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1. Introduction

Over the past years haptic interfaces have been successfully integrated into a wide range
of fields such as engineering (Borro et al., 2004) or surgery (Basdogan et al., 2004). Hap-
tic devices allow users to interact with a certain environment, either remote or virtual, by
the sense of touch. In these applications—unlike in conventional robotic systems—the user
shares workspace with the device. Therefore, an unstable behaviour can damage the device,
or even worse, harm the operator. Thus, stability must be guaranteed to ensure user safety
and achieve high haptic performance. Unfortunately, preserving haptic stability usually im-
plies reducing the range of dynamic impedances achievable by the system. Hence, rigid vir-
tual objects cannot be perceived as stiff as real ones, and the overall haptic performance and
transparency perception are considerably degraded.
Developing stable controllers able to exhibit a wide dynamic range of impedances is a persis-
tent challenge in the field of haptics. This chapter describes main research carried out by the
authors on stability issues for haptic rendering, as well as on the development of transparent
haptic controllers.
In a haptic system, the stability boundary for haptic rendering depends on many factors, such
as inherent interface dynamics, motor saturation, sensor resolution or time delay. Section 2
introduces the state-of-the-art on stability studies showing the influence of many of these
phenomena. Beyond related work, Section 3 analyses the influence of viscous damping and
delay on the stability boundary for haptic rendering. Although the shape of the stability
boundaries found is quite complex, a linear condition which summarises the relation between
virtual stiffness, viscous damping and delay is proposed.
Section 4 analyses the influence of the first vibration mode of the system on the stability
boundary. The majority of haptic models used to analyse stability do not consider the exis-
tence of internal vibration modes. However, it will be shown that for certain interfaces vibra-
tion modes must be taken into account to correctly obtain the range of impedances achievable
by the system.

5
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Ensuring stability is of major concern in haptic interaction; however, preserving stability does
not imply improving haptic transparency. A transparent haptic interface should be able to
emulate any environment, from free-space to infinitely stiff obstacles without perceiving the
dynamics of the haptic device. The stability boundary for haptic rendering is known to be
independent of the mass of the device; yet, high inertia of haptic interfaces degrades both
system usability and transparency. To cover this issue, Section 5 shows control algorithms
that improve transparency on high-inertia haptic interfaces without compromising overall
system stability. Finally, conclusions and future directions are drawn in Section 5.

2. Related Work

The authors of (Minsky et al., 1990) were the first to study the stability of haptic systems. They
used the continuous model of a 1 DOF (degree-of-freedom) haptic device colliding against a
virtual wall shown in Fig. 1. The interface has a mass m and a physical damping b. The user
exerts a force Fu causing the displacement Xh of the device. An elastic model with stiffness K

is used to compute the interaction force of the virtual environment.



 










 

 



Fig. 1. Continuous haptic model.

 
















  


 





Fig. 2. Discrete haptic model.

In their study, system instabilities were attributed to the time delay introduced by the holder.
To analyse its effect, but maintaining the continuous model, they included a time delay of one
sampling period T to the actuation of the virtual environment. In this model, if the function of
the delay is approximated by a second-order Taylor series expansion, it can be demonstrated
that the system is stable if it satisfies the following condition:

b > KT (1)

After this result, Minsky demonstrates experimentally that introducing in the model the user’s
mass mh, damping bh and stiffness kh parameters, as well as a virtual damping B, the stability
condition that must be guaranteed is:

B + b + bh >
(K + kh)T

2
(2)

In this expression, the proportional factor 1
2 is found from experimental results on the real

system, but with no theoretical foundation. Later works (Brown & Colgate, 1994) show exper-
imental results that obtain the stability boundary for haptic rendering as a function of many
parameters of the device. Those results match the work carried out by Minsky.
From the control point of view, a haptic system is a sampled-data controlled mechatronic
device. Unlike previous works, (Gil et al., 2004) analyse theoretically stability over a discrete
haptic system (Fig. 2). ZOH(s) represents the zero-order holder and the backwards difference
is used to estimate velocity. The authors obtain the same stability condition (2) found by
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previous works. Results of their work also show that this approximation is only valid for low
values of virtual damping B. However, in most cases it is sufficient since common actuators
used in haptic devices do not allow implementing large values of K and B.
The haptic models presented until now have not taken into account many parameters, such
as user dynamics, friction, sensor quantization or time delays, that may have influence on
stability. Regarding the user, (Gil et al., 2004), (Hulin, Preusche & Hirzinger, 2008) and (Dio-
laiti et al., 2006) show that the user only contributes positively to stability. Therefore, a haptic
model without the user can be considered as the “worst-case scenario”.
Fig. 3 shows the model of a haptic device colliding against a virtual wall with time delay td.
This time delay can be the sum of several effects: computations, communications, etc. The
model has also Coulomb friction c, and considers position sensor resolution q.

 








 





















 








  




  





Fig. 3. Model of a haptic system with non-linear effects.

