
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Integrating Ambient Intelligence Technologies Using an Architectural Approach 1

Integrating Ambient Intelligence Technologies Using an Architectural
Approach

A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R. J. Duro

X

Integrating Ambient Intelligence Technologies
Using an Architectural Approach

A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R. J. Duro

Grupo Integrado de Ingeniería, Universidad de A Coruña
Spain

1. Introduction

It seems difficult to agree on a concise and accurate definition of a concept as broad as
Ambient Intelligence. In short, it could be said that in such a context people interact with
each other and with the environment and are assisted in their tasks in a certain smart way.
The term Intelligence concerns the response that users expect from the system in terms of
what Artificial Intelligence stands for, that is, proactivity, predictability and adaptability in
its behaviours. This behaviour collection constitutes the functionalities that characterize an
AmI system. On the other hand, the term Ambient is related to human factors and conducts
and the ubiquitousness of a non invasive system. Indeed, the main goal should be user
expectation fulfilment and the dynamic adaptation of the system to his/her needs,
preferences and habits. In this context, the environment must be understood as an extended
environment where a person works, has its family life, its recreational time and its social life.
Therefore this environment involves the workplace, the home, the car or public places such
as malls or sports centers, among others.
At this point, some questions arise: How should so vast and dynamic environment be
managed? Where should the different software/hardware components be located? How do
these components interact each other? How are new hardware/software components
incorporated to an AmI system and how is it rearranged in order to integrate those
elements? What are the channels through which information flows and who should
supervise them? How could we take advantage of the numerous information
sources/targets, like sensors, actuators or microprocessor appliances, and bus technologies
available in a certain context? The idea that underlies all of these questions is the concept of
an Architecture that should provide support and consistency to hardware/software AmI
components and should allow AmI functionalities to be developed and integrated. This
chapter deals with what an architecture conceptually involves and the description of
possible approaches to the different issues related to it.
An architecture implies aspects concerning low-level hardware access, middleware and
architectural software considerations. Therefore, it doesn't provide any AmI functionalities
by itself but, on one hand, provides tools to system designers for the rapid development,
deployment, reusability and interoperability of AmI solutions; On the other hand, it serves

1

www.intechopen.com

Ambient Intelligence2

as a technological wrapping that grants coherence and compatibility between AmI
components contained in it by defining a specific model for each element.
At a first glance the approach of using the general architectural model would seem to be a
good beginning in order to try to solve the problems indicated before. There is, however, no
real consensus on this point in the literature. Many researchers just emphasize the
development of AmI functionalities while hardware/software structural issues are pushed
into the background. Hardware access matters and the complexity of physical network
structures are often underestimated. Also information concerning AmI services cannot
usually be shared with others and, currently, most AmI components are not aware of the
existence of other components within the same system.
Despite this conundrum of approaches and solutions, it seems clear that the design of a
global AmI architecture is necessary if good software/hardware engineering practices are to
be achieved and the systems show some of the properties desired such as scalability, fault
tolerance or ease of deployment and integration. It is in this line that some researchers have
opened up the field to AMI architecture design. It is the case of the SOPRANO (Wolf et al.,
2008; SOPRANO, 2007) and PERSONA (PERSONA, 2008) projects where platforms are
based on OSGi and SOA (Service Oriented Architectures) were employed. From another
point of view, a multi-agent based platform is proposed by AIT (Athens Information
Technology) through the CHIL (Soldatos et al., 2007) project. The AMIGO project proposes a
combination of both technologies, that is, SOA and agent based in (Vallee et al., 2005).
We will start this chapter by identifying the multiple topics that an architecture involves and
the needs that come up when developing real solutions for them. As a result of this first
analysis, we will define the conceptual model of an AmI architecture that is dealt with in
next section. It is structured as a collection of subsections concerning the different model
challenges. For each one of them an analysis of interest and needs, a review of the state of
the art and a description of our approach as compared to others are presented. In short,
structural software matters concerning the software platform, resource cooperation,
knowledge representation and ubiquity are dealt with as well as user-system interaction,
hardware virtualization and artificial intelligence functionalities. All the proposals that we
describe here were developed in the scope of a global architectural project that we know as
HI3 Architecture. After this, we will consider an example of using an HI3 system. The
usefulness and the interoperability of the modules described will be shown with the aid of
simple cases. Some conclusions and further avenues of research are outlined at the end of
the chapter.

