## 1. Introduction

To present day overwhelming majority works on theory of superconductivity were devoted to single gap superconductors. More than 50 years ago the possibility of superconductors with two superconducting order parameters were considered by V. Moskalenko

(Moskalenko, 1959) and H. Suhl, B.Matthias and L.Walker (Suhl et al., 1959). In the model of superconductor with the overlapping energy bands on Fermi surface V.Moskalenko has theoretically investigated the thermodynamic and electromagnetic properties of two-band superconductors. The real boom in investigation of multi-gap superconductivity started after the discovery of two gaps in * e.g.* in heavy fermion compounds (Jourdan et al., 2004; Seyfarth et al., 2005), high-T

_{c}cuprates (Kresin & Wolf, 1990), borocarbides (Shulga et al., 1998), liquid metallic hydrogen (Ashcroft, 2000; Babaev, 2002; Babaev et. al, 2004). Recent discovery of high-temperature superconductivity in iron-based compounds (Kamihara et al., 2008) have expanded a range of multiband superconductors. Various thermodynamic and transport properties of

Two-band superconductivity proposes new interesting physics. The coexistence of two distinctive order parameters

In this chapter we are focusing on the implication of the _{1}-I-S_{2} junctions (I - dielectric) between two- and one- band superconductors have been studied recently in a number of articles (Agterberg et al., 2002; Ota et al., 2009; Ng & Nagaosa, 2009). Another basic type of Josephson junctions are the junctions with direct conductivity, S-C-S contacts (C – constriction). As was shown in (Kulik & Omelyanchouk, 1975; Kulik & Omelyanchouk, 1978; Artemenko et al., 1979) the Josephson behavior of S-C-S structures qualitatively differs from the properties of tunnel junctions. A simple theory (analog of Aslamazov-Larkin theory( Aslamazov & Larkin, 1968)) of stationary Josephson effect in S-C-S point contacts for the case of two-band superconductors is described in Sec.4).

## 2. Ginzburg-Landau equations for two-band superconductivity.

The phenomenological Ginzburg-Landau (GL) free energy density functional for two coupled superconducting order parameters

Where

and

The terms

By minimization the free energy F=

and expression for the supercurrent

In the absence of currents and gradients the equilibrium values of order parameters

For the case of two order parameters the question arises about the phase difference _{12} (3), one can obtain that for

If the interband interaction is ignored, the equations (7) are decoupled into two ordinary GL equations with two different critical temperatures

Let the first order parameter is stronger then second one, i.e.

Phenomenological constants

For arbitrary value of the interband coupling

Expanding expressions (11) over

Considered above case (expressions (10)-(12)) corresponds to different critical temperatures

Consider now another situation, which we will use in the following as the model case. Suppose for simplicity that two condensates in current zero state are identical. In this case for arbitrary value of

## 3. Homogeneous current states and GL depairing current

In this section we will consider the homogeneous current states in thin wire or film with transverse dimensions

The current density * j* and modules of the order parameters do not depend on the longitudinal direction

*. Writing*x

for the free energy density (2)-(4) we obtain

Where

The current density j in terms of phases

Total current j includes the partial inputs

In contrast to the case of single order parameter (De Gennes, 1966), the condition

Note, that now the value of

We will parameterize the current states by the value of superfluid momentum

The system of equations (21-23) describes the depairing curve * T*. It can be solved numerically for given superconductor with concrete values of phenomenological parameters.

In order to study the specific effects produced by the interband coupling and dragging consider now the model case when order parameters coincide at

Here we normalize

which for

For * q* stable branches, which corresponds to possibility of bistable state. In Fig. 4 the numerically calculated from equations (24,25) curve

The interband scattering (

If dragging effect (

## 4. Little-Parks effect for two-band superconductors

In the present section we briefly consider the Little–Parks effect for two-band superconductors. The detailed rigorous theory can be found in the article (Yerin et al., 2008). It is pertinent to recall that the classical Little–Parks effect for single-band superconductors is well-known as one of the most striking demonstrations of the macroscopic phase coherence of the superconducting order parameter (De Gennes, 1966; Tinkham, 1996). It is observed in open thin-wall superconducting cylinders in the presence of a constant external magnetic field oriented along the axis of the cylinder. Under conditions where the field is essentially unscreened the superconducting transition temperature

where

How the Little–Parks oscillations (28) will be modified in the case of two order parameters with taking into account the proximity (

We proceed with free energy density (20), but now the momentum

At fixed flux

## 5. Josephson effect in two-band superconducting microconstriction

In the Sec.3 GL-theory of two-band superconductors was applied for filament’s length

For

In the case

with the boundary conditions:

Calculating the current density

The current density

Introducing the phase difference on the contact

The critical current * e.g.* (Golubov et. al, 2004)) (see illustration at Fig.11).

