1. Introduction
Image denoising represents a crucial initial step in biomedical image processing and analysis. Denoising belongs to the family of image enhancement methods (Bovik, 2009) which comprise also blur reduction, resolution enhancement, artefacts suppression, and edge enhancement. The motivation for enhancing the biomedical image quality is twofold. First, improving the visual quality may yield more accurate medical diagnostics, and second,analytical methods, such as segmentation and content recognition, require image preprocessing on the input.
Gradually, noise reduction methods developed in other research fields find their usage in biomedical applications. However, biomedical images, such as images obtained from computed tomography (CT) scanners, are quite specific. Modelling noise based on the first principles of image acquisition and transmissionis a too complex task (Borsdorf et al., 2009), and moreover, the noise component characteristics depend on the measurement conditions (Bovik, 2009).
Additionally, noise reduction must be carried out with extreme care to avoidsuppression of the important image content. For this reason, the results of biomedical image denoising should be consulted with medical experts.
There is a range of noise reduction techniques applied to images either in the spatial domain or in a selected transform domain (Motwani et al., 2004). The former include linear or nonlinear low-pass filters, such as moving average filters, the Wiener filter or a variety of median filters. Left alone some recent developments of weighted median, the space domain techniques generally remove the majority of noise, but on the other hand, also blur sharp image edges. To overcome these problems, it is advantageous to use other domains for image representation and processing.
An optimal representation should capture key features of the signal in a relatively small number of large transform coefficients while the majority of the coefficients should be very small or zero. In other words, the representation should be sparse( Mallat, 2009) . In this respect, the wavelet domain is a good choice. Both for signals with spatial transients and narrow-band frequency content, the wavelet transform represents a good compromise between the frequency and the spatial domain representations. Furthermore, for real-world images comprising both spatial transients such as edges and narrow-band components such as regular texture regions, the wavelet transform with the space-scale (or space-frequency) representation outperforms the other two .
Aiming at reducing noise in CT images, researchers focus on optimizing the filtered back-projection (FBP) algorithm used in CT-scanners for image reconstruction. For instance, You & Zeng (2007) propose an improved FBP algorithm, which incorporates the Hilbert transform, and Zhu & StarLack (2007) propose a method for predicting the noise variance and subsequently adapting weights and kernels of the FBP algorithm. Similar to other researches, they exploit a simple Shepp-Logan phantom image which is depicted in Fig. 1c. In their experiments, noise with various statistical properties is introduced into the projection data, and then the result reconstructed by the reconstruction algorithm is evaluated.
Some researchers study the possibilities of the wavelet transform in biomedical image denoising and compression. They most commonly use the critically sampled discrete wavelet transform (DWT). Khare & Shanker Tiwary(2005) utilise the dual-tree complex wavelet transform (DTCWT) for adaptive shrinkage. Bosdorf et al. (2008) propose a wavelet-based correlation analysis method applied to pairs of disjoint projections in dual-source CT-scanners in oder to extract and eliminate uncorrelated noise. The authors use both the DWT and undecimated DWT (UDWT) and in conclusion, indicate their preference for the computation efficiency of the DWT over the slightly better results quality produced by the UDWT. Wang & Huang (1996) and Wu & Qiu (2005) study the use of volumetric processing of biomedical image slices and its advantages in comparison with slice-by-slice processing.
In this chapter, we shall focus onwavelet-based techniques for noise reduction in image volumes produced by a standard CT-scanner (see Fig. 1). First, we shalldescribe the wavelet transform focusing on the DWT, the UDWT, the DTCWT, and their one-dimensional and multi-dimensional implementations. Second, we shall carry out the noise analysis on selected CT data sets. Final, we shalldeal withwavelet-based denoising methods comprising wavelet coefficient thresholding methods (VisuShrink, SureShrink, and BayesShrink) and statistical modelling methods (the hidden Markov trees, the Gaussian mixture model, and the generalized Laplacian model) utilizing the Bayesian estimator.
