Summary of high-pressure studies on one-dimensional inorganic nanomaterials.
*
Open access
Submitted: October 18th, 2010 Published: July 19th, 2011
DOI: 10.5772/17084
Nanostructured materials in different morphologies such as dots, wires and belts are of fundamental importance because of their wide range of tunable electrical, optical and mechanical properties that the bulk materials do not possess. These properties that critically depend on the nano-structures predominantly determined by the synthetic approaches, however, can be substantially modified by compression (Chen et al., 2002; Chen & Herhold, 1997; Guo et al., 2008; He et al., 2005; Jacobs et al., 2001; Jiang & Gerward, 2000; Jiang et al., 1999; Jiang et al., 2001; Jiang et al., 1998; Park et al., 2008; Swamy et al., 2006; Tolbert & Alivisatos, 1994; Tolbert & Alivisatos, 1995; Wang et al., 2005; Wang et al., 2001). Investigations of the structures and phase transformations of nanomaterials under high pressures have received increasing attention simply because high pressure has proven to be a powerful driving force to produce new structures and, therefore, new nanomaterial properties (San-Miguel, 2006). The most interesting aspect of high-pressure studies on nanomaterials is the observation that compressed nanomaterials exhibit significantly different behaviours than their corresponding bulk counterparts, such as the size-dependent phase transformations observed for nano-scale CdSe (Tolbert & Alivisatos, 1994; Tolbert & Alivisatos, 1995), SnO2 (He et al., 2005; Jiang et al., 2001) and TiO2 (Swamy et al., 2006). In addition, morphology can play an important tuning role in the pressure-induced transformations of nanostructured materials. For instance, ZnS nanobelts have been found to exhibit a much wider stability region up to 6.8 GPa for the wurtzite phase, in strong contrast to bulk ZnS, which is much more stable in the sphalerite phase (Wang et al., 2005).
In this chapter, we focus our interests on one-dimensional inorganic nanostructured materials, such as nanowires, due to their wide range of applications. Table 1summarizes all high-pressure studies on one dimensional inorganic nanomaterialsso far. In particular, we will discuss the novel and unusual pressure behaviors oftwo inorganic nanowires with great technological importance: tin dioxide (SnO2)and gallium nitride (GaN). Our findings in these studies demonstrate the potentialof using the combination of pressure and morphology as a powerful approach to tunethe structures and properties of one-dimensional nanomaterials required for specific applications.
|
|
|
|
|
|
ZnS | Nanobelt |
|
0-11.4 | X-ray diffraction | (Wang et al., 2005) |
Nanorod |
|
0-19.4 | Raman, Photoluminescence | (Li et al., 2007) | |
|
0-37.2 | X-ray diffraction | (Li et al., 2011) | ||
BN | Nanotube |
|
0-16 | Raman | (Saha et al., 2007; Saha et al., 2006) |
|
0-19.1 | X-ray diffraction | (Muthu et al., 2008) | ||
|
0-34.6 | FTIR | (Dong & Song, 2010) | ||
ZnO | Nanowire |
|
0-21.5 | Raman, X-ray diffraction |
(Yan et al., 2009) |
Nanotube |
|
0-21.5 | X-ray diffraction | (Hou et al., 2009) | |
SnO2 | Nanowire |
|
0-37.9 | Raman, X-ray diffraction |
(Dong & Song, 2009) |
Nanobelt |
|
0-36.2 | Raman, X-ray diffraction |
(Dong & Song, 2009) | |
TiO2 | Nanoribbon |
|
0-30.9 | Raman, X-ray diffraction |
(Li et al., 2010) |
GaN | Nanowire |
|
0-65 | X-ray diffraction | (Dong & Song, 2010) |
Summary of high-pressure studies on one-dimensional inorganic nanomaterials.