In (Diolaiti et al., 2006) and (Abbott & Okamura, 2005), it was found that Coulomb friction can
dissipate the energy introduced by the quantization. Therefore, in some way both factors can-
cel each other and could be not considered for the stability analysis. Regarding the influence
of the time delay, it will be covered in the following section.
Another way to guarantee the stability of the system is ensuring its passivity (Adams & Han-
naford, 1999). The passivity condition for the system without time delay proposed by (Colgate
& Schenkel, 1997) is

b >
KT

2
+ B. (3)

Notice that in (3) the virtual damping term does not contribute to obtain larger values of
stiffness as in (2), but the opposite. Therefore, the passivity condition is considered a more
restrictive condition than stability.
In later works, (Hannaford & Ryu, 2002) and (Ryu et al., 2005) have managed to adjust the
passivity region using the “passivity controller”. It consist of a variable virtual damping that
dissipates the energy generated by the haptic interface. However, the model is still conserva-
tive compared to stability conditions.

3. Obtaining the Stability Boundary for Haptic Rendering

This section analyses the influence of viscous damping and delay on the stability boundary
for haptic rendering. Assuming that Coulomb friction can dissipate the amount of energy
introduced by quantization, and that the user only contributes positively to make the system
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more stable, Fig. 4 shows a simplified haptic model that can be considered as the “worst-case
scenario”.

 








 










  

  





  


Fig. 4. Linear simplified model of a haptic system.

Following (Hulin et al., 2006), the dimensionless parameters that will be used in this section
are shown in Table 1. Although some authors (Diolaiti et al., 2006) have used the virtual
stiffness to normalise the parameters, here it will be used the mass (or the inertia for rotary
joints), because this way the values of the device do not change with the contact force law.

Parameter Variable Dimensionless variable

Sampling period T -

Mass m -

Physical damping b δ = bT

m

Virtual stiffness K α = KT2

m

Virtual damping B β = BT

m

Delay td d = td

T

Table 1. Dimensionless parameters.

Both real and dimensionless parameters can theoretically take any value (m > 0, b > 0, T > 0
and td ≥ 0). However, typical sampling rates in haptics are quite fast (≥ 1 kHz) and the
relation between the physical damping and the mass cannot be supposed to be arbitrarily
large. For example, some experimentally acquired values given in (Diolaiti et al., 2006) show

that b

m
≪ 1 s−1 for all investigated haptic devices. Therefore, the dimensionless physical

damping δ is quite small in haptic systems. In this study it will be supposed that δ < 10−3.
Classical control tools have been applied to the linear system in order to obtain the stability
conditions. In (Gil et al., 2004), it was stated that, with no delay, d = 0, the stability condition
of the linear system (using the dimensionless parameters of Table 1) is

α < δ(δ + β)
(1 − ǫ)(βǫ + βδǫ − β + δ2)

(1 − ǫ − δǫ)(βǫ + βδ − β + δ2)
, (4)

where ǫ is a dimensionless number,

ǫ = e
− bT

m = e
−δ. (5)

Stability condition (4) is consistent with (Gillespie & Cutkosky, 1996). Substituting ǫ by its
Taylor approximation,

ǫ = 1 − δ +
1

2
δ2

−
1

6
δ3 + O(δ4), (6)
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makes it possible to linearise (4) around the origin and to obtain the following more compact
stability condition:

α < 2(δ + β). (7)

The fact that the dimensionless physical damping δ is a very small number enforces the va-
lidity of this approximation. Further experimental studies confirm the result that increasing
both the physical viscous damping—i.e. electrically (Mehling et al., 2005), (Tognetti & Book,
2006) or magnetically (Gosline et al., 2006)—and the virtual damping (Colgate & Brown, 1994),
(Janabi-Sharifi et al., 2000) allows for larger stable stiffness coefficients.
If the system contains a delay of one sampling period, d = 1, the stability condition that has
been proposed in (Bonneton & Hayward, 1994) using the Padé approximation is

α <
2

3
(δ + β). (8)

3.1 Stability Condition

In this section, a stability condition for the linear system including the effect of both delay and
virtual damping is proposed. This stability condition may be seen as generalisation of pre-
vious conditions (7) and (8) for any delay, consistent with the study of the non-linear system
(Diolaiti et al., 2006) but including the effect of the virtual damping β:

α <
2

1 + 2d
(δ + β). (9)

Using the physical values of the parameters the proposed stability condition is

K <
b + B

T

2 + td

, (10)

and taking into account that the effect of the sampling and hold in the control loop can be
approximated by a delay of half the sampling period T

2 , the stability condition proposed (10)
can be interpreted with the following statement:

Critical stiffness =
∑ Damping

∑ Delay
. (11)

The critical stiffness of a haptic system is equal to the overall damping of the mentioned
system divided by the total delay of the loop. Therefore, a double viscous damping in the
system—physical plus virtual—will allow for a double stiffness; while a double delay in the
haptic loop—no matter its nature—will half the maximum stable stiffness.
The validity of this formula will be checked by two different ways: 1) solving numerically the
characteristic equation and performing a graphical approach, 2) with experimental results.
The reader is addressed to (Gil, Sánchez, Hulin, Preusche & Hirzinger, 2009) for a complete
theoretical analysis.