This phenomenological theory, which is valid for temperatures near critical temperature

## 6. Conclusion

In this chapter the current carrying states in two-band superconductors are described in the frame of phenomenological Ginzburg-Landau theory. The qualitative new feature, as compared with conventional superconductors, consists in coexistence of two distinct complex order parameters

## Acknowledgments

The author highly appreciates S. Kuplevakhskii and Y.Yerin for fruitful collaborations and discussions. The research is partially supported by the Grant 04/10-N of NAS of Ukraine.

## References

- 1.
Agterberg D. F. Demler E. Janko B. 2002 Josephson effects between multigap and single-gap superconductors, - 2.
Artemenko S. N. Volkov A. F. Zaitsev A. V. 1979 Theory of nonstationary Josephson effect in short superconducting junctions, - 3.
Ashcroft N. W. 2000 The Hydrogen Liquids. - 4.
Askerzade I. N. 2003 Temperature dependence of the London penetration depth of YNi2B2C borocarbids using two-band Ginzburg-Landau theory. - 5.
Askerzade I. N. 2003 Ginzburg-Landau theory for two-band s-wave superconductors: application to non-magnetic borocarbides LuNi2B2C, YNi2B2C and magnesium diboride MgB2. - 6.
Askerzade I. N. 2006 Ginzburg-Landau theory: the case of two-band superconductors. - 7.
Aslamazov L.G. & Larkin A.I. 1969 The Josephson effect in point superconducting junctions. - 8.
Babaev E. 2002 Vortices with Fractional Flux in Two-Gap Superconductors and in Extended Faddeev Model. - 9.
Babaev E. Faddeev L. D. Niemi A. J. 2002 Hidden symmetry and knot solitons in a charged two-condensate Bose system. - 10.
Babaev E. Sudbo A. Ashcroft N. W. 2004 A superconductor to superfluid phase transition in liquid metallic hydrogen. - 11.
Brinkman A. Golubov A. A. Rogalla H. Dolgov O. V. Kortus J. Kong Y. Jepsen O. Andersen O. K. 2002 Multiband model for tunneling in MgB2 junctions. - 12.
Brinkman A. Rowell J. 2007 MgB2 tunnel junctions and SQUIDs. - 13.
Dahm T. Graser S. Schopohl N. 2004 Fermi surface topology and vortex state in MgB2. - 14.
Dahm T. Schopohl N. 2003 Fermi Surface Topology and the Upper Critical Field in Two-Band Superconductors: Application to MgB2. - 15.
De Gennes P. G. 1966 - 16.
Doh H. Sigrist M. Cho B. K. Lee S. I. 1999 Phenomenological Theory of Superconductivity and Magnetism in Ho1-xDyxNi2B2C. - 17.
Giubileo F. Roditchev D. Sacks W. Lamy R. Thanh D. X. Klein J. Miraglia S. Fruchart D. Marcus J. Monod P. 2001 Two-Gap State Density in MgB2: A True Bulk Property Or A Proximity Effect? - 18.
Golubov A. A. Kortus J. Dolgov O. V. Jepsen O. Kong Y. Andersen O. K. Gibson B. J. Ahn K. Kremer R. K. 2002 Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. - 19.
Golubov A. A. Koshelev A. E. 2003 Upper critical field in dirty two-band superconductors: Breakdown of the anisotropic Ginzburg-Landau theory. - 20.
Golubov A. A. Kupriyanov M. Yu Il’ichev E. 2004 The current-phase relation in Josephson junctions. - 21.
Golubov A. A. Mazin I. I. 1995 Sign reversal of the order parameter in s wave superconductors. - 22.
Gurevich A. 2003 Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, - 23.
Gurevich A. 2007 Limits of the upper critical field in dirty two-gap superconductors. - 24.
Gurevich A. Vinokur V. M. 2003 Interband Phase Modes and Nonequilibrium Soliton Structures in Two-Gap Superconductors. - 25.
Gurevich A. Vinokur V. M. 2006 Phase textures induced by dc-current pair breaking in weakly coupled multilayer structures and two-gap superconductors, - 26.