2. Wavelet transform
The wavelet transform analyzes signals at multiple scales by changing the width of the analysis window, and produces their scale-space representation (Mallat, 2009). In contrast to the short-time Fourier transform, the wavelet transform deals with the limitations ofuncertainty principle in a way that is more convenient for most real-world signals. This principle definesthe trade-off between the length of the slidingwindow (i.e. the spatial resolution) and the distance between adjacent spectral lines (i.e. the frequency resolution). The wavelet transform exploits longer windows (i.e. better frequency resolution) for lowfrequency componentsof the signal, which are, nonetheless, usually of long duration, and shorter windows (i.e. better spatial resolution) for high frequency components of short duration. An important aspect of wavelet-based denoising is transform selection. In the following subsections, we shall discus the critically sampled DWT and two examples of a redundant wavelet transform with improved properties.
2.1. Discrete wavelet transform
The DWT is probably the most popular type of the wavelet transform in the signal and image processing field. This transform has become successfulprimarily in compression,as it became part of the JPEG2000 standard. This transform is computed via thesubband coding algorithm designed by. As displayed in Fig. 2, at each decomposition stage, the transform produces detail coefficients and approximation coefficients corresponding respectively to the upper half and the lower half of the input signal spectrum. The approximations then become an input of the next level.
The detail coefficients
Similarly, the low frequency approximations
Due to down-sampling, the approximation vector is rescaled prior to entering the next decomposition level, while the filter taps are preserved unchanged.
We may also synthesize the original input signal from the decomposition coefficients. The inverse DWT is given as
where
The decomposition and reconstruction filter banks are designed as orthogonal or bi-orthogonal (or dual) bases . The limitation of the orthogonal solution is that the associated real-valued wavelet function cannot have compact support and be symmetrical at the same time, except the Haar wavelet. However, the Haar wavelet is not smooth. Bi-orthogonal solutions provide more construction freedom and allow for smoothness and symmetry. Symmetrical filters have a linear phase response, and hence do not cause phase distortion to which the human eye is particularly sensitive. Consequently, bi-orthogonal wavelets are nowadays probably the most widely used.
The DWT is the most computationally efficient of all wavelet transforms. However, critical sampling causes significant drawbacks. This transform lacks shift-invariance, zero-crossings often appear at the locations of signal singularities, and altering wavelet coefficients (for instance, during denoising) causes artefacts in reconstructed images. To overcome these problems, we may use a redundant wavelet representation.
2.2. Redundant wavelet transforms
In this section, we describe two redundant wavelet transforms: the undecimated discrete wavelet transform (UDWT) and the dual-tree complex wavelet transform (DTCWT) designed by Kingsbury & Selesnick (Selesnick et al., 2005).The former is calculated through the subband coding algorithm exploitingthe same filters as the DWT. The distinction lies in omitting the down-sampling step in decomposition. Instead, the decomposition filters are up-sampled at each stage (Starck et al., 2007). As a result, the UDWT is shift invariant which means that a shift in the input signal corresponds to a shift in the transform output and does not cause any other changes in the coefficient values. On the other hand, leaving out the down-sampling step yields a significant computation burden. The redundancy of this transform depends on the number of decomposition levels
In comparison with the UDWT, the DTCWT exhibits relatively moderate redundancy, which is 2
The DTCWT is realized with FIR (finite impulse response) filters forming a tight frame, and is thus easily revertible (unlike, for instance, the Gabor transform). As displayed in Fig. 3, this transform employs two DWT-like trees a and b producing respectively the real parts
It may seem surprising that a real signal is converted into the complex wavelet representation by using real-valued filters. This is possible thanks to the Hilbert transform built into each transform stage. Ideally, the complex scaling function
where sign denotes the sign function and
As the scaling and the wavelet function should be analytic, the filters associated with the real and the imaginary part of these functions must be delayed from each other by half a sample period
where
In this chapter, we use the q-shift filter solution for the DTCWT by (Kingsbury, 2003). To achieve a higher degree of analycity at lower decomposition levels, this solution exploitsdifferent filters at level 1 than at higher levels. For level 1, it is possible to use the same filter set for both trees as long as it provides perfect reconstruction (for instance, one of the biorthogonal filter sets designed for the DWT). The only difference is that the filters in one tree are translated by one sample from the corresponding filters in the other tree
and also each to the other within the same tree (as indicated by the value in brackets in Fig. 3). Beyond level 1, we employ the approximately analytic q-shift filters, for which the low-pass (and also the high-pass) filters from opposite trees are time-reversed versions of each other
A similar relation applies also to the analysis and synthesis filters. These filters are of even length and approximately symmetrical, as their point of symmetry is ¼-sample away (i.e. q-shifted) from the centre. Hence, the filters exhibit a q-sample group delay and their individual phase response is not exactly linear. On the other hand, the assymmetry makes the orthonormal perfect reconstruction feasible. For the overall complex wavelet and also the scaling function, the conjugate phase response is exactly linear and the magnitude is approximately shift-invariant. In addition to the shift-invariance property, theDTCWT provides better directional selectivity than both the DWT and UDWT in multiple dimensions.