*
SnO2 nanobelts and nanowires were synthesized using chemical vapor deposition on silicon substrate, starting with SnO powders (99%, Alfa Aesar). The experimental details have been described elsewhere (Wang et al., 2007; Zhou et al., 2006). The morphologies and chemical composition of SnO2 nanobelts and nanowires were examined by scanning electron microscopy (SEM) (Instrument model: Leo/Zesis 1540XB FIB/SEM) and energy dispersive X-ray spectroscopy. Fig. 1 a and 1cshow the dimensions and morphologies of the as-made SnO2 nanobelts and nanowires. The nanobelts are several tens of nanometers thick, several micrometers long and a few hundred nanometers up to 1 μm wide. The nanowires were 50-60 nm in diameter and several microns long.
The GaN nanowires were synthesized by passing ammonia through a mixture of Ga and Ga2O3 at high temperature in the presence of Au nanoparticles as the catalysts. The experimental details were reported previously (Zhou et al., 2005). The nanowires were thoroughly characterized by SEM. The SEM images (Fig. 2) reveal that the GaN nanowires have wire-like structure with zigzag periodic units. Most of the wires have a length of tens to hundreds of microns and their thickness is several tens of nanometers.
SEM images of SnO2 nanobelts before compression (a) and after decompression (b) as well as SnO2 nanowires before compression (c) and after decompression (d) with scales shown in each panel. (From
SEM images of GaN nanowires before compression (a) and after decompression (b) with scales labeled in each panel. (From
Diamond anvil cell (DAC) is a fundamental apparatus to achieve static high pressures. Recent rapid advances in the DAC technology have allowed the generation of extreme conditions in a broad P-T range with great controllability and accuracy (Hemley & Mao, 2002). The transparency of diamonds over a wide wavelength range allows the use of various optical techniques to examine the high-pressure behaviors of materials in situ. Over the past a few decades, in particular, new emerging analytical probes including optical spectroscopy, synchrotron and neutron sources have enabled structural characterization of materials with unprecedented spatial, temporal and spectral resolutions (Hemley & Mao, 2002).
Fig. 3 shows a typical DAC apparatus where two brilliant cut diamonds are used as anvils to exert static pressure up to several million atmospheres (or several hundred GPa) with only moderate force. Such extreme pressures can be accurately determined by monitoring ruby fluorescence lines using the following relationship (Mao et al., 1978):
where
Photo and schematics of a symmetric diamond anvil cell.
In the experiment for SnO2 nanomaterials, a symmetric DAC with a pair of type I diamonds and a 400-micron culet was used. A hole with a diameter of 150 microns was drilled on a stainless steel gasket and used as the sample chamber. A few ruby chips were loaded with the sample as the pressure calibrant. The samples were loaded without pressure transmitting medium (PTM) for Raman measurements, whereas silicon oil was used as the PTM for X-ray diffraction measurements. GaN nanowires were compressed up to 65 GPa using a symmetric diamond anvil cell (DAC) which consists of a pair of type I diamonds with 200 μm culets and cubic boron nitride seats. The sample and a small ruby ball were enclosed in an 80-μm-diameter hole in a tungsten gasket. Silicone oil was used as the PTM.
Vibrational spectroscopies compatible with DAC apparatus, including Raman and Fourier Transform Infrared (FTIR) microspectroscopy have been widely used to characterize high-pressure structures of materials in situ. In particular, Raman spectroscopy is a sensitive structural characterization probe providing rich information about molecular geometries, bonding properties, phase identities and transformations, lattice dynamics, and crystallinity of materials, etc. Raman measurements were performed on SnO2 nanobelts using a customized Raman micro-spectroscopy system. A 488 nm line from an Innova Ar+ laser (Coherent Inc.) was used as the excitation source and was focused to less than 5 μm on the sample by an Olympus microscope. The Rayleigh line was removed using a pair of notch filters. The scattered light was dispersed using an imaging spectrograph equipped with a 1800 lines/mm grating, achieving a resolution of 0.1 cm-1. The scattered light was then recorded using an ultrasensitive liquid-nitrogen-cooled, back-illuminated charge-coupled device (CCD) detector from Acton. The system was calibrated using neon lines with an uncertainty of ± 1 cm-1.
