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1. Introduction

There has been a recent resurgence of interest in the use of haptic displays to augment
human performance, and to provide an additional means of information transfer to interface
operators whose visual and/or auditory modalities may be otherwise informationally-
overloaded (e.g., Gallace et al., 2007; Kaczmarek & Bach-y-Rita, 1995; Spence & Ho, 2008a;
Yannier et al., 2008; Zlotnik, 1988). Over the last few years, researchers have investigated the
use of tactile interfaces to provide assistance in a wide variety of settings including
everything from vibrating belts to provide navigation support (Nagel et al., 2005) through to
wrist watches that allow the user to tell the time by the pattern of vibration that they feel on
their wrist (Toyssy et al., 2008). However, the more extravagant predictions made by early
researchers regarding the potential uses of vibrotactile interfaces - that people would soon
be monitoring the latest stock market figures via vibrating waist displays (see Geldard, 1974;
Hennessy, 1966), and/or watching television using nothing more than a 20 by 20 array of
vibrators on the back of their chairs (the so-called “tactile television”; Collins, 1970) - have,
as yet, proved to be too far-fetched (even allowing for extensive practice to familiarize
themselves with the devices concerned).

The problem with the implementation of these predictions was that early researchers
typically failed to account for the fundamental human limits on the processing of tactile
information through artificial displays (e.g., see Gallace et al., 2007; Spence & Driver, 1997b,
for reviews). Here, it is critical to note that humans are severely limited in their capacity to
process information, and, if anything, the limits on the processing of tactile information
seem to be far more restrictive than for visual or auditory modalities (see Spence & Gallace,
2007; Spence & Ho, 2008a). What is more, many vibrotactile interfaces were originally tested
in the laboratory under conditions of unimodal sensory stimulation. In real-life
environments, however, multiple senses are likely to be stimulated at the same time, and
visual stimuli seem to have priority access to our attentional resources (Posner et al., 1976;
Spence et al., 2001). Nevertheless, one area where there has been a lot of interest (and
promise shown) in the last few years relates to the use of non-visual cues to facilitate
people’s visual search performance. It is on this aspect of tactile and multisensory displays
that this chapter will focus.

www.intechopen.com



48 Advances in Haptics

It is our belief, given the known limitations on the processing of tactile information, that the
primary role of tactile information displays in the coming years will be in terms of providing
relatively simple information to interface operators in order not to overload their limited
capacity for tactile information processing under conditions of concurrent multisensory
stimulation (Spence & Ho, 2008a; see also Cao et al., 2007). However, it is important to note
that we do not wish to imply by this that the haptic sense is necessarily fundamentally
inferior to vision or hearing in terms of its ability to transmit information to an interface
operator. In fact, it is often taken for granted (and hence under-appreciated) that the haptic
sense is actually capable of processing vast amounts of information in our daily lives. This
may be partly due to the fact that few of us encounter people who are haptically-challenged
or are aware of the devastating effects caused by the loss of tactile/kinesthetic sensation.
The story of lan Waterman, an Englishman who lost his haptic sense from the neck down,
provides a rare glimpse into the crucial role tactile/kinesthetic information plays in our
daily tasks, such as helping us to maintain our posture, walk, and even button-up our shirt
in the morning (see Cole, 1995).

Before we proceed, it is also worth pointing out that most tactile displays stimulate only a
small part of the haptic sense. The term haptics is used here to refer to both tactile and
kinesthetic sensing, as well as manual manipulation (Loomis & Lederman, 1986). The majority
of tactile displays that have been developed for user interfaces only provide passive
vibrotactile stimulation, and their bandwidth and spatial density (when an array of tactors are
used) do not yet fully match the sensory capabilities of humans (e.g., Verrillo & Gescheider,
1992). Force-feedback devices constitute a type of kinesthetic display, but they are typically not
portable and hence their usage is limited in applications such as collision avoidance systems
and facilitating visual search in dynamic environments. It is therefore not too surprising that
the success of tactile displays has, to date, been so limited, since we have yet to tap into the full
potential of the haptic sense. It is important to note, however, that there are many ‘small’
mouse-like devices which provide force-feedback (Akamatsu & MacKenzie, 1995, 1996) or
stylus pen type devices (Forlines & Balakrishnan, 2008) that have now been shown to be
effective in daily computing situations (Viau et al., 2005). Therefore, size may not turn out to be
as big a problem as previously thought when considering the use of kinesthetic feedback.

The deaf and deaf-and-blind community have long used methods such as fingerspelling and
Tadoma (see Tan & Pentland, 2001, for a review) in order to communicate: With the Tadoma
method (see Reed et al., 1985), deaf and blind individuals place their hand on a speaker’s
face with their thumb resting vertically on the center of the speaker’s lips, and the fingers
spread across the speaker’s cheek and neck. Tadoma users are able to pick-up the
naturalistic mouth opening, airflow, muscle tension and laryngeal vibration information
through the hand. Tadoma users can achieve rates of information transfer of up to 12 bits/s
(see Reed & Durlach, 1998), which is about half of the rate exhibited by able-bodied
individuals when monitoring audiovisual speech.

The success of ‘natural’ tactile communication methods, such as Tadoma, provides living
proof that haptics, when properly engaged, has the potential to provide an effective
communication channel with a surprisingly high rate of information transmission. That
said, it is also important to note that there are tremendous individual differences with
regard to the limits of tactile information transfer (see Craig, 1977). For instance, two of the
many thousands of sighted participants tested by Craig over the years were found to be able
to read at a phenomenal rate of 70-100 words per minute (approximately 9-13 bits/s)
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through their fingertips using the vibrotactile patterns generated by the Optacon (Bliss et al.,
1970); That is, at rates two to three times those seen in blind participants with an equivalent
amount of practice. More impressive still was the fact that Craig’s “extraordinary observers’,
as he called them, were able to read at a higher rate through their fingertip than through an
equivalent visual display! Thus, we would argue that while it is still important for tactile
interface designers to consider the limits of human tactile processing, the opportunities for
innovative tactile interfaces to provide useful information to interface operators in the
coming years ought to be stressed. Some possibilities here for the increased use of tactile
interfaces include the provision of alert and interrupt signals (Calhoun et al., 2003; Hameed
et al., 2009), directional or waypoint navigation signals (e.g., Bosman et al., 2003; Ho &
Spence, 2007; Jones et al., 2006; Nagel et al., 2005; Van Erp, 2005; Van Erp et al., 2004, 2005;
Van Erp & Van Veen, 2004; Van Veen et al., 2004), orientation signals (e.g., for astronauts
working in microgravity or deep-sea divers; Van Erp & Van Veen, 2006), signals to improve
situational awareness (e.g., Raj et al., 2000) and/or spatial warning signals (e.g., Ho et al.,
2006; Ho & Spence, 2008; Van Erp et al., 2007).