2.3. Multidimensional wavelet transform
Computing the multidimensional wavelet transform is straightforward due to its separability. This property implies that the
Please note that for the UDWT, the procedure is identical except that the size of the
The volumetric wavelet transform does not necessarily need be uniform in all three directions. We may for instance use longer filters within the slices and shorter filters in the direction between slices . The rationale behind this lies in the variance of the spatial resolution in different directions. In the between-slice direction, the resolution is coarser than in the intra-slice directions (depending on the slice thickness and spacing).
3. Wavelet-based denoising methods
As proved in a range of signal processing research areas, the wavelet transform is a suitable representation for estimating noise free images from their noisy observations owing to its sparsity and multiscale nature.As outlined in Fig. 6, denoising is based on image
transformation into the wavelet domain and subsequent reconstruction from the altered detail coefficients and unchanged approximation coefficients from the last decomposition level. This procedure is called wavelet shrinkage and is associated with two main-stream approaches, which are discussed in this section: coefficient thresholding and probabilistic coefficient modelling.
3.1. Noise analysis
The quality of CT images depends directly on the radiation dose from an examination. The dose is influenced by the following quantities : X-ray tube current, exposure time, beam energy, slice thickness, table speed, type of the reconstruction algorithm, focal-spot-to-isocenter distance, detector efficiency, etc. Overall, CT image acquisition is a complex process affected many factors, such as the post-processing algorithm and nonlinearities of several parts of the device. By minimizing the radiation exposure of the patient, the amount of noise and artefacts increases.
Noise analysis represents a fundamental initial step of advanced noise suppression algorithms. In common devices, such as cameras with CCD (charged coupled device) or CMOS (complementary metal-oxide-semiconductor) sensors, noise analysis is based on acquisition of a testing pattern, which contains several patches with constant greyscale levels ranging from black to white . However, CT image volumes are a specific case and more realizations of the same acquisition process cannot be obtained so simply. One option would be to use phantoms (for instance water phantoms), which mimic the consistence of the human body (basically - bone, tissue, water, and air). It is then possible to analyze the noise component by using several images generated by scanning the phantom. Another option of obtaining the data for noise analysis would be to acquire the same volumetric slice twice during a regular examination. However, this would increase the radiation dose for the patient and the noise would be still impacted by motion-generated artefacts (e.g. from breathing). To prevent from any motion, the patient head would have to be tightly fixed which is not applicable.
New interesting possibilities arise with introduction of multi-detector scanners. Bosdorf et al. (2008) analyse noise in images from the latest generation dual-source CT-scanners, which produce two images of the same slice (one from each detector). The authors propose to extract the uncorrelated noise component via wavelet-based correlation analysis of the corresponding images. According to their findings, the noise in CT images is non-white, usually of an unknown distribution, and not stationary.
In our experiments, we analyzed images from a standard CT-scanner and without possessing the corresponding phantom images for noise analysis. In order to analyze noise characteristics, we selected patches of the background, i.e. the part of the image capturing no part of the patient’s head or the bed as apparent from Fig. 7b with an altered histogram. Nevertheless, this type of analysis does not reveal whether the noise is signal-dependent or not.
