Open access

Potential Gene Therapy: Intravenous Administration of Phagocytes Transfected Ex Vivo with FGF4 DNA/Biodegradable Gelatin Complex Promotes Angiogenesis in Animal Model of Myocardial Ischemia/Reperfusion Injury

Written By

Toru Shizuma, Chiharu Tanaka, Hidezo Mori and Naoto Fukuyam

Submitted: December 2nd, 2010 Published: August 23rd, 2011

DOI: 10.5772/24078

Chapter metrics overview

2,173 Chapter Downloads

View Full Metrics

1. Introduction

Conventional gene therapies still require improvement in various respects, such as transfection efficiency for targeting organs or tissues, safety (Li Q et al., 2001; Pfeifer A & Verma IM, 2001; Watson DJ et al., 2002), and so on. For example, transfection of naked plasmid DNA requires the use of a large quantity of DNA because of enzymatic degradation in the human body. Conventional non-viral vectors seem to be inferior to viral ones in efficiency, except for nucleofection (Nishikawa M & Hashida M, 2002; Schakowski F et al., 2004). On the other hand, gene therapy using viral vectors such as adenovirus, retrovirus etc., may induce tissue inflammation (Tomasoni S & Benigni A, 2004), though the efficiency of transfection is often relatively high. Also, the safety of viral transfection remains an issue, because of the risk of toxicity or mutation of viruses (Ferber D, 2001; Isner JM, 2002; Kay MA et al., 2001). Moreover, in vivo gene delivery to localized target tissues usually necessitates an invasive approach; for example, direct gene transfection to cardiomyocytes requires a surgical approach (Losordo DW et al.,1998) or catheterization (Kornowski R et al., 2000; Laitinen M et al., 2000). On the other hand, ex vivo gene transfection is less invasive. However, targeting of specific tissues by intravenous injection is usually inefficient.

Macrophages accumulate in ischemic tissues through chemotaxis (Ramsay SC et al., 1992). Therefore, we considered that intravenously administered macrophages might target ischemic tissue in vivo. Tabata, et al. reported that particles of gelatin are phagocytized by macrophages (Tabata Y & Ikada Y, 1987; Tabata Y & Ikada Y, 1988). Gelatin is a natural polymer derived from collagen, and is widely used in pharmaceutical or medical applications, i.e., it is safe and suitable for use in humans (Young S et al., 2005). Further, its isoelectric point (Ip) can be adjusted by modification of its residues, and positively charged gelatin can be impregnated with negatively charged substances (Ikada Y & Tabata Y, 1998), such as nucleic acid (Kasahara H et al., 2003). Therefore, gelatin may be suitable as a vector for transfecting phagocytes ex vivo.

Here, we describe a study aimed at examining the feasibility of a new concept for less-invasive, cell-based gene therapy by means of ex vivo gene transfection into isolated phagocytes (macrophages/monocytes) using a gelatin carrier, followed by intravenous injection of the transfected phagocytes. The present method has significant advantages over conventional cell-based gene delivery (Panetta CJ et al., 2002; Xie Y et al., 2001), in that the intravenously injected cells (phagocytes) not only produce protein from the transfected gene, but also have the potential for high tissue targeting ability. This method should be suitable for clinical gene therapy. Indeed, its clinical efficacy in patients with cardiovascular disease has recently been reported (Komeda M et al., 2009; Marui A et al., 2007; Tabata Y, 2009).

Advertisement

2. Main body

2.1. Methods

This study was performed in accordance with the Guideline of Tokai University School of Medicine on Animal Use, which conforms to the NIH Guide for the Care and Use of Laboratory Animals, (DHEW publication No. (NIH) 86-23, Revised 1985, Offices of Science and Health Reports, DRR/NIH, Bethesda, MD, 20205).

2.1.1. Animals

One hundred and twenty-one Fisher rats (male, 10 weeks old, Clea Japan Inc., Tokyo) and 61 nude SCID mice (male, 6 weeks old, Shizuoka Animal Center, Shizuoka, Japan) were used. Rats were anesthetized by inhalation of diethyl ether for harvesting of macrophages and with isofluran (1.5-3%) for thoracotomy, after which they were mechanically ventilated with a mixture of oxygen and nitrous oxide. Mice were anesthetized by intraperitoneal injection of sodium pentobarbital (40 mg/kg).