Synchrotron light source in the high-energy hard X-ray region is an indispensable probe for DAC based materials characterizations. Such hard X-ray available in almost all synchrotron facilities worldwide enables in situ diffraction measurements on micron-sized materials under extreme P-T conditions with unparalleled accuracy for the elucidation of crystalline structures. For SnO2 nanomaterials, the angle dispersive X-ray diffraction measurements were carried out at the X17C beamline at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). A high-energy, fixed-exit monochromator with Sagittelly-bent double Si crystal Laue mode was used to optimize the high-energy synchrotron X-ray from 20 keV to 40 keV, with an incident X-ray wavelength of 0.4066 Å. A pair of Kirkpatrick-Baez (KB) mirrors consisting of Si crystals coated with Pt and a focal length of 100 mm was used to focus the white X-ray beam at a glancing angle of approximately 1 mrad. This focused a 180 μm×180 μm incident beam to a 25 μm (horizontal) × 25 μm (vertical) beam on the sample. A MAR CCD X-ray detector was used to collect the 2D Debye-Scherrer patterns. The gonioemeter geometry and other diffraction parameters were calibrated using CeO2 standard diffraction. Each diffraction pattern was obtained during an average exposure time of 5 to 10 minutes. The two-dimensional Debye-Scherrer patterns were converted to one-dimensional diffraction patterns using Fit2D software and Rietveld refinements were performed using GSAS package.
The angle-dispersive X-ray diffraction measurements on GaN nanowires were performed at the undulator sector 16-ID-B, High-Pressure Collaborative Access Team (HPCAT), Advanced Photon Source (APS) of Argonne National Laboratory (ANL) using an incident wavelength of 0.3680 Å and beam size of 15 μm×10 μm. The procedures of data analysis for GaN nanowires are similar to those for SnO2 nanomaterials.
As an
Raman measurements were performed on SnO2 nanobelts with selected spectra depicted in Fig. 4. SnO2 nanobelts at ambient pressure had a regular rutile-type structure (space group P42/mnm or
Raman spectra of SnO2 nanobelts in the spectral region of 300 to 1000 cm-1 collected at ambient pressure (top), at 39.5 GPa (middle) and upon decompression (bottom). The assignments of the observed Raman modes are labeled above the ambient-pressure spectrum. (From
X-ray diffraction patterns of SnO2 nanobelts at selected pressures on compression (a) and decompression (b). Pressures in GPa are labeled along each pattern. The Miller indices are shown for the tetragonal structure at 1.9 GPa, the orthorhombic structure at 14.8 GPa and the cubic structure at 36.2 GPa on compression, and at 36.2 GPa and 0.2 GPa on decompression, respectively.
Rietveld refinement of X-ray diffraction patterns of SnO2 nanobelts at 14.8 GPa (a), 19.2 GPa (b), 31.8 GPa (c) and from recovered sample (d). The inset in (c) shows the original 2D Debye-Scherrer patterns with one quadrant. The red cross is experimental X-ray intensity whereas the green solid line is the calculated diffraction pattern based on refinement with the black curve at the bottom showing the difference between the calculated and observed intensities. The vertical bars with different colors indicate the characteristic reflections of different phases labeled in the front.