Compared to ’natural’ tactile communication methods, most artificial tactile displays
developed for tactile aids and human-computer interactions have yet to demonstrate
information rates beyond 6-7 bits/s (see Reed & Durlach, 1998). In the future, this may be
remedied by expanding haptic displays so that they can stimulate both the tactile and
kinesthetic senses (e.g., Reed et al., 2003; Tan et al., 1999, submitted). It could also be argued
that we have yet to learn how to communicate through the skin as effectively as we might
using display technology and coding schemes that go beyond simply mimicking vision (the
retina; see the next section) or hearing (the cochlea). Learning more about the perceptual
grouping of tactile information, such as through the study of tactile Gestalts, will likely help
here (see Gallace & Spence, submitted). However, when thinking about the presentation of
tactile patterns to the skin of an interface operator, it is important to highlight an often
under-appreciated problem relating to the question of what perspective we view
stimuli/ patterns that are "drawn’/presented on the skin.

2. From what perspective do we view tactile stimuli presented on the skin?

It is interesting to note here that the issue of where to present vibrotactile information on an
interface operator’s body is becoming more and more important now that researchers are
increasingly looking at the possibility of presenting letters and other meaningful, spatially-
distributed patterns of vibrotactile stimulation using vibrotactile chairs, corsets etc. (Auvray
& Spence, 2009; Jones et al., 2006; Jones & Sarter, 2008; Loomis, 1974; Tan et al., 2003;
Yanagida et al., 2004). For example, Yanagida et al. reported up to 87% successful letter
recognition in some cases using a 3 x 3 array of vibrators on the back of a chair. Note that the
vibrators were activated sequentially, and in the same sequence (as if someone were tracing
the letter on the chair’s, or person’s, back).

Given that nearly 50% of our skin surface is found on the torso, the back clearly offers great
opportunities for the tactile presentation of information. One well-known psychological
illusion that is relevant to the discussion here occurs when an ambiguous letter (such as a
b, ‘d’, ‘p’, ’q’) is drawn on a person’s forehead (e.g., Krech & Crutchfeld, 1958, p. 205;
Natsoulas, 1966; Natsoulas & Dubanoski, 1964). If the person on whom the letter is drawn is
asked to identify the letter, they will often describe the mirror image of the letter that was
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actually drawn - e.g., frequently saying ‘b’ if a ‘d” was drawn, etc. (see Kikuchi et al., 1979).
Krech and Crutchfield (1958) found that about 75% of people take an internal perspective
(i.e., as if looking out from an imagined perspective in the middle of the body; the so-called
‘egocentre’; note that it is this perspective that leads to the mirror-reversals), while the
remaining 25% took the external perspective (as if standing outside themselves), when a
character was drawn on their forehead. A similar confusion has also been shown to occur
for letters drawn (or presented) on the stomach. By contrast, the majority of people tend to
report letters (or other symbols) that are drawn on the back of their head (or on their back)
correctly. Such results have been taken to show that when trying to interpret the pattern of
stimulation on their backs, people are likely to take an ‘external’ perspective (see Figure 1).
In fact, it has been argued that we normally take this external perspective (as if standing
behind ourselves) when trying to interpret patterns drawn on the body. This may perhaps
help to explain why it is so easy to achieve ‘out-of-body’experiences in precisely this
situation (i.e., when it appears that we are standing outside and behind ourselves; see Aspell
et al., 2009; Ehrsson, 2007; Lenggenhager et al., 2007).

Fig. 1. When trying to interpret the pattern of tactile stimulation presented on our back,
people can either take an ‘internal’, or an ‘external’, perspective (e.g., see Corcoran, 1977).
Research has shown that people normally take an external perspective (Auvray & Spence,
2009); That is, they interpret the pattern of tactile stimulation as if standing outside and
behind themselves (i.e., adopting the perspective shown in the figure).

Taken as a whole, the experimental literature that has investigated the viewpoint from
which people interpret letters/symbols drawn on the skin suggests that presenting
meaningful stimulus patterns to an interface operators’ back may be easier than presenting
the same stimuli to their stomach. It is certainly likely to result in a more consistent pattern
of responding from interface operators. Back displays also have the advantage of keeping an
interface operator’s hands free. Pattern recognition also appears to be superior on the back
than on the forearm (Jones et al., 2006). Furthermore, presenting tactile stimuli to stationary
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parts of the body (such as the back) also avoids the change numbness/blindness that can be
experienced when tactile stimuli are presented to moving limbs (see Gallace et al., 2009).

3. The crossmodal correspondence problem in multisensory interface design

In recent years, there has been a rapid growth of research investigating the effectiveness of
tactile cues in directing an interface operator’s visual attention in a particular direction.
Often the effectiveness of these tactile cues has been measured against the effectiveness of
auditory cues (since both are non-visual). In this chapter, the focus will be on the vibrotactile
(auditory and audiotactile) cuing of visual search in cluttered visual displays. Given that
tactile cues will nearly always be presented in different spatial locations from the visual
displays that they are designed to inform an interface operator about, this raises the
correspondence problem (e.g., Fujisaki & Nishida, 2007; Marr, 1982).

In its traditional form, the correspondence problem referred to the difficult situation faced
by the brain when it has to ‘decide” which stimulus in one eye should be matched with
which stimulus in the other eye (especially with stimulus displays such as random dot
stereograms; e.g., Julesz, 1971; Marr, 1982). However, while it was originally framed as a
purely unimodal visual problem, researchers have recently come to realize that (in complex
real-world scenes) the brain also faces a crossmodal version of the correspondence problem
(see Fujisaki & Nishida, 2007): How, for example, in a cluttered everyday, multisensory
scene, does the brain know which visual, auditory, and tactile stimuli to bind into unified
multisensory perceptual events and which to keep separate? A large body of basic
psychological research has shown that spatiotemporal synchrony, semantic and synaesthetic
congruency, and the ‘unity effect’ all play a role here in helping the brain decide which
sensory stimuli should be bound, and which should be kept separate (Parise & Spence, 2009;
see Spence, 2007, for a review).

