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1. Introduction

Haptic interfaces are computer-controlled motorized devices that physically interact with hu-
man operators to render presence of computationally mediated environments. Ideal haptic
devices are desired to withstand human applied forces with very high stiffness and be capable
of displaying a full range of impedances down to the minimum value humans can perceive.
The performance of a haptic interface under closed loop control is measured by the trans-
parency of the display, that is, by quantifying the correspondence between the desired and
actually rendered impedance values. During haptic rendering, the haptic interface is coupled
to the control system and its existence results in parasitic effects on the displayed impedances,
deteriorating the perfect transparency. Therefore, independent of the control algorithm, both
the kinematic and dynamic performance of the haptic device have an impact on the overall
performance of the haptic display.
Robotic manipulators with parallel kinematic chains are popular among haptic interfaces due
to their inherent advantages in satisfying requirements of haptic applications with respect
to their serial counterparts. Parallel mechanisms offer compact designs with high stiffness
and have low effective inertia since their actuators can be grounded in many cases. In terms
of dynamic performance, high position and force bandwidths are achievable with parallel
mechanisms thanks to their light, but stiff structure. Besides, parallel mechanisms do not
superimpose position errors at joints; hence, can achieve high precision.
Despite these favorable characteristics of parallel mechanisms, optimal design of such mech-
anisms with closed kinematic chains is significantly more challenging. Parallel mechanisms
have smaller workspace with possible singularities within the workspace and their kinematic,
dynamic, and singularity analysis are considerably harder than that of serial manipulators.
Due to the additional complexities involved, the dimensional synthesis of parallel mecha-
nisms is still an active area of research.
Optimum design of parallel mechanisms, even for a single objective function, is challeng-
ing due to the nonlinear, large scale nature of such mechanisms (Lee & Kim, 2006) and non-
convex properties of performance indices with respect to the design variables (Qi & Wom-
ersley, 1996). Many different optimization approaches applicable to nonlinear, non-convex
optimization problems such as genetic algorithms (Lee et al., 2001; Lee & Kim, 2006; Stuck-
man & Easom, 1992; Zheng & Lewis, 1994), simulated annealing (Risoli et al., 1999), Bayesian
techniques (Stuckman & Easom, 1992; Stuckman et al., 1991), Monte-Carlo simulations (Stuck-
man & Easom, 1992; Zheng & Lewis, 1994), controlled randomized searches (Lou et al., 2008),
performance charts (Liu & Wang, 2007), workspace atlases (Liu et al., 2006), and branch and
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bound methods (Stocco et al., 1998) have been applied to design optimization of parallel mech-
anisms. In general, deterministic methods can get stuck at a local optimum, heuristic methods
cannot guarantee optimality of the converged solution, while branch and bound type methods
are only as accurate as the discretization selected.
While designing the geometry of a haptic interface, various performance criteria such as kine-
matic and dynamic isotropy, singularity-free workspace, sensitivity, and transmission capabil-
ity have to be considered simultaneously. The performance with respect to any of these criteria
cannot be improved without deteriorating another; hence, design trade-offs are inevitable.
Determination of optimal dimensions with respect to many design criteria is a difficult prob-
lem and should be handled with multi-objective optimization methods so that trade-offs can
be assigned in a systematic manner.
As emphasized earlier, an optimal design of a haptic interface can only be achieved by con-
sidering many competing objectives. There exists several studies in which multiple design
criteria have been addressed for this purpose. The studies that can be categorized under
scalarization methods address the multi-criteria optimization problem in an indirect manner, by
first transforming it into a (or a series of) single objective (scalar) problem(s). Among these
approaches, Hayward et al. define the relationship between multiple criteria and utilize sen-
sitivities of these criteria to conduct a hierarchical optimization study (Hayward et al., 1994).
Multiple objectives are considered sequentially in (Alici & Shirinzadeh, 2004; Krefft et al.,
2005; Risoli et al., 1999; Stocco et al., 1998) by searching for parameter sets resulting in near
optimal kinematic performance and then selecting the design exhibiting the best dynamic per-
formance from this reduced parameter space. Task-priority (Chen et al., 1995), probabilistic
weighting (McGhee et al., 1994), composite index (Lee et al., 2001), and tabular methods (Yoon
& Ryu, 2001) are among the other scalarization approaches that consider multiple criteria.
Scalarization methods possess the inherent disadvantage of their aggregate objective func-
tions requiring preferences or weights to be determined apriori, i.e before the results of the
optimization process are actually known (de Weck, 2004). Since assigning proper weights or
prioritizing different criteria is a problem dependent, non-trivial task, these techniques fall
short of providing a general framework to the design of the parallel mechanisms.
The alternative approach is classified as pareto methods, which incorporate all optimization
criteria within the optimization process and address them simultaneously to find a set of
non-dominated designs in the objective space. Pareto methods allow the designer to make
an informed decision by studying a wide range of options, since they contain solutions that
are optimum from an overall standpoint; unlike scalarization techniques that may ignore
this trade-off viewpoint. In literature Krefft et al. applied a modified genetic algorithm (GA)
based Pareto method to design parallel mechanisms (Krefft & Hesselbach, 2005a; Krefft et al.,
2005). Similarly, in (Stan et al., 2006) GA is applied to multi criteria optimization of a 2-DoF
parallel robot. Finally, in (Unal et al., 2008a;b) authors proposed a multi-objective design
framework for optimization of parallel mechanisms based on Normal Boundary Intersection
(NBI) method (Das & Dennis, 1996). The proposed framework has been applied to design of
rehabilitation robots (Erdogan et al., 2009; Unal & Patoglu, 2008b), robotic exoskeletons (Satici
et al., 2009; Unal & Patoglu, 2008a), and compliant micro mechanisms (Tokatli & Patoglu,
2009). This framework is computational efficient, applicable to other performance indices,
and easily extendable to include further design criteria that may be required by the applica-
tion.
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In this chapter, the multi-objective design framework for optimization of parallel mechanisms,
first proposed by the authors in (Unal et al., 2008a;b) is reviewed. Global kinematic and
dynamic performance of parallel mechanisms defined over a pre-specified singularity free
workspace are maximized simultaneously and the Pareto-front curve for these two criteria is
obtained. Firstly, the global optima of non-convex min-max performance criteria are solved
independently from each other, using a modified branch and bound algorithm, called culling
algorithm (Stocco et al., 1998). Once optimal solutions of each single criteria optimization
problem are obtained, Normal Boundary Intersection (NBI) method (Das & Dennis, 1996),
which performs a deterministic geometric search within the objective space, is utilized to effi-
ciently compute uniformly distributed design solutions on the Pareto-front curve.
The chapter is organized as follows: Section 2 identifies and categorizes relevant design objec-
tives for haptic interfaces. Section 3 introduces the sample mechanism used for the analysis,
a 3-degrees of freedom (DoF) Modified Delta Mechanism. Section 4 formulates the optimiza-
tion problems, while Section 5 explains the optimization methods used to address the single
and multi-criteria optimization problems. Section 6 presents and discusses the results of the
optimization problems. Finally, Section 7 concludes the chapter.

