DGAT1 and DGAT2 sequence information (DGAT3 and DGAT4 are not included in the Table because of their divergent sequences). A: animal, F: fungus, P: plant.
1. Introduction
The complete genomes of many organisms including human, mouse,
Recombinant proteins can be used as an alternative source to endogenous proteins. Production of active proteins in large quantities is necessary for the study of protein structure and function (Cao et al., 2003). Purified recombinant proteins are also important for the production of antibodies (Cao 2004; Cao et al., 2008; Cao et al., 2004) and pharmaceutical reagents. Unfortunately, a great number of proteins are difficult to express and purify. Those proteins include membrane proteins, lipid-associated proteins, and low-abundance proteins. The causes of the difficulties in protein expression and purification are various, among which are protein insolubility, protein degradation, and low-level protein expression (Cao 2010). Therefore, production of high-quality recombinant proteins requires optimization of protein expression and purification procedures in each case.
Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been isolated from many organisms. At least two forms of DGATs are present in mammals (Cases et al., 1998; Cases et al., 2001) and plants (Lardizabal et al., 2001; Shockey et al., 2006) with additional forms reported in burning bush (
Over-production of DGATs has been the subject of a number of studies, but progress has been slow in the characterization of the enzymes because DGATs are integral membrane proteins (Shockey et al., 2006; Stone et al., 2006) and difficult to express and purify (Cheng et al., 2001; Weselake et al., 2006). Information regarding the expression of DGAT genes in
2. Bioengineering recombinant diacylglycerol acyltransferases
2.1. DGAT genes have been identified in a wide range of organisms
Database search identified at least 115 DGAT sequences from 69 organisms including plants (such as
No. | Organism | DGAT | GenBank accession number | No. | Organism | DGAT | GenBank accession number |
1 | 1 | XP_001658299 | 59 | 2 | ACJ84867.1 | ||
2 | 1 | EGC41804.1 | 60 | 1 | AAF19345.1 | ||
3 | 2 | XP_003225477.1 | 61 | 2a | XP_001630435.1 | ||
4 | 2 | NP_983542.1 | 62 | 2b | XP_001633322.1 | ||
5 | 1 | EEQ31683.1 | 63 | 2c | XP_001635548.1 | ||
6 | 1 | NP_179535.1 | 64 | 1 | NP_001103634.1 | ||
7 | 2 | NP_566952 | 65 | 2 | XP_001518899.1 | ||
8 | 1 | AAZ22403.1 | 66 | 1 | XP_002724427.1 | ||
9 | 1a | AAY40784.1 | 67 | 1 | AAS01606.1 | ||
10 | 1b | AAY40785.1 | 68 | 2 | ADG22608.1 | ||
11 | 1a | AAD45536.1 | 69 | 1 | NP_001054869.2 | ||
12 | 1b | AAD40881.1 | 70 | 2a | NP_001047917 | ||
13 | 2 | ACO90187 | 71 | 2b | NP_001057530 | ||
14 | 2 | ACO90188 | 72 | 2 | XP_003083539.1 | ||
15 | 1 | NP_777118.2 | 73 | 2 | XP_002822304.1 | ||
16 | 2a | DAA21853.1 | 74 | 1 | EEH17170.1 | ||
17 | 2b | XP_875499.3 | 75 | 1 | AAG23696.1 | ||
18 | 2c | XP_002683800.1 | 76 | 1 | EFA85004.1 | ||
19 | 2a | NP_505413.1 | 77 | 2 | EFA83646.1 | ||
20 | 2b | NP_872180.1 | 78 | 1 | XP_001770929.1 | ||
21 | 1b | XP_849176.1 | 79 | 1 | XP_001758758.1 | ||
22 | 1c | XP_858062.1 | 80 | 2b | XP_001777726.1 | ||
23 | 1 | ABD59375.1 | 81 | 2 | ABK26256.1 | ||
24 | 2 | XP_002120879.1 | 82 | 1 | XP_520014.2 | ||
25 | 2a | XP_001694904.1 | 83 | 2 | XP_527842.2 | ||
26 | 2b | XP_001693189.1 | 84 | 1 | XP_002177753.1 | ||
27 | 1 | EFN50697.1 | 85 | 1a | XP_002308278.1 | ||
28 | 2 | EFN51306.1 | 86 | 1b | XP_002330510.1 | ||
29 | 1 | XP_645633.2 | 87 | 2 | XP_002317635.1 | ||
30 | 2 | XP_635762.1 | 88 | 1 | XP_002514132.1 | ||