2. Needs and challenges

There are many requirements in the design and development of an AmI architecture. Some
of them are common in distributed systems (with or without Artificial Intelligence), whereas
others are very specific of AmI environments.
First of all, it is obvious that the whole system will be made up of many different elements:
sensors, actuators, applications providing functionalities to users, intermediate services that
provide common functionalities to applications, system level utilities for system control and
logging, etc. All of these elements need to communicate to each other, consequently,
communications are our first clear and important need. Due to the fact that some
components, mainly sensors and actuators, will be physically distributed, special attention

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 3

will have to be paid to communications in order to guarantee reliability. Communications
should also be optimized in two aspects; minimize resource consumption, as some
components will have to run in devices with much reduced computational power, and
minimize processing time, because some applications will need real time, or near real time,
capabilities. Some sensors are susceptible of requiring high throughput, video cameras for
example, so the system should also support such high level throughput. In addition, every
AmI system should have the capability of growing, it is quite frustrating to try to expand an
existing installation and find a limit in the number of elements or throughput (as is usually
the case in current commercial systems). Thus, scalability is almost a must, and this brings
together the ability to process a large volume of data in communications. The final
characteristic related with communications is security. Information managed in an AmI
system is usually sensitive, as it could be used to describe private aspects of its users.
Therefore, communications should be secured through encryption and authentication.
Security should also be included at a component level, in order to protect malicious
replacement / injection of elements in the system, and at the user level, for obvious reasons.
Reliability is not only applicable to communications, it is a general requirement of any AmI
system, due to their nature: AmI systems have to interact with human beings in a non-
intrusive way, and it would be unacceptable for the user to have to restart an AmI system
when something fails. That is, reliability is necessary to achieve high availability. In this
context, redundancy is fundamental, although not sufficient, to obtain reliability. It means
that if any software or hardware component fails, its functionality is immediately replaced
by other components. Another characteristic that is necessary for reliability is fault
tolerance. Eventually, everything can (and will) fail, consequently hardware and software
must be designed to be able to recover when that happens. Related with this, some kind of
hardware hot-swap is, obviously, very interesting.
From a software engineering point of view, all the elements should be designed bearing
reusability in mind. The main reason is that an AmI system can, potentially, grow
throughout its operational life, and new needs should be solved as soon as possible reusing
components that are already available to the largest extent possible. In order to maximize
the possibility of reusing components, system elements should be as modular as possible.
Related to this and to high availability, it would be interesting to have also software hot-
swap capabilities, so that a given element in the system can be replaced without interfering
with the other elements. So as not to be tied to a specific hardware / O.S., something that is
not desirable as it would reduce application scope, the software employed and programmed
should be multi-platform, making hardware / software dependencies as low as possible in
terms of software layers. Other related thing to take into account is that, if we really want
hardware independence at sensor level, the AmI architecture should support different
protocols of different hardware makers, trying to abstract these different protocols as soon
as possible in the layer hierarchy. Finally, it is necessary to have some tools to control,
manage and inspect the behaviour of an AmI system.
Human activity is complex, highly unpredictable and situation dependent. Unobtrusive
applications within these intelligent spaces need information about the current state of the
environment to dynamically adapt to different situations. Adaptation and unobtrusiveness
are essential to social acceptability of AmI systems. These characteristics of human
environments make it impossible to pre-program the appropriate behaviours for a context-
aware service or application. Hence, an AmI architecture should include an extensible,

www.intechopen.com

Ambient Intelligence4

adaptable and efficient model for handling and sharing context information, providing a
structured and integrated view of the environment in which the system runs.
These requirements and needs really condition the way an AmI architecture should be
designed. They are obviously general principles that have to be taken into account from the
beginning when considering the design of the main components and structure of the
architecture. Many more needs and requirements will arise as we go deeper into de details
of each component, and we will comment on them in the corresponding sections.

Fig. 1. HI3 architecture conceptual model

3. Architecting ambient intelligence

In the previous section we have identified a set of properties or key areas that we think an
integral Ambient Intelligence software development platform should tackle in order to
alleviate the problems associated to AmI software development. In this section we are going
to address thewse diverse topics, providing a brief review of the most interesting
approaches found in the literature to provide solutions to each of them.
Along with the detailed description of each key area and its state of the art review, we will
present our version of an integral general purpose AmI system development architecture,.
This allows us to provide a complete vision of the AmI software development field, going
from the problems and requirements of the developers to the construction of a complete
solution for them.
Before starting the discussion about the different key topics, and in order to facilitate the
description of the different areas of the proposed solution, we will give here a brief
overview of our approach. In the last few years we have been working on the development
and application to different environments of a multi-layer intelligent agent based software
architecture called HI3 (Varela et al., 2007; Paz et al., 2008, a; Paz et al., 2008, b). HI3 stands

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 5

for Humanized, Intelligent, Interactive and Integrated environments. The objective of this
architecture is to provide the methodology, structure and base services to easily produce
modular scalable systems in ambient intelligence settings that can operate without
downgrading their performance as the system grows. The main idea behind our proposal is
a layer based design that enables the division of system elements into levels, reducing the
coupling between modules, facilitating abstraction as well as the distribution of
responsibilities. A high level view of the design proposal is shown in Figure 1. A further
description of this design will be presented in following sections and more information can
be found in (Varela et al., 2007; Paz et al. 2008, b).
In order to implement this conceptual model, we have chosen a multiagent technology
based approach supported by the JADE agent framework. Many of the characteristics of this
paradigm fit perfectly with the main objectives for our architecture, such as autonomous
operation, distribution and collaboration on task resolution, proactivity, intrinsic
communications capabilities, mobility and adaptability.