Even thoughwe are aware that the noise is not strictly additive, we assume the additive noise model
for the sake of simplicity (y denotes the observed signal, x the noise-free signal, and
As we demonstrate below, the noise obtained from the background patches as well as the observed signal may be modelledusing the GLM (generalized Laplacian model) or the GMM (Gaussian mixture model) in the spatial domain. The parameters of these models may be estimated exploiting the method of moments. This method is based on comparing the sample moments with the theoretical moments. Let us consider samples
and the theoretical moment
where
3.1.1 Generalized Laplacianmodel of the noise
Every background patch is analyzed in the following way. We compute an optimized histogram to obtain the PDF (probability density function) of the noise, which is then tested for normality. The quality of the histogram shape depends greatly on the bin width
where the term in the parentheses denotes a so-called interquartile range between the 75th percentile n_(0.75) and the 25th percentile n_(0.25). In our experiments, the Kolmogorov-Smirnov test rejected the null hypothesis that the samples come from the Gaussian distribution at the significance level
Hence, it is necessary to employ a more general model. We choose a model with heavytails given by
where
As proposed by Simoncelli & Adelson (1996), parameters estimation may be simplified using the kurtosis
The above described model is widely known as the generalized Laplacian model (GLM). This model is commonly used to model filtered images, such as the wavelet coefficients of high frequency bands. The histogram and the modelled PDF for a selected background patchare depicted in Fig. 8a using the logarithmic scale, which clearly illustrates the quality of the fit.
For denoising, we transform images into the wavelet domain. In case of the Gaussian-distributed noise, the noise parameters are preserved unaffected by the transformation. In contrast, forthe non-Gaussian noise, the parameters change and thusneed be re-estimated.We may either estimate the parameters directly in the wavelet domain (e.g. via the method of moments), or alternatively,transform the moments into the wavelet domain.
3.1.2. Gaussian mixturemodel of the noise
Another possibility of modelling noise in the selected background patches is the Gaussian mixture model (GMM). This model is generally given by a mixture of a certain number of Gaussians with the variances
where
where the mean values
To estimate the model parameters in the wavelet domain, we may use the system of moment equations employing the second and the fourth central moment derived in (Švihlík, 2009). The noise parameters (the variances
where
Using the logarithmic scale, Fig. 8b displays the result of fitting the model to the histogram of the selected background patch.
3.2 Wavelet coefficient thresholding
The method of wavelet coefficients thresholding is based on suppressing low-energy detail coefficients which are presumed to noise-dominated. To do this, we may choose different thresholding functions. The basic two thresholding function types are the hard thresholding and the soft thresholding function. For the former, the coefficients generated by alteringthe observed real-valued coefficients
where
where
Hard thresholding preserves the coefficient with the values greater than the threshold. This may, however, introduce discontinuities in the coefficients values, which may result in artefacts. In contrast, the soft thresholding function does not introduce artefacts owing to being continuous. This function complies with the assumption that noise is distributed evenly in all coefficients. However, when this is not the case, this technique reduces also the values of the coefficients corresponding to the underlying noise-free signal, which results in edge blurring .
3.2.1. Thresholdestimationmethods for the Gaussian noise
Threshold estimation methods vary in the assumption of the noise variance uniformity for different scales and subbands and in the threshold value estimation methods which they employ. In general, orthonormal transforms preserve the statistics of the i.i.d. (independent identically distributed)Gaussian noise. That is the reason why the most widely used methods are derived with this assumption.
The VisuShrink methodassumes the noise variance the same for all thresholded subbands. The noise variance is estimated using the median absolute deviation (MAD) of the coefficients from the highest-frequency subband which is presumed to be noise-dominated.
where the constant in the denominator corresponds to the Gaussian distribution. The primary advantage of this variance estimation method is its robustness to outliers. The estimated noise varianceis than exploited for computing the universal threshold with the same value for all levels and subbands
where
In literature, SureShrink is often compared with BayesShrink for different types of data and the two methods. BayesShrinkderives the threshold within the Bayesian framework assuming a generalized Gaussian distribution of the wavelet coefficients and the additive noise model of the observed coefficients
where
The mean square error in a subband may be approximated by the corresponding Bayesian squared error risk with the generalized Gaussian as the prior. The threshold which minimizes the Bayesian risk (is nearly optimal) is produced as
These parameters are estimated from the data for each subband. The noise variance
where the estimate of the observed coefficients variance is computed from each subband given as
while assuming the zero mean.