3.2 Graphical Analysis

The methodology followed in (Gil et al., 2004) can be used to receive the analytical stability
condition from the characteristic equation of the system. In the Z-domain, this equation con-
sists of a polynomial if the delay td is a multiple of the sampling period T (then d takes natural
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values):

δ2(z − ǫ)(z − 1)zd+1
− (1 − ǫ − δ)(α + β)z2

+ [(1 − ǫ − δǫ)(α + β) + (1 − ǫ − δ)β] z

−(1 − ǫ − δǫ)β = 0. (12)

The validity of (9) is checked using the graphs of the stability boundaries. Two different ways
have been used to obtain and depict the critical stiffness of the linear system with delay. The
first one follows (Gil et al., 2004) and directly obtains the critical stiffness for different values
of the virtual damping evaluating

α < Gm





1
zd(z−1)(z−ǫ)δ2

(ǫ−1+δ)z+1−ǫ−δǫ
+ β z−1

z



 , (13)

where Gm[.] means gain margin of the Z-transfer function. The second method, used in
(Hulin et al., 2006) and (Salcudean & Vlaar, 1997), numerically solves the poles of the charac-
teristic equation (12) and finds the stiffness coefficients which place all the poles just within the
unit circle. Although both methods obtain the same results, the gain margin can be computed
easily in Matlab® if the delay is a multiple of the sampling period T, while the other method
allows for introducing fractional numbers for the delay. Fig. 5 shows the stability boundaries
for different delays d, setting δ < 10−3.

Fig. 5. Stability boundaries for small dimensionless physical damping (δ < 10−3) and delays
d = [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3] (left) and zoom near the point of origin (right).

The shown boundaries in Fig. 5 (right) fit perfectly the linearised stability condition (9). The
initial slope of the stability boundaries becomes smaller with the delay. Therefore, the critical
stiffness without virtual damping β = 0 decreases also with the delay. This means that, using
the physical parameters, the critical stiffness depends on both the physical damping and the
delay.
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3.3 Experimental Results

Two different haptic interfaces have been used to perform experiments: the DLR Light-Weight
Robot III (Hirzinger et al., 2002) and the LHIfAM (Savall et al., 2004). A bilateral virtual wall
consisting of a virtual spring and damper was implemented using one joint of each inter-
face. Limit-stable parameter values were obtained when sustained oscillations were observed
increasing the stiffness. No user was involved in the experiments.

�

Active joint

Fig. 6. Third generation of the DLR
Light-Weight Robot arm.



Fig. 7. LHIfAM haptic interface.

3.3.1 DLR Light-Weight Robot

The DLR Light-Weight Robot III (Fig. 6) is a 7 DOF robot arm with carbon fiber grid structure
links. Though it weighs only 14 kg, it is able to handle payloads of 14 kg throughout the whole
dynamic range. The electronics, including the power converters, is integrated into the robot
arm. Every joint has an internal controller which compensates gravity and Coulomb friction.
Since high-resolution position sensors are used to measure link orientation (quantization q ≈

20"), non-linear effects can be neglected.
The virtual wall was implemented in the third axis of the robot, indicated by the rotating
angle φ in Fig. 6. The environment was implemented using a computer connected to the
robot via Ethernet. The sampling rate was 1 kHz and the overall loop contained a delay of
5 ms. Fig. 8 shows the experimental results, introducing several fixed values for the virtual
damping. A set of experiments was performed with only the system delay of 5 ms, while
additional delays were artificially introduced into the loop to obtain an overall delay of 6 and
10 ms. The theoretical behaviour is depicted with dashed lines. The experimental stability
boundaries fit the linear condition remarkably well.
A significantly long delay was also introduced into the system in order to obtain a curved
stability boundary. Fig. 9 shows the experimental stability boundary for an overall delay of
55 ms. The beginning of the stability boundary for a delay of 10 ms is also shown in the same
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figure. The theoretical stability curve has been computed using the device’s inertia in the
configuration selected for the experiments: 0.8 kg·m2.

Fig. 8. Experimental stability boundaries for
a delay td of 5, 6 and 10 ms (pluses and solid)
and theoretical boundaries (dashed).

Fig. 9. Experimental stability boundaries for
a delay td of 10 and 55 ms (pluses and solid)
and theoretical boundaries (dashed).