2. Design Objectives

Following the terminology of Merlet (Merlet, 2006), one can categorize the performance re-
quirements of a mechanism into four distinct groups: Imperative requirements that must be
satisfied for any design solution, optimal requirements for which an extremal value of the
index is required, primary requirements which take place in the specifications but can be mod-
ified to some extent to ensure a design solution, and secondary requirements which do not
appear in the specifications but can be utilized to choose between multiple design solutions.
Ensuring the safety and complying with the ergonomic needs of the human operator are two
imperative design requirements every haptic interface must satisfy. Safety is typically assured
by the selection of back-drivable actuation and power transmission1 with force/torque limits
implemented in software, while predetermined ergonomic workspace volumes are imposed
at the kinematic synthesis level. The absence of singularities in the workspace is another
imperative design requirement that ensures the forward and inverse kinematics of the robot
be solved uniquely at each point within the workspace.
Both kinematic and dynamic performance of parallel mechanisms are to be optimized to
achieve haptic devices with low parasitic effects. Specifically, to achieve high force band-
widths and a uniform “feel" for the device, kinematic/dynamic isotropy and stiffness of the
device have to be maximized while its apparent inertia is being minimized . To quantify per-
formance, several design matrices, including Jacobian and inertia matrices, are studied and to
date many scalar performance indices have been proposed. These indices either quantify the
directional independence (uniformity) of configuration dependent design matrices or repre-
sent a distance to a singular configuration. Since singular values of a matrix provide a versatile
metric to quantify its properties, most of the indices are derived as a function of these values.
These performance metrics are further discussed in the next subsection.
A common primary requirement for haptic interfaces is the workspace volume index (Mer-
let, 2006), the ratio between the workspace volume and the volume of the robot. Even though
predetermined workspace volumes are generally imposed as imperative requirements, a large