The X-ray diffraction patterns SnO2 nanowires at selected pressures upon both compression and decompression are depicted in Fig. 7. The Rietveld refinement analysis for patterns at pressures of 14.8, 20.0 and 34.4 GPa and upon complete decompression is shown in Fig. 8. Upon compression and decompression, as can be seen, SnO2 nanowires exhibit unexpected pressure responses that are different than those for nanobelts or bulk materials. Starting with the same rutile structure (e.g., Fig. 8a), transformation to a CaCl2-type orthorhombic structure (Fig. 8b) was observed only when it was compressed to 17 GPa, which is a higher transition pressure than that for the nanobelts and much higher (
X-ray diffraction patterns of SnO2 nanowires at selected pressures on compression (a) and decompression (b). The legends follow
Rietveld refinement of X-ray diffraction patterns of SnO2 nanowires at 14.8 GPa (a), 20.0 GPa (b), 34.4 GPa (c) and from recovered sample (d). The legends follow
Rietveld refinement performed on all diffraction patterns indicated that the rutile and CaCl2-type phases were the dominant phases both for nanobelts and nanowires, whereas the α-PbO2 and flurorite phases contribute to the mixed phases only to a certain extent. Therefore, we fit the third-order Birch equation of state (EOS) based on only the dominant phases of nanobelts and nanowires (Fig. 9) to estimate the compressibility using (Birch, 1978):
where V0 is the original cell volume at ambient pressure, and V is the cell volume at pressure P.
The bulk modulus and its first derivative were found to be B0=169.3 GPa and B′=8.4 for the nanobelts whereas those for the nanowires were B0=225.3 GPa and B′=8.1, respectively. We note that the compressibility of the nanobelts was significantly higher than that for the bulk material (B0= 204 GPa, B′= 8.0) (Haines & Leger, 1997), whereas the nanowires were less compressible.
Pressure-volume relations for SnO2 nanowires (open circles) and nanobelts (solid circles). The solid lines are fittings using 3rd order Birch equation of state (see text).
The size- and morphology-induced alteration of SnO2 compressibility characterized by bulk moduli can be understood in parallel with other nanomaterials. CeO2 nanoparticles exhibit a prominent enhancement of the bulk modulus compared with that for bulk materials (Wang et al., 2001; Wang et al., 2004), whereas no obvious difference in compressibility was observed for ZnS nanocrystals (Jiang et al., 1999). In contrast, the compressibility of PbS and γ-Al2O3 (Chen et al., 2002) was found to increase with decreasing nanoparticle size. Furthermore, strongly contrasting compressibility was observed for TiO2 nanoparticles, i.e, the bulk modulus of the rice-shaped particles was reduced whereas that of the rod-shaped particles was enhanced by more than 50% relative to that of the bulk materials (Park et al., 2008). Therefore, multiple factors determine the mechanical properties of nanomaterials. In this case, by carefully examining SnO2 nanobelts at ambient pressure using SEM and Raman imaging (Wang et al., 2007), other tin oxides (SnOx) attached to the nanobelt surface could contribute to the defect in the SnO2 crystal lattice and may therefore decrease the stiffness. Compared with nanobelts, SnO2 nanowires carry much fewer or no defects and are more strictly one-dimensional in morphology, which may correlate with their general size-dependent compressibility (Wang et al., 2001). These arguments are corroborated by a previous comparative study of nanobelts and nanowires (Calestani et al., 2005).
Fig. 10 summarizes the strongly contrasting pressure-induced phase transformations of SnO2 nanobelts and nanowires compared with bulk materials. The differences in the pressure-induced phase transitions between nanostructured and bulk SnO2 materials have been observed for other morphologies, primarily nanoparticles. However, contrasting results were reported by different groups - He et al
In addition to size effects, morphology has also proven to be an important factor for regulating nanomaterial structure and stability, either by early or delayed phase transitions (Wang et al., 2005). However, the drastically contrasting phase stability regions observed for different morphologies of SnO2, especially for the completely missing α-PbO2 phase, are unprecedented.
Summary of pressure-induced phase transformations for SnO2 nanobelts and nanowires upon compression (plain vertical bars) and decompression (hatched vertical bars) compared with those for bulk SnO2 material. The different colors label different phases: rutile (red), CaCl2 type (green), flurorite type (yellow) and α-PbO2 type (blue).