3.3.2 LHIfAM

The LHIfAM (Fig. 7) is a haptic interface with a large workspace developed at CEIT. The
mechanism consists of a counterbalanced parallelogram moving on a linear guide 1.5 m in
length. The virtual wall was implemented in the direction of the translational movement of
the guide (x axis in Fig. 7). In this direction, both the inertia of the device and the sensor
resolution are quite high: 5.4 kg and quantization q ≈ 3.14 µm, respectively. The Coulomb
friction is compensated by the controller.
The controller can acquire the information from the sensor, compute the force of the virtual
wall and command the motor within the same sampling period, that is, theoretically without
delay in the loop. Therefore, significant stiffness coefficients can be implemented with stable
behaviour. However, the motor is saturated with few millimeters of penetration in the virtual
wall. In order not to saturate the actuator in the overall critical oscillation, artificial delays of
3, 6 and 12 ms have been introduced into the control loop.
Fig. 10 shows the experimental stability boundaries. It can be seen that experimental results
match the stability condition proposed in (10). The theoretical stability boundaries have been
computed using a physical damping of 4.6 Ns/m. Although the physical damping is quite
high, since the sampling period was 1 ms, the dimensionless damping of the LHIfAM in the
direction of x was δ = 0.85 × 10−3 and therefore still within the δ < 10−3 range.

3.4 Valid Range of the Linear Condition

The shape of the stability boundary can be divided into two different parts. The first one
follows the linear condition (10) for relatively small values of virtual damping (Fig. 8). The
second one is a curve (Fig. 9) which can be obtained graphically or experimentally.
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Fig. 10. Experimental stability boundaries for the LHIfAM and a delay td of 3, 6 and 12 ms
(pluses and solid) and theoretical stability boundaries for a physical damping b of 4.6 Ns/m
(dashed) and same delays.

Regarding the delay, several factors, such as computation of the collision detection algorithms
for complex virtual environments, digital to analog conversion, and amplifier dynamics, in-
troduce a certain delay in the haptic system that is usually equal to or less than one sampling
period. Therefore the linear condition is appropriate for haptic devices. In other kinds of sys-
tems, which usually involve longer delays, the linear stability condition should no be used.
For example, it is quite common to suppose a delay equal to hundreds of milliseconds in
teleoperated systems.

4. Beyond Rigid Haptic Models: Influence of Internal Vibration Modes on Stability

The mathematical model used to analyse stability in previous section does not take into ac-
count the existence of internal vibration modes. This section presents a theoretical approach
that studies the influence of internal vibration modes on the stability of haptic rendering (Díaz
& Gil, 2008). In particular, it addresses the influence of the first resonant mode of cable trans-
mission used in haptic devices. This type of mechanical transmission is widely used in haptic
devices because it offers a number of advantages such as low friction, no backlash and low
weight (Townsend, 1988).

4.1 Model Description

Fig. 11(a) illustrates the simplified model of a haptic device used in previous section to analyse
the stability of haptic systems. It has a mass m and a viscous damping b, and the model
assumes that the mechanical device is perfectly rigid. Although the force exerted by the motor
Fr and the net force exerted by the user Fu are introduced in different places, a single transfer
function is defined for this model, which is

G(s) =
X

Fr + Fu
=

1

ms2 + bs
. (14)
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(a)




















(b)

Fig. 11. Mechanical schematic of a perfectly rigid haptic device (a), and a haptic device with a
single vibration mode (b).

Fig. 11(b) shows a haptic system with a single vibration mode. In this model, the device is
divided into two masses connected by a link: mass mr, pushed by the force of the motor, and
mass md, pushed by the user. The dynamic properties of the link are characterised by a spring
and a damper (kc and bc). This model is a two-input/two-output system, and the relationship
between output positions and input forces is

x =

[

Xd

Xr

]

=

[

Gd(s) Gc(s)
Gc(s) Gr(s)

] [

Fu

Fr

]

=
1

p(s)

[

pr(s) kc + bcs
kc + bcs pd(s)

] [

Fu

Fr

]

= Gf, (15)

where,

pr(s) = mrs2 + (br + bc)s + kc, (16)

pd(s) = mds2 + (bd + bc)s + kc, (17)

p(s) = pr(s)pd(s)− (kc + bcs)2. (18)

Introducing an impedance interaction with the virtual environment, the device can be anal-
ysed as a single-input/single-output system, as illustrated in Fig. 12. C(z) is the force model
of the virtual contact (which usually includes a spring and a damper), H(s) is the zero-order-
holder, T is the sampling period, and td represents the delay in the loop. The sampled position
of the motor is given by

X∗

r =
Z[Gc(s)Fh(s)]

1 + C(z)Z[H(s)Gr(s)e−tds]
. (19)



























Fig. 12. Haptic system with impedance interaction.

If the force model only has a virtual spring with stiffness K, stability of the system depends
on the following characteristic equation:

1 + KZ[H(s)Gr(s)e
−tds] = 0, (20)
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and the critical stiffness is
KCR = Gm{Z[H(s)Gr(s)e

−tds]}, (21)

where Gm{.} means gain margin of the transfer function within brackets. From (21), it follows
that Gr(s) is the relevant transfer function for the stability of the system.

