ends are sealed, heated at 230°C for 2 h, and finally dried in air for 12 h. The GBFs show higher strength and toughness [120].
\nIn order to increase the length of GBFs prepared by the hydrothermal method, Dingshan et al. improved the above methods. The authors replaced the brittle glass tube with the flexible and high-temperature-resistant fused silica capillary column, injected the GO dispersion containing ethylenediamine into it, and sealed it. After that, they put it in the furnace at 220°C for 6 h, extruded it with nitrogen to form the fiber, dried it, and collected the long enough GBFs [106]. Although the GBFs with porous structure can be prepared by the hydrothermal method, it is difficult to achieve continuous production because of the need of closed space and long reaction time.
\nThe conductive substrate-induced spontaneous reduction and self-assembly of GO generally proceeds by putting metal substrates (e.g., Al, Fe, Cu) into GO solution for GBF preparation. As shown in Figure 11, Junjie et al. take copper wire as the substrate and adopt the three-electrode method to make the GO sheet continuously deposit on the surface of copper wire under the double induction of electrochemistry and template. Both GO and copper are simultaneously restored. Then, they etch and remove the copper wire in the FeCl3 solution to obtain the graphene hollow fiber with an oriented structure. The controllable preparation of the hollow fiber can be realized by controlling the diameter, length of the substrate, and the time of electrochemical deposition. The graphene hollow fiber has excellent flexibility and conductivity and can be used as the electrode material of supercapacitor [121].
\nScheme of spontaneous reduction and assembly of graphene hollow fiber on active metals substrates [
The electrophoretic phenomenon occurs in a colloidal solution because charged particles can move under the action of electric field. Lianlian et al. developed a method for preparing GBFs with electrophoretic self-assembly. The graphite probe was used as a positive electrode to invade the GO dispersion. Under constant potential, the graphite probe was extracted slowly and uniformly, and self-assembled GO fibers were formed at the tail of the cathode. After drying and heating, GBFs with a smooth surface and circular cross section can be obtained [122]. Because the electrode moving speed is only 0.1 mm · mm−1, it takes 1 week to get 1-m-long fiber. The yield of GBFs obtained by this method is too low to scale production.
\nThanks to graphene’s superior electrical, mechanical, and thermal properties and good flexibility, GBFs have great potential in sensor, energy storage, energy conversion, and other fields.
\nWith the continuous development of flexible equipment, intelligent devices, including electricity, humidity, force, and temperature, can rapidly make structural changes in the environment and be increasingly concerned by people. The GBFs shows excellent performance in this regard.
\nZhao et al. successfully developed a graphene-based multifunctional optical fiber sensor, which can respond to three different stimulations. They deposited GCN on GF (GF and GCN) and twisted it with another GF to form a double helix GBFs. In the twisted structure, the contact interface of the two fibers has a sandwich-like graphene/GCN/graphene structure. Under different external voltage controls, GF and GCN can show three different stimulus modes. Each mode can respond to temperature fluctuation, mechanical interaction, and humidity change and has a high sensitivity to specific stimulation [123]. Yanhong and his team electroplated polypyrrole on half of the surface of GBFs, which changes the current transmission rate on both sides of the fiber. With different types of current, the fiber has different bending states. The prepared electric GBFs are expected to be applied in the multi-arm tweezers and mesh driver [124]. Chunfei et al. used twisted GBFs to realize temperature sensing. With the increase of temperature, the fiber resistance decreases. This is mainly due to the transition of semiconductor characteristics between graphene sheets. The fiber has similar sensing characteristics for temperature under different stretching conditions and has a wide application prospect [125].
\nIn addition, GO fiber is partially restored by laser method, which is sensitive to humidity. By changing the position, the fiber can be transformed into various shapes. Taking advantage of the hydrophilic characteristics of GO in a humid environment, the distance between sheets is increased, while graphene is non-hydrophilic. Hence, the bending degree of the fiber changes with the humidity. Meanwhile, the fiber is woven into fabric shape, which still has sensitive response performance [126]. After twisting the spinning GO fiber, the twisted fiber will rotate repeatedly as the humidity changes periodically. When the humidity increase, a large number of oxygen-containing functional groups on the surface of GO will absorb water, and the distance between layers will increase. Otherwise, the distance between layers will decrease. A magnet is added at the lower end of the fiber to prepare a humidity sensing electric motor. The speed of the motor reaches 5190 r · min−1. The motor can convert the change of environmental humidity into electric energy and realize the collection of energy [127].
\nThe GBFs and the GBFs coated with a layer of carbon nitride on the surface are wound together. The middle carbon nitride layer is equivalent to a buffer layer. Its conductivity is related to the layer spacing. With the pressure increase, the distance decreases and the conductivity is, in turn, to increase, which can realize the stress sensing [123].
\nWith the development of science and society, a portable energy storage device is becoming smaller and more flexible. Lithium-ion batteries are a new type of energy storage device, which has the advantages of high energy density, environmental friendliness, long cycle life, and high working voltage. However, the traditional LIBs cannot meet the needs of wearable electronic devices due to its large usage, rigidity, and weight. Therefore, it is necessary to develop new batteries with small volume, lightweight, and high flexibility. GBFs maintain the unique characteristics of the graphene nanosheet. When GBFs are used in the fiber lithium battery, it can realize the series connection with flexible electronic devices and drive them to work stably, achieving high energy density and holding a good commercial prospect [128, 129].
\nJung et al. of the Korea Institute of Chemistry used pure GBFs as the negative electrode material of lithium-ion batteries. The battery circulates 100 times in the range of 0.005–3 V under the current density of 100 mA · g−1, and the capacity is still 224 mAh · g−1 [130]. Minsu et al. obtained hollow GBFs by coaxial spinning and increased specific surface area and active site, and its capacity remained 196 mAh · g−1 in the range of 0.005–1.5 V for 100 cycles under the current density of 0.2C [131]. Due to the low capacity of pure GBF battery, Jong et al. added MnO2 active material in graphene; the addition of MnO2 increased the distance between graphene sheets and gave lithium-ion fast transfer channel. Moreover, the battery made by MnO2 coating of graphene has good cycle stability, and the cycle capacity of 100 times remained 560 mA · g−1 . Minsu et al. filled the inner space with Si/Ag nanoparticles, and the outer graphene well controlled the volume expansion of the inner silicon during charging and discharging, providing a smooth electronic channel. Compared with the simple mixing process, it has better cycle stability and rate performance, and the capacity of 100 cycles remains 766 mAh · g−1 [131].
\nThe GBFs prepared by the above method have low strength, and it is difficult to form a macroscopical fiber battery. In one report, a fiber battery electrode comprised of 2D/2D layered titania sheets/rGO sheets (titania/rGO) composites was prepared through wet spinning method [132]. By assembling the cathode of titania/rGO fiber with the anode of lithium wire in parallel, a fiber-shaped half-cell was fabricated. This hybridized fiber electrode had an ordered stacking structure, high linear density of active materials, and abundance of exposed active sites, which endows the fiber electrode with prominent mechanical flexibility combined with excellent battery performances of high linear capacity of 168 mAh · g−1, good rate capability, and outstanding cyclic behavior. Woon et al. used wet spinning to construct graphene/carbon tube/sulfur electrode as positive material of Li-S battery. Graphene has high conductivity and can transfer electrons rapidly. Meanwhile, GO fiber as a matrix can obtain light fiber with certain mechanical strength for wearable equipment, as shown in Figure 12a and b [133].