On the basis of the above principles, one may speculate that the α-PbO2 transition pressure might be significantly elevated (i.e., >> 38 GPa), which requires further experimental and theoretical justification. However, such huge pressure increases may well induce other new SnO2 phases to form (Shieh et al., 2006). Therefore, the α-PbO2 phase is likely a metastable phase that cannot simply be interpreted by thermodynamic principles alone. Furthermore, the observed prominent hysteresis, which was characterized by significantly different forward and backward transition pressures, is likely a consequence of different transformation barriers. While the stabilities of difference phases are only determined by thermodynamic functions, the actual transformation pressure may be predominantly governed by kinetics, which scales with the width of the hysteresis. It would therefore be interesting to investigate hysteresis and kinetics as a function of temperature. Indeed, the hysteresis for the nanocrystal CdSe transitions was found to narrow as temperature increased (Chen & Herhold, 1997). The combination of pressure, size, morphology, thermodynamics and kinetics has led to the formation of a multi-dimensional structure-property domain with extremely broad tunabilities. Our findings indicate that certain structures and/or phases can be switched 'on' or 'off' at selected pressure regions with selected morphologies via selected paths. Applying pressure to nanomaterials with different morphologies, therefore, has profound implications for producing controlled structures with desirable properties, such as those for gas sensors whose sensitivity has a preferential correlation to the orthorhombic α-PbO2-type structure of SnO2 (Arbiol et al., 2008). However, detailed transformation mechanisms, especially the origins of the surprising reversibility and metastability require further theoretical investigation.
Gallium nitride (GaN) is a wide band gap semiconductor (3.5 eV) of great technological importance due to its potential applications in high brightness blue/green light emitting diodes (LEDs) and room temperature blue laser (Nakamura et al., 1997). These applications usually require GaN in the wurtzite and zinc blende phases depending on the synthetic techniques (Lei et al., 1992). In addition, GaN is also characterized to have high hardness, low compressibility, high ionicity and high thermal conductivity. These properties make GaN a promising candidate for optoelectronic devices operating under extreme conditions such as at high pressure (Liu et al., 1999). At ambient condition, GaN crystallizes in a wurtzite (B4) structure with a space group of
Selected X-ray diffraction patterns of GaN nanowires collected upon compression to 65 GPa are shown in Fig. 11a. The X-ray diffraction pattern collected at near ambient pressure (i.e., 0.5 GPa) can be indexed with a hexagonal wurtzite structure (P63mc) with cell parameters a=b=3.1916 Å and c=5.1733 Å, consistent with the previous X-ray diffraction measurement on GaN nanowires (Zhou et al., 2005). In contrast to the diffraction pattern of nanocrystalline GaN which is characterized with significantly broadened reflection profiles (Jorgensen et al., 2003), however, the narrow and sharp reflections for GaN nanowires here suggest an excellent crystalline phase that resembles bulk GaN. Upon compression, the wurtzite phase was found to persist to 65 GPa indicated by the consistent indexing of the first six reflections associated with this phase. At 55 GPa, a new reflection appeared at 10.4519º, which can be indexed as (2 0 0) for the rocksalt phase, suggesting the onset of phase transformation. The phase transformation can be further evidenced by the depletion of the strong (1 0 0) reflection at the lowest 2θ angle and the dominant reflection (1 0 1) of wurtzite phase which coincides with reflection (1 1 1) of the rocksalt phase. We note that the phase transition pressure of 55 GPa is higher than that in most previous studies for bulk GaN (Ueno et al., 1994; Xia et al., 1993) but lower compared to that for nanocrystalline GaN which was found to be around 60 GPa (Jorgensen et al., 2003). Size and morphology dependent enhancement of transition pressures have been observed in other nanostructured materials (Dong & Song, 2009). Now it is the general understanding that the surface energy that plays an important role in nanostructures contributes to the enhanced transition pressures. The GaN nanowires in the current study had an initial wire-like morphology and converted to smaller nanoparticles on compression with an average size of 50-200 nm as shown in Fig. 2b, resulting an increase of surface area. Comparing with the particle size of nanocrystalline GaN (i.e., 2-8 nm ) studied previously (Jorgensen et al., 2003), it can be inferred that surface energy of GaN increased from bulk to nanowires and to nanoparticles with decreasing sizes, giving the corresponding different transition pressures.