4.2 Model Parameters Identification

The physical parameters for Gr(s) have been experimentally identified for two haptic inter-
faces, PHANToM 1.0 and LHIfAM. Since these interfaces are significantly different in terms
of workspace and overall physical properties, the influence of the vibration modes may differ
from one to another. Both devices are controlled by a dSPACE DS1104 board that reads en-
coder information, processes the control loop and outputs torque commands to the motor at
1 kHz.
A system identification method based on frequency response has been used to determine
Gr(s). This strategy has already been successfully used to develop a model of a cable trans-
mission (Kuchenbecker & Niemeyer, 2005). The method yields an empirical transfer function
estimate (ETFE), or experimental Bode plot (Ljung, 1999), by taking the ratio of the discrete
Fourier transform (DFT) of the system’s output response signal to the DFT of the input signal
applied. A white noise signal is commonly used as input signal (Weir et al., 2008). Model
parameters are identified by fitting the ETFE to the theoretical transfer function with six in-
dependent variables by performing an automatic iterative curve fitting using least-squares
method.
The first rotating axis of a PHANToM 1.0 haptic interface has been used for the experiments
(angle φ in Fig. 13). Only the motor that actuates this axis is active. A white noise torque
signal is applied and the output rotation is measured. The experiment is performed without
any user grasping the handle of the device.












Fig. 13. PHANToM 1.0 haptic interface.

The frequency response of the system is presented in Fig. 14. It can be seen that the first vibra-
tion mode of the interface takes place at 62.5 Hz, which may correspond to the one detected in
(Çavuşoğlu et al., 2002) at 60 Hz. The parameters obtained for Gr(s) are presented in Table 2.
These parameters have been identified with respect to the φ-axis.
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Parameter Variable PHANToM LHIfAM

Device mass m 1.05 gm2 5.4 kg
Device damping b 0.0085 Nms/rad 3.5 Ns/m

Motor mass mr 0.895 gm2 0.3 kg
Motor damping br 0.0085 Nms/rad 0.1 Ns/m
Cable damping bc 0.0057 Nms/rad 15 Ns/m
Cable stiffness kc 18.13 Nm/rad 79.5 kN/m

Body mass md 0.155 gm2 5.10 kg
Body damping bd 0 Nms/rad 3.4 Ns/m

Table 2. Physical parameters of the PHANToM and the LHIfAM.

The equivalent translational parameters at the tip of the handle1 (along the x-axis in Fig. 13)
can be calculated by dividing the rotational parameters by (12 cm)2. The linear inertia results
as m = 72.92 g, which is consistent with the manufacturer specifications: m < 75 g; and the
linear damping as b = 0.59 Ns/m.
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Fig. 14. Experimental (blue line) and the-
oretical (black line) Bode diagrams for the
PHANToM.
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Fig. 15. Bode diagram and margins of
Z[H(s)Gr(s)] calculated for the LHIfAM.

Regarding the LHIfAM haptic interface, its translational movement along the guide has been
used as a second testbed (Fig. 7). The cable transmission is driven by a commercial Maxon
RE40 DC motor. Table 2 summarises the physical parameters obtained, and Fig. 15 shows the
shape of Gr(s) and the gain margin of the system.

4.3 Influence of the Vibration Mode

With the physical parameters obtained for both devices, Gr(s) is known and the critical stiff-
ness can be found by evaluating (21). If we compare those results with the linear condition
(10) obtained in Section 3, the influence of the vibration mode on the critical stiffness, if any,
can be found. Table 3 shows these theoretical gain margins for both devices.

1 Placing the tip of the handle at the middle of the workspace is approximately at 12 cm from the joint
axis.
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Device Model Gm (dB)

PHANToM
Rigid 24.6

Non rigid 22.41

LHIfAM
Rigid 76.9

Non rigid 78.9

Table 3. Gain margins of PHANToM and LHIfAM.

r

Fig. 16. Bode diagram and margins of Z[H(s)Gr(s)] calculated for the LHIfAM after reducing
cable pretension.

Gain margins obtained with the rigid haptic model are very similar to those obtained with a
haptic model that takes into account the first vibration mode of the device. Therefore, it seems
that the vibration mode does not affect stability. However, analysing Fig. 15, it can be seen
that for the LHIfAM the resonant peak of the vibration mode could easily have imposed the
stability margin. Therefore, further studies have been carried out on the LHIfAM to analyse
the possible influence of the vibration mode. For that purpose, the initial pretension of the
LHIfAM’s cable transmission has been decreased. This affects directly the cable’s dynamic
parameters, thus the vibration mode. New parameters are: kc = 38 kN/m and bc = 11 Ns/m.
Fig. 16 shows the Bode diagram of Z[H(s)Gr(s)] for the new cable transmission setup. In this
case, the first resonant mode of the cable does impose the gain margin of the system. Notice
that the new gain margin is larger than the one of the original system, but placed at a higher
frequency. Although it may not seem evident in Fig. 16, there is only one phase crossover
frequency at 411.23 rad/s in the Bode diagram.
A possible criterion to estimate whether the resonant peak influences on the critical stiffness
is to measure the distance Q from the resonant peak to 0 dB. This distance is approximately

Q ≈ mrznωn, (22)

where,

zn =
br + bc

mr
+

bd + bc

md

−
br + bd

mr + md

, (23)
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wn =

√

kc(mr + md)

mdmr
. (24)

Distance Q should be compared with the critical stiffness obtained using the criterion pre-
sented in (10), which gives a gain margin similar to the one shown in Fig. 15. If Q is similar
or larger than that value, then the vibration mode should be taken into account in the stability
analysis. Using the parameters of the LHIfAM, Q is approximately 78.16 dB (with original
cable setup).