Taking things one stage further, it can certainly be argued that the typical interface operator
has a very similar (if not even more challenging) problem to solve. How does s/he know
which location in the visual field s/he is being directed to look at on perceiving a
completely-unrelated tactile stimulus that is presented on some part of their anatomy (often
their back)? Clearly, while temporal synchrony can sometimes help here (but note that cues
will sometimes need to be presented in advance of, or after, the relevant visual event; see
below), precise spatial coincidence cannot. How then does an interface operator know which
location in a distal visual display is being referred to by tactile stimuli on their body (e.g.,
back)? Is there a natural, dare we say ‘intuitive’ (Ho et al., 2007b; Van Erp, 2005),
correspondence that interface designers can capitalize upon? If, as the literature briefly
reviewed in the preceding section suggests, people take the perspective of standing behind
themselves, looking forward as if “seeing’ their back from behind, then one might imagine
that a tactile stimulus presented to the left side, say, of the participant’s back, if projected
forward, would lead the participant to attend to the left side of the visual display. We will
move now to a review of the evidence on the tactile cuing of visual search.

4. Facilitating visual search using non-visual and multisensory cues

Van der Burg et al. (2009) recently investigated whether vibrotactile cues could be used to
facilitate participants’ visual search performance in cluttered displays. The visual search
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displays in their study consisted of 24, 36, or 48 line segments oriented at +22.5° that
regularly, but unpredictably, changed colour during the course of each trial (see Figure 2).
The participants had to discriminate the orientation (horizontal vs. vertical) of the visual
target that was presented somewhere in the display on each and every trial. The vibrotactile
cue was presented from a mobile phone vibrator attached to the back of the participant’s left
hand. It should be pointed out that this non-visual cue was entirely spatially non-predictive
with regard to the likely location of the visual target in the display, but that its onset was
temporally synchronized with the colour change of the visual target.

Van der Burg et al.’s (2009) results showed that the vibrotactile cue had a dramatic effect on
the efficiency of participants’ visual search performance: Search slopes dropped from 91
ms/item in the baseline no-cue condition to just 26 ms/item when the vibrotactile cue was
presented: For the largest set size, the benefit resulting from vibrotactile cuing equated to a
mean reduction in search latencies of more than 1,300 ms (or 30%). While error rates
increased as the set size increased, there were no differences as a function of whether the cue
was present or absent (thus arguing against a speed-accuracy trade-off account of this RT
benefit; see Spence & Driver, 1997a). Interestingly, the benefits of vibrotactile cuing on
participants” visual search performance were of an equivalent magnitude to those that had
been reported in an earlier study in which a spatially non-predictive auditory cue had been
presented over headphones instead. In that study, the search slope was 31 ms/item when an
auditory cue was present, as compared to 147 ms/item in the no-cue condition (see Van der
Burg et al., 2008, Experiment 1).

Fig. 2. An example of the kind of visual search display (with a set size of 48) used in Van der
Burg et al.”s (2008, 2009) recent studies. The target was a horizontal or vertical line segment
presented amongst tilted distractors. In this display, the horizontal target is located in the
top left quadrant.

Ngo and Spence (in press, submitted) have recently extended Van der Burg et al.’s (2008,
2009) research findings: In their first experiment, they demonstrated that vibrotactile cues
presented to both sides of the participant’s waist (rather than to the participant’s left hand as
in Van der Burg et al.’s, 2008, study) led to an equivalent visual search benefit as compared
to when an auditory cue was presented over a pair of loudspeakers, one placed to either
side of the computer monitor on which the visual search displays were presented (rather
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than over headphones as in Van der Burg et al.’s, 2008, study). In a second experiment, Ngo
and Spence (submitted) went on to show that bimodal audiotactile cues resulted in visual
search performance that was no better than that seen when the unimodal (either tactile or
auditory) cues were presented (see Figure 3).

8000+ -»- Nocue
-3- Auditory
6000- - Vibrotactile
- Audiotactile

Mean RT (ms)
3
E

2000+

Errors (%)

Set size

Fig. 3. Mean RT (in ms) and percentages of errors for the no cue, auditory, vibrotactile, and
audiotactile conditions in Ngo and Spence’s (submitted, Experiment 2) recent visual search
study. Error bars represent the standard errors of the means.

In a subsequent experiment, Ngo and Spence (submitted) went on to investigate whether
making the cue (either tactile or auditory) spatially informative with respect to the likely
side of the target would lead to any additional performance advantage. In this study, the
cue correctly predicted the side of the target on 80% of the trials and was invalid on the
remaining 20% of trials. Under such conditions, participants” visual search performance was
improved still further as compared to the spatially-uninformative central cuing condition
(see Figure 4). It is, though, unclear whether this performance benefit should be attributed to
the overt or covert orienting of participants’ spatial attention to the side of the cue (see
Spence & Driver, 1994, 2004). However, given the relatively long mean visual search
latencies (> 3,000 ms), it would seem likely that the participants in Ngo and Spence’s
experiment would have moved their eyes around the visual display during the interval
between its onset and the moment when they actually initiated their manual discrimination
response (see Henderson, 2003; Henderson & Hollingworth, 1998; Tan et al., 2009; Van der
Burg et al., 2008).
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Fig. 4. Mean RT (in ms) and percentages of errors for the spatially uninformative, spatially
valid, and spatially invalid auditory and vibrotactile cue conditions in Ngo and Spence’s
(submitted, Experiment 3) recent visual search study. Error bars represent the standard
errors of the means.

Here, for the first time in the task popularized by Van der Burg et al. (2008, 2009), auditory
cues were found to result in significantly faster overall visual search latencies than
vibrotactile cues (there had been no difference in any of the previous studies using this
paradigm). The visual search slopes were also shallower following auditory than following
vibrotactile cuing. Why should this be so? Well, it may be that when a non-visual cue
provides spatial information to a participant (or interface operator), it is more advantageous
if the cue is presented from the same functional region of space as the target stimulus that
the cue is informing the interface operator about (see Ho & Spence, 2008; Previc, 2000;
Spence & Ho, 2008b, on this point).