Angle-dispersive X-ray diffraction patterns (λ=0.3680 Å ) of GaN nanowires at selected pressures upon compression (a) and decompression (b). The pressures in GPa are labelled along each pattern.
Another significant difference between this study and previous studies on bulk GaN is that the wurtzite-to-rocksalt transformation for GaN nanowires is far from complete even at 65 GPa. Quantitative Rietveld analysis of GaN nanowires diffraction pattern at 65 GPa shown in Fig. 12a indicates that wurtzite and rocksalt phases co-exists at this pressure with respective abundance of 88% and 12%. In contrast, an abundance of near 100% for the rocksalt phase was reported for bulk GaN at a pressure less than 60 GPa in most of the previous studies. For example, Perlin et al. found that the wurtzite phase disappears at 54 GPa (Perlin et al., 1992), while Halsall et al. reported such a pressure to be 49 GPa (Halsall et al., 2004). The highest pressure for complete transformation to rocksalt phase for bulk GaN was reported to be 58.8 GPa (Cui et al., 2002) and 60.6 GPa (Ueno et al., 1994), respectively. Our observation is consistent with that for nanocrystalline GaN where the wurtzite to rocksalt phase transition was found incomplete even at 63.5 GPa (Jorgensen et al., 2003). Similar situations were also observed in other one-dimensional nanomaterials, such as in multi-wall boron nitride nanotubes (MW-BNNT) (Dong & Song, 2010). The required pressures for the hexagonal-to-wurtzite structural transformation to be completed are 23 GPa for bulk BN and > 35 GPa for MW-BNNTs, respectively, which can be understood from the topological and mechanical aspects of BNNT nanostructures (Dong & Song, 2010). In addition to the intrinsic properties of nanostructures, non-hydrostaticity may also contribute to the “sluggish” phase transformations. We realize that silicone oil used as the pressure transmitting media in this study, which forms a glass phase even at very low pressures (Ragan et al., 1996), is far from ideal. The non-hydrostaticity in manifested by the significant broadening of all reflections especially at high pressures as shown in the Debye-Scherrer 2D
Rietveld refinement of x-ray diffraction pattern at 65 GPa (a) and 20.9 GPa (b). The redcross is experimental X-ray intensity and the green line is the calculated diffraction patterns based on refinement with the blue curve at the bottom showing the difference between the calculated and observed intensities. The vertical bars denote the indexed reflections for each phase with the space groups labeled beside. The characteristic reflection for the cubic rocksalt phase is labeled as c-(2 0 0). (From
diffraction patterns in Fig 13. For instance, the full width at half maximum (FWHM) of reflection (1 0 1) increased dramatically from 0.09º at 0.5 GPa to 0.25º upon compression 65 GPa. Furthermore, severe distortions in the Debye-Scherrer 2D diffraction patterns for reflections (1 0 0), (0 0 2) and (1 0 1) were observed in the high-pressure region (Fig. 13b), indicating pressure-induced enhancement of lattice strain. All these factors may interactively affect the phase stabilities and thus the transformation pressures.
Debye-Scherrer 2D X-ray diffraction patterns of GaN nanowires at ambient pressure (a), 65 GPa (b), 20.9 GPa upon decompression (c) and ambient pressure upon complete decompression (d).