3.2.2. Wavelet coefficients thresholding for the non-Gaussian noise
In case that the noise analysis identifies noise to be non-Gaussian and the moment equation systems for GMM and GLM models are not well satisfied, the thresholding method must be modified. The threshold value is usually derived for the noise with the Gaussian distribution. In accordance with the outcomes of the noise analysis we proposed a simple equation for the evaluation of the threshold value of the GLM. For the universal threshold from (24), the threshold value
where
Now let us consider the DTCWT. In case of complex-valued coefficients, we threshold the magnitudes while keeping the phase unchangedas described in (22). It is evident that the PDF of the wavelet coefficients magnitudes is asymmetric, and its mean is not zero. We consider the real and imaginary components of the complex coefficients to be i.i.d. Gaussian. Hence, the magnitude is Rayleigh-distributed. The Rayleigh PDF is given by
where
where parameter
where
A selected CT slice from our image database thresholded assuming a non-Gaussian noise by using various wavelet transforms is depicted in Fig. 11. The results appear similar, except that in case of the DWT, the image is slightly over-smoothed.Fig. 9 shows the sameimage using theintensity profiles, whose sample variances
Additionally, we produced another set of denoising results using the BayesShrink method described in subsection 3.2.1. As depicted in Fig. 12, we performed BayesShrink using the DTCWT and the DWT. In case of the DTCWT, we used equation (33) for computing the parameter
3.3. Statistical modelling of the wavelet coefficients
The. other broad family of wavelet-based noise reduction methods is based on statistical modelling of the wavelet coefficients. As demonstrated in numerous publications (Romberg et al., 2001), these methods usually outperform the thresholding techniques with respect to the result quality. On the other hand, they also yield greater computational complexity. In this subsection, we discuss two different methods: the hidden Markov trees (HMT) and two types of the marginal probabilistic models discussed above - the GMM and the GLM.
3.3.1. Bayesian estimator
The probabilistic methods utilize the Bayesian estimator to estimate the underlying signal from its noisy observation based on the a priori information. There are two basic variants of this estimator, depending on whether the estimator is designed to optimize the minimum mean square error(MMSE) or the maximum a posterior(MAP) risk function.
Once again, we assume the additive noise model of the noisy wavelet coefficients observations in (25).The conditional mean of the posterior PDF
where
The MAP estimator is given by the following formula
Bayesian statistics represent a powerful signal estimation tool (Rowe, 2003). In contrast to the classical Fisher approach, which exploits only the observed data, the Bayesian approach allows subsuming the prior information into the solution and thus produces useful results even for small datasets.
3.3.2. Wavelet-based a priorimodels
The above described marginal models (the GMM and the GLM) are suitable for modelling noise in tBayesian estimators, as discussed in subsections 3.1.2 and 3.1.1, and also as the a priori model of the noise-free signal. Assuming additive noise in the wavelet domain from (25), the observed coefficients
where the moments of
From(36) and (37),it is possible to compute themoments
For the wavelet-based GLM, equations (36) and (37) are also valid.The GLM of the noise-free signal is given as
where
Using equations (36) and (37),we obtain
And from the second central moment we derive
Again, the values of the moments for
Noise suppression methods based on Bayesian estimation are generally more efficient than thethresholding methods, mainly in case of considerable noise contamination. Fig. 13 shows the Shepp-Logan phantom contaminated by generalized Laplacian noise (
which was computed for the original image
The described Bayesian estimation represents a powerful tool for image denoising. However, we presume that one of the following factors is in conflict with solvability of the denoising task: the analyzed noise isnot strictly Additive and/or signal-independent, or the derived equation systems for the GMM and the GLM (originally derived for astronomical data (Švihlík & Páta, 2008)) are not well satisfied.
3.3.3. Wavelet-based hidden Markov trees
Wavelet coefficients thresholding methods assume the wavelet transform to de-correlate the signal thoroughly. However, this is not a correct assumption. The wavelet coefficients are interrelated and exhibit persistence across scale and clustering within scale. Both these properties are captured by the hidden Markov tree (HMT) models (Baraniuk, 1999). Acording to the persistency property, the coefficient values propagate across scale from parent to child within the tree. This means that a large parent coefficient corresponding to a signal singularity should have large children coefficients, while a parent coefficient associated with a noise-related singularities should not. Clustering within scale signifies that a large (small) coefficient value is expected in the vicinity of a large (small) coefficient.