A model of myocardial ischemia-reperfusion injury was prepared in 41 rats. The remaining 80 rats were used for collecting activated macrophages. The heart was exposed via thoracotomy, and the proximal left anterior descending coronary artery was ligated (Gidh-Jain M et al.,1996) for 180 min, followed by reperfusion. A model of hindlimb ischemia was prepared in 61 mice. The left femoral artery was ligated and resected (Takeshita S et al., 1994).

2.1.2. Cells

Macrophages were obtained from 80 rats. Thioglycolate (4%, 8 ml) was injected into the peritoneal cavity, and after 4 days, peritoneal macrophages were collected (Ribeiro RA et al.,1991). Monocytes were obtained from peripheral blood of healthy volunteers. Leukocyte-rich plasma was obtained by dextran 500 sedimentation and layered onto Nycoprep 1.068 (Nycomed, Birmingham, UK). The monocyte-containing layer was aspirated, washed twice and allowed to adhere to the dish for 90 minutes. Fibroblasts (NIH 3T3, Invitrogen Corporation, Carlsbad, CA) were also used. The cells were resuspended in RPMI 1640 medium (Sigma) containing 5% heat-inactivated fetal calf serum and cultured for 7-14 days. The cell viability and type were determined by trypan blue exclusion and by immunostaining using anti-macrophage antibody, up to 14 days.

2.1.3. Genes and vector

Complementary DNA (cDNA) of green fluorescent protein (GFP), Renilla luciferase or human hst1/fibroblast growth factor 4 (FGF4) (Kasahara H et al., 2003) was inserted into the expression vector pRC/CMV (Invitrogen Corporation, Carlsbad, CA) and the constructs were designated as pRC/CMV-GFP, pRC/CMV-luciferase and pRC/CMV-HST1-10, respectively. Preparation and purification of the plasmid from cultures of pRC/CMV-GFP-, pRC/CMV-luciferase-, or pRC/CMV-HST1-10-transformed Escherichia coli were performed by equilibrium centrifugation in cesium chloride-ethidium bromide gradients.

Gelatin was prepared from porcine skin (Tabata Y & Ikada Y, 1987). After swelling in water the gelatin particles used in this study were spheroids with a diameter of approximately 5-30 µm, water content of 95%, and pI of 11. Gelatin (2 mg) was incubated with 50 µg of the plasmid for 7 days at 4 °C to make a gelatin-DNA complex (Tabata Y & Ikada Y, 1987).

2.1.4. Ex vivo gene transfection

Macrophages, monocytes, and fibroblasts (1 x 106) were cultured with the gelatin-DNA complex (2 mg of gelatin plus 50 µg of DNA) for 14 days on a culture dish (100 mm in diameter). Gene expression of GFP was evaluated by fluorescence microscopy and fluorescence-activated cell sorting. Luciferase activity in the cell lysate was evaluated with a photon counter system after cell lysis (Fukuyama N et al., 1996).

2.1.5. Organ distribution of phagocytes injected intravenously and directly into ischemic muscle

To examine tissue-targeting by intravenous injection of transfected phagocytes, the distribution of the cells into organs was evaluated by immunohistochemistry. In the rat model of myocardial ischemia-reperfusion injury, the GFP-gene-transfected macrophages (1.0 x 106 each) were injected into the superficial dorsal vein of the penis at the initiation of reperfusion (n=7 and 5, respectively). In the mouse model of hindlimb ischemia, the GFP-gene-transfected monocytes (1.0 x 106) were injected into the caudal vein 14 days after induction of ischemia (n=5). To examine the tissue targeting by direct local injection of transfected phagocytes, the distribution of the cells into organs was also evaluated. In the rat model of myocardial ischemia-reperfusion injury (n=7) and the mouse model of hindlimb ischemia (n=5), the same numbers of transfected macrophages and monocytes were directly injected into ischemic myocardium and ischemic skeletal muscle, respectively. Tissue samples were obtained 24 hours after cell administration. Each tissue was homogenized and the homogenate was cytospun. Immunohistochemical analysis was done with anti-GFP antibody (GFP monoclonal antibody; Clontech, USA). GFP-positive macrophages were counted in each tissue and expressed as a percentage of total GFP-positive cells.