1 In this chapter, we limit our discussion to impedance type devices due to their widespread use, even
though admittance type devices can also be treated using an analogous framework.
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workspace volume index is still desired to reduce the collisions of the device with the oper-
ator or the environment. The footprint area is yet another primary requirement commonly
imposed during design.
Finally, the secondary requirements include low backlash, low-friction, high back-drivability,
and low manufacturing costs. Friction, backlash, and back-drivability are mainly influenced
by the selection of the actuators and the transmission, while choice of link lengths may have
an influence on manufacturing costs.

2.1 Measuring Kinematic and Dynamic Performance

To measure kinematic performance, properties of the Jacobian matrix (J) are studied. Con-
dition number, proposed by Salisbury and Craig (Salisbury & Craig, 1982), describing the
worst-case behavior at a given configuration is one of the most commonly used kinematic
performance measures. Given as the ratio of the minimum and maximum singular val-
ues of the Jacobian matrix, this measure locally characterizes directional isotropy for both
force/motion transmission accuracy and actuator utilization of a manipulator. Another pop-
ular index, manipulability, measures the ease of arbitrarily changing the position and orien-
tation of the end effector and is calculated by taking the product of singular values of the
Jacobian matrix (Yoshikawa, 1985b). Sensitivity characterizes the precision of a manipulator
by measuring the change in end-effector configuration with respect to small perturbations of
joint angles and is given by the sum of the absolute values of the Jacobian matrix elements in
a single row (Grace & Colgate, 1993). Finally, minimum singular value of the Jacobian matrix
is also proposed as a kinematic performance measure (Klein & Blaho, 1987) quantifying the
skewness of the velocity response.
All of the mentioned indices are local measures of kinematic performance; therefore, are not
constant over the entire workspace. Extensions of these indices have been proposed to char-
acterize the performance of a manipulator over the entire workspace. Gosselin and Ange-
les proposed global condition indices based on the integral of local kinematic performance
measures over the workspace (Gosselin & Angeles, 1991). However, being average values,
these indices fail to capture possible low performance configurations (near singular points)
within the workspace. Moreover, integrating a local measure can be computationally expen-
sive. Mean of the minimum singular value has also been proposed as global measure in order
to characterize the path velocity of parallel robots (Krefft & Hesselbach, 2005b). Since mean
values are not sufficient to guarantee homogeneity of performance, standard deviation of the
minimum singular value has also been introduced as a measure (Krefft & Hesselbach, 2005b).
Other global indices include global payload index that measures the force transmission capa-
bility (Ozaki et al., 1996). Finally, the global isotropy index (GII), introduced in (Stocco et al.,
1998) by Stocco et al., is a workspace inclusive worst-case kinematic performance measure that
is intolerant of poor performance over the entire workspace. GII is calculated as the ratio of
the minimum of the smallest singular value and the maximum of the largest singular value of
the Jacobian matrix over the workspace.
In this chapter, a global performance index is chosen to quantify the kinematic isotropy of
haptic interfaces since the objective of the design problem is to minimize the parasitic effects of
the manipulator over the workspace. Even though any global index can be utilized within the
framework presented, the conservative workspace inclusive worst-case performance measure
that is intolerant of poor performance over the entire workspace, GII , is preferred. As a global
worst case performance measure, maximizing GII corresponds to designing a mechanism
with best worst-case kinematic performance. Moreover, an optimal GII results in a uniform
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Jacobian matrix, while also increasing the efficiency of utilization of the actuators. GII can be
mathematically expressed as

GII = minγ0,γ1∈W
σ(J(α,γ0))

σ(J(α,γ1))
(1)

where J represents the Jacobian of the manipulator, σ and σ are the minimum and maximum
singular values of the Jacobian matrix, γ0 and γ1 are the configurations in the workspace
that result in the extreme singular values, α is the column matrix of design variables, and W

represents the workspace.
Dynamic performance is measured in a similar manner to the kinematic performance, but
properties of the inertia matrix (M) capturing the relation between actuator force/torque and
end-effector acceleration, are studied. The goal for improving dynamic performance is to
minimize inertial effects that conflict with high acceleration demands. To characterize local