As depicted in Fig. 14, the HMT connects the hidden states of a child node
where
The intra-scale dependencies are captured by the transition probabilities. For M=2, the transition probability matrix connecting the children hidden states
The persistence property implies that
The HMT are used for denoising in the following fashion (Crouse et al., 1998). First, the model is fitted to the noise observation coefficients using the expectation maximization (EM) algorithm. This training algorithm comprises the E-step, in which the state information propagates upwards and downwards through the tree, and the M-step, in which the model parameters
Second, the trained model is exploited as the a priori signal PDF in order to compute the conditional mean estimates of the noisy observations given the noise-free signal coefficients.
Again, we assume the additive nose model in (25), where
where
As example of HMT-based image denoising is displayed in Fig. 16. The wavelet-basedHMTs (Romberg et al., 2001) capture dependencies between the wavelet coefficients across scales, since image singularities, such as edges, persist across scales, while the noise-dominated coefficients lack such intra-scale consistence. This approach yields very good denoising results, however requires a computationally expensive training.
4. Conclusion
In this chapter, we described different types of the wavelet transform including both non-redundant (the DWT) and redundant representations (the DTCWT and the UDWT). In general, the DTCWT and the UDWT outperform the DWT due to their shift-invariance; however, at the expense of redundancy. The DTCWT is less redundant than the UDWT and provides better directional selectivity.
We carried out preliminary noise analysis on 2 CT-datasets. The noise component in CT images is very complex and, presumably, also non-stationary. However, for simplicity, we assumed that the noise is stationary within the image and used the additive noise model. In order to model the noise, we selected a few background patches and modelled their distributions using the generalized Laplacian model or the Gaussian mixture model. The noise models were then exploited for wavelet coefficients thresholding. This required deriving threshold estimation equations corresponding to these models and also for the assumed Rayleigh distribution of the DTCWT coefficients magnitudes. The denoising results by using each of the three described wavelet transform were demonstrated on the CT-image data.
Since the threshold-based methods tend to blur edges and cause artefacts (the extent of this problem depends based on the used wavelet transform and thresholding method), we decided to implement the probabilistic methods. In general, these methods outperform the thresholding methods in the resulting image quality (mainly in case of considerable noise contamination); however, at the expense of greater computation cost. The described Bayesian estimation represents a powerful tool for image denoising. However, we presume that one of the following factors is in conflict with solvability of the denoising task: the analyzed noise is not strictly additive and/or signal-independent, or the derived equation systems for the GMM and the GLM are not well satisfied. In this perspective, the thresholding methods due to their relative simplicity revealed greater robustness towards non-fulfilment of the assumptions of the noise characteristics. On the other hand, the hidden Markov trees (HMT) of wavelet coefficients performed well and produced good quality image results with reduced noise and unblurred edges.
In future work, we shall focus on experiments in a larger scale. We shall carry out a thorough noise analysis on more datasets (on different CT-scanners if applicable) and also compare different denoising methods both by interviewing medical experts and by designing and evaluating appropriate quality metrics. Regarding methods development, we will further focus on the probabilistic methodsexperimenting with the use of more than two components in the Gaussian mixture model, the DTCWT instead of the DWT, and possibly also volumetric denoising techniques.
Acknowledgments
This work was funded by the research grant MSM 6046137306 of the Ministry of Education, Youth and Sports of the Czech Republic.
References
- 1.
Baraniuk R. G. 1999 Optimal tree approximation with wavelets. SPIE Tech. Conf.Wavelet Applications Signal Processing VII,3813 196 207 Denver, CO. - 2.
Borsdorf A. Kappler S. Raupach R. Noo F. Hornegger J. 2009 Local Orientation-Dependent Noise Propagation for Anisotropic Denoising of CT-Images. IEEE Nuclear Science Symposium Conference Record (NSS/MIC). - 3.
Bosdorf A. Raupach R. Flohr T. Hornegger J. 2008 Wavelet Based Noise Reduction in CT-Images Using Correlation Analysis. (12), 1685-1703. - 4.
Bovik A. 2009 Academic Press, U.S.A. - 5.
Chang G. Yu B. Vetterli M. 2000 Adaptive Wavelet Thresholding for Image Denoising and Compression. 9 (9), 1532-1546. - 6.