4.4 Experimental Results

Theoretical results of the influence of the vibration mode on the gain margin of the LHIfAM
have been validated experimentally. Experiments have been performed after reducing cable
pretension, therefore the gain margin obtained should be placed on the resonant peak of the
vibration mode.
An interesting approach is to experimentally seek out—by tuning a controllable parameter
in the same system—several critical stiffness values KCR: some that are influenced by the
resonant frequency and others that are not. This can be achieved by introducing an elastic
force model with different time delays td:

C(z) = Kz−
td
T . (25)

This way, the characteristic equation becomes

1 + Kz−
td
T Z[H(s)Gr(s)] = 0, (26)

and the critical stiffness is

KCR = Gm{z−
td
T Z[H(s)Gr(s)]} = Gm{Z[H(s)Gr(s)e

−tds]}. (27)

Without any delay in the system, the gain margin should be imposed by the resonant peak of
the vibration mode. Introducing certain time delay within the loop the gain margin should
move to the linear region of the Bode where the slope is −40 dB/decade (as it is schematically
shown in Fig. 17).
The critical virtual stiffness of the device has been calculated by means of the relay experiment
described in (Barbé et al., 2006; Gil et al., 2004; Åström & Hägglund, 1995), with and without
time delay. In this experiment a relay feedback—an on-off controller—makes the system os-
cillate around a reference position. In steady state, the input force is a square wave, the output
position is similar to a sinusoidal wave, both in counterphase. These two signals in opposite
phase are shown in Fig. 18.
It can be demonstrated (Åström & Hägglund, 1995) that the ultimate frequency is the oscil-
lation frequency of both signals, and the critical gain is the quotient of the amplitudes of the
first harmonic of the square wave and the output position. Since we are relating force exerted
on the interface and position, this critical gain is precisely the maximum achievable virtual
stiffness for stability.
Nine trials with varying delays in the input force (from 0 to 8 ms) were performed. Each one
of these trials was repeated four times in order to have consistent data for further analysis.
In each experiment, input-output data values were measured for more than 15 seconds (in
steady state). Oscillation frequencies were found by determining the maximum peak of the
average power spectral density of both signals. Gain margins were obtained by evaluating
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Fig. 17. Scheme of the Bode diagram of
Gr(s)e−tds for two different time delays (td <

t′
d
).
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Fig. 18. Force input and position output of a
relay experiment for time delay td = 0.

td ωCR Gm td ωCR Gm td ωCR Gm
(ms) (Hz) (dB) (ms) (Hz) (dB) (ms) (Hz) (dB)

0 64.9414 80.3149 3 4.3945 73.5975 6 3.1738 66.8281
0 64.4531 79.9414 3 4.3945 73.8443 6 3.1738 66.7219
1 60.0586 76.2336 4 4.3945 73.5919 7 2.6855 64.1268
1 59.0820 75.3235 4 4.3945 73.6444 7 2.8076 64.6013
2 4.8828 76.1063 5 4.5166 73.9604 8 2.3193 61.3209
2 4.8828 76.4240 5 4.3945 73.3171 8 2.3193 61.4755

Table 4. Critical oscillations of the LHIfAM.

the estimated empirical transfer function at that frequency. Table 4 presents these oscillation
frequencies and gain margins.
Fig. 19 shows that results of Table 4 and the Bode diagram of Z[H(s)Gr(s)] calculated for the
LHIfAM match properly. Notice that the resonant peak of the vibration mode determines the
stability of the system only for short delays.
Critical gain margins shown in Table 4 for the undelayed system should be similar to the gain
margin obtained theoretically in Fig. 16. However, they differ more than 7 dB. A possible
reason could be that most practical systems experience some amplifier and computational
delay in addition to the effective delay of the zero-order holder (Diolaiti et al., 2006). This
inherit delay has been estimated using the Bode diagram of Fig. 16, and is approximately
250 µs.
To sum up, the analysis carried out on this section shows that the first resonant mode of the
haptic device can affect the stability boundary for haptic interfaces in certain cases. Therefore,
the designer of haptic controllers should be aware of this phenomena to correctly display the
maximum stiffness without compromising system stability.
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Fig. 19. Experimental gain margins obtained for several time delays by the relay experiment
(circles), and the Bode diagram of Z[H(s)Gr(s)] calculated for the LHIfAM (line).