2.1.6. Amelioration of ischemia by intravenous injection of angiogenic gene-transfected phagocytes

The angiogenic effect of intravenously injected FGF4-gene-transfected phagocytes on the ischemia models was evaluated. In the rat model of myocardial ischemia-reperfusion injury, FGF4-gene-transfected macrophages (n=5), non-transfected macrophages (1.0 x 106 each) (n=5), or saline (n=5) were injected into the superficial dorsal vein of the penis, or naked FGF4-DNA (50 µg) was injected directly into the ischemic myocardium (n=5), at the initiation of reperfusion. Fourteen days after the cell administration, blood flows in the ischemic and non-ischemic regions in the heart were evaluated with a noncontact laser Doppler flowmeter (FLO-N1, Omegawave Corporation). Then, tissue samples were obtained and histological analysis was performed. In a mouse model of hindlimb ischemia, just after induction of ischemia, FGF4-gene-transfected monocytes (n=15), non-transfected monocytes (n=8) (1.0 x 106 each), or saline (n=10) were injected into the caudal vein, or naked FGF4-DNA (50 µg) was injected directly into the ischemic muscle (n=12). Fourteen days after induction of ischemia, blood flows in the limbs were evaluated with the noncontact laser Doppler flowmeter (FLO-N1, Omegawave Corporation).

2.1.7. Histology

Ten-micrometer sections were cut from formalin-fixed, paraffin-embedded tissue. Two sections were used for H.E. staining and Azan staining, and eight sections were used for immunohistochemical staining. Immunohistochemical staining was performed by an indirect immunoperoxidase method. Anti-GFP antibody, anti-Mac1 antibody (BMA Biomedicals Ag, Switzerland), and anti-CD31 antibody (Serotec, UK) were used as primary antibodies. Mac1-antigen is specific to macrophages/monocytes. Anti-Ig, peroxidase-linked species-specific F(ab')2 fragments (Amersham Pharmacia Biotech UK Ltd., UK), were used as a secondary antibody. Double staining was performed with alkaline staining and peroxidase staining. The density of vessels stained with von Willebrand factor-antibody was calculated by morphometric assessment in 16 randomly selected fields for each heart and expressed as number / mm2.

2.1.8. Statistical analysis

Data are presented as mean values±SD. Differences were assessed by means of ANOVA (analysis of variance) with Scheffe's multiple comparisons test. A value of P<0.05 was considered statistically significant.

2.2. Results

2.2.1. Ex vivo gene transfection

We studied whether genes could be transfected into isolated rat macrophages, human monocytes, and mouse fibroblasts ex vivo by using gelatin. Transfection of the GFP gene into isolated rat macrophages (Figs. 1A and B) and human monocytes (Figs. 1C and D), but not into mouse fibroblasts (data not shown), was achieved by culture with gelatin-DNA complex for 14 days. The gene transfection efficiency into rat macrophages was 68±11% (30 experiments, Fig. 2A) and that into human monocytes was 78±8% (30 experiments) as determined with a fluorescence-activated cell sorter. Sequential analysis after luciferase-gene transfection into rat macrophages revealed high expression after 14 days of culture (Fig. 2B).

2.2.2. Organ distribution of phagocytes injected intravenously or directly into ischemic muscle

We studied quantitatively whether intravenously injected luciferase-gene-transfected phagocytes could target ischemic tissues (Table 1). In non-ischemic rats, the injected macrophages were found almost exclusively in the spleen (98±4%) (n=7, Table 1). In non-ischemic mice, similar results were observed (n=7, data not shown). In a rat with myocardial ischemia-reperfusion injury, some of the intravenously injected macrophages were incorporated into the heart (Table 1).

Figure 1.

Fluorescent presentation of ex vivo gene transfection with gelatin-DNA complex in macrophages/monocytes as well as fibroblasts. Rat macrophages (A and B) and human monocytes (C and D) were cultured with gelatin-GFP-gene complex for 14 days. Transmittance microscopic images (A and C) and fluorescence images (B and D) of the cells are shown. Macrophages (B) and monocytes (D) show fluorescence due to GFP. Arrowheads indicate GFP-expressing cells. Arrows indicate gelatin particles themselves. Bars=20 µm (Fukuyama N et al., 2007).

Figure 2.

Quantitative assessment of gene transfection into rat macrophages. A, Fluorescence-activated cell sorting analysis of transfected macrophages done on day 14 of culture with reference to GFP-positive and Mac1-positive cells. B, Sequential changes of luciferase activity in cultured macrophages in the presence of luciferase-gene-gelatin complex. Values are mean±SD. The number of experiments is shown in parentheses (Fukuyama N et al., 2007).