\n(a) Schematic of fiber-shaped lithium-ion battery. (b) Schematic illustration of synthetic route of rGO/CNTs/S fiber [
Compared with wet spinning, the diameter of the nanofiber film obtained by electrospinning is smaller. As the electrode material of lithium battery, it can significantly reduce the migration distance of lithium-ion and increase the specific surface area of the electrode material and improve the electrochemical performance of the battery [134, 135, 136]. Xiaoxin et al. obtained the Si-graphene-C structure which is similar to the coronary artery based on bionics. Graphene can effectively control the volume expansion of Si, and high conductivity is also conducive to the rapid transfer of ions. Meanwhile, the inclusion of graphene also avoids direct contact between Si and electrolyte and avoids the formation of a large number of SEI films. After 200 cycles, the capacity retention rate is still 86.5% [137]. Jian et al. continued to wrap a layer of graphene outside SnO2 and GO nanofibers with a double-layer protection method to inhibit the volume expansion and agglomeration of active materials. This method is applicable to almost all oxide and graphene nanofiber electrodes obtained by electrospinning, with good universality [138].
\nAt present, there are few researches on the application of GBFs in LIB and the assembly of woven fiber batteries. Compared with the traditional button batteries, the assembly process of GBFs is relatively complex, so it is unable to achieve continuous production.
\nIn addition to the application in LIB, GBFs are also widely used in the field of supercapacitors. Supercapacitor, also known as a double electric layer capacitor or electrochemical capacitor, is a new energy storage device that uses the rapid adsorption–desorption of electrolyte ions with electrode materials or the reversible oxidation–reduction reaction on the surface of electrode materials to realize electric energy storage [139, 140]. With the continuous development of wearable devices, flexible supercapacitors have become the preferred energy source for various electronic devices due to their fast charge and discharge ability and long cycle life. Among them, fiber supercapacitors have attracted much attention due to their lightweight, small size, high flexibility, and good wearability. GBFs have excellent conductivity and super high specific surface area, so it has been widely used in the field of fiber supercapacitor [141].
\nChen et al. prepared pure GBFs with a non-liquid crystal method and further assembled the fibers into flexible supercapacitors. The capacitance of the supercapacitor is 39.1 F · g−1 when the current density is 0.2 A · g−1. At the same time, it is found that the electrochemical performance of GBFs can be greatly improved by immersing it into 6 M KOH for 10 min before the electrochemical performance test. At the current density of 0.2 A · g−1, the specific capacitance is 185 F · g−1 (226 F · cm−3), and the energy density is 5.76 Wh · kg−1 (power density is 47.3 W · kg−1) [91]. The capacitor has good toughness and can be woven into fabric and light LED after charging. Hu and Zhao integrated two electrodes (the upper and lower part of rGO) and separator (the middle part of GO) into the GO optical fiber, as shown in Figure 13a, and made a kind of all-in-one fiber graphene supercapacitor (rGO-GO-rGO) without any adhesive. The diameter of the rGO-GO-rGO fiber is 50 μm, and the rGO part is about 1/4 of the fiber width. The rGO-GO-rGO fiber supercapacitor shows remarkable mechanical flexibility, which can bend to various curvature while maintaining high capacitance (Figure 13b) [142, 143].
\n(a) Scheme of supercapacitor supported by two electrodes. (b) Capacity decrease with increasing bending cycles [
At present, the specific capacitance of pure GBFs is far less than the theoretical capacitance of graphene. How to improve the capacitance of GBFs is still a big challenge. Currently, an effective method that has been proven and widely used is the hybridization strategy, including doping and compounding with other substances.
\nDoping increases the active region on the surface of graphene and further improves its catalytic activity for a redox reaction. Among all kinds of atom doping, nitrogen atom doping is the most common. Doping nitrogen atoms with extra valence electrons into graphene will introduce new energy into the low energy region of the carbon conduction band. The introduction to this new energy can improve the catalytic activity and electrochemical performance of graphene materials. Yunzhen et al. extruded the GO dispersion into the substrate of hydroxylamine ethanol solution as a network, dried it, and heat it to obtain the nitrogen-doped rGO network fabric. Then, the PT foil was used as the collector to assemble the supercapacitor. The specific capacity was 188 F · g−1 when the scanning rate was 5 mV · s−1 in 25% KOH electrolyte. When the scanning rate was increased to 1 and 10 V · s−1, the specific capacity was kept at 74.2 and 48.4%, respectively, showing very excellent rate performance [144]. Guan et al. constructed nitrogen-doped porous GBF supercapacitors with high energy density output, large-scale weaving, and flexible wearable application prospects by means of self-assembly of the liquid–liquid interface and molecular functional doping pore formation in the micro-reaction system. The area-specific capacitance of the fiber supercapacitor prepared by this method is as high as 1132 mF · cm−2, which has excellent cycle stability and bending durability [145].
\nGraphene can be compounded with other carbon nanomaterials, conducting polymers, metal oxides/sulfides, and other materials to form graphene composite fibers. The high specific capacitance of the additives can be used to improve the electrochemical performance of the composite fibers.
\nYu et al. constructed a graphene/CNT composite fiber. Due to the high conductivity of CNTs, the conductivity of the composite fiber can reach 102 S · cm−1, and the specific surface area can reach 396 m2 · g−1. The volume-specific capacitance of the fiber electrode is 305 F · cm−3, and the mass-specific capacitance is 508 F · g−1 [106]. Yuning et al. mixed GO and pyrrole monomers as spinning solution and extruded them into FeCl3 solution to solidify and polymerize pyrrole in situ, and the PPy/GO composite fiber was obtained after reduction by hydroiodic acid. The fiber has a skin core structure, and its capacitance performance is greatly improved compared with pure rGO fiber. The area-specific capacitance is 107.2 mF · cm−2 (73.4 F · g−1), and the energy density is between 6.6 and 9.7 μ Wh · cm−2 [146]. Bingjie et al. synthesized the graphene/molybdenum disulfide composite fiber electrode with the one-step hydrothermal method. The electrode has a new intercalation nanostructure, which effectively combines the excellent conductivity of the graphene sheet layer with the high pseudocapacitance of molybdenum disulfide. The final assembled fiber-like super electric container shows a volume-specific capacitance of up to 368 F · cm−3 [147]. Qiuyan et al. overcame the problem of poor interaction between MXene layers and prepared MXene/graphene composite fiber. The orientation distribution of MXene sheets among GO liquid crystal templates realized high load (95 w/w%). The composite fiber shows excellent conductivity (2.9 × 104 S · m−1) and ultrahigh-volume-specific capacitance (586.4 F · cm−3), far exceeding the value of pure GBFs [148].
\nIn addition, the structure optimization of GBFs is also an effective way to improve the performance of GBF supercapacitor, which mainly lies in the improvement of specific surface area and the regulation of the layer arrangement structure. The porous GO fiber reported by Seyed et al. in 2014 was transformed into porous rGO fiber after thermal reduction at 220°C, as shown in Figure 14.