3.1 Conceptual modeling
AmI systems are much more complicated than traditional computing systems. Hence,
characteristics such as adaptability, flexibility, interoperability and modularity are more
important. Furthermore, these systems must provide common improvements such as
service discovery, self-organization, rich knowledge representations and context-awareness.
To address these challenges, especially when seeking real AmI system interoperability, a
general reference conceptual model and architecture is necessary. In recent years, a lot of
research institutions and universities have been working on the definition and development
of architectures and middleware that deal with the complex characteristics of AmI
environments. However, only a small part of these projects try to formally define
conceptual models that are not restricted to particular AmI domains or environments.
Some recent research efforts in the direction described above can be found, for instance, in
(Rui et al., 2009) where the authors defend the need of general reference models in AmI and
present a conceptual hierarchical model to describe a typical AmI application system. They
propose a theory to describe AmI systems using a five-layer model: sensors and actuators
layer, AmI network and middleware layer, devices layer, service layer and AmI applications
layer. They do not include, as part of this work, high-level development tools that could
closely guide developers in the process of building systems that fulfill the proposed
conceptual model. Another example is the PERSONA project (PERSONA, 2009) which
focuses on the specification of a reference architecture for ambient assisted living (AAL)
spaces. The authors formally define a logical architecture that abstracts all functionality not
leading to context, input, or output events as services.
Inspired by some of the ideas underlying these projects we developed the HI3 architecture,
focusing on interoperability, scalability and ease of deployment.

HI3 Architecture conceptual model
As previously described, the HI3 architecture proposed here has a conceptual structure
based on a multi-layer design schematized in Figure 1. This conceptual model establishes
criteria and defines recommendations that facilitate developers the division of AmI systems
into decoupled modules as well as the distribution responsibilities using homogeneous
design principles and patterns. Communications between layers is vertical. Within layer,

www.intechopen.com

Ambient Intelligence6

horizontal communications are allowed thus permitting the cooperation between elements.
The main layers defined in this model are:

 Device Access Layer: It includes elements that encapsulate concrete logic to access
physical devices. It is divided into two sub-layers: device drivers and device access
API.

 Sensing and Actuation layer: There are two types of elements in this layer: sensing
elements and actuation elements. Sensing elements provide access to sensor type
devices (using the device access API). Similarly, actuation elements must provide
the required functionality to command actuator type devices. The elements of this
layer are proxies of the physical devices.

 Service layer: A service is an element designed to solve a high level task that does
not provide a complete solution for a system use case. Services are managed
through a repository that enables the discovery of services required by others to
perform their task.

 Application layer: This layer hosts the elements representing and implementing
particular functionalities that a user expects from the system. These components
make use of services registered in the system to carry out their tasks.

Furthermore, there is a component that is shared by the three higher level layers, the
context. Its main goal is to define and manage the elements that must be observed in order
to model the current state of the environment.
The previous high-level conceptual model provides a common vocabulary and guidelines to
make the construction of AmI systems easier through technology abstraction and
component composition and reusability. However, we believe that this model must be
supported by middleware that abstracts developers from repetitive tasks and complex
interactions with particular technologies. Specifically, we chose a multi-agent based
approach to develop a middleware solution (fulfilling the hi3 architecture conceptual model
requirements) that builds up a container for AmI applications providing advanced features
such as high level inter-agent communications facilities, multi-agent models with support
for the declarative definition of components, distributed management tools or development
utilities (see section 3.2 for technical details).
This multi-agent based middleware promotes the division of large and complex AmI
systems into highly decoupled components and, at the same time, provides what we call a
multi-agent declarative model. The multi-agent declarative model is, on one hand, a model
to describe a multi-agent system and its components and, on the other, it is a set of tools to
declaratively define these components. As a model it brings together all the different
elements that our platform leaves in the hands of the developers to build new applications.
The top level concept of our platform is the multi-agent system (MAS). The platform is
prepared to support several types of MAS with different high level characteristics but, in its
basic form, they are a collection of instances of different types of agents that work together
to perform a task. Directly below the MAS concept is the agent-type concept. An agent-type
species the components that will