5. Interim Summary

To summarize, Van der Burg et al.’s (2008, 2009) recent research has shown that spatially
uninformative auditory and vibrotactile cues can be used to facilitate participants’” visual
search performance in cluttered visual displays. Ngo and Spence (in press, submitted) have
extended these findings by showing that the performance benefits occur even when the
auditory and vibrotactile cues are presented from different locations (in space and/or on a
participant’s body), and that bimodal audiotactile cues are no more effective than unimodal
cues in facilitating participants” visual search performance. Ngo and Spence have also
demonstrated that performance can be facilitated even further simply by making the cue
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spatially informative with regard to the likely side on which the target is presented. One
obvious follow-up question to emerge from this line of research concerns whether operator
performance could be facilitated still further simply by making the non-visual (i.e., tactile, or
for that matter auditory, or audiotactile) cue even more informative with regards to the
likely location of the visual target. While, as yet, no one has addressed this question using
Van der Burg et al.’s specific ‘pip and pop” or “poke and pop’ visual search tasks, other
researchers have shown that visual search and change detection performance can benefit
from the cuing of as many as three or four locations on a person’s back.

6. From left/right cuing to quadrant cuing and beyond

Lindeman et al. (2003) highlighted a facilitatory effect of vibrotactile spatial cuing on
participants” visual search performance using three possible cue locations on the left,
middle, and right of a participant’s back (presented using a chair-back mounted vibrotactile
display). The participants in their study had to search a display of 24 random letters in order
to find a target letter (that was specified at the bottom of the screen; see Figure 5).
Participants responded by using the mouse to click on one of the letters in the display. The
vibrotactile cues in this study were 100% valid with regard to the panel (left, middle, or
right) in which the visual target would be found. Under such conditions, vibrotactile cuing
led to a 12% reduction in search latencies as compared to a no-cue baseline condition.
Interestingly, however, Lindeman et al. also reported that visually cuing the relevant section
of the visual display (see the right panel of Figure 5) led to a much larger (30%) reduction in
target detection latencies. Once again, bimodal visuotactile cuing was shown to result in
performance that was no better than that seen following the most effective of the unimodal
cues (cf. Ngo & Spence, submitted).
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Fig. 5. Example of a visual search display used in Lindeman et al.’s (2003) visual search
study. The search display is made up of three panels of 8 letters. A visual cue is shown
highlighting the right panel. The target letter is indicated on the bottom of the screen.

It is, however, important to note here that it is unclear whether the reduced efficacy of
vibrotactile (relative to visual) cuing reported by Lindeman et al. (2003) simply reflected
uncertainty on the part of their participants with regard to the location of the vibrotactile
cues on their back (since no measure of localization accuracy was provided in this study).
Alternatively, however, this difference may also reflect the fact that, in this particular
experimental setting, vibrotactile cues were simply not as effective as visual cues in
facilitating participants’ visual search performance. It is interesting to note at this point that
simultaneous visual cuing (the presentation of a visual halo around the display coinciding
with the visual target colour change) was found to be singularly ineffective in facilitating
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participants’ visual search performance in a visual search study conducted by Van der Burg
et al. (2008; Experiment 2b). This difference in results suggests that different mechanisms
may have been facilitating participants’ performance in these two (at least superficially
similar) experiments (see below for further discussion of this point).

Moving one stage further, Hong Tan and her colleagues at Purdue have conducted a
number of studies over the last decade investigating whether the vibrotactile cuing of one
quadrant of a person’s back can facilitate their change detection performance in a version of
the flicker paradigm (see Jones et al., 2008; Mohd Rosli et al., submitted; Tan et al., 2001,
2003, 2009; Young et al., 2003). In the flicker paradigm, two similar visual scenes/displays
are presented in rapid alternation (e.g., Rensink, 2000). In Tan et al.’s studies, the visual
displays typically consisted of a random array of horizontal and vertical line segments (see
Figure 6). The two displays presented in each trial differed only in terms of the orientation
of one of the elements (alternating between horizontal and vertical in successive screen
displays). A 120-ms blank scene was inserted between the presentation of each of the two
displays in order to mask any transient local motion cues associated with the changing
orientation of the target. Previous research has shown that people need focal attention in
order to detect the change in such situations. On each trial, a 250-300 Hz vibrotactile cue was
presented 200 ms before the onset of the visual displays (the vibrotactile cue was presented
for 60 ms, and was followed by a 140 ms empty interval), from one of the 4 corners of a 2-by-
2 square array of tactors mounted on the back of the participant’s chair (with a centre-to-
centre spacing of approximately 16 cm). Importantly, Tan et al. confirmed that all of their
participants could identify the quadrant from which each vibrotactile stimulus had been
presented without error (on 60 trials) at the start of their experimental session. Upon
detecting the changing item in the visual display, the participants had to click on a mouse
button; They then had to move the cursor across the screen using the mouse and click again
in order to identify the target item.

Target item changing
orientation between
successive displays

Time

Scene #2

Blank

Scene #1

Fig. 6. Example of the flicker paradigm used in Tan et al.”s (2009) study.
Tan et al. (2009) varied the validity of the vibrotactile cue in different experiments. Often,

the visual target would be presented in the screen quadrant indicated by the vibrotactile cue
on 50% of the trials, while it was presented from one of the three other, uncued, quadrants
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on the remaining 50% of the trials (constituting valid and invalid trials, respectively; see Tan
et al., 2003). The results of experiments using such spatially-informative vibrotactile pre-
cues revealed that participants were able to respond significantly more rapidly, and no less
accurately, to visual targets presented in the cued quadrant than to targets presented in one
of the uncued quadrants. So, for example, the participants in one study responded 41%
more rapidly on the validly-cued trials than in no cue baseline trials, and 19% more slowly
than in the no cue conditions when the cue was spatially invalid (i.e., when the cue
indicated that the target would be presented in one quadrant, whereas, in reality, it was
actually presented from one of the other three quadrants; cf. Ngo & Spence, submitted,
Experiment 3). Another interesting result to emerge from Tan et al.’s (2009; Mohd Rosli et
al., submitted) research was that RTs increased as the location of the target moved further
away from the centre of the cued quadrant (toward the periphery). This latter result would
appear to suggest that participants” attention was initially focused on the centre of the cued
screen quadrant before moving outward (or becoming more diffuse).