\nPorous graphene fiber and its supercapacitor. (a) SEM image of porous fibers. (b) Schematic illustration of the structure of supercapacitor. (c) CV curves of graphene fibers prepared in different coagulation baths.
The specific surface area of the fiber is 2210 m2 · g−1, and the conductivity is about 25 S · cm−1, and the specific capacity of the fiber is 409 F · g−1 when the current density is 1 A · g−1. The specific capacitance of 56 F · g−1 still exists when the current density is increased to 100 A · g−1 [117]. Chen et al. used cellulose nanocrystals (CNC) to adjust the structure of GBFs. CNC nanorods can not only improve the serious accumulation of graphene sheets in GBFs but also inhibit the possible bending and folding of graphene sheets in the process of fiber-forming, so as to form ordered nanopore structure. The composite GBFs were assembled into a supercapacitor with a conductivity of 64.7 S · cm−1 and a specific capacitance of 208.2 F · cm−3, which has excellent electrochemical performance [99]. In addition, they also use graphene hollow fiber prepared by the electrochemical method as the electrode of fiber-like supercapacitor [121], and the additional inner surface of hollow fiber can provide more contact area with electrolyte. Under the current density of 0.1 A · g−1, the specific capacitance of the assembled solid-state supercapacitor can reach 178 F · g−1, and it has good rate performance and cycle stability. Guoxing et al. prepared graphene/conductive polymer composite hollow fiber with the hydrothermal method. The combination of hollow structure and pseudocapacitance provided by conductive polymer greatly improved the capacity of the capacitor and provided a new idea for the improvement of supercapacitor capacitance [149].
\nActuators are a kind of stimuli-sensitive device that can respond to external stimuli, such as humidity, temperature, and electrical changes, and transfer the stimulus into deformation or motion [126, 127]. Due to quantum mechanics and electrostatic double-layer effect, graphene may cause space warping or plane expansion under the charge injection. In addition, the intercalation or removal of ions or molecules in graphene products under external stimulation will also lead to the bending, twisting, and even reversible change of the interlayer spacing. In this way, the type and degree of deformation can be controlled by the composition and surface chemical state of graphene [150, 151].
\nJia et al. showed an electrochemical fiber driver with high driving activity and durability based on GF/polypyrrole (GF/PPY) double-layer structure, as shown in Figure 15. Because of the asymmetry of the structure, GF/PPY fiber shows reversible bending deformation under the condition on positive and negative charges. As shown in Figure 15, when a positive voltage is applied to GF/PPY fiber, graphene will shrink and expand due to anion discharged from PPY, and the fiber will bend to the left. When a negative voltage is applied, GF/PPY fiber can bend to the right [152].
\nSchematic illustration of the expansion-contraction mechanisms of the GF/PPY bilayer structure. Charges in each electrode are completely balanced by ions from the electrolyte.
Compared with rGO, GO has more oxygen functional groups, so it is more sensitive to water. Based on this principle, Huhu et al. fabricated an asymmetric rGO/GO fiber by region-selective laser reduction along the GO fiber. When exposed to humid air, the rGO/GO fiber can bend to the rGO side and then return to its original state after air moisture dispersion. After that, they made a twisted GO fiber by rotating the GO hydrogel fibers in the direction of rotation. The spiral geometry inside them was the main reason for the reversible rotation in the moist air.
\nWearable solar cells can supply power to flexible smart devices at any time, while GBFs can be used as electrode materials to achieve this new function. Peng et al. obtained GBFs by wet spinning and then made its surface loaded with Pt metal particles by electrodeposition to the obtained counter electrode. The titanium wire with titanium dioxide microtubules on the surface is used as the working electrode; the dye-sensitized solar cell (DSSC) has an energy conversion efficiency of 8.45%, which is much higher than other linear photovoltaic devices. The continuous collection of energy can be realized by putting linear solar cells into conventional clothes [153]. The high surface properties and good electrical and electrochemical properties of graphene are the important reasons to improve the performance of fiber DSSC.
\nThis chapter mainly summarizes the main preparation methods, properties, and application fields of CNT, CF, and GBF materials. Among them, CNTs have unique one-dimensional nanostructures and excellent mechanical, electrical, and optical properties. Through various methods of modification, researchers continue to prepare CNT composite nanomaterials with excellent performance, which has a good application prospect. Starting from the needs of the application field, it is the trend to study the carbon nanotube composite materials in the future to expect to obtain the high-efficiency structure which is corresponding to the application performance. Although some progress has been made in the preparation and properties of carbon nanotube composites, the mechanism of improving the properties of composites and the dispersion of carbon nanotubes still need to be explored.
\nCF is a new type of fiber material with high strength and high modulus, which contains more than 95% carbon. Its quality is lighter than that of aluminum, but its strength is higher than that of steel, and it has the characteristics of corrosion resistance and high-temperature resistance. It is an important material in the military industry and civil use. With the rapid development of CF composite and the continuous improvement of molding technology, its application scope is expanding day by day, and it shows good application potential in many fields. However, the physical and chemical properties of CF composites are complex, so it is necessary to study the basic theories of physical and chemical properties, mechanics, and heat, so as to improve the performance of CF composites.
\nGBFs have achieved great success in functional application, and it is far more amazing than CF. So far, various preparation methods have been studied and used in large-scale production of GBFs, which provides a positive impetus for the future application of GBFs. GBFs have been given new performance and function and provide new opportunities for various applications, including fiber-optic actuators, batteries, super electric containers, dye-sensitized solar cells, and sensors.
\nGBFs are a kind of graphene nanosheet assembled in one-dimensional space. At present, the structure of GBFs can be regulated in the following aspects: (1) Diameter. Generally, the diameter of GBFs is 10–100 μm. If it is prepared by electrospinning, its diameter can be controlled below 500 μm. (2) Porosity. On the one hand, it can be prepared by self-assembly, rolling, graphitization, and sintering; on the other hand, it can be prepared by freeze-drying, air spinning, and other methods. In addition, graphene hollow fiber can also be prepared. (3) Orientation. The arrangement of graphene sheets has a great influence on the properties of GBFs. The GBFs with a high degree of orientation can be obtained by the stress field orientation effect in the wet spinning process, the self-assembly in the electrochemical deposition process, and the second phase auxiliary orientation effect in the composite fiber. (4) Section morphology. It is difficult to maintain the circular cross section of the fiber, which is generally irregular. At present, the conventional method is to adjust the fiber cross-sectional shape by adjusting the spinneret hole shape, but the research progress is slow.
\nIn order to meet the needs of different applications, graphene composite fibers appear. The additive materials include metal, inorganic, and polymer materials, such as silver nanowires, silicon nanoparticles, molybdenum disulfide nanoparticles, polypyrrole nanoparticles, etc. Basically, any nanomaterial can be added to GBFs to get graphene composite fiber. But one of the key problems is to control the structure of the composite fiber. The main control factor is the morphology of the second phase and its distribution in the fiber. For GBFs and its composite fiber, the main problems are as follows: (1) Compared with the graphene nanoflakes, the properties of GBFs are greatly cracked. (2) GBFs are composed of layers, which are very different from the chain structure of the traditional chemical fiber, so its flexibility is poor. (3) It is difficult to realize continuous production. Even with the most suitable wet spinning method for continuous production, its continuous production is very difficult, and the yield is very low.