dynamic performance Asada defined the effective inertia matrix expressing the homogeneity
of the moment of inertia of the non-redundant manipulators and introduced the concept of
generalized inertia ellipsoid (Asada, 1983). Yoshikawa proposed a dynamic manipulability
measure (Yoshikawa, 1985a), which is an extension of manipulability concept and measures
the degree of arbitrariness in changing end-effector accelerations. Dynamic manipulability
is calculated as the product of singular values of M−1 matrix. Angeles et al. defined the dy-
namical conditioning index which measures dynamical coupling and numerical stability of
the generalized inertia matrix of manipulators (Ma & Angeles, 1990). Finally, swiftness, a
measure to characterize the attitude of the manipulator to produce high end-effector accelara-
tions, is proposed by Di Gregorio et al. which can also be applied to planar manipulators with
non-homogeneous generalized coordinates (Gregorio & Parenti-Castelli, 2005).
Similar to the case of local kinematic performance indices, extensions to local dynamic in-
dices have been proposed to characterize the performance of a manipulator over the entire
workspace. Calculating the mean value and standard deviation of the local dynamic indices
are among the most commonly used approaches to achieve a global dynamic performance in-
dex. A global dynamic index (GDI) is introduced in (Stocco et al., 1998) to quantify the global
worst-case performance of a manipulator. GDI measures the largest effect of mass on the dy-
namic performance by calculating the maximum largest singular value over the workspace of
the effective mass matrix at the end-effector and is computed as the inverse of the maximum
of the largest singular value.
To be consistent with the metric chosen for the kinematic performance, the workspace inclu-
sive best worst-case performance measure (GDI) is used to quantify dynamic performance.
As mentioned earlier, any dynamic index could be utilized in the framework introduced, but
this decision is conservative and intolerant of poor performance over the entire workspace.
As a global worst-case performance measure, maximizing GDI results in reduced maximum
largest singular value of the effective mass matrix, decreasing the inertial interference by the
system. GDI can be mathematically expressed as

GDI = minγ∈W
1

1 + σ(M(α,β,γ))
(2)

where M represents effective inertia matrix of the manipulator as seen at the end effector, σ

is the maximum singular value of the effective inertia matrix, γ is the configuration in the
workspace that results in the maximum singular value, α is the column matrix of design
variables, and W represents the workspace.
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In general, since entries of the Jacobian and the inertia matrices may not be homogenous
in units, proper normalization is necessary such that the measures defined on these matri-
ces are meaningful. Among several approaches proposed in literature, normalization with
a characteristic length (Khan & Angeles, 2006; Krefft & Hesselbach, 2005b) or a nominal
link length (Lee et al., 2001), and partitioning the matrices into translational and rotational
parts (Krefft & Hesselbach, 2005b; Lee & Kim, 2006) are the most popular choices. Normaliza-
tion is not necessary for the sample problem presented in this chapter, as it possesses only a
translational workspace.

3. Modified Delta Mechanism

The optimization framework reviewed in this chapter is demonstrated over a spatial 3-DoF
Modified Delta parallel mechanism (see Figure 1). The method discussed in this chapter
constitutes a general framework for optimal dimensional synthesis of mechanisms and is by
no means limited to the sample mechanism studied.
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Fig. 1. The Modified Delta Mechanism

The Modified Delta Mechanism, first introduced by Clavel (Clavel, 1988), and further ana-
lyzed in (Pierrot et al., 1990), consists of eight bodies: a base platform N, three lower links A,
B, C, three upper links R, S, T, and a moving platform W. The end-effector held by the oper-
ator is rigidly attached to the moving platform W. The three lower links are connected to the
base platform via revolute joints whose axes of rotation are oriented along the tangents of N.
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
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The upper three links are coupled to the lower links via revolute joints. Each of them is a pla-
nar four-bar parallelogram, which can perform one DoF motion constrained in its plane. The
moving platform is connected to these three upper links by means of revolute joints whose
axes of rotation are again oriented along the tangents of W. In this chapter, the analysis is
limited to a symmetric modified delta mechanism where the revolute joints at the base and
at the moving platform are spaced at 120◦ along the circumference of each platform whose
radii ratio is 0.5. Moreover, the lengths of each of the lower links and similarly that of each
of the upper links are considered to be the same. The modified delta mechanism has three
translational DoF (x, y, z) of the moving platform W with respect to the Newtonian reference
frame N. The controlled DoF are the three revolute joints, with which the lower three links
are connected. Kinematic and dynamic models of the Modified Delta mechanism are further
detailed in (Li & Xu, 2005; Pierrot et al., 1990; Tsai et al., 1996).
A modified delta mechanism can be characterized by lengths l and r of its two links, since the
rest of the mechanism is designed to be symmetric. To quantify the orientation of each link,
joint angles qi, θi, φi, (i = 1...3), are introduced. The workspace of the mechanism is selected
to be a cube of length 200mm, and is placed at a fixed location in global coordinate frame:

[x, y, z]T = [0 − 200, 0 − 200, 200 − 400]T mm as presented in Figure 1. Table 1 presents the
design variables α and design parameters β (parameters that do not change during the design
process) for the modified delta mechanism.