5. Improving Transparency for Haptic Rendering

The need to decrease the inertia of an impedance haptic interface arises when a mechanism
with large workspace is used. This occurs with the LHIfAM haptic device, which was de-
signed to perform accessibility and maintenance analyses by using virtual reality techniques
(Borro et al., 2004). One important objective of the mechanical design was to incorporate a
large workspace while maintaining low inertia—one of the most important goals needed to
achieve the required transparency in haptic systems. The first condition was met by using a
linear guide (Savall et al., 2008). However, the main challenge in obtaining a large workspace
using a translational joints is the high level of inertia sensed by the user. If no additional
actions are taken, the operator tires quickly; therefore a strategy to decrease this inertia is
needed.
A simple strategy used to decrease the perceived inertia is to measure the force exerted by
the operator and exert an additional force in the same direction of the user. This type of feed-
forward force loop, described in (Carignan & Cleary, 2000) and (Frisoli et al., 2004), has been
successfully used in (Bernstein et al., 2005) to reduce the friction of the Haptic Interface at
The University of Colorado. In (Ueberle & Buss, 2002), this strategy was used to compen-
sate gravity and reduce the friction of the prototype of ViSHaRD6. It has also been used in
(Hashtrudi-Zaad & Salcudean, 1999) for a teleoperation system. In (Hulin, Sagardia, Artigas,
Schätzle, Kremer & Preusche, 2008), different feed-forward gains for the translational and ro-
tational DOF are applied on the DLR Light-Weight Robot as haptic device.
To decrease the inertia of the haptic interface, the force exerted by the operator is measured
and amplified to help in the movement of the device (Fig. 20). The operator’s force Fu is
measured and amplified K f times. Notice that Fh is the real force that the operator exerts, but
owing to the dynamics of operator’s arm, Zh(s), a reaction force is subtracted from this force.
It is demonstrated (28) that the operator feels no modification of his/her own impedance,
while both the perceived inertia and damping of the haptic interface are decreased by 1 + K f .
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Fig. 20. Continuous model of the system in free movement.

The higher the gain K f , the lower interface impedance is felt.

Xh(s)

Fh(s)
=

1
m

1+K f
s2 + b

1+K f
s + Zh(s)

(28)

A number of experiments have been performed demonstrating how this strategy significantly
decreases the inertia felt. User’s force Fh and position Xh have been measured in free move-
ment with the motors turned off, and setting K f equal to 2. Since inertia relates force with
acceleration, abrupt forces and sudden accelerations have been exerted at several frequencies
to obtain useful information in the Bode diagrams. The diagrams in Fig. 21 were obtained by
using Matlab command tfe to the measured forces and displacements. This command com-
putes the transfer function by averaging estimations for several time windows.
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Fig. 21. Experimental gain Bode diagram of
Xh(s)
Fh(s)

with K f = 0 (dots) and K f = 2 (circles); and

theoretical gain Bode diagram of a mass of 5.4 kg (solid) and 1.8 kg (dashed).

As it could be expected, the gain Bode diagram of
Xh(s)
Fh(s)

increases approximately 9.54 dB and

the inertia felt is three times smaller. It can be also seen that, although it is not noticeable by the
user, the force sensor introduces noise in the system. Its effect and other factors compromising
the stability of the system will be studied in the following sections. The reader can found
further details in (Gil, Rubio & Savall, 2009).

www.intechopen.com



Advances in Haptics120







 










Fig. 22. Sampled model of the system in free movement.

5.1 Discrete Time Model

The sampling process limits the stability of the force gain K f . A more rigorous model of the
system, Fig. 22, is used to analyse stability and pinpoint the maximum allowable value of the
force gain—and hence the maximum perceived decrease in inertia. This model introduces the
sampling of the force signal, with a sampling period T, a previous anti-aliasing filter G f (s),
and a zero-order holder H(s). The characteristic equation of this model is

1 + K f Z

[

H(s)
G(s)Zh(s)

1 + G(s)Zh(s)
G f (s)

]

= 1 + K f G1(z) = 0. (29)

To obtain reasonable values for K f , a realistic human model is needed. The one proposed by
(Yokokohji & Yoshikawa, 1994) will be used in this case, because in this model the operator
grasps the device in a similar manner. The dynamics of the operator (30) is represented as
a spring-damper-mass system where mh, bh and kh denote mass, viscous and stiffness coeffi-
cients of the operator respectively. Regarding the filter, the force sensor used in the LHIfAM
(SI-40-2 Mini40, ATI Industrial Automation), incorporates a first order low-pass filter at 200 Hz
(31). The control board of the system (dSPACE DS1104) runs at 1 kHz.