\nAlthough GBFs are faced with many problems, remarkable achievements have been made. Compared with CF, GBFs have the characteristics of high strength, high modulus, conductivity, and certain flexibility, which have developed into a new type of high-performance fiber. On the other hand, graphene composite fiber is committed to develop into a new type of multifunctional intelligent fiber. This kind of fiber starts from modifying the traditional general-purpose fiber to improve some aspects of the performance of the general-purpose fiber and to develop new kinds of fiber, such as graphene/nano titanium oxide composite fiber. It can also develop new fiber performance and functions, such as energy storage, and finally realize multiple functions such as perception, judgment, correspondence, information transmission, etc. on the fiber and become a new type of intelligent material. Therefore, GBFs and its composite fiber will be widely used in aerospace, energy sensing, intelligent life, and other fields in the future.
\nThe authors thank the support of Stevens startup fund.
\nThe authors declare no conflict of interest.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11932",title:"New Materials and Enhanced Performance of Sodium-Ion Batteries",subtitle:null,isOpenForSubmission:!0,hash:"75c27a6f2739e8af817bace95b0e50d6",slug:null,bookSignature:"Ph.D. Fatma SARF",coverURL:"https://cdn.intechopen.com/books/images_new/11932.jpg",editedByType:null,editors:[{id:"245850",title:"Ph.D.",name:"Fatma",surname:"SARF",slug:"fatma-sarf",fullName:"Fatma SARF"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11528",title:"Maintenance Management - Current Challenges, New Developments, and Future Directions",subtitle:null,isOpenForSubmission:!0,hash:"a3e4ad5806a77b0e930fbd4cb191bee2",slug:null,bookSignature:"Prof. Germano Lambert-Torres, Dr. Erik Leandro Bonaldi and Dr. Levy Ely Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/11528.jpg",editedByType:null,editors:[{id:"112971",title:"Prof.",name:"Germano",surname:"Lambert-Torres",slug:"germano-lambert-torres",fullName:"Germano Lambert-Torres"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11486",title:"Climate Change - Recent Observations",subtitle:null,isOpenForSubmission:!0,hash:"741543ff220f5cf688efbf12d3e2f536",slug:null,bookSignature:"Assistant Prof. Terence Epule Epule",coverURL:"https://cdn.intechopen.com/books/images_new/11486.jpg",editedByType:null,editors:[{id:"348146",title:"Assistant Prof.",name:"Terence Epule",surname:"Epule",slug:"terence-epule-epule",fullName:"Terence Epule Epule"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11509",title:"Wireless Power Transfer - Perspectives and Application",subtitle:null,isOpenForSubmission:!0,hash:"f188555eee4211fc24b6cca361983149",slug:null,bookSignature:"Dr. Kim Ho Yeap",coverURL:"https://cdn.intechopen.com/books/images_new/11509.jpg",editedByType:null,editors:[{id:"126825",title:"Dr.",name:"Kim Ho",surname:"Yeap",slug:"kim-ho-yeap",fullName:"Kim Ho Yeap"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:174},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1116",title:"Algiatry",slug:"algiatry",parent:{id:"197",title:"Physical Medicine and Rehabilitation",slug:"physical-medicine-and-rehabilitation"},numberOfBooks:6,numberOfSeries:0,numberOfAuthorsAndEditors:114,numberOfWosCitations:79,numberOfCrossrefCitations:70,numberOfDimensionsCitations:145,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1116",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8413",title:"Chronic Pain",subtitle:"Physiopathology and Treatment",isOpenForSubmission:!1,hash:"5d516dbd23858e7406faf0aad6f03da7",slug:"chronic-pain-physiopathology-and-treatment",bookSignature:"Vicente Vanaclocha and Nieves Saiz-Sapena",coverURL:"https://cdn.intechopen.com/books/images_new/8413.jpg",editedByType:"Edited by",editors:[{id:"199099",title:"Dr.",name:"Vicente",middleName:null,surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9483",title:"Pain Management",subtitle:"Practices, Novel Therapies and Bioactives",isOpenForSubmission:!1,hash:"864679ec29988a68364151a4df2511a0",slug:"pain-management-practices-novel-therapies-and-bioactives",bookSignature:"Viduranga Yashasvi Waisundara, Ines Banjari and Jelena Balkić",coverURL:"https://cdn.intechopen.com/books/images_new/9483.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7897",title:"From Conventional to Innovative Approaches for Pain Treatment",subtitle:null,isOpenForSubmission:!1,hash:"b919454f06566215ea6a94c2d45239cc",slug:"from-conventional-to-innovative-approaches-for-pain-treatment",bookSignature:"Marco Cascella",coverURL:"https://cdn.intechopen.com/books/images_new/7897.jpg",editedByType:"Edited by",editors:[{id:"199335",title:"Dr.",name:"Marco",middleName:null,surname:"Cascella",slug:"marco-cascella",fullName:"Marco Cascella"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7289",title:"Pain Management in Special Circumstances",subtitle:null,isOpenForSubmission:!1,hash:"4043c5c08f3764c0de2d283a40d07c3c",slug:"pain-management-in-special-circumstances",bookSignature:"Nabil A. Shallik",coverURL:"https://cdn.intechopen.com/books/images_new/7289.jpg",editedByType:"Edited by",editors:[{id:"202782",title:"Dr.",name:"Nabil A.",middleName:null,surname:"Shallik",slug:"nabil-a.-shallik",fullName:"Nabil A. Shallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3850",title:"Pain and Treatment",subtitle:null,isOpenForSubmission:!1,hash:"6df930f2bfb1fbedd1df37ee6b0f8d22",slug:"pain-and-treatment",bookSignature:"Gabor B. Racz and Carl E. Noe",coverURL:"https://cdn.intechopen.com/books/images_new/3850.jpg",editedByType:"Edited by",editors:[{id:"91492",title:"Dr.",name:"Gabor",middleName:"B",surname:"Racz",slug:"gabor-racz",fullName:"Gabor Racz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2238",title:"Pain in Perspective",subtitle:null,isOpenForSubmission:!1,hash:"44376b5b3eb5a33870e0c842185ef477",slug:"pain-in-perspective",bookSignature:"Subhamay Ghosh",coverURL:"https://cdn.intechopen.com/books/images_new/2238.jpg",editedByType:"Edited by",editors:[{id:"49582",title:"Mr.",name:"Subhamay",middleName:null,surname:"Ghosh",slug:"subhamay-ghosh",fullName:"Subhamay Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40393",doi:"10.5772/52931",title:"The Epidemiology of Shoulder Pain: A Narrative Review of the Literature",slug:"the-epidemiology-of-shoulder-pain-a-narrative-review-of-the-literature",totalDownloads:4571,totalCrossrefCites:12,totalDimensionsCites:35,abstract:null,book:{id:"2238",slug:"pain-in-perspective",title:"Pain in Perspective",fullTitle:"Pain in Perspective"},signatures:"Mario Pribicevic",authors:[{id:"141285",title:"Dr.",name:"Mario",middleName:null,surname:"Pribicevic",slug:"mario-pribicevic",fullName:"Mario Pribicevic"}]},{id:"40395",doi:"10.5772/53923",title:"Physical and Psychological Aspects of Pain in Obstetrics",slug:"physical-and-psychological-aspects-of-pain-in-obstetrics",totalDownloads:4257,totalCrossrefCites:3,totalDimensionsCites:12,abstract:null,book:{id:"2238",slug:"pain-in-perspective",title:"Pain in Perspective",fullTitle:"Pain in Perspective"},signatures:"Longinus N. Ebirim, Omiepirisa Yvonne Buowari and Subhamay Ghosh",authors:[{id:"49582",title:"Mr.",name:"Subhamay",middleName:null,surname:"Ghosh",slug:"subhamay-ghosh",fullName:"Subhamay