Table 1.

Organ-distribution of phagocytes injected into the vein and into local tissue. Each value shows a distribution ratio (%) into organs of transfected macrophages/monocytes (mean±SD). i.v., intravenous injection into the vein; i.m. direct injection into the jeopardized muscle (Fukuyama N et al., 2007).

Figure 3.

Incorporation of injected macrophages into the heart. GFP-transfected macrophages were injected into the vein in a rat model of myocardial ischemia-reperfusion injury. A and B, Low-resolution images of ischemic myocardial tissue with hematoxylin-eosin staining and Azan staining, respectively. IVS, the interventricular septum; LV, the left ventricular free wall; RV, the right ventricular free wall. Original magnification x20. Bars=500 µm. C and D, Medium-and high-resolution images of ischemic myocardial tissue with hematoxylin-eosin staining; Original magnification x100 and x300; Bars=100 and 20 µm, respectively. E and F, Double immunohistochemical stainings of GFP- (red) and Mac1- (blue) antigens. Arrow indicates a GFP- and Mac1-antigen double-positive cell and arrowhead a Mac 1-antigen single-positive cell. Original magnification x100 and x400; Bars=100 and 10 µm, respectively. G, The time course of GFP-transfected macrophages (Mφ) accumulation into heart (Fukuyama N et al., 2007).

The incorporation into the post-ischemic pericardium amounted to 13±6% (n=7) (non-ischemic rats 0±0%, n=7, Table 1). The incorporated cells expressed GFP (Fig. 3). Fibrosis with inflammatory infiltrates was recognized in the anterior wall of the left ventricle, extending to the interventricular septum (Figs. 3A and B). These infiltrates were mainly polymorphonuclear leukocytes and macrophages (Figs. 3C and D). Approximately 20 % of the macrophages showed GFP-positivity in this area (Figs. 3E and F). Similar tissue-targeting by intravenously injected monocytes was confirmed in a mouse model with hindlimb ischemia (13±7%, n=7, Table 1). Furthermore, we studied whether local intramuscular injection increased the degree of tissue targeting (Table 1). After direct injection of phagocytes into ischemic muscle, 86±10% and 88±6% of the cells remained in the target tissue in the two models. Thirteen and 11% of phagocytes injected into the cardiac or hindlimb muscle migrated to the spleen. In the other organs, accumulation of phagocytes was negligible.

2.2.3. Amelioration of ischemia by intravenously injected angiogenic-gene-transfected phagocytes

In the rat model with myocardial ischemia-reperfusion injury, we studied the angiogenic

effect of intravenously injected macrophages transfected with FGF4 gene by using gelatin. Intravenous injection of these macrophages (1.0 x 106) significantly increased the regional blood flow in the ischemic myocardium (78±7.1%, n=8, in terms of ischemic/non-ischemic myocardium flow ratio) compared with the other three treatments (P<0.05, ANOVA), that is, intravenous administration of saline (35±10%, n=8), intramuscular administration of naked DNA encoding FGF4 (50 µg, direct intramyocardial injection after thoracotomy) (58±5.3%, n=8), and intravenous administration of the same number of non-transfected macrophages (42±12%, n=8) (Fig. 4A). Histological analyses revealed angiogenesis in the ischemic tissue after the administration of transfected cells (Figs. 4B and C). Similar results were observed in the mouse model with hindlimb ischemia. Intravenous injection of FGF4-gene-transfected monocytes (1.0 x 106) enhanced regional blood flow in the ischemic leg (Fig. 4D). The increase of blood flow in the mice with transfected monocytes (93±22% in terms of flow ratio in the ischemic/non-ischemic leg) was significantly larger than those obtained with the other three treatments described above (38±12, 55±12, and 39±15%, P<0.05, ANOVA). Neither lymph node swelling in any part of the body nor pathologic change in the spleen or lung, such as angioma or abnormal immune response, was found in any of the animals.

Figure 4.