31 | 1a | NP_609813.1 | 89 | 1 | XP_002528531.1 | ||
32 | 1d | NP_995724.1 | 90 | 1 | NP_445889.1 | ||
33 | 1a | NP_956024.1 | 91 | 2 | NP_001012345.1 | ||
34 | 1b | NP_001002458.1 | 92 | 1a | XP_002437165.1 | ||
35 | 2 | NP_001025367.1 | 93 | 1b | XP_002439419.1 | ||
36 | 1 | AAV31083.1 | 94 | 2 | XP_002452652.1 | ||
37 | 2 | ADF57328.1 | 95 | 2 | NP_014888.1 | ||
38 | 2 | ACO35365.1 | 96 | 1 | XP_002736160.1 | ||
39 | 1 | ACO55635.1 | 97 | 1 | XP_002964165.1 | ||
40 | 1a | AAS78662.1 | 98 | 2 | XP_002972054.1 | ||
41 | 1b | BAE93461.1 | 99 | 2 | AAQ89590.1 | ||
42 | 2 | ACU20344.1 | 100 | 2 | XP_001713160.1 | ||
43 | 2 | ABU50328.1 | 101 | 1 | NP_999216.1 | ||
44 | 1 | NP_036211.2 | 102 | 1 | XP_975142.1 | ||
45 | 2a | AAQ88896.1 | 103 | 2 | XP_975146.1 | ||
46 | 2b | NP_835470.1 | 104 | 1 | AAP94209.1 | ||
47 | 2 | BAJ85730.1 | 105 | 2 | XP_002187643.1 | ||
48 | 2b | NP_001188005.1 | 106 | 1 | AAM03340.2 | ||
49 | 1 | ABB84383.1 | 107 | 1 | DQ356680.1 | ||
50 | 1 | AAW51456.1 | 108 | 2 | DQ356682 | ||
51 | 1a | EFY86774.1 | 109 | 1 | ABV21945.1 | ||
52 | 1b | EFY97444.1 | 110 | 2 | ACV40232.1 | ||
53 | 1 | XP_001371565.1 | 111 | 1 | XP_002279345.1 | ||
54 | 2 | XP_001365685.1 | 112 | 2 | XP_002263626 | ||
55 | 1 | NP_034176.1 | 113 | 2 | NP_989372.1 | ||
56 | 2 | NP_080660.1 | 114 | 1b | EU039830 | ||
57 | 1 | XP_001090134.1 | 115 | 2 | NP_001150174.1 | ||
58 | 1 | ABN09107.1 |
2.2. Literature survey of DGAT expression
A literature survey was performed to find out how many publications related to DGATs have been collected by the two most popular databases, PubMed and Scopus. The data in Table 2 indicate that approximately 1000 papers had been collected by the two databases during the past 28 years when using DGAT and diacylglycerol acyltransferase as search terms in title/abstracts/keywords. Approximately four times of publications were obtained when using the full name of the enzyme “diacylglycerol acyltransferase” as a search term instead of using the abbreviation “DGAT” in the database search. More than half of the publications were from animals and approximately one quarter of the publications were from plants. Less than half of those publications dealt with expression of DGATs at the RNA and protein levels. Some of the publications reported of using more than one organism in the same paper, resulting in the total number of publications less than the number of publications from plants, animals, and human adding together (Table 2). Similarly, the total expression papers are less than the combination because more than one expression methods were used in the same paper. Approximately 5% of the publications were related to heterologous expression. However, only a few papers were from
Database | PubMed | PubMed | Scopus | Scopus |
Search terms in title/abstracts/keywords | DGAT | diacylglycerol acyltransferase | DGAT | diacylglycerol acyltransferase |
Total publications | 216 | 817 | 255 | 1102 |
Plant | 57 | 118 | 60 | 137 |
Human | 74 | 203 | 72 | 316 |
Animal | 138 | 588 | 164 | 760 |
Total expression papers | 90 | 225 | 122 | 322 |
Plant expression | 31 | 50 | 34 | 62 |
Human expression | 31 | 85 | 42 | 131 |
Animal expression | 53 | 144 | 78 | 220 |
4 | 8 | 1 | 6 | |
Yeast expression | 17 | 32 | 17 | 33 |
Insect expression | 5 | 12 | 7 | 15 |
2.3. Recombinant DGAT expression update