Recently, Tan et al. (2009; Jones et al., 2008) have started to monitor their participants” eye
movements (using an eye tracker) in order to assess how the presentation of vibrotactile
cues on a participant’s back influences the overt orienting of their spatial attention around
the visual search display situated in front of them. Under conditions where the vibrotactile
cue validity was high (75% valid), Jones et al. reported that their participants’
predominantly directed their saccades to the cued quadrant initially. (As in their previous
research, RTs to detect the target were significantly faster as compared to those seen in a no-
cue baseline condition.) Interestingly, however, when the vibrotactile cue was made
completely non-predictive with regard to the quadrant in which the visual target was likely
to occur (i.e., when the target was just as likely to appear in each of the four screen
quadrants, regardless of the quadrant in which the vibrotactile cue had been presented), and
when the participants were instructed to ignore the vibrotactile cues, then no significant
differences were observed in the pattern of overt orienting from that seen in the no-cue
condition. Under such conditions, the participants tended to direct their eyes to the top-left
quadrant of the display first. Tan et al.s results therefore suggest that non-predictive
vibrotactile cues presented to a person’s back can (under the appropriate conditions) be
completely ignored. This result contrasts markedly with the results of other laboratory
research highlighting the fact that people are unable to ignore vibrotactile cues presented to
their fingertips (at least when the visual targets are presented from close by; i.e., from the
same functional region of space; see Gray et al., 2009; Kennett et al., 2001, 2002; Spence et al.,
1998).

One obvious question to emerge from this transition from 2, to 3, to 4 vibrotactile cue
locations concerns just how many different spatial locations could potentially be cued on a
person’s back in the tactile interfaces of the future. Lindeman and Yanagida (2003) have
already shown, for example, that participants can identify the source of a 1 s, 91 Hz,
vibration using a 3-by-3 array of 9 tactors mounted on the back of a chair (with a minimum 6
cm spacing between adjacent tactors; and, importantly, no practice) at a level exceeding 80%
correct. Unfortunately, however, no one has yet (at least as far as we are aware) investigated
whether using a 3-by-3 matrix of vibrotactile cues would give rise to a performance benefit
in a visual search or change detection task that was any larger than that already
demonstrated by Tan et al. (2009) in their quadrant cuing studies. This certainly represents
an important area for future study given that, at some point, increasing the specificity of
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spatial vibrotactile cuing will no longer lead to any further enhancement of visual search
performance. Why? Well, because of the well-known limits of discriminating vibrotactile
stimulation for touch displays on the back will have been reached (e.g., Weinstein, 1968;
Wilska, 1954). Note also that there are systematic biases in tactile localization that need to be
taken into account when presenting a large number of vibrotactile stimuli to a person’s
back/torso (e.g., see Cholewiak et al., 2004; Cholewiak & Collins, 2000; Van Erp, 2005). The
influence of these biases on perceived vibrotactile localization is likely to become all the
more pronounced as the density of cue locations (e.g., on the back) increases.

7. The importance of spatially co-localizing cue and target events

Ngo and Spence (submitted) have also investigated whether the reduced benefits of
vibrotactile as opposed to auditory spatial cuing reported in one of their studies
(Experiment 3), that was described earlier, may have resulted from the fact that vibrotactile
cues have, of necessity, to be presented to an operator’s body surface (Gregory, 1967). By
contrast, the auditory cues used in their study were presented from close to the visual target
display instead (i.e., from the same functional region of space as the target event; see Previc,
2000). In order to assess the potential importance of relative cue position on the facilitation
of participants’ visual search performance by non-visual cues, Ngo and Spence went on, in a
final experiment, to compare their participants’ performance under conditions in which the
auditory cues were either presented from close to the visual display (i.e., from external
loudspeakers situated to either side of the visual display) or via headphones (i.e., from close
to the participant but further from the visual display, as in Van der Burg et al.’s, 2008,
study). In separate blocks of experimental trials, the cue was either spatially nonpredictive
(i.e., 50% wvalid) or 80% predictive with regard to the likely side of the visual display in
which the target was presented. Note that exactly the same spatial information was
provided in both cases (i.e., no matter whether the cue sound was presented over
headphones or from the external loudspeakers). Ngo and Spence nevertheless still found
that their participants were able to discriminate the orientation of the visual targets
significantly (34%) more rapidly when the auditory cues were presented from close to the
visual display than when they were presented from close to the participant (i.e., over
headphones; see Figure 7). These results therefore suggest that, wherever possible, spatially
co-localizing the non-visual cue (or warning) signal with the target visual event/display
may be advantageous, especially when the cue provides spatial information to an interface
operator.

Speaking more generally, we believe that Ngo and Spence’s (submitted) results support the
view that vibrotactile cues may, if anything, be inherently somewhat less effective in
facilitating an interface operator’s performance than auditory cues given that they have to
be presented from the participants” body, which in many situations may be far away from
the relevant visual event or display (see Spence & Ho, 2008b, for a review). By contrast, it is
typically much easier to present auditory cues from close to the location of the relevant
visual display (see Perrott et al., 1990, 1991, 1996). In fact, recent work by Ho and her
colleagues (Ho et al., 2006) has come to a similar conclusion on the basis of their research
investigating the effectiveness of vibrotactile versus auditory warning signals in alerting car
drivers to the likely location of a potential danger on the road either in front or behind them.
The possibility that the region of space in which non-visual cues are presented should play
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such an important role in determining their effectiveness, and the fact that the cue should,
whenever possible, be presented from close to the relevant visual display (though see Ho &
Spence, in press, for an exception) raise a number of interesting, but as yet unanswered,
questions for future research. This research will likely have important implications for the
future design of non-visual interfaces/warning signals.
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Fig. 7. Mean RT (in ms) and percentages of errors for the spatially uninformative and
spatially valid (or informative) auditory cue conditions presented via headphones versus
external loudspeakers (placed by the visual search display) in Ngo and Spence’s (submitted,
Experiment 4) recent visual search study. Error bars represent the standard errors of the
means.