Therapeutic effects of angiogenic-gene-transfected phagocytes on ischemia. FGF4-transfected macrophages were injected into the vein or naked DNA encoding FGF4 was injected directly into the myocardium in a rat model of myocardial ischemia-reperfusion injury (A-C). FGF4-transfected monocytes were injected into the vein or naked DNA encoding FGF4 was injected directly into the ischemic muscle in a mouse model of hindlimb ischemia (D). A, Relative blood flow in the ischemic myocardium. Each flow represents a relative value with respect to non-ischemic region. The number of animals is shown in parentheses. B, Quantification of vessel density in the ischemic myocardium. The number of observation fields is shown in parentheses. C, Immunohistochemical staining in the ischemic myocardium with anti-CD31 antibody. D, Relative blood flow in the ischemic leg. Each flow represents a relative value with respect to non-ischemic leg. The number of animals is shown in parentheses. Control represents animals injected with saline into the vein; DNA, naked DNA encoding FGF4 was injected directly into the ischemic muscle; non-Tf, non-transfected phagocytes were injected intravenously Tf, FGF4-gene-transfected phagocytes were injected intravenously. Values are mean±SD. P<0.05 vs *Cont, †DNA, and #non-Tf (ANOVA) (Fukuyama N et al., 2007).

2.3. Discussion

The advantages of the present method are as follows. First, genes can easily be transfected into phagocytes (macrophages/monocytes). In preliminary experiments, we found that genes can also be transfected into endothelial progenitor cells (Nagaya N et al., 2003). Compared with other transfection methods, the transfection efficiency was high (68±11%) and it is not necessary to use a potentially hazardous viral vector (Kobinger GP et al., 2004; Lei Y et al., 2004; Watson DJ et al., 2002). Second, the phagocytes can target pathologic tissues by chemotaxis even after intravenous injection, and targeting should be considerably improved if they are administered locally. Moreover, the injection is repeatable. We confirmed that the angiogenic gene-transfected phagocytes enhanced angiogenesis after ischemia-reperfusion injury in rat heart and ameliorated ischemia in a mouse hindlimb model. Gelatin prepared as described here is not rapidly degraded in the human body, and should be effective for prolonged transfection gene therapy, as well as for drug delivery systems, etc.. This method appears to be suitable for safe and effective cell-based gene therapy.

The injected phagocytes migrated into pathologic tissues, presumably in response to the release of cytokines such as monocyte chemoattractant protein 1 by injured endothelial cells (Yoshimura T & Leonard EJ, 1990). Adhesion molecules such as P-selectin (Ikada Y et al., 2002) are probably involved in the recruitment of phagocytes to the vessel wall. The injected phagocytes also migrated to the spleen, but no pathologic change was found in the spleen.

The present method has several advantages over conventional methods of cell-based

gene therapy, such as fibroblast-based and smooth muscle cell-based approaches (Koch K-C et al., 2006; Ott HC et al., 2005; Xie Y et al., 2001). For example, monocytes do not aggregate in vessels, whereas fibroblasts or smooth muscle cells cannot be injected intravenously because of aggregation. The transfected phagocytes not only synthesize protein from the transfected gene, but also are partially targeted to the impaired tissue. In addition, the transfection rate was better than those of methods such as lipofection, viral vectors and electroporation (Kobinger GP et al., 2004; Veit K et al., 1999). The newly developed technique of nucleofection has a transfection efficiency of 40-70% (Maasho K et al., 2004), which is similar to that of our method, but our procedure is easier to use (Maasho K et al., 2004; Mertz KD et al., 2002).

Advertisement

3. Conclusion

The therapeutic effect obtained here (intravenous administration of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex) was superior to that of conventional gene therapy, which we reported previously, i.e., intramuscular injection of naked DNA, in heart and leg ischemia models. The major disadvantage of our method is the cell preparation time of 2 weeks before therapy can be started, and further work is needed to speed up this process. However, our results suggest that this method may an effective therapeutic option from the viewpoint of regenerative medicine.

Advertisement

Acknowledgments

The authors wish to thank Jobu Itoh, Yoshiko Shinozaki, and Takayuki Hasegawa for their technical work.