Expression and purification of recombinant DGATs from any source represents a challenge because DGATs are integral membrane proteins (Hobbs et al., 1999; Siloto et al., 2008; Weselake et al., 2006). In addition, more than 40% of the total amino acid residues are hydrophobic (Table 3). Yeast was the preferred host for DGAT expression (Bouvier-Nave et al., 2000; Burgal et al., 2008; Cao et al., 2010; He et al., 2004; Kalscheuer et al., 2004; Kalscheuer & Steinbuchel 2003; Kroon et al., 2006; Liu et al., 2011; Liu et al., 2010; Manas-Fernandez et al., 2009; Mavraganis et al., 2010; Milcamps et al., 2005; Nykiforuk et al., 2002; Quittnat et al., 2004; Shockey et al., 2006; Siloto et al., 2009; Wagner et al., 2010; Xu et al., 2008; Yu et al., 2008) followed by insect cells (Buszczak et al., 2002; Cases et al., 1998; Cases et al., 2001; Lardizabal et al., 2001). A limited number of reports used other host cells including
Tung tree DGAT1 | Tung tree DGAT2 | DGAT1 – DGAT2 | |
Length (aa) | 526 | 322 | 204 |
Molecular weight | 59773.84 | 36726.20 | 23047.64 |
Isoelectric point (PI) | 8.91 | 9.24 | - 0.33 |
Charge at pH 7 | 11.78 | 8.44 | 3.34 |
Charged (RKHYCDE) (%) | 27.00 | 23.60 | 3.40 |
Acidic (DE) (%) | 7.98 | 7.14 | 0.84 |
Basic (KR) (%) | 10.08 | 9.63 | 0.45 |
Polar (NCQSTY) (%) | 25.86 | 21.74 | 4.12 |
Hydrophobic (AILFWV) (%) | 41.06 | 43.48 | -2.42 |
2.4. Bioengineering recombinant DGAT for expression in bacteria
We recently described a procedure for over-expression of recombinant full-length DGAT1 and DGAT2 in a bacterial expression system (Cao et al., 2010; Cao et al., 2011). DGAT1 is much larger than DGAT2, although they are similar in other properties and amino acid composition (on % of frequency basis) (Table 3). The two DGAT isoforms have only limited sequence identity and similarity (Figure 1). We were able to express both proteins in
Primer | Sequence (5’ to 3’) | Comments |
DGAT1 forward | AATATTGGTACCCTGTTTCAGGGTCCGACAATCCTTGAAACGCCG | Codons for PreScission protease site Colored |
DGAT1 reverse | CGATTAACTAGTAGCTAGCTCAATGATGATGATGATGATGTCTTGATTCGGTAGTCCC | Codons for 6 His Colored |
DGAT2 forward | AATATTGGTACCCTGTTTCAGGGTCCGGGGATGGTGGAAGTTAAG | Codons for PreScission protease site Colored |
DGAT2 reverse | CGATTAACTAGTAGCTAGCTCAATGATGATGATGATGATGAAAAATTTCAAGTTTAAG | Codons for 6 His Colored |
We engineered plasmids pMBP-DGAT1-His and pMBP-DGAT2-His for expressing the full-length tung tree type 1 and type 2 diacylglycerol acyltransferases (DGAT1 and DGAT2, GenBank Accession No. DQ356680 and DQ356682, respectively (Shockey et al., 2006) as fusion proteins in
reported previously (Cao et al., 2003). Plasmids pMBP-DGAT1-His (Figure 3) and pMBP-DGAT2-His (Figure 4) were constructed by replacing the hTTP fragment in plasmid pMBP-hTTP (Figure 2) with the PCR-amplified DGAT1 and DGAT2 fragments at the
The successful expression of full-length recombinant DGATs was probably due to the fusion to MBP, which was shown to increase the solubility of target proteins such as human and mouse TTP (Cao et al., 2003; Cao et al., 2008; Kapust & Waugh 1999). Although we engineered double affinity tags for facilitating purification of recombinant DGAT from
3. Conclusion
Diacylglycerol acyltransferases (DGATs) catalyze the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 115 DGAT sequences are identified from 69 organisms in the GenBank databases. Only a few papers have been published in the last 28 years on the expression of the recombinant DGAT proteins in a bacterial expression system. None of the full-length DGAT1 or DGAT2 had been expressed in
biosynthesis will help to create new oilseed crops with value-added properties. The elucidation of the precise roles of DGATs in animal and human fat synthesis and deposition may provide clues for nutritional and therapeutic intervention in obesity and related diseases.