Given that the wrists/hands are increasingly being targeted as a potential site for
vibrotactile stimulation in tactile/haptic interface design (e.g., Bosman et al., 2003; Chen et
al., 2008; Hameed et al., 2009; Sklar & Sarter, 1999; Van der Burg et al., 2009), one interesting
question for future research will be to determine whether the tactile enhancement of visual
search performance would be modulated by the position of a person’s hands relative to the
visual display about which the vibrotactile cue was meant to provide information. If, for
example, a vibrotactile stimulator were to be attached to either hand, and the side on which
a vibration was presented were to indicate the likely side on which the visual target would
appear (e.g., as in Ngo & Spence’s, submitted, studies), then one might ask whether the
benefit of vibrotactile cuing on participants” visual search performance would be any larger
were the hands to be placed by the side of the visual display say, rather than down (away
from the display) in the participant’s lap (see Abrams et al., 2008; Hari & Jousmaki, 1996;
Reed et al., 2005). At present, we simply do not know the answer to this question. Though
should such a result be obtained, it would certainly have important implications for anyone
thinking of presenting tactile cues to a car driver, say (since the cues could, in principle,
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either be presented by means of the vibration of the steering wheel when driving or by
vibrating the sides of the driver’s seat instead; Ho & Spence, 2008; Spence & Ho, 2008a).
Presenting non-visual spatial cues from the same location as the visual display that they are
designed to refer to provides one obvious solution to the crossmodal correspondence
problem in interface design (that was outlined earlier; see Section 3). However, it is
important to note that in many real-world display settings, this may only be possible for
auditory, but not necessarily for vibrotactile warning signals. What is more, in certain
environments, it may simply not be possible to co-localize auditory cues with the relevant
visual events either (see Fitch et al., 2007; Ho et al., 2009; Perrott et al., 1996). So, for example,
Fitch and his colleagues recently reported that participants found it easier to localize
vibrotactile than auditory cues in a vehicular setting. The participants in their study had to
indicate which direction was indicated by the activation of one of an array of eight chair
vibrators or eight loudspeaker cones. The participants in Fitch et al’s study were
significantly better at localizing the direction indicated by the vibrotactile cue (86% correct)
than indicating the direction indicated by the auditory cue (32%). When presented with an
audiotactile cue, the participants correctly localized the direction indicated by the cue on
81% of the trials (i.e., once again, multisensory cuing was no better than the best of the
unimodal cues; Lindeman et al., 2003; Ngo & Spence, submitted).

Of course, the crossmodal correspondence problem could be solved when presenting
vibrotactile cues if some way could be found to have people attribute a distal event to the
source of stimulation on their body surface. However, to date, all attempts to achieve distal
attribution using vibrotactile stimulation have failed (see Epstein et al., 1986). It should also
be noted here that the crossmodal correspondence problem can be solved for auditory cues
that are presented more-or-less simultaneously with a salient visual event by utilizing the
so-called “ventriloquism effect’ (see Spence & Driver, 2000). The ventriloquism effect refers
to the automatic visual capture of perceived auditory localization that occurs when a salient
visual stimulus is presented at more-or-less the same time as a sound (see Slutzky &
Recanzone, 2001). The harder it is to localize a sound, the larger the visual biasing of the
perceived auditory localization is likely to be. The ventriloquism effect is larger for
synaesthetically congruent pairs of auditory and visual events than for synaesthetically
incongruent pairs. So, for example, Parise and Spence (2009) recently reported significantly
larger spatial (and temporal) ventriloquism effects when large visual stimuli were paired
with low frequency tones, and small visual stimuli with high frequency tones, than when
large visual stimuli were paired with high tones or when small stimuli were paired with low
tones. While tactile stimuli can also be ventriloquized toward stimuli presented in a
different location in another sensory modality (see Caclin et al., 2002), it seems unlikely that
tactile stimuli could ever be ventriloquized away from the body itself (i.e., and to the visual
display/event to which they refer). Hence, the ventriloquism of relatively unlocalizable
warning signals may only be of benefit for auditory cue (or accessory) stimuli.

8. What mechanism(s) underlie facilitation of visual performance
by non-visual cues?

While the various studies reported in this chapter clearly demonstrate that various non-
visual cues, be they tactile, auditory, or audiotactile, can be used to facilitate a person’s
ability to detect/identify visual targets in complex visual displays, the mechanism(s)
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underlying these effects have not, as yet, been fully worked out. Whenever a spatial cue
provides information regarding the likely location of the target then any facilitation of
participants’ performance may be attributable, at least in part, to the endogenous (i.e,
voluntary) orienting of their spatial attention to the location (side or quadrant) indicated by
the cue (see Driver & Spence, 2004, for a review). Additionally, however, when the cue
provides information about the likely identity of the target (or when the cue provides
location information and the participant is required to make some sort of target localization
response) then facilitatory effects may also reflect the direct priming of the participant’s
response by the cue (see Ho et al., 2006; Spence & Driver, 1994, 1997a).

The presentation of a non-visual cue (or accessory stimulus) may also bias participants’
responses in detection tasks, simply by making them somewhat more likely to say that a
target was present, regardless of whether or not it was actually in the display (see Odgaard
et al., 2003; Stein et al., 1996). When a cue is presented at the same time, or slightly ahead, of
the relevant visual event/display then it may also facilitate participants’ performance by
means of a non-spatial alerting effect (e.g., Posner, 1978; Spence & Driver, 1997a). Alerting
effects have been characterized as a general speeding-up of a participant’s responses, often
together with a concomitant reduction in the accuracy of those responses (i.e., alerting can
be thought of as equating to a lowering of the participant’s criterion for initiating a
response). Researchers in this area have managed to rule out alerting as the primary cause of
the visual search benefits that they have observed by showing that certain cue-related effects
only occur when the non-visual cue is synchronized with the visual target, and not when it
is presented shortly before the visual target (e.g., see Van der Burg et al., 2008, Experiment 3;
Vroomen & de Gelder, 2000, Experiment 2). This latter pattern of results is more consistent
with some form of multisensory integration effect (as these tend to be maximal when events
are presented simultaneously in different modalities; see Spence et al., 2004; Stein &
Meredith, 1993; Stein & Stanford, 2008; Vroomen & de Gelder, 2000).