References

  1. 1. Ferber, D. 2001. Gene therapy. Safer and virus-free? Science, vol.294:1638-1642
  2. 2. FukuyamaN.IchimoriK.SuZ.IshidaH.NakazawaH. 1996 Peroxynitrite formation from activated human leukocytes. Biochem Biophys Res Commun, 224 414-419
  3. 3. FukuyamaN.TanakaE.TabataY.FujikuraH.HagiharaM.SakamotoH.AndoK.NakazawaH.MoriH. 2007 Intravenous injection of phagocytes transfected ex vivo with FGF4 DNA/biodegradable gelatin complex promotes angiogenesis in a rat myocardial ischemia/reperfusion injury model. Basic Res Cardiol, 102 209-216
  4. 4. Gidh-JainM.HuangB.JainP.el -SherifN. 1996 Differential expression of voltage-gated K+ channel genes in left ventricular remodeled myocardium after experimental myocardial infarction. Circ Res, 79 669-675
  5. 5. IkadaY.TabataY. 1998 Protein release from gelatin matrices. Adv Drug Deliv Rev, 31 287-301
  6. 6. IkadaY.YoungL. H.LeferA. M. 2002 Attenuation of neutrophil-mediated myocardial ischemia-reperfusion injury by a calpain inhibitor. Am J Physiol Heart Circ Physiol, 282 H1421-H1426
  7. 7. Isner JM. 2002 Myocardial gene therapy. Nature, 415 234-239
  8. 8. KasaharaH.TanakaE.FukuyamaN.SatoE.SakamotoH.TabataY.AndoK.IsekiH.ShinozakiY.KimuraK.KuwabaraE.KoideS.NakazawaH.MoriH. 2003 Biodegradable gelatin hydrogel potentiates the angiogenic effect of fibroblast growth factor 4 plasmid in rabbit hindlimb ischemia. J Am Coll Cardiol, 41 1056-1062
  9. 9. KayM. A.GloriosoJ. C.NaldiniL. 2001 Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med, 7 33-40
  10. 10. KobingerG. P.DengS.LouboutinJ. P.VatamaniukM.MatschinskyF.MarkmannJ. F.RaperS. E.WilsonJ. M. 2004 Transduction of human islets with pseudotyped lentiviral vectors. Hum Gene Ther, 15 211-219
  11. 11. Koch-CK.SchaeferW. M.LiehnE. A.RammosC.MuellerD.SchroederJ.DimassiT.StopinskiT.WeberC. 2006 Effect of catheter-based transendocardial delivery of stromal cell-derived factor 1α on left ventricular function and perfusion in a porcine model of myocardial infarction. Basic Res Cardiol, 101 69-77
  12. 12. KomedaM.MaruiA.TambaraK.YamamotoM.SajiY.NishinaT.TabataY. 2009 Biologic anastomosis: the first case of biologic coronary bypass surgery. J Thorac Cardiovasc Surg, 138 775-777
  13. 13. KornowskiR.LeonM. B.FuchsS.VodovotzY.MAFlynnGordonD. A.PierreA.KovesdiI.KeiserJ. A.EpsteinS. E. 2000 Electromagnetic guidance for catheter-based transendocardial injection: a platform for intramyocardial angiogenesis therapy. Results in normal and ischemic porcine models. J Am Coll Cardiol, 35 1031-1039
  14. 14. LaitinenM.HartikainenJ.HiltunenM. O.EränenJ.KiviniemiM.NärvänenO.MäkinenK.ManninenH.SyvänneM.MartinJ. F.LaaksoM.Ylä-HerttualaS. 2000 Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther, 11 263-270
  15. 15. LeiY.HaiderH.KhShujiaJ.SimE. S. 2004 Therapeutic angiogenesis; Devising new strategies based on past experiences. Basic Res Cardiol, 99 121-132
  16. 16. LiQ.BolliR.QiuY.TangX. L.GuoY.BAFrench 2001 Gene therapy with extracellular superoxide dismutase protects conscious rabbits against myocardial infarction. Circulation, 103 1893-1898
  17. 17. LosordoD. W.ValeP. R.SymesJ. F.DunningtonC. H.EsakofD. D.MayskyM.AshareA. B.LathiK.IsnerJ. M. 1998 Gene therapy for myocardia angiogenesis:initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation, 98 2800-2804
  18. 18. MaashoK.MarusinaA.ReynoldsN. M.ColiganJ. E.BorregoF. 2004 Efficient gene transfer into the human natural killer cell line, NKL, using the Amaxa nucleofection system. J Immunol Methods, 284 133-140