4. Abbreviations
DGAT, diacylglycerol acyltransferase; FAD3, omega-3 fatty-acid desaturase; His, poly histidine; MBP, maltose binding protein; Ni-NTA, nickel-nitrilotriacetic agarose; TAG, triacylglycerol; TTP; tristetraprolin.
References
- 1.
Andrianov V. Borisjuk N. Pogrebnyak N. Brinker A. Dixon J. Spitsin S. Flynn J. Matyszczuk P. Andryszak K. Laurelli M. Golovkin M. Koprowski H. 2010 Tobacco as a production platform for biofuel: overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass .8 277 287 - 2.
Bouvier-Nave P. Benveniste P. Oelkers P. Sturley S. L. Schaller H. 2000 Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase .267 85 96 - 3.
Burgal J. Shockey J. Lu C. Dyer J. Larson T. Graham I. Browse J. 2008 Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil .6 819 831 - 4.
Buszczak M. Lu X. Segraves W. A. Chang T. Y. Cooley L. 2002 Mutations in the midway gene disrupt a Drosophila acyl coenzyme A: diacylglycerol acyltransferase. 160 1511 1518 - 5.
Cao H. 2004 Expression, purification, and biochemical characterization of the a ntiinflammatory tristetraprolin: a zinc-dependent mRNA binding protein affected by posttranslational modifications.43 13724 13738 - 6.
Cao H. 2010 Recombinant protein production technology [Review].32 1018 1031 - 7.
Cao H. Chapital D. C. Shockey J. M. Klasson T. K. 2011 Expression of tung tree diacylglycerol acyltransferase 1 in E. coli . BMC Biotechnol, 11:72. - 8.
Cao H. Chapital D. C. Howard O. D. Jiang X. N. Shockey J. M. Klasson K. T. 2011 Purification of recombinant tung tree diacylglycerol acyltransferases from . The FASEB Journal 25: 765.8 - 9.
Cao H. Dzineku F. Blackshear P. J. 2003 Expression and purification of recombinant tristetraprolin that can bind to tumor necrosis factor-alpha mRNA and serve as a substrate for mitogen-activated protein kinases. 412 106 -120 - 10.
Cao H. Lin R. Ghosh S. Anderson R. A. Urban J. F. Jr 2008 Production and characterization of ZFP36L1 antiserum against recombinant protein from Escherichia coli .24 326 333 - 11.
Cao H. Tuttle J. S. Blackshear P. J. 2004 Immunological characterization of tristetraprolin as a low abundance, inducible, stable cytosolic protein. 279 21489 21499 - 12.
Cases S. Smith S. J. Zheng Y. W. Myers H. M. Lear S. R. Sande E. Novak S. Collins C. Welch C. B. Lusis A. J. Erickson S. K. Farese R. V. Jr 1998 Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis.95 13018 13023 - 13.
Cases S. Stone S. J. Zhou P. Yen E. Tow B. Lardizabal K. D. Voelker T. Farese R. V. Jr 2001 Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members.276 38870 38876 - 14.
Chen H. C. Rao M. Sajan M. P. Standaert M. Kanoh Y. Miura A. Farese R. V. Jr Farese R. V. 2004 Role of adipocyte-derived factors in enhancing insulin signaling in skeletal muscle and white adipose tissue of mice lacking Acyl CoA:diacylglycerol acyltransferase 1. 53 1445 1451 - 15.
Chen H. C. Smith S. J. Ladha Z. Jensen D. R. Ferreira L. D. Pulawa L. K. Mc Guire J. G. Pitas R. E. Eckel R. H. Farese R. V. Jr 2002 Increased insulin and leptin sensitivity in mice lacking acyl CoA:diacylglycerol acyltransferase 1.109 1049 1055 - 16.
Cheng D. Meegalla R. L. He B. Cromley D. A. Billheimer J. T. Young P. R. 2001 Human acyl-CoA:diacylglycerol acyltransferase is a tetrameric protein.359 707 714 - 17.
Durrett T. P. Mc Closky D. D. Tumaney A. W. Elzinga D. A. Ohlrogge J. Pollard M. 2010 A distinct DGAT with sn-3 acetyltransferase activity that synthesizes unusual, reduced-viscosity oils in Euonymus and transgenic seeds .107 9464 9469 - 18.