Finally, it is also possible that when spatial cues are presented (as in the studies of
Lindeman et al., 2003; Ngo & Spence, submitted; Perrott et al., 1990, 1991, 1996; Tan et al.,
2009) they may facilitate participants’ performance by exogenously drawing their spatial
attention toward the location of that cue (e.g., Dufour, 1999; Gray et al., 2009; Kennett et al.,
2001, 2002; Spence et al., 1998). Researchers have shown previously that auditory or tactile
cues briefly facilitate a participant’s ability to detect and/or discriminate visual (and, for
that matter, auditory and tactile) targets presented from more or less the same spatial
location, even when they are non-predictive with regards to the likely location of the target.
These benefits last for about 200-300 ms from the onset of the cue, and appear to be maximal
at cue-leading asynchronies of 100-200 ms (see Spence et al., 2004). Neuroimaging studies
have now revealed that the presentation of a vibrotactile cue on the same (rather than
opposite) side as a visual target can lead to enhanced activation in early visual cortical areas,
such as the lingual gyrus (e.g., see Macaluso et al., 2000), presumably via back-projections
from multisensory parietal areas (Driver & Noesselt, 2008).

While it is easy to see that vibrotactile cues presented to the wrists/hands might lead to an
exogenous shift of a participant’s visual attention to the region of space around their
hand/arm (Spence et al., 2004), it is less clear that vibrotactile cues presented to an interface
operator’s back would necessarily also lead to an exogenous shift of their spatial attention to
a particular location in frontal visual space (i.e., where the visual display/event is often
likely to be located). However, the large spatial separation between the vibrotactile cue
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presented to a participant’s back and the visual event in frontal space (that it is designed to
inform the interface operator about) also makes explanations for the facilitatory effects of
spatial cues in terms of multisensory integration (see Stein & Meredith, 1993; Stein &
Stanford, 2008) seem unlikely. One caveat that should, however, be noted at this point is
that the rules of crossmodal attention and multisensory integration operating in the unseen
part of space behind our heads (and, presumably also our backs) may be fundamentally
different from the better-studied interactions that have been observed and documented in
frontal (visual) space (see Ho & Spence, in press; Spence & Ho, 2008b). More research is
needed on this topic.

What would be helpful here would be to conduct spatially-informative counter-cuing
experiments (e.g., Chica et al., 2007), since that would really help researchers get a handle on
the automatic nature of such exogenous crossmodal spatial cuing effects (see Tan et al.,
2009). It has been reported previously that counter-cuing (i.e., when a cue on one side
informs the participant about the likely localization of the target on the opposite side) can
lead to very short-lasting exogenous cuing effects at the cued location (typically lasting for
no more than 50 ms), followed by a later, longer-lasting endogenous cuing benefit at the
likely target location (i.e., on the opposite side of the cue; see Chica et al., 2007; Driver &
Spence, 2004). Results such as these have been taken to suggest that the cue automatically
captures participants’ attention spatially, prior to their being able to endogenously re-direct
their attention on the basis of the informational content carried by the cue. Such a result,
should it be found with vibrotactile cuing on a participant’s back prior to the discrimination
of a visual target in frontal space, would therefore suggest that under the appropriate
conditions back cues can indeed exogenously direct a person’s visual spatial attention in
frontal space. Such an effect, should it be observed, might reflect some sort of mental set
effect (i.e., showing that people can remap, or align, “back” space to ‘frontal’ space under the
appropriate conditions). However, if this crossmodal cuing effect were not to be observed
(see Tan et al., 2009), it might then lead one to suggest that the mapping between an
interface operator’s back and the visual display in front of them is actually fairly arbitrary in
nature. As such, it would imply that there might not be any special correspondence between
locations on an interface operator’s back and locations in frontal space. Given the
importance of such an observation for our understanding of the facilitation of visual search
using non-visual cues, this clearly reflects another important topic for future research.

It is at this point that one starts wondering whether the benefits from non-visual (especially
vibrotactile) spatial cuing may result solely from the informational content provided by the
cue. If this were to be the case, then the possibility emerges that perhaps the same
information could be transmitted to an interface operator using a particular rhythm of tactile
pulses delivered via a single vibrator attached to their wrist/back etc. (e.g., Brown et al,,
2006; Frings & Spence, submitted; Peddamatham et al., 2008; Toyssy et al., 2008), rather than
using a spatially-distributed, and potentially ambiguous (see Yana et al., 2008), vibrotactile
display. At the very least, it is certainly worth pausing to consider whether the only benefit
of spatial cuing relative to, say rhythmical, tactile cuing is the speed with which different
cues can be differentiated in the former case (cf. Frings & Spence, submitted). However,
even if such exogenous crossmodal cuing effects were not to be observed in a counter-cuing
experiment, it could nevertheless still be argued that the spatial content of a vibrotactile cue
on an interface operator’s back might be capable of priming the appropriate orienting
response (e.g., Gregory, 1967; Proctor et al., 2005). That is, there might still be some kind of
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‘natural’ or intuitive mapping between back and frontal space which makes it easier to
interpret the directional spatial cue, even if it does not lead to exogenous spatial attentional
orienting: After all, just think how natural it feels to turn one’s head in the appropriate
direction when someone unexpectedly taps the back of one’s shoulder.

9. Conclusions, caveats, and directions for future research

The research that has been reviewed in this chapter demonstrates that the presentation of
non-visual cues (be they tactile, auditory, or audiotactile) can have a profoundly beneficial
effect on participants” performance on a variety of different visual tasks, as evidenced by the
findings from a number of visual search and change detection tasks (e.g., see Jones et al.,
2008; Lindeman et al., 2003; Ngo & Spence, in press, submitted; Perrott et al., 1990, 1991,
1996; Tan et al., 2003, 2009; Van der Burg et al., 2008, 2009). It is interesting to note that non-
visual warning signals, at least in certain circumstances, seem to provide benefits that visual
cues simply cannot offer (Santangelo & Spence, 2008; Van der Burg et al., 2008; Experiment
2b; though see also Lindeman et al., 2003).

There is an important open question here as to whether, and under exactly what conditions,
bimodal (i.e.,, multisensory) cues will facilitate performance more than unimodal cues.
Bimodal cues appear to outperform unimodal cues under certain conditions (Ho et al.,
2007a; Spence & Santangelo, 2009), but not others (e.g., Fitch et al., 2007; Lee & Spence, 2009;
Ngo & Spence, submitted; Lindeman et al., 2003). One intriguing recent result that has now
been demonstrated in a number of different experimental settings is that multisensory cues
appear to capture people’s spatial attention more effectively than unimodal cues when they
are otherwise distracted (e.g., when performing another task), that is, under conditions of
high perceptual (or cognitive) load (see Spence & Santangelo, 2009, for a recent review).
Taken together, the most parsimonious conclusion to draw at the present time regarding the
benefits of bimodal (or multisensory) over unimodal spatial cuing (i.e., attentional capture)
is that it depends on the particular task conditions in which the cue is presented. Following
on from this conclusion, researchers will, in the future, certainly need to demonstrate
whether unimodal (as compared to bimodal) non-visual warning signals still retain their
effectiveness (e.g., in visual search or change detection tasks) under conditions where the
operator is overloaded, say answering a mobile phone while driving when the tactile
warning signal comes in (e.g., Lee et al., 2009; Santangelo & Spence, 2008; Scott & Gray,
2008; Spence & Santangelo, 2009).