Ghosh"},{id:"151696",title:"Dr.",name:"Dabota Yvonne",middleName:"Yvonne",surname:"Buowari",slug:"dabota-yvonne-buowari",fullName:"Dabota Yvonne Buowari"}]},{id:"46303",doi:"10.5772/57401",title:"Multimodal Analgesia for the Management of Postoperative Pain",slug:"multimodal-analgesia-for-the-management-of-postoperative-pain",totalDownloads:3431,totalCrossrefCites:5,totalDimensionsCites:9,abstract:null,book:{id:"3850",slug:"pain-and-treatment",title:"Pain and Treatment",fullTitle:"Pain and Treatment"},signatures:"Borja Mugabure Bujedo, Silvia González Santos, Amaia Uría\nAzpiazu, Anxo Rubín Noriega, David García Salazar and Manuel\nAzkona Andueza",authors:[{id:"169676",title:"Dr.",name:"Borja Mugabure",middleName:null,surname:"Bujedo",slug:"borja-mugabure-bujedo",fullName:"Borja Mugabure Bujedo"},{id:"170333",title:"Dr.",name:"Silvia",middleName:null,surname:"Gonzalez Santos",slug:"silvia-gonzalez-santos",fullName:"Silvia Gonzalez Santos"},{id:"170334",title:"Dr.",name:"Amaia",middleName:"Uria",surname:"Azpiazu",slug:"amaia-azpiazu",fullName:"Amaia Azpiazu"},{id:"170335",title:"Dr.",name:"Anxo",middleName:null,surname:"Rubin Noriega",slug:"anxo-rubin-noriega",fullName:"Anxo Rubin Noriega"},{id:"170336",title:"Dr.",name:"David",middleName:null,surname:"Garcia Salazar",slug:"david-garcia-salazar",fullName:"David Garcia Salazar"},{id:"170337",title:"Dr.",name:"Manuel",middleName:null,surname:"AZCONA ANDUEZA",slug:"manuel-azcona-andueza",fullName:"Manuel AZCONA ANDUEZA"}]},{id:"62969",doi:"10.5772/intechopen.79689",title:"Non-Pharmacological Pain Management",slug:"non-pharmacological-pain-management",totalDownloads:2922,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Non-pharmacological pain therapy refers to interventions that do not involve the use of medications to treat pain. The goals of non-pharmacological interventions are to decrease fear, distress and anxiety, and to reduce pain and provide patients with a sense of control. When deciding the most effective non-pharmacological technique, take into consideration the patient’s age, developmental level, medical history and prior experiences, current degree of pain and/or anticipated pain. The advantage of non-pharmacological treatments is that they are relatively inexpensive and safe.",book:{id:"7289",slug:"pain-management-in-special-circumstances",title:"Pain Management in Special Circumstances",fullTitle:"Pain Management in Special Circumstances"},signatures:"Ahmed El Geziry, Yasser Toble, Fathi Al Kadhi, Muhammad Pervaiz\nand Mohammad Al Nobani",authors:null},{id:"40388",doi:"10.5772/51086",title:"Autonomic Regulation in Musculoskeletal Pain",slug:"autonomic-regulation-in-musculoskeletal-pain",totalDownloads:4228,totalCrossrefCites:1,totalDimensionsCites:7,abstract:null,book:{id:"2238",slug:"pain-in-perspective",title:"Pain in Perspective",fullTitle:"Pain in Perspective"},signatures:"David M. Hallman and Eugene Lyskov",authors:[{id:"142718",title:"Ph.D. Student",name:"David",middleName:"Michael",surname:"Hallman",slug:"david-hallman",fullName:"David Hallman"},{id:"148936",title:"Dr.",name:"Eugene",middleName:null,surname:"Lyskov",slug:"eugene-lyskov",fullName:"Eugene Lyskov"}]}],mostDownloadedChaptersLast30Days:[{id:"62969",title:"Non-Pharmacological Pain Management",slug:"non-pharmacological-pain-management",totalDownloads:2922,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Non-pharmacological pain therapy refers to interventions that do not involve the use of medications to treat pain. The goals of non-pharmacological interventions are to decrease fear, distress and anxiety, and to reduce pain and provide patients with a sense of control. When deciding the most effective non-pharmacological technique, take into consideration the patient’s age, developmental level, medical history and prior experiences, current degree of pain and/or anticipated pain. The advantage of non-pharmacological treatments is that they are relatively inexpensive and safe.",book:{id:"7289",slug:"pain-management-in-special-circumstances",title:"Pain Management in Special Circumstances",fullTitle:"Pain Management in Special Circumstances"},signatures:"Ahmed El Geziry, Yasser Toble, Fathi Al Kadhi, Muhammad Pervaiz\nand Mohammad Al Nobani",authors:null},{id:"73348",title:"The Role of Cupping Therapy in Pain Management: A Literature Review",slug:"the-role-of-cupping-therapy-in-pain-management-a-literature-review",totalDownloads:1023,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Cupping therapy is an ancient method which has been used for centuries for various painful conditions. It is performed by applying cups to selected skin points most commonly in the back aiming to create areas of sub-atmospheric pressure. It has been classified as either dry or wet type of therapy. Its mechanism of action is not well understood but several proposed mechanisms are described in the literature. It is relatively safe with a few reported side effects which include scar formation and skin infection. In this paper, a review of the literature will be presented to determine its potential benefits in pain management particularly in musculo-skeletal conditions such as low back and neck pain.",book:{id:"9483",slug:"pain-management-practices-novel-therapies-and-bioactives",title:"Pain Management",fullTitle:"Pain Management - Practices, Novel Therapies and Bioactives"},signatures:"Asma Al-Shidhani and Abdulaziz Al-Mahrezi",authors:[{id:"248467",title:"Dr.",name:"Abdulaziz",middleName:null,surname:"Al-Mahrezi",slug:"abdulaziz-al-mahrezi",fullName:"Abdulaziz Al-Mahrezi"},{id:"322652",title:"Dr.",name:"Asma",middleName:null,surname:"Al-Shidhani",slug:"asma-al-shidhani",fullName:"Asma Al-Shidhani"}]},{id:"63560",title:"Pain Management for the Sickle Cell Patient",slug:"pain-management-for-the-sickle-cell-patient",totalDownloads:1160,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Sickle cell disease (SCD) is a condition very common in the United States of America and its most common presenting symptom is pain related to vaso-occlusive events (VOE). The cost associated with healthcare for the sickle cell population exceeds 1 billion $USD yearly, and the majority of this cost is associated with admission related to vaso-occlusive events. With the increase longevity of patients with SCD, due to new therapies and vaccination against common infection related to SCD, the prevalence of older individuals experiencing VOE will likely increase. The psychological impact inflicted on patients with SCD can further complicate adequate care of patients experiencing acute or chronic pain and the latter must be taken into consideration when planning an optimal treatment regimen. This chapter reviews the short- and long-term management options of pain related to VOE, their limitations as well proposed regimen that could pave the way for the future of pain management of SCD.",book:{id:"7289",slug:"pain-management-in-special-circumstances",title:"Pain Management in Special Circumstances",fullTitle:"Pain Management in Special Circumstances"},signatures:"Thomas Zouki, Armen Haroutunian and Tennison Malcolm",authors:null},{id:"62009",title:"Acute Pain Management in Intensive Care Patients: Facts