Symbol Definition Unit

α1 l Length of the lower links mm
α2 r Length of the upper links mm
β1 x = 0 − 200 Workspace along x-direction mm
β2 y = 0 − 200 Workspace along y-direction mm
β3 z = 200 − 400 Workspace along z-direction mm

Table 1. Design variables α and parameters β for the Modified Delta Mechanism

4. Optimization Problem

As discussed in Section 2, two objective functions characterizing the kinematic and dynamic
performances of the mechanism are considered in this chapter. The objective of optimization
is to maximize the worst kinematic isotropy of the mechanism (GII) while simultaneously
minimizing the effective mass (maximum singular value of the effective mass matrix or GDI).
In this study, it is assumed that the inertia of the mechanism is only due to those of each link;
thus, other inertial factors such as inertia of the actuators etc. are neglected. The negative null
form of the multi-objective optimization problem can be stated as

max F(α,β,γ)
G(α,β) ≤ 0
αa < α < αu

(3)

where F represents the column matrix of objective functions that depend on the design vari-
ables α, parameters β, and workspace positions γ. Symbol G represents the inequality con-
straint function that also depends on design variables and parameters. Finally, αl and αu

correspond to the lower and upper bounds of the design variables, respectively.
For the modified delta mechanism, the column matrix F is simply given as
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F =

[

GDI

GII

]

(4)

The constraints on the other hand, are implicitly imposed during the kinematic analysis of the
parallel mechanism, which is carried out using numerical integration.