Crouse M. S. Nowak R. D. Baraniuk R. G. 1998 Wavelet-Based Statistical Signal Processing Using Hidden Markov Models. (4), 886-902. - 7.
Davenport W. B. 1970 (1st ed.). New York: Prentice Hall, Inc. - 8.
Donoho D. L. Johnstone I. M. 1994 Ideal spatial adaptation by wavelet shrinkage. (81). - 9.
Gonzalez R. C. Woods R. E. 2002 (2nd ed.). (Bovik, Ed.) Elsevier Academic Press. - 10.
Hammond D. K. Simoncelli E. P. 2008 Image Modeling and Denoising With Orientation-Adapted Gaussian Scale Mixtures. (11). - 11.
Hošťálková E. Vyšata O. Procházka A. 2007 Multi-Dimensional Biomedical Image De-Noising Using Haar Transform. , (175 178 Cardiff. - 12.
Izenman A. J. 1991 Recent Developments in Nonparametric Density Estimation. (413), 205-224. - 13.
(Khare A. Shanker Tiwary U. 2005 ). A New Method for Deblurring and Denoising of Medical Images using Complex Wavelet Transform. 27th Annual Int. Conf. of the Engineering in Medicine and Biology Society1897 1900 . Shanghai : IEEE-EMBS - 14.
Kingsbury N. G. 2003 Design of Q-shift Complex Wavelets for Image Processing Using Frequency Domain Energy Minimisation. (NK1 NK4 Vancouver: IEEE. - 15.
Mallat S. 2009 (3rd ed.). Academic Press, Elsevier. - 16.
(McNitt-Gray M.F. 2006 ). Tradeoffs in CT Image Quality and Dose. 33 (6), 2154-2162 - 17.
Motwani M. C. Gadiya M. C. Motwani R. C. 2004 Survey of Image Denoising Techniques. Santa Clara, CA. - 18.
Percival D. B. Walden A. T. 2006 New York, U.S.A.: Cambridge University Press. - 19.
Romberg J. Choi H. Baraniuk R. G. 2001 Bayesian Tree-Structured Image Modeling Using Wavelet-Domain Hidden Markov Models. (7). - 20.
Rowe D. B. 2003 Chapman and Hall/CRC. - 21.
Samé A. al e. 2007 Mixture Model-Based Signal Denoising. (1), 39-51. - 22.
Scott D. W. 1979 On Optimal and Data-Based Histograms. (3), 605-610. - 23.
Selesnick W. Baraniuk R. G. Kingsbury N. G. 2005 The Dual-Tree Complex Wavelet Transform. (6). - 24.
Shepp L. A. Logan B. F. 1974 The Fourier Reconstruction of a Head Section. , ;NS-21 21 43 - 25.
Simoncelli E. P. Adelson E. H. 1996 Noise Removal via Bayesian Wavelet Coring. , (379 382 Lausanne (Switzerland). - 26.
Starck J. L. Fadili J. Murtagh F. 2007 The Undecimated Wavelet Decomposition and its Reconstruction. (2), 297-309. - 27.
Švihlík J. 2009 Modeling of Scientific Images Using GMM. (4), 579-586. - 28.
Švihlík J. Páta P. 2008 Elimination of Thermally Generated Charge in Charged Coupled Devices Using Bayesian Estimator. (2), 119-124. - 29.
Thavavel V. Murugesan R. 2007 Regularized Computed Tomography using Complex Wavelets. (1), 27-32. - 30.
Wang J. Huang H. K. 1996 Medical Image Compression by Using Three-Dimensional Wavelet Transformation. (4), 547-554. - 31.
Wu X. Qiu T. 2005 Wavelet Coding of Volumetric Medical Images for High Throughput and Operability. (6). - 32.
You J. Zeng G. L. 2007 Hilbert Transform Based FBP Algorithm for Fan-Beam CT Full and Partial Scans. (2), 190-199. - 33.
(Zhu L. StarLack J. 2007 ). A Practical Reconstruction Algorithm for CT Noise Variance Maps Using FBP Reconstruction. Proc. of SPIE: Medical Imaging 2007: Physics of Medical Imaging.6510, p. 651023. SPIE