  19. 19. MaruiA.TabataY.KojimaS.YamamotoM.TambaraK.NishinaT.SajiY.InuiK.HashidaT.YokoyamaS.OnoderaR.IkadaT.FukushimaM.KomedaM. 2007 A novel approach to therapeutic angiogenesis for patients with critical limb ischemia by sustained release of basic fibroblast growth factor using biodegradable gelatin hydrogel: an initial report of the phaseІ-ІІa study. Circ J, 71 1181-1186
  20. 20. MertzK. D.WeisheitG.SchillingK.LűersG. H. 2002 Electroporation of primary neural cultures: a simple method for directed gene transfer in vitro. Histochem Cell Biol, 118 501-506
  21. 21. NagayaN.KangawaK.KandaM.UematsuM.HorioT.FukuyamaN.HinoJ.Harada-ShibaM.OkumuraH.TabataY.MochizukiN.ChibaY.NishiokaK.MiyatakeK.AsaharaT.HaraH.MoriH. 2003 Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation, 108 889-895
  22. 22. NishikawaM.HashidaM. 2002 Nonviral approaches satisfying various requirements for effective in vivo gene therapy. Biol Pharm Bull, 25 275-283
  23. 23. OttH. C.Mc CueJ.TaylorD. A. 2005 Cell-based cardiovascular repair: The hurdles and the opportunities. Basic Res Cardiol, 100 504-517
  24. 24. PanettaC. J.MiyauchiK.BerryD.SimariR. D.HolmesD. R.SchwartzR. S.CapliceN. M. 2002 A tissue-engineered stent for cell-based vascular gene transfer. Hum Gene Ther, 13 433-441
  25. 25. PfeiferA.VermaI. M. 2001 Gene therapy: promises and problems. Annu Rev Genomics Hum Genet, 2 177-211
  26. 26. RamsayS. C.WeillerC.MyersR.CremerJ. E.LuthraS. K.AALammertsmaFrackowiakR. S. 1992 Monitoring by PET of macrophage accumulation in brain after ischaemic stroke. Lancet, 339 1054-1055
  27. 27. RibeiroR. A.CAFloresCunhaF. Q.FerreiraS. H. 1991 IL-8 causes in vivo neutrophil migration by a cell-dependent mechanism. Immunology, 73 472-477
  28. 28. SchakowskiF.ButtgereitP.MazurM.MärtenA.SchőttkerB.GorschlűterM.Schmidt-WolfI. G. 2004 Novel non-viral method for transfection of primary leukemia cells and cell lines. Genet Vaccines Ther, 2 1
  29. 29. TabataY.IkadaY. 1987 Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microspheres. J Pharm Pharmacol, 39 698-704
  30. 30. TabataY.IkadaY. 1988 Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res, 22 837-858
  31. 31. TabataY. 2009 Biomaterial technology for tissue engineering applications. J R Soc Interface, suppl.3:S311 -S324
  32. 32. TakeshitaS.ZhengL. P.BrogiE.KearneyM.PuL. Q.BuntingS.FerraraN.SymesJ. F.IsnerJ. M. 1994 Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest, 93 662-670
  33. 33. TomasoniS.BenigniA. 2004 Gene therapy: how to target the kidney. Promises and pitfalls. Curr Gene Ther, 4 115-122
  34. 34. VeitK.BoisselJ. P.BuerkeM.GrosserT.MeyerJ.DariusH. 1999 Highly efficient liposome-mediated gene transfer of inducible nitric oxide synthase in vivo and in vitro in vascular smooth muscle cells. Cardiovasc Res, 43 808-822
  35. 35. WatsonD. J.KobingerG. P.MAPassiniWilsonJ. M.WolfeJ. H. 2002 Targeted transduction patterns in the mouse brain by lentivirus vectors pseudotyped with VSV, Ebola, Mokola, LCMV, or MuLV envelope proteins. Mol Ther, 5 528-537
  36. 36. XieY.YangS. T.KnissD. A. 2001 Three-dimensional cell-scaffold constructs promote efficient gene transfection: implications for cell-based gene therapy. Tissue Eng, 7 585-598
  37. 37. YoshimuraT.LeonardE. J. 1990 Human monocyte chemoattractant protein-1 (MCP-1). Immunol Today, 11 97-101
  38. 38. YoungS.WongM.TabataY.MikosA. G. 2005 Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release, 109 256-274

Written By

Toru Shizuma, Chiharu Tanaka, Hidezo Mori and Naoto Fukuyam

Submitted: December 2nd, 2010 Published: August 23rd, 2011