and Figures",slug:"acute-pain-management-in-intensive-care-patients-facts-and-figures",totalDownloads:1737,totalCrossrefCites:4,totalDimensionsCites:3,abstract:"Pain is an unpleasant experience for all patients including intensive care patients; if it is not treated properly, it has deleterious effects on patients’ acute and chronic well-beings. In ICU patients, it causes sympathetic stimulation leading to adverse hemodynamic effects and after discharge, these patients are at the higher risk for developing chronic pain and post-traumatic stress disorders. Apart from racial and regional factors, sleep deprivation, anxiety, and delirium increase the pain perceptions. Pain assessment is a prerequisite for adequate pain management. The ICU patients are sedated and ventilated, and assessment scales differ depending on whether the patient is able to communicate. There are different pain assessment scales for both groups of patients. The preferred mode of delivery of analgesic medication is intravenous route as intramuscular and subcutaneous route are not reliable for drug delivery in these patients. Patient and nurse controlled analgesia gives better sense of pain control. In the treatment of pain, opioids are the commonly used medications, but paracetamol, dexmedetomidine, and gabapentin are increasingly used. Newer trends are multimodal analgesia, where the combinations of analgesic medications with different mechanism of action are used. Another trend is increasing use of analgosedation; they not only control the pain but also relieve anxiety.",book:{id:"7289",slug:"pain-management-in-special-circumstances",title:"Pain Management in Special Circumstances",fullTitle:"Pain Management in Special Circumstances"},signatures:"Nissar Shaikh, Saher Tahseen, Qazi Zeesan Ul Haq, Gamal Al-Ameri,\nAdel Ganaw, Arshed Chanda, Muhammed Zubair Labathkhan and\nTariq Kazi",authors:[{id:"107703",title:"Dr.",name:"Nissar",middleName:null,surname:"Shaikh",slug:"nissar-shaikh",fullName:"Nissar Shaikh"}]},{id:"66349",title:"Food-Derived Opioids: Production and the Effects of Opioids on Human Health",slug:"food-derived-opioids-production-and-the-effects-of-opioids-on-human-health",totalDownloads:1393,totalCrossrefCites:3,totalDimensionsCites:3,abstract:"Traditional opioids have been used for the people who suffer from cancer, burns, surgery, HIV/AIDS, and other serious illness pains for years. However, numerous side effects like dizziness, apnea, physical dependence, tolerance, addiction, nausea, and vomiting push the researchers to look forward to the new opioid options. The opioid peptides which derived from foods provide significant advantages as the safe and natural alternative. The researchers reported that it is also promising a new functional food and nutraceutical. In this chapter, the type of food-derived opioids, their origins, possible receptors, their amino acid sequences, opioid effects, production techniques, and health benefits are reviewed.",book:{id:"7897",slug:"from-conventional-to-innovative-approaches-for-pain-treatment",title:"From Conventional to Innovative Approaches for Pain Treatment",fullTitle:"From Conventional to Innovative Approaches for Pain Treatment"},signatures:"Sevda Arısoy, Işık Çoban and Özlem Üstün-Aytekin",authors:[{id:"280072",title:"Dr.",name:"Özlem",middleName:null,surname:"Aytekin",slug:"ozlem-aytekin",fullName:"Özlem Aytekin"},{id:"280074",title:"Ph.D. Student",name:"Sevda",middleName:null,surname:"Arısoy",slug:"sevda-arisoy",fullName:"Sevda Arısoy"},{id:"299161",title:"Dr.",name:"Işık",middleName:null,surname:"Çoban",slug:"isik-coban",fullName:"Işık Çoban"}]}],onlineFirstChaptersFilter:{topicId:"1116",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"June 11th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:19,paginationItems:[{id:"82196",title:"Multi-Features Assisted Age Invariant Face Recognition and Retrieval Using CNN with Scale Invariant Heat Kernel Signature",doi:"10.5772/intechopen.104944",signatures:"Kamarajugadda Kishore Kumar and Movva Pavani",slug:"multi-features-assisted-age-invariant-face-recognition-and-retrieval-using-cnn-with-scale-invariant-",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"82063",title:"Evaluating Similarities and Differences between Machine Learning and Traditional Statistical Modeling in Healthcare Analytics",doi:"10.5772/intechopen.105116",signatures:"Michele Bennett, Ewa J. Kleczyk, Karin Hayes and Rajesh Mehta",slug:"evaluating-similarities-and-differences-between-machine-learning-and-traditional-statistical-modelin",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Machine Learning and Data Mining - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11422.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:28,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:349,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:25,paginationItems:[{id:"429683",title:"Dr.",name:"Bilal",middleName:null,surname:"Khalid",slug:"bilal-khalid",fullName:"Bilal Khalid",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/429683/images/system/429683.png",biography:"Dr. Bilal Khalid received a Ph.D. in Industrial Business Administration from KMITL Business School, Bangkok, in 2021, and a master’s in International Business Management from Stamford International University, Bangkok, in 2017. Dr. Khalid\\'s research interests include leadership and negotiations, digital transformations, gamification, eLearning, blockchain, Big Data, and management of information technology. Dr. Bilal Khalid also serves as an academic editor at Education Research International and a reviewer for international journals.",institutionString:"KMITL Business School",institution:{name:"King Mongkut's Institute of Technology Ladkrabang",country:{name:"Thailand"}}},{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",country:{name:"Canada"}}},{id:"189147",title:"Dr.",name:"Hailan",middleName:null,surname:"Salamun",slug:"hailan-salamun",fullName:"Hailan Salamun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/189147/images/19274_n.jpeg",biography:"Hailan Salamun, (Dr.) was born in Selangor, Malaysia and graduated from Tunku Ampuan Jamaah Religious High School at Shah Alam. Obtained a degree from the International Islamic University (UIA), Gombak in the field of Islamic Revealed Knowledge and Heritage. Next, I furthered my studies to the professional level to obtain a Diploma in Education at UIA. After serving for several years in school, I furthered my studies to the Master of Dakwah and Leadership at Universiti Kebangsaan Malaysia (UKM), Bangi. I graduated with a Doctor of Philosophy in Principalship Leadership from the University of Malaya (UM) in 2010. I am currently a senior lecturer in the Department of Nationalism and Civilization, Center for Basic and Continuing Education, Universiti Malaysia Terengganu. Prior to that, I had served in several educational institutions such as schools, the Institute of Teacher Education (IPG), and also the University of Malaya. I am also actively involved in paper presentation, writing and publishing. My research interests are focused on leadership, education, society and Islamic civilization. This area of research requires a detailed understanding of Islamic studies and