Zh(s) = mhs2 + bhs + kh = 2s2 + 2s + 10 (30)

G f (s) =
1

1 + Tf s
=

1

1 + 0.005s
(31)

Using these expressions, the critical force gain for the LHIfAM is

K f CR = Gm{G1(z)} = 37.12. (32)

This means that the inertia could be theoretically reduced from 5.4 kg up to 0.14 kg. How-
ever, phase crossover frequency coincides with the Nyquist frequency (see Fig. 23). At this
frequency, as shown in previous section, vibration modes of the interface—which were not
modelled in G(s)—play an important role in stability.
Possible time delays in the feedforward loop will reduce the critical force gain value because
phase crossover will take place at a lower frequency. In case of relatively large delays, the
worst value of the critical force gain is approximately

KW
f CR = 1 +

m

mh
, (33)

where “W” denotes “worst case”. This worst value has been defined within the wide range
of frequencies in which the influence of inertia is dominant and the gain diagram is nearly
constant (see Fig. 23). According to (33), several statements hold true:
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Fig. 23. Bode diagram of G1(z) using the estimated transfer function of the LHIfAM, the
antialiasing filter (31) and the human model proposed by (Yokokohji & Yoshikawa, 1994). The
gain is 1 + m

mh
(in dB) for a wide range of frequencies.

• The larger the human mass mh which is involved in the system, the lower the critical
force gain K f CR will be. This equivalent human mass will be similar to the mass of the
finger, the hand or the arm, depending on how the operator grasps the interface.

• Even in the worst-case scenario—assigning an infinite mass to the operator or a very
low mass to the device—the force gain K f can be set to one, and hence, the inertia can
be halved.

The first statement is consistent with a common empirical observation, (Carignan & Cleary,
2000), (Gillespie & Cutkosky, 1996): the haptic system can be either stable or unstable, de-
pending on how the user grasps the interface.

5.2 Inclusion of Digital Filtering

According to (Carignan & Cleary, 2000) and (Eppinger & Seering, 1987), since the force sen-
sor of the LHIfAM is placed at the end-effector, the unmodelled modes of the mechanism
introduce appreciable high-frequency noise in its measurements. Therefore, the inclusion of a
digital filter in the force feedforward loop is required. Fig. 24 shows the block diagram with
the digital filter, whose transfer function is D(z).
The new theoretical critical force gain of the system,

K f CR = Gm{D(z)G1(z)}, (34)

can be higher than (33). However, the phase crossover frequency will be placed at a higher
frequency, where unmodelled dynamics introduces new poles and zeros that may drive the
system into instability. Therefore, a more complete model of the system G(s) including these
vibration modes should be used in (34).
Nevertheless, it is not necessary to find a complex model of the system to tune the cut-off
frequency of the digital filter. There are two boundaries for this frequency: a lower boundary
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Fig. 24. Final force feedforward strategy with digital filter.

imposed by the bandwidth of human force and an upper one derived by the first vibration
mode of the mechanism. Regarding the lower boundary, since the power spectrum of the
human hand achieves about 10 Hz (Lawrence et al., 1996), the cut-off frequency should be
above this value. Otherwise, the operator feels that the system is unable to track her/his “force
commands”. On the other hand, the first vibration mode of the interface mechanism should
be considered as the upper boundary. Previous section has shown that a significant resonant
peak appears around 82 Hz in the LHIfAM (Fig. 15). These facts motivate the inclusion of a
second-order Butterworth digital filter at 30 Hz for this interface. And the final force gain K f

implemented in the system is equal to 5. With this value the apparent inertia of the device in
the x direction is 0.9 kg, which matches the inertia in the other translational directions so the
inertia tensor becomes almost spherical for this gain. In Fig. 25, the frequency response along
the controlled x axis is compared with the y axis.
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Fig. 25. Experimental gain Bode diagrams of the LHIfAM along y axis (stars), and along x axis
with K f = 0 (dots) and K f = 5 (circles).

6. Conclusion and Future Directions

This chapter has started by analysing the influence of viscous damping and delay on the sta-
bility of haptic systems. Although analytical expressions of the stability boundaries are quite
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complex, a linear condition relating stiffness, damping and time delay has been proposed and
validated with experiments.
Since the analyses presented in this chapter assume the linearity of the system, its results can
only be taken as an approximation if non-linear phenomena (e.g. Coulomb friction and sensor
resolution) are not negligible. Another limit is the required low bandwidth of the system
compared to the sampling rate, which may be violated, e.g. if the haptic device collides with
a real environment.
Beyond the rigid haptic model, the influence of internal vibration modes on the stability has
also been studied. Haptic models commonly used to analyse stability rarely take into account
this phenomenon. This work shows that the resonant mode of cable transmissions used in
haptic interfaces can affect the stability boundary for haptic rendering. A criterion that esti-
mates when this fact occurs is presented, and experiments have been carried out to support
the theoretical conclusions.
Finally, a force feedforward scheme has been proposed to decrease the perceived inertia of
a haptic device, thereby improving system transparency. The force feedforward strategy has
been successfully applied to the LHIfAM haptic device, showing its direct applicability to a
real device and its effectiveness in making LHIfAM’s inertia tensor almost spherical.
In terms of future research, the investigation of nonlinear effects on stability is necessary to
be carried out. Also the robustness against uncertainties of physical parameters and external
disturbances has to be examined.
The authors hope that the research included in this chapter will provide a better understand-
ing of the many phenomena that challenge the development of haptic controllers able to dis-
play a wide dynamic range of impedances while preserving stability and transparency, and
thereby improve the performance of present and future designs.
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