5. Methods

In the previous section, the formulation for the multi-criteria optimization problem for best
worst-case performance of a haptic interface is described. Before addressing the multi-criteria
optimization problem, the nature of the problem with respect to the selected performance cri-
teria is to be studied. Inspecting the performance criteria, one can conclude that both GII and
GDI are non-convex with respect to the design variables. Moreover, as workspace inclusive
measures, their calculation requires searches over the workspace. As discussed in the in-
troduction, several methods have been proposed to solve for the single criteria optimization
problem of parallel manipulators. In general, descent methods suffer from getting trapped at
local optima while heuristic methods cannot guarantee optimality of their solution. Feasibil-
ity and efficiency of a branch-and-bound type method, called culling algorithm, is advocated
in the literature to address single objective min-max problems (Stocco et al., 1998).
In this chapter, a modified version of the culling algorithm is used to independently solve for
the optimum designs with respect to GII and GDI . The culling algorithm improves the com-
putational efficiency of a brute-force method by reducing (culling) the amount of searches re-
quired through effective performance comparisons. The algorithm capitalizes on the fact that
as a worst-case measure, once the global performance index for certain reference parameters is
calculated conducting a search over the entire workspace, reduction of the feasible parameter
set can be performed without performing any other searches over the workspace. Specifically,
after a global index value is calculated for the reference parameters, comparisons with local
indices at only a single configuration in the workspace. Hence, searches over workspace is sig-
nificantly reduced as they are conducted only when it is necessary to calculate new reference
global index values. Comparing all set of design variables to find the best worst-case index,
the algorithm will converge to an optimum solution within the discretization accuracy. As the
culling method substantially reduces the amount of workspace searches required by a brute-
force method, it is a faster and more efficient algorithm to address min-max type problems.
Since the performance of the culling algorithm is highly dependent on the initial reference
values assigned, a fast gradient-based optimization method, sequential quadratic program-
ming (SQP), is used to solve for a local extrema that will serve as a good initialization value.
This modification increases the efficiency of the algorithm by resulting in a higher culling rate
at the first iteration. Once a solution is obtained, another SQP is invoked to converge to a
guaranteed optima within the discretization region.
If the multi-criteria optimization problem is treated as multiple single objective problems
where objective functions are handled independently, optimal solution for one criteria may
result in an unacceptable design for the other. To achieve a “best” solution with respect to
multiple criteria, the trade-off between objectives need to be quantified. Scalarization ap-
proaches assume apriori knowledge of this trade-off and convert the multi-criteria problem
into a single objective one by assigning proper weights or priorities to each performance in-
dex. On the other hand, Pareto methods do not require any apriori knowledge about the
design trade-offs and solve for the locus of all dominant solutions with respect to multiple ob-
jective functions, constituting the so-called the Pareto-front hyper-surface. Hence, designers
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can make a more realistic choice between multiple “best” solutions and avoid the challenge of
synthetically ranking their preferences.
There exists several methods to obtain the Pareto-front hyper-surface, among which Normal
Boundary Intersection (NBI) method is one of the most featured. As the Pareto-front hyper-
surface is a geometric entity in the objective space forming the boundary of the feasible region,
NBI approach attacks the geometric problem directly by solving for single-objective constrained
subproblems to obtain uniformly distributed points on the hyper-surface. NBI solves for sub-
problems which only depend on the defined optimization model, that is, chosen objective
functions and design constraints since these equations map the feasible design space onto
the attainable objective space. Given independent optimal solutions for each objective func-
tion (solutions of each single objective problem), called shadow points, NBI first constructs
an hyper-plane in the objective space by connecting these shadow points with straight lines.
Then, this hyper-plane is divided into grids that control the resolution of solutions on the
Pareto-front hyper-surface. For each point on the grid, a geometric subproblem is solved to
find the furthest point on the line that extends along the surface normal passing through the
grid point and is in the feasible domain of the objective space. Hence, NBI obtains the Pareto-
front by reducing the problem to many single-objective constrained subproblems. Number
of subproblems can be adjusted by defining resolution of the grid that maps to the number
of points on the Pareto-front hyper-surface. As the number of points increases, the compu-
tational time increases linearly, but since the method assumes spatial coherence and uses the
solution of a subproblem to initialize the next subproblem, convergence time for each sub-
problem may decrease resulting in further computational efficiency.
NBI method results in exceptionally uniformly distributed points on the Pareto-front hyper-
surface without requiring any tuning of the core algorithm. Moreover, once shadow points are
obtained, NBI solves for the geometric problem directly utilizing a fast converging gradient-
based method, evading the computationally demanding aggregate optimization problems re-
quired in most of the scalarization methods. Therefore, NBI method promises to be much
faster and more efficient than other methods to obtain a well represented Pareto-front hyper-
surface including aggregate methods such as weighted sums and evolutionary optimization
approaches such as GA.
It should also be noted that the NBI method can solve for points on the non-convex regions of
Pareto-front hyper-surfaces, a feature that is missing from the weighted sum methods. Com-
pared to weighted sum techniques, NBI achieves higher solution efficiency as it does not suffer
from clumping of solution in the objective space. NBI is also advantageous over other meth-
ods as it trivially extends to handle any number of objective functions. Compared to Multi-
Objective Genetic Algorithm (MOGA) (Fonseca & Fleming, 1993) that requires problem de-
pendent fitness and search related tuning and several steps to reach convergence, a standard
NBI approach can map the Pareto-front hyper-surface with higher accuracy and uniformity,
while also inheriting the efficiency of gradient-based methods.
Relying on gradient techniques, NBI assumes sufficient smoothness of the geometric prob-
lem at hand, but it has also been demonstrated that the method performs remarkably well
even for non-smooth geometries (Rigoni & Poles, 2005). In the presence of non-continuous re-
gions, multiple initializations of the NBI method may be required for efficiently generating the
Pareto-front hyper-surface. For the case of strongly discontinuous geometries, hybridization
with MOGA-II to supply feasible initialization points at each continuous sub-region can be
employed, as proposed in (Rigoni & Poles, 2005). It is noted that since NBI relies on equality
constraints, it is possible for NBI not to find a solution on the true Pareto-front hyper-surface,
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converging to a local optima. In such a case, post processing on the solutions of NBI subprob-
lems can be employed to filter out undesired dominated solutions.

6. Results and Discussion

Table 2 presents the results of the modified culling algorithm for the single objective problems,
for best kinematic and dynamic isotropy, respectively. These results are obtained by conduct-
ing a global search over the entire parameter space with discretization step sizes of 0.5mm
and 20mm for the parameter and workspace, respectively, and by performing several local
searches with finer discretizations at the neighborhood of the results suggested by the global
search.