There are, however, also a number of potential caveats in terms of anyone thinking of
applying these findings regarding the facilitation of visual search using non-visual cues to
real-world settings. Perhaps the most important of which relates to the fact that in the
majority (possibly all) of the studies reviewed here, the participants were instructed to fixate
on a central fixation point at the start of each and every trial (i.e., prior to the presentation of
the non-visual cue). This point is absolutely crucial because in any real-world setting it is
unlikely that an interface operator would necessarily have their eyes and head nicely
aligned in this way when the tactile, auditory, or audiotactile warning signal is presented. In
fact, in many settings, the cue will be presented precisely because an interface operator’s
attention has been distracted off to the side (e.g., see Ho & Spence, in press). This means that
there is an unresolved research question to be addressed here about the efficiency of non-
visual cuing under conditions of unconstrained head/eye movements. The problem relates
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to the fact that the perceived location from which an auditory or tactile event is perceived to
have been presented has been shown to change as a function of any change in their eye
and/or head position (see Harrar & Harris, in press; Ho & Spence, 2007; Lewald &
Ehrenstein, 1996a, b; Macaluso et al., 2002; Weerts & Thurlow, 1971). Now, it may be that
these overt-orienting induced shifts are small enough not to deleteriously influence an
interface operator’s performance when using 2, 3, 4, and possibly even 9 vibrotactile cue
locations (see Natsoulas & Dubanoski, 1964). However, at some point, the benefits of
increased cue resolution will be offset by the mislocalization errors that are induced by any
changes in head/eye position (see also Spence et al., 2004, on this point).

A second caveat that has to be noted here is that the actual tasks, paradigms, and visual
displays used in the research that has been reviewed here have all been lifted straight from
the psychologists’ laboratory. That is, they are, in some important regards, very artificial
(e.g., when in everyday life does one need to search for a horizontal or vertical line from
amongst a large number of tilted distractors?). What we need to do now that we have
demonstrated the efficacy of auditory, vibrotactile, and audiotactile cuing in facilitating
people’s ability to search amongst letters and line-segments in a laboratory setting, is to test
the benefits using more realistic and dynamic displays, such as those found in air-traffic
control settings (see Figure 8). We also need to bare in mind the fact that there is already
evidence that certain of the cuing (accessory stimulus) benefits that have been reported to
date may be specific to the particular tasks under investigation (e.g., compare Lindeman et
al., 2003, and Van der Burg et al., 2008, as discussed above). On the other hand, though,
there has also been a lot of exciting progress being made recently in applying the constraints
on crossmodal attention that have been discovered in the laboratory to real-world interface
settings (e.g., Ferris et al., 2006; Ferris & Sarter, 2008; Sarter, 2000, 2007; Spence & Ho, 2008b).

Fig. 8. An example of a complex visual display used by an air traffic controller containing
data tags for different aircraft. Researchers will need to start demonstrating the benefits of
using non-visual cues with such ‘real-world” displays in the coming years.

Another important question for future research in this area concerns the determination of
what constitutes the optimal asynchrony (if any) between non-visual cues, and the
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displays/events that they are designed to inform the interface operator about. To date,
researchers have either looked at the synchronous presentation of the cue and target event
(e.g., Ngo & Spence, submitted; Van der Burg et al., 2008, 2009), or else at conditions in
which the cue has been presented prior to the onset of the target event (Tan et al., 2009; Van
der Burg et al., 2008). While many researchers have been concerned about the effects of any
perceived asynchrony on their participants’ performance (Lindeman et al., 2003; Van der
Burg et al., 2009), the only study that we are aware of that has conducted a full time-course
analysis in order to determine the optimal cue-target stimulus onset asynchrony (SOA) was
reported by Van der Burg et al. (2008, Experiment 3). They tested auditory cue-visual target
(i.e., colour change) asynchronies from cue-leading asynchronies of 150 ms through to
target-leading asynchronies of 100 ms. Their results showed that cue-target asynchronies
from +100 ms gave rise to significant cuing benefits, but intriguingly the benefits were
maximal when the target actually preceded the cue by 25-50 ms (see Figure 9).
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Fig. 9. Mean RT in the presence versus absence of an auditory tone presented at various
tone-target intervals in Van der Burg et al.’s (2008, Experiment 3) recent visual search study.
Error bars represent the standard errors of the means.

It is important to note that even when a non-visual cue stimulus is programmed to be
delivered at the same time as a visual target stimulus, asynchronies can be induced either
because of physical differences in equipment lags or because of biophysical differences in
sensory transduction latencies (e.g., see Harrar & Harris, 2005; Shi et al., submitted; Spence
et al.,, 2003; Spence & Squire, 2003). Note also that in certain situations the non-visual
warning signal will, of necessity, have to be presented with some slight delay with respect
to the external events that they are designed to inform the operator about (think, for
example, about vehicle collision avoidance warning signals; see Ho & Spence, 2008; see also
Chan & Chan, 2006). Researchers will therefore need to start focusing more of their research
efforts on assessing the effectiveness of warning signals that are presented after the
onset/occurrence of the event of interest. Furthermore, once we know more about the
mechanism(s) underlying these crossmodal facilitatory effects on visual task performance in
cluttered scenes (see above) we may want to try and utilize specific asynchronies in order to
maximize attentional cuing and/or multisensory integration effects (see Spence et al., 2004;
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Shore et al., 2006). That said, the evidence that we have reviewed in this chapter has
hopefully highlighted the potential use that non-visual (in particular, vibrotactile, auditory,
and audiotactile) cues (and accessory stimuli) may have in facilitating overloaded interface
operators’” visual search through complex and dynamic information displays in the coming
years.
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