He X. Turner C. Chen G. Q. Lin J. T. Mc Keon T. A. 2004 Cloning and characterization of a cDNA encoding diacylglycerol acyltransferase from castor bean .39 311 318 - 19.
Hobbs D. H. Lu C. Hills M. J. 1999 Cloning of a cDNA encoding diacylglycerol acyltransferase from Arabidopsis thaliana and its functional expression. 452 145 149 - 20.
Jako C. Kumar A. Wei Y. Zou J. Barton D. L. Giblin E. M. Covello P. S. Taylor D. C. 2001 Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight .126 861 874 - 21.
Kalscheuer R. Luftmann H. Steinbuchel A. 2004 Synthesis of novel lipids in Saccharomyces cerevisiae by heterologous expression of an unspecific bacterial acyltransferase. 70 7119 7125 - 22.
Kalscheuer R. Steinbuchel A. 2003 A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus ADP1. 278 8075 -8082 - 23.
Kamisaka Y. Kimura K. Uemura H. Shibakami M. 2010 Activation of diacylglycerol acyltransferase expressed in Saccharomyces cerevisiae: overexpression of Dga1p lacking the N-terminal region in the Deltasnf2 disruptant produces a significant increase in its enzyme activity. 88 105 115 - 24.
Kamisaka Y. Tomita N. Kimura K. Kainou K. Uemura H. 2007 DGA1 (diacylglycerol acyltransferase gene) overexpression and leucine biosynthesis significantly increase lipid accumulation in the Deltasnf2 disruptant of Saccharomyces cerevisiae. 408 61 68 - 25.
Kapust R. B. Waugh D. S. 1999 Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused .8 1668 1674 - 26.
Kroon J. T. Wei W. Simon W. J. Slabas A. R. 2006 Identification and functional expression of a type 2 acyl-CoA:diacylglycerol acyltransferase (DGAT2) in developing castor bean seeds which has high homology to the major triglyceride biosynthetic enzyme of fungi and animals .67 2541 2549 - 27.
Lardizabal K. Effertz R. Levering C. Mai J. Pedroso M. C. Jury T. Aasen E. Gruys K. Bennett K. 2008 Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean.148 89 96 - 28.
Lardizabal K. D. Mai J. T. Wagner N. W. Wyrick A. Voelker T. Hawkins D. J. 2001 DGAT2 is a new diacylglycerol acyltransferase gene family: purification, cloning, and expression in insect cells of two polypeptides from Mortierella ramanniana with diacylglycerol acyltransferase activity. 276 38862 38869 - 29.
Liu L. Shi X. Bharadwaj K. G. Ikeda S. Yamashita H. Yagyu H. Schaffer J. E. Yu Y. H. Goldberg I. J. 2009 DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity.284 36312 36323 - 30.
Liu L. Zhang Y. Chen N. Shi X. Tsang B. Yu Y. H. 2007 Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance. 117 1679 -1689 - 31.
Liu Q. Siloto R. M. Snyder C. L. Weselake R. J. 2011 Functional and topological analysis of yeast acyl-coa:diacylglycerol acyltransferase 2, an endoplasmic reticulum enzyme essential for triacylglycerol biosynthesis. 286 13115 13126 - 32.
Liu Q. Siloto R. M. Weselake R. J. 2010 Role of cysteine residues in thiol modification of acyl-CoA:diacylglycerol acyltransferase 2 from yeast .49 3237 3245 - 33.
Manas-Fernandez A. Vilches-Ferron M. Garrido-Cardenas J. A. Belarbi E. H. Alonso D. L. Garcia-Maroto F. 2009 Cloning and molecular characterization of the acyl-CoA: diacylglycerol acyltransferase 1 (DGAT1) gene from Echiu m.44 555 568 - 34.
Mavraganis I. Meesapyodsuk D. Vrinten P. Smith M. Qiu X. 2010 Type II diacylglycerol acyltransferase from Claviceps purpurea with ricinoleic acid, a hydroxyl fatty acid of industrial importance, as preferred substrate. 76 1135 1142 - 35.
Milcamps A. Tumaney A. W. Paddock T. Pan D. A. Ohlrogge J. Pollard M. 2005 Isolation of a gene encoding a 1,2-diacylglycerol-sn-acetyl-CoA acetyltransferase from developing seeds of Euonymus alatus. 280 5370 5377 - 36.