research studies in leadership. Another research interest that I have explored recently is the politics of the Malay community and also the leadership of the mosque.",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"442081",title:"Dr.",name:"Audrey",middleName:null,surname:"Addy",slug:"audrey-addy",fullName:"Audrey Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kwame Nkrumah University of Science and Technology",country:{name:"Ghana"}}},{id:"437993",title:"Mr.",name:"Job",middleName:null,surname:"Jackson",slug:"job-jackson",fullName:"Job Jackson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Management College of Southern Africa",country:{name:"South Africa"}}},{id:"428495",title:"Prof.",name:"Asyraf",middleName:null,surname:"Ab Rahman",slug:"asyraf-ab-rahman",fullName:"Asyraf Ab Rahman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Malaysia Terengganu",country:{name:"Malaysia"}}},{id:"429650",title:"Dr.",name:"Jacqueline",middleName:null,surname:"Kareem",slug:"jacqueline-kareem",fullName:"Jacqueline Kareem",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Christ University",country:{name:"India"}}},{id:"421041",title:"Dr.",name:"Sunil",middleName:null,surname:"Kumar Ramdas",slug:"sunil-kumar-ramdas",fullName:"Sunil Kumar Ramdas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jain University",country:{name:"India"}}},{id:"421833",title:"Mr.",name:"Eugene",middleName:null,surname:"Owusu-Acheampong",slug:"eugene-owusu-acheampong",fullName:"Eugene Owusu-Acheampong",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"239876",title:"Ph.D.",name:"Luciana",middleName:null,surname:"Mourão",slug:"luciana-mourao",fullName:"Luciana Mourão",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Salgado de Oliveira",country:{name:"Brazil"}}},{id:"421735",title:"Dr.",name:"elizabeth",middleName:null,surname:"addy",slug:"elizabeth-addy",fullName:"elizabeth addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"442083",title:"Dr.",name:"James",middleName:null,surname:"Addy",slug:"james-addy",fullName:"James Addy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437991",title:"Prof.",name:"Muhammad",middleName:null,surname:"Hoque",slug:"muhammad-hoque",fullName:"Muhammad Hoque",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421006",title:"Dr.",name:"Anna",middleName:null,surname:"Uster",slug:"anna-uster",fullName:"Anna Uster",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470243",title:"Dr.",name:"Md Samim",middleName:null,surname:"Al Azad",slug:"md-samim-al-azad",fullName:"Md Samim Al Azad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"470244",title:"Dr.",name:"Slimane",middleName:null,surname:"Ed-dafali",slug:"slimane-ed-dafali",fullName:"Slimane Ed-dafali",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421011",title:"Dr.",name:"Afatakpa",middleName:null,surname:"Fortune",slug:"afatakpa-fortune",fullName:"Afatakpa Fortune",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"446057",title:"Mr.",name:"Okedare",middleName:null,surname:"David Olubukunmi",slug:"okedare-david-olubukunmi",fullName:"Okedare David Olubukunmi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421778",title:"Dr.",name:"Fatimah",middleName:"Saeed",surname:"AlAhmari",slug:"fatimah-alahmari",fullName:"Fatimah AlAhmari",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421024",title:"Prof.",name:"Harold Andrew",middleName:null,surname:"Patrick",slug:"harold-andrew-patrick",fullName:"Harold Andrew Patrick",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421065",title:"Ms.",name:"Euzália",middleName:null,surname:"do Rosário Botelho Tomé",slug:"euzalia-do-rosario-botelho-tome",fullName:"Euzália do Rosário Botelho Tomé",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421053",title:"Associate Prof.",name:"Ken",middleName:null,surname:"Kalala Ndalamba",slug:"ken-kalala-ndalamba",fullName:"Ken Kalala Ndalamba",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421826",title:"Dr.",name:"Inusah",middleName:null,surname:"Salifu",slug:"inusah-salifu",fullName:"Inusah Salifu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"420823",title:"Prof.",name:"Gardênia da Silva",middleName:null,surname:"Abbad",slug:"gardenia-da-silva-abbad",fullName:"Gardênia da Silva Abbad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"437613",title:"MSc.",name:"Juliana",middleName:null,surname:"Legentil",slug:"juliana-legentil",fullName:"Juliana Legentil",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:20,paginationItems:[{id:"80964",title:"Upper Airway Expansion in Disabled Children",doi:"10.5772/intechopen.102830",signatures:"David Andrade, Joana Andrade, Maria-João Palha, Cristina Areias, Paula Macedo, Ana Norton, Miguel Palha, Lurdes Morais, Dóris Rocha Ruiz and Sônia Groisman",slug:"upper-airway-expansion-in-disabled-children",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80839",title:"Herbs and Oral Health",doi:"10.5772/intechopen.103715",signatures:"Zuhair S. Natto",slug:"herbs-and-oral-health",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80441",title:"Periodontitis and Heart Disease: Current Perspectives on the Associative Relationships and Preventive Impact",doi:"10.5772/intechopen.102669",signatures:"Alexandra Roman, Andrada Soancă, Bogdan Caloian, Alexandru Bucur, Gabriela Valentina Caracostea, Andreia Paraschiva Preda, Dora Maria Popescu, Iulia Cristina Micu, Petra Șurlin, Andreea Ciurea, Diana Oneț, Mircea Viorel Ciurea, Dragoș Alexandru Țermure and Marius Negucioiu",slug:"periodontitis-and-heart-disease-current-perspectives-on-the-associative-relationships-and-preventive",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79498",title:"Oral Aspects and Dental Management of Special Needs Patient",doi:"10.5772/intechopen.101067",signatures:"Pinar Kiymet Karataban",slug:"oral-aspects-and-dental-management-of-special-needs-patient",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Pinar",surname:"Karataban"}],book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79699",title:"Metabolomics Distinction of Cigarette Smokers from Non-Smokers Using Non-Stationary Benchtop Nuclear Magnetic Resonance (NMR) Analysis of Human Saliva",doi:"10.5772/intechopen.101414",signatures:"Benita C. Percival, Angela Wann, Sophie Taylor, Mark Edgar, Miles Gibson and Martin Grootveld",slug:"metabolomics-distinction-of-cigarette-smokers-from-non-smokers-using-non-stationary-benchtop-nuclear",totalDownloads:54,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80295",title:"Preventive Methods and Treatments of White Spot Lesions in Orthodontics",doi:"10.5772/intechopen.102064",signatures:"Elif Nadide Akay",slug:"preventive-methods-and-treatments-of-white-spot-lesions-in-orthodontics",totalDownloads:82,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79876",title:"Management and Prevention Strategies for Treating Dentine Hypersensitivity",doi:"10.5772/intechopen.101495",signatures:"David G. Gillam",slug:"management-and-prevention-strategies-for-treating-dentine-hypersensitivity",totalDownloads:88,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"80020",title:"Alternative Denture Base Materials for Allergic Patients",doi:"10.5772/intechopen.101956",signatures:"Lavinia Cosmina Ardelean, Laura-Cristina Rusu and Codruta Victoria