X-ray diffraction patterns of GaN nanowires at selected pressures upon decompression from 65 GPa to the ambient pressure are shown in Fig. 11b. An interesting yet unusual phase transformation was found during decompression. Upon releasing pressure from 65 GPa, the highest pressure achieved in the current study, the abundance of rocksalt phase was found to increase significantly. For instance, Rietveld refinement (Fig. 12b) suggests that the fraction of rocksalt phase has increased upon releasing the pressure from 12 % at 65.0 GPa to 29% even at 20.9 GPa. Bellow 20.9 GPa, the rocksalt phase gradually transforms back to the wurtzite phase, but was retained even at very low pressures (e.g., <16.4 GPa) as indicated by the noticeable intensity of the (2 0 0) reflection as the dominant reflection of the rocksalt phase. The recovered phase at ambient pressure can be identified as a single wurtzite phase, but the significantly broadened diffraction pattern (Fig. 13d) suggests pressure-induced reduction of the grain size, consistent with the SEM image of the recovered GaN nanomaterial (Fig. 2b). All the previous studies found that B4-B1 phase transformation is reversible for both bulk GaN and nanocrystalline GaN (Cui et al., 2002; Halsall et al., 2004; Perlin et al., 1992) indicating that the wurtzite phase is thermodynamically stable in the low pressure region. However, the strongly contrasting, unprecedented decompression behavior of GaN nanowires exhibiting a large hysteresis suggests that the rocksalt phase is a metastable phase. Prominent hysteresis, which was characterized by significantly different forward and backward transition pressures, is likely due to different kinetic barriers that impede the sharp transitions often involving a metastable phase. Here, we note that this phase of GaN behaves similarly as one of the high-pressure phases (i.e., α-PbO2 phase) for SnO2 nanowires (Dong & Song, 2009).
The unit cell parameters of GaN nanowires at different pressures are plotted in Fig. 14a with the unit cell volume against the pressure for the wurtzite phase plotted in Fig. 14b in comparison with previous studies. As can be seen, the unit cell parameters, the a/c ratio, and the corresponding P-V curve of GaN nanowires exhibit a noticeable discontinuity in the pressure region of 11-20 GPa. In the low pressure region (i.e., < 11 GPa), the equation of state (EOS) for GaN nanowires is almost identical for that of bulk GaN material. Above 11 GPa, obvious change in the P-V relation of GaN nanowires suggest a smaller compressibility or larger bulk modulus. Comparing with previously established EOS for bulk GaN (B0=187-237 GPa) (Jorgensen et al., 2003; Ueno et al., 1994), and for nanocrystalline GaN (B0=319 GPa)(Jorgensen et al., 2003), the bulk modulus for GaN nanowires in the pressure region above 20 GPa is estimated to be in between, consistent with that an increase of the surface area may enhance the bulk modulus. This observation can be further understood from the fact the GaN nanowires break into nanoparticles when the external stress surpasses the yield strength at around 20 GPa, resulting in the size-induced enhancement of the bulk modulus. The correlation between the reduction of the particle size and the increasing bulk modulus has been found in other nanomaterials, such as AlN nanocrystals (Wang et al., 2004). A similar discontinuity was also found in the P-V curve for nanocrystalline CeO2.(Wang et al., 2004) However, a decrease in the bulk modulus of nanocystalline CeO2 was found above ~20 GPa, a pressure that was believed to signify the onset of a size-induced weakening of the elastic stiffness of nanocrystalline CeO2. Therefore, the discontinuity in the EOS for both nanocystalline CeO2 and GaN nanowires can be understood from the nano-size effect while the different shapes of the EOS curves may be associated with opposite pressure-induced changes in particle size. It is probable, too, that the P-V behavior observed in the region of 11-20 GPa is associated with the combined effect of the original nanowires and the yield-generated nanoparticles. The high yield strength observed in the GaN nanowires thus furthers the understanding of the morphology-tuned improvement in yield strength and hardness in hard materials applications. Moreover, the choice of silicone oil as the pressure-transmitting medium may also contribute to the discontinuity observed in the P-V curve. An anomalous behavior inherent in silicone oil at ~12 GPa, which is believed to be the result of phase transition (Chervin et al., 1995; Klotz et al., 2009), seems to have further complicated the abnormal behavior of GaN nanowires in the pressure region of 11-20 GPa. It would therefore be interesting to use better pressure transmitting media, such as helium, to study compressibility of GaN nanowires in a broader hydrostatic pressure region.