Iavarone M. Karapetrov G. Koshelev A. E. Kwok W. K. Crabtree G. W. Hinks D. G. Kang W. N. Choi E. M. Kim H. J. Lee S. I. 2002 Two-Band Superconductivity in MgB2. - 27.
Jourdan M. Zakharov A. Foerster M. Adrian H. 2004 Evidence for Multiband Superconductivity in the Heavy Fermion Compound UNi2Al3. - 28.
Kamihara Y. Watanabe T. Hirano M. Hosono H. 2008 Iron-based layered superconductor La[O(1-x)F(x)]FeAs (x = 0.05-0.12) with T(c) = 26 K. - 29.
Kortus J. Mazin I. I. Belashchenko K. D. Antropov V. P. Boyer L. L. 2001 Superconductivity of Metallic Boron in MgB2. - 30.
Koshelev A. E. Golubov A. A. 2003 Mixed state of a dirty two-band superconductor: pplication to MgB2, - 31.
Kresin V. Z. Wolf S. A. 1990 Multigap structure in cuprates. - 32.
Kulik I. О. Omelyanchouk A. N. 1975 Microscopic theory of Josephson effect in superconducting microbridges, - 33.
Leggett J. 1966 Number-phase fluctuations in two-band superconductors. - 34.
Mazin I. I. Andersen O. K. Jepsen O. Dolgov O. V. Kortus J. Golubov A. A. Kuz’menko A. B. van der Marel D. 2002 Superconductivity in MgB2: Clean or Dirty? - 35.
Mints R. G. Papiashvili I. Kirtley J. R. Hilgenkamp H. Hammerl G. Mannhart J. 2002 Observation of Splintered Josephson Vortices at Grain Boundaries in YBa2Cu3O7-δ. - 36.
Miranovic P. Machida K. Kogan V. G. 2003 Anisotropy of the Upper Critical Field in Superconductors with Anisotropic Gaps: Anisotropy Parameters of MgB2. - 37.
Moskalenko V.A. 1959 Superconductivity of metals within overlapping energy bands. - 38.
Nagamatsu J. Nakagawa N. Muranaka T. Zenitani Y. Akimitsu J. 2001 Superconductivity at 39 K in magnesium diboride. - 39.
Nakai A. Ichioka M. Machida K. 2002 Field Dependence of Electronic Specific Heat in Two-Band Superconductors . - 40.
Ng T. K. Nagaosa N. 2009 Broken time-reversal symmetry in Josephson junction involving two-band superconductors , - 41.
Omelyanchouk A.N. & Yerin Y.S. 2010 Josephson effect in point contacts between two-band superconductors . In: - 42.
Ota Y. Machida M. Koyama T. Matsumoto H. 2009 Theory of heterotic superconductor-insulator-superconductor Josephson junctions between single- and multiple-gap superconductors, - 43.
Schmidt H. Zasadzinski J. F. Gray K. E. Hinks D. G. 2001 Evidence for Two-Band Superconductivity from Break-Junction Tunneling on MgB2. - 44.
Seyfarth G. Brison J. P. Méasson M. A. Flouquet J. Izawa K. Matsuda Y. Sugawara H. Sato H. 2005 Multiband Superconductivity in the Heavy Fermion Compound PrOs4Sb12. - 45.
Shulga S. V. Drechsler S. L. Fuchs G. Müller K. H. Winzer K. Heinecke M. Krug K. 1998 Upper Critical Field Peculiarities of Superconducting YNi2B2C and LuNi2B2C . - 46.
Suhl H. Matthias B. T. Walker L. R. 1959 Bardeen-Cooper-Schrieffer Theory of Superconductivity in the Case of Overlapping Bands. - 47.
Szabo P. Samuely P. Kacmarcik J. Klein T. Marcus J. Fruchart D. Miraglia S. Mercenat C. Jansen A. G. M. 2001 Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy. P hys. Rev. Lett.,87 Iss.13,137005 - 48.
Tanaka Y. 2002 Soliton in Two-Band Superconductor. - 49.
Yanson I. K. Naidyuk Yu. G. 2004 Advances in point-contact spectroscopy: two-band superconductor MgB2. Low Temp .Phys.,30 Iss.4,261 275 . - 50.
Yerin Y. S. Kuplevakhskii S. V. Omelyanchuk A. N. 2008 Little-Parks effect for two-band superconductors . - 51.
Yerin Y. S. Omelyanchouk A. N. 2010 Josephson currents in point contacts between dirty two-band superconductors . - 52.
Zhitomirsky M. E. Dao V. H. 2004 Ginzburg-Landau theory of vortices in a multigap superconductor ,