Tigmeanu",slug:"alternative-denture-base-materials-for-allergic-patients",totalDownloads:169,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79297",title:"Oral Health and Prevention in Older Adults",doi:"10.5772/intechopen.101043",signatures:"Irma Fabiola Díaz-García, Dinorah Munira Hernández-Santos, Julio Alberto Díaz-Ramos and Neyda Ma. Mendoza-Ruvalcaba",slug:"oral-health-and-prevention-in-older-adults",totalDownloads:108,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79903",title:"Molecular Docking of Phytochemicals against Streptococcus mutans Virulence Targets: A Proteomic Insight into Drug Planning",doi:"10.5772/intechopen.101506",signatures:"Diego Romário da Silva, Tahyná Duda Deps, Otavio Akira Souza Sakaguchi, Edja Maria Melo de Brito Costa, Carlus Alberto Oliveira dos Santos, Joanilda Paolla Raimundo e Silva, Bruna Dantas da Silva, Frederico Favaro Ribeiro, Francisco Jaime Bezerra Mendonça-Júnior and Andréa Cristina Barbosa da Silva",slug:"molecular-docking-of-phytochemicals-against-streptococcus-mutans-virulence-targets-a-proteomic-insig",totalDownloads:111,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79754",title:"Evaluation of Trans-Resveratrol as a Treatment for Periodontitis",doi:"10.5772/intechopen.101477",signatures:"Tracey Lynn Harney",slug:"evaluation-of-trans-resveratrol-as-a-treatment-for-periodontitis",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79515",title:"White Spot Lesions and Remineralization",doi:"10.5772/intechopen.101372",signatures:"Monisha Khatri, Shreya Kishore, S. Nagarathinam, Suvetha Siva and Vanita Barai",slug:"white-spot-lesions-and-remineralization",totalDownloads:72,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79371",title:"The Contrasting Effects between Caffeine and Theobromine on Crystallization: How the Non-fluoride Dentifrice Was Developed",doi:"10.5772/intechopen.101116",signatures:"Tetsuo Nakamoto, Alexander U. Falster and William B. Simmons Jr",slug:"the-contrasting-effects-between-caffeine-and-theobromine-on-crystallization-how-the-non-fluoride-den",totalDownloads:130,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79409",title:"The Dental Implant Maintenance",doi:"10.5772/intechopen.101187",signatures:"Gayathri Krishnamoorthy, Aparna I. Narayana and Dhanasekar Balakrishnan",slug:"the-dental-implant-maintenance",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79387",title:"Ulcerative Lesions of the Oral Cavity",doi:"10.5772/intechopen.101215",signatures:"Nelli Yildirimyan",slug:"ulcerative-lesions-of-the-oral-cavity",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}},{id:"79319",title:"Empirical Study on Medical Information and Communication Technology System in Dentistry in Southeast Asia",doi:"10.5772/intechopen.101080",signatures:"Ichiro Nakajima, Ken-ichiro Ejima, Yoshinori Arai, Kunihito Matsumoto, Kazuya Honda, Hirofumi Aboshi, Marina Hamaguchi, Akao Lyvongsa, Bounnhong Sidaphone, Somphone Phanthavong, Chanthavisao Phanthanalay and Souksavanh Vongsa",slug:"empirical-study-on-medical-information-and-communication-technology-system-in-dentistry-in-southeast",totalDownloads:145,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Oral Health Care - An Important Issue of the Modern Society",coverURL:"https://cdn.intechopen.com/books/images_new/10827.jpg",subseries:{id:"1",title:"Oral Health"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8176",title:"DNA Methylation Mechanism",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8176.jpg",slug:"dna-methylation-mechanism",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Metin Budak and Mustafa Yıldız",hash:"1de018af20c3e9916b5a9b4fed13a4ff",volumeInSeries:15,fullTitle:"DNA Methylation Mechanism",editors:[{id:"226275",title:"Ph.D.",name:"Metin",middleName:null,surname:"Budak",slug:"metin-budak",fullName:"Metin Budak",profilePictureURL:"https://mts.intechopen.com/storage/users/226275/images/system/226275.jfif",institutionString:"Trakya University",institution:{name:"Trakya University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7012",title:"Biochemical Testing",subtitle:"Clinical Correlation and Diagnosis",coverURL:"https://cdn.intechopen.com/books/images_new/7012.jpg",slug:"biochemical-testing-clinical-correlation-and-diagnosis",publishedDate:"April 29th 2020",editedByType:"Edited by",bookSignature:"Varaprasad Bobbarala, Gaffar Sarwar Zaman, Mohd Nasir Mohd Desa and Abdah Md Akim",hash:"1aa28a784b136633d827933ad91fe621",volumeInSeries:12,fullTitle:"Biochemical Testing - Clinical Correlation and Diagnosis",editors:[{id:"207119",title:"Dr.",name:"Varaprasad",middleName:null,surname:"Bobbarala PhD",slug:"varaprasad-bobbarala-phd",fullName:"Varaprasad Bobbarala PhD",profilePictureURL:"https://mts.intechopen.com/storage/users/207119/images/system/207119.jpg",institutionString:"Adhya Biosciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",institutionString:"Australian College of Business & Technology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[{type:"book",id:"11672",title:"Chemokines Updates",subtitle:null,isOpenForSubmission:!0,hash:"c00855833476a514d37abf7c846e16e9",slug:null,bookSignature:"Prof. Murat Şentürk",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",editedByType:null,submissionDeadline:"May 6th 2022",editors:[{id:"14794",title:"Prof.",name:"Murat",middleName:null,surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk",profilePictureURL:"https://mts.intechopen.com/storage/users/14794/images/system/14794.jpeg",biography:"Dr. Murat Şentürk obtained a baccalaureate degree in Chemistry in 2002, a master’s degree in Biochemistry in 2006, and a doctorate degree in Biochemistry in 2009 from Atatürk University, Turkey. Dr. Şentürk currently works as an professor of Biochemistry in the Department of Basic Pharmacy Sciences, Faculty of Pharmacy, Ağri Ibrahim Cecen University, Turkey. \nDr. Şentürk published over 120 scientific papers, reviews, and book chapters and presented several conferences to scientists. \nHis research interests span enzyme inhibitor or activator, protein expression, purification and characterization, drug design and synthesis, toxicology, and pharmacology. \nHis research work has focused on neurodegenerative diseases and cancer treatment. Dr. Şentürk serves as the editorial board member of several international journals.",institutionString:"Ağrı İbrahim Çeçen University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ağrı İbrahim Çeçen University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}],selectedSeries:{id:"11",title:"Biochemistry"},selectedSubseries:{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry"}}},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:318,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"219081",title:"Dr.",name:"Abdulsamed",middleName:null,surname:"Kükürt",fullName:"Abdulsamed Kükürt",profilePictureURL:"https://mts.intechopen.com/storage/users/219081/images/system/219081.png",institutionString:null,institution:{name:"Kafkas University",institutionURL:null,country:{name:"Turkey"}}},{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"chapter.detail",path:"/chapters/18187",hash:"",query:{},params:{id:"18187"},fullPath:"/chapters/18187",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()