Unit cell parameters of GaN nanowires as a function of pressure (a) and unit cell volume as a function of pressure for GaN nanowires (open squares) in comparison with that for bulk and nanocrystal GaN (b). Solid lines are fitted EOS curves for bulk GaN using bulk moduli of 187 GPa (bulk1) and 237 GPa (bulk2) from (
In summary, two one-dimensional inorganic materials with various morphologies and sizes were investigated under high pressures. In particular, pressure-induced structural evolutions in nanostructured SnO2 in the form of nanobelts and nanowires were studied in diamond anvil cells using Raman spectroscopy, angle dispersive X-ray diffraction and SEM. We found that nanostructured SnO2 exhibits drastically disproportionate high-pressure behaviors compared with bulk materials, which suggests that nanostructured SnO2 has significantly different optical, chemical and mechanical properties. These morphology-induced differences for some of the phase transformations can be explained by surface energy differences as the dominant thermodynamics factor, while other phases are primarily mediated by kinetics. These principles may serve as a general guideline for producing novel functional materials with desired stability and/or metastability that may yield promising industrial applications, particularly for semiconductor and chemical sensor uses.
For GaN nanowires, we have investigated high-pressure structures and properties of the first one-dimensional nanostructured GaN using angle-dispersive X-ray diffraction in situ. A wurtzite to rocksalt phase transformation is observed to start at 55 GPa and but is far from complete even at pressures up to 65 GPa. Upon decompression, the abundance of the rocksalt phase was found to increase and then decrease until ambient pressure, at which only the wurtzite phase was recovered, indicating a reversible transformation but with large hysteresis. A discontinuity in the EOS for GaN nanowires is found in the pressure region of 11-20 GPa. These abnormal pressure behaviors of GaN nanowires were compared with previous high pressure studies on bulk and nanocrytalline GaN and can be understood from the nano-size and morphology dependent thermodynamic and kinetic properties of GaN nanowires with the complication of the nonhydrostatic conditions.
Despite that interesting high-pressure behaviors of the two inorganic nanowires were observed and analyzed, more in-depth understanding of these unusual behaviors at quantitative level is still needed. In strong contrast to the extensive high-pressure studies on zero-dimensional nanoparticles, only very few one-dimensional inorganic nanomaterials were investigated at high pressures up-to-date as outlined in Table 1. Therefore, further systematic studies on different inorganic 1D nanostructures with different dimensions under different compression conditions are needed. Additional experimental endeavor with more structural characterization approaches aided with theoretical modeling will help to understand and predict the structures, properties, and transformation mechanisms of these nanomaterials and to shed light on their new promising applications.
This work is supported by a Discovery Grant, a Research Tools and Instruments Grant from Natural Science and Engineering Research Council of Canada, a Leaders Opportunity Fund from Canadian Foundation for Innovation and an Early Researcher Award from Ontario Ministry of Research and Innovation. The authors acknowledge Prof. T. K. Sham for supplying the material, Drs. D. Shakhvorostov and C. Murli for experimental assistance, Drs. J. Hu and Y. Meng for technical assistance, and Drs. H. Liu and K. K. Zhuravlev for helpful discussions. The original experiments were performed at X17C beamline at the National Synchrotron Light Source at Brookhaven National Laboratory and at HPCAT (Sector 16), Advanced Photon Source, Argonne National Laboratory.
Submitted: October 18th, 2010 Published: July 19th, 2011
© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use, distribution and reproduction for non-commercial purposes, provided the original is properly cited and derivative works building on this content are distributed under the same license.