Nykiforuk C. L. Furukawa-Stoffer T. L. Huff P. W. Sarna M. Laroche A. Moloney M. M. Weselake R. J. 2002 Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis. 1580 95 109 - 37.
O’Quin J. B. Bourassa L. Zhang D. Shockey J. M. Gidda S. K. Fosnot S. Chapman K. D. Mullen R. T. Dyer J. M. 2010 Temperature-sensitive post-translational regulation of plant omega-3 fatty-acid desaturases is mediated by the endoplasmic reticulum-associated degradation pathway.285 21781 21796 - 38.
Quittnat F. Nishikawa Y. Stedman T. T. Voelker D. R. Choi J. Y. Zahn M. M. Murphy R. C. Barkley R. M. Pypaert M. Joiner K. A. Coppens I. 2004 On the biogenesis of lipid bodies in ancient eukaryotes: synthesis of triacylglycerols by a Toxoplasma DGAT1-related enzyme.138 107 122 - 39.
Rani S. H. Krishna T. H. Saha S. Negi A. S. Rajasekharan R. 2010 Defective in cuticular ridges (DCR) of Arabidopsis thaliana, a gene associated with surface cutin formation, encodes a soluble diacylglycerol acyltransferase .285 38337 38347 - 40.
Roorda B. D. Hesselink M. K. Schaart G. Moonen-Kornips E. Martinez-Martinez P. Losen M. De Baets M. H. Mensink R. P. Schrauwen P. 2005 DGAT1 overexpression in muscle by in vivo DNA electroporation increases intramyocellular lipid content.46 230 236 - 41.
Saha S. Enugutti B. Rajakumari S. Rajasekharan R. 2006 Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol141 1533 1543 - 42.
Shockey J. M. Gidda S. K. Chapital D. C. Kuan J. C. Dhanoa P. K. Bland J. M. Rothstein S. J. Mullen R. T. Dyer J. M. 2006 Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol biosynthesis and are localized to different subdomains of the endoplasmic reticulum.18 2294 -2313 - 43.
Siloto R. M. Madhavji M. Wiehler W. B. Burton T. L. Boora P. S. Laroche A. Weselake R. J. 2008 An N-terminal fragment of mouse DGAT1 binds different acyl-CoAs with varying affinity.373 350 354 - 44.
Siloto R. M. Truksa M. Brownfield D. Good A. G. Weselake R. J. 2009 Directed evolution of acyl-CoA:diacylglycerol acyltransferase: Development and characterization of Brassica napus DGAT1 mutagenized libraries .47 456 461 - 45.
Smith S. J. Cases S. Jensen D. R. Chen H. C. Sande E. Tow B. Sanan D. A. Raber J. Eckel R. H. Farese R. V. Jr 2000 Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.25 87 90 - 46.
Stone S. J. Levin M. C. Farese R. V. Jr 2006 Membrane topology and identification of key functional amino acid residues of murine acyl-CoA:diacylglycerol acyltransferase-2. 281 40273 40282 - 47.
Stone S. J. Myers H. M. Watkins S. M. Brown B. E. Feingold K. R. Elias P. M. Farese R. V. Jr 2004 Lipopenia and skin barrier abnormalities in DGAT2-deficient mice.279 11767 11776 - 48.
Wagner M. Hoppe K. Czabany T. Heilmann M. Daum G. Feussner I. Fulda M. 2010 Identification and characterization of an acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) gene from the microalga O. tauri .48 407 416 - 49.
Weselake R. J. Madhavji M. Szarka S. J. Patterson N. A. Wiehler W. B. Nykiforuk C. L. Burton T. L. Boora P. S. Mosimann S. C. Foroud N. A. Thibault B. J. Moloney M. M. Laroche A. Furukawa-Stoffer T. L. 2006 Acyl-CoA-binding and self-associating properties of a recombinant 13.3 kDa N-terminal fragment of diacylglycerol acyltransferase-1 from oilseed rape. 7: 24 - 50.
Xu J. Francis T. Mietkiewska E. Giblin E. M. Barton D. L. Zhang Y. Zhang M. Taylor D. C. 2008 Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content .6 799 818 - 51.
Yu K. Li R. Hatanaka T. Hildebrand D. 2008 Cloning and functional analysis of two type 1 diacylglycerol acyltransferases from Vernonia galamensis .69 1119 1127 - 52.
Zou J. Wei Y. Jako C. Kumar A. Selvaraj G. Taylor D. C. 1999 The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene .19 645 653