Best Design for Best Design for Unit
Kinematic Isotropy Dynamic Isotropy

GII 0.36228 0.27348 –
GDI 0.18726 0.37294 –

l 484 300 mm
r 583 382 mm

Table 2. Results of independent optimizations with respect to GII and GDI .

Figure 2 presents the single objective surfaces plotted with respect to the design variables.
While, subfigures 2(a) and 2(b) depict GII and GDI individually, in subfigures 2(c) and 2(d)
functions are plotted on top of each other. In subfigure 2(c), both functions are supposed to
be maximized, while in subfigure 2(d), a simple transformation is performed to revert the
maximization into a minimization problem. As is evident from these figures, optimal values
for each of these objective functions imply poor performance for the other objective function.
Therefore, the trade-off curve has to be characterized, from which a sensible design choice can
be made.
To characterize the trade-off between the single objective solutions, Pareto-front curve for the
bi-objective optimization problem is constructed in Figure 3. Two different techniques are
employed to form the Pareto-front curve, namely NBI method and aggregated performance
index method. For the NBI method, a grid size of ten points is selected. In Figure 3 the
distribution of points on the Pareto-front curve is marked by dots. For the second method,
an aggregated performance index (API) is defined as the weighted linear combination of
GII and GDI . In particular, API = λ GII + (1 − λ) GDI , where 0 ≤ λ ≤ 1 denotes the
weighting factor. Ten aggregated optimization problems are solved for ten equally spaced
weighting factors utilizing the modified culling algorithm with discretization step sizes of
0.5mm for the parameter space and 20mm for the workspace. Circles in the Figure 3 denote
the distribution of aggregate solutions on the Pareto-front curve and are marked with their
corresponding weighting factor.
As expected, NBI method generates a very uniform distribution of points on the Pareto-front
curve while the solutions of the aggregate problem are clumped at certain locations of the
curve. To obtain a uniform distribution using the aggregated index approach, proper weights
should be assigned. However, the characteristics of the weight distribution is not known be-
fore the problem is solved. Moreover, the aggregate performance index relies on the relatively
costly culling algorithm to solve for each point on the Pareto-front curve and the accuracy of
the solution is limited by the discretization step size chosen. In the Figure 3, the same solu-
tions are obtained for different weighting factors, particulary for weighting factors λ = 0.1 to

www.intechopen.com



Optimal Design of Haptic Interfaces 251

300
400

500
600

700

300

400

500

600

700

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l [mm]r [mm]

G
II

300
400

500
600

700

300

400

500

600

700

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l [mm]r [mm]
G

D
I

300 350 400 450 500 550 600 650 700400500600700

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

l [mm]r [mm]

G
II

, 
G

D
I 

(N
o

rm
a

li
z

e
d

)

(a) (b)

(d)

300
400

500
600

700

300

400

500

600

700
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l [mm]
r [mm]

G
II

, 
G

D
I

(c)

Fig. 2. Functions to be optimized depicted as surfaces. Subfigures (a) and (b) are GII and GDI
respectively, while (c) and (d) represent both of them cast as minimization and maximization
problems.

λ = 0.3. Moreover, a large portion of the Pareto front is missed between λ = 0.7 to λ = 0.8,
due to the course discretization used. Unfortunately, solving for each aggregate performance
index for all weighting factors is a computationally demanding task, limiting the density of
discretization. NBI method possesses an inherent advantage in terms of computational cost,
as it attacks the direct geometric problem to obtain the Pareto-front curve and utilizes contin-
uous, computationally efficient gradient methods for the solution.
In addition to the efficiency offered via the uniform distribution of solutions on the Pareto-
front curve, NBI approach results in orders of magnitude improvement in the computation time,
especially for the design problem at hand, as depicted in Figure 4. All of the simulations
presented in Figure 4 are performed using a 64 bit Windows XP workstation that is equipped
with double Quad Core 3.20GHz 1600MHz Rated FSB Intel Xeon processors with 2x6MB L2
cache, and 8GB (4x2048) 800MHz DDR2 Quad Channel FBD RAM.
As can be observed from Figure 4, the aggregate problem scales geometrically with the dis-
cretization step size, rendering an accurate solution of even ten points on the Pareto-curve
almost impossible for the simple sample problem at hand. On the other hand, NBI method
with a 10−8 tolerance solves for points on the Pareto-front curve very effectively, in about half
the time of the weighted-sum approach with 2.5mm step size. Even though the accuracy of
solutions obtained by the NBI method is dependent on the constraint tolerance set for the
algorithm, convergence for NBI with all the tolerance values 10−6 and 10−8 are shown to be
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Fig. 5. Distribution of NBI solutions with two different tolerances: 10−6 and 10−8

acceptable in Figure 5. Since NBI employs a local search algorithm that is dependent on the
initial conditions, convergence can be poor at certain trials as can be observed for a point in
Figure 5. However, poor convergence of certain points is not an uncorrectable drawback, as
solution for those points can be repeated with different initializations and tighter tolerances.
The computational time for NBI method scales linearly with tolerance values as it does with
number of points selected for the grid.
To allow for further comparisons of the Pareto methods with other scalarization approaches
proposed in the literature, a sequential optimization is implemented for the sample problem
as suggested in (Stocco, 1999). In this method, firstly parameter sets resulting in the best
GII values for each discrete value of the parameter l are calculated using the culling algo-
rithm. The change in GII values and the other link lengths are plotted in Figure 6 with
respect to the independent parameter l. In this plot, one can observe that GII value increases
monotonically with increasing l until some point, specifically at l = 484, r = 583, after which,
it becomes a monotonically decreasing function of l.
Assigning l as the independent variable, the sequential method uses the set of “optimal” so-
lutions with respect to GII as the feasible search domain to conduct another single criteria
optimization, this time with respect to GDI . In other words, the parameter set resulting in
the best GDI value is selected from the Figure 6, utilizing the culling algorithm. The result
of the sequential optimization approach is plotted in Figure 7 with respect to a dense Pareto-
curve obtained using the NBI approach. The plot is re-scaled to have the abscissa represent
the maximum singular value of the inertia matrix, which has dimensions of kg, to facilitate
the selection of the final design. The process has, of course, turned the max-max problem into
a min-max one, where the maximum singular value of the mass matrix over the workspace
is intended to be minimized, and GII is to be maximized. As a result the Pareto curve is
reflected about the vertical axis. Inspecting the plot, one can conclude that the “best” solu-
tion obtained using the sequential optimization approach is dominated – is a point not lying on
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the Pareto front, meaning there exists solutions for which one can improve GII while keep-
ing GDI constant or vice versa. In fact, improvements up to 10% in the GII value and up
to 12% in the maximum singular value are possible by choosing one of the designs that lies
on the Pareto-front boundary found by the intersection of the Pareto curve and vertical and
horizontal line, respectively, passing through that point.
As emphasized earlier, any point on the Pareto-front curve is a non-dominated solution.
Hence it is up to the designer to choose the “best” design for the application at hand, consid-
ering the characteristics of the trade-off mapped out by the Pareto-front boundary. The Pareto
methods not only allow additional constraints be considered for the final decision but also let
the designer adjust these constraints while simultaneously monitoring their effect on the set
of non-dominated solutions. For the sample problem analyzed, a design is selected by im-
posing three additional physical constraints on the Pareto-front curve: a footprint constraint,
a limit on the largest singular value of the mass matrix, and a threshold for the GII value.
The footprint constraint of 400mm x 400mm eliminates the top 13 points of the Pareto curve.
The second constraint, specifically the largest singular value of the mass matrix to be less than
250g, eliminates the 14th point in the solution set. Letting GII possess at least a value of
0.34, takes out 16 non-dominated solutions on the left. Finally, a selection is made among the
remaining solutions in the set, by considering ease of manufacturing. The design is marked
with a star in Figure 7. The link lengths corresponding to this design choice are l = 390mm
and r = 470mm as also depicted in Figure 7.

7. Conclusions

A general framework suitable for optimization of haptic interfaces, in particular haptic in-
terfaces with closed kinematic chains, with respect to multiple design criteria is presented.
Optimization problems for haptic interfaces with best worst-case kinematic and dynamic per-


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Fig. 7. Comparison of sequential approach with the Pareto-front curve. Effects of additional
constraints imposed on the problem and link lengths corresponding to “best” designs.

formance are formulated. Non-convex single objective optimization problems are solved with
the modified culling algorithm, while NBI method is used to obtain the Pareto-front curve to
present the designer with a wide range of alternative solutions. Computational efficiency
of NBI method is demonstrated over aggregating approaches such as weighted sums. The
optimality of the design using Pareto methods is shown over prioritization approaches. Di-
mensional synthesis of a high performance haptic interface utilizing the Pareto-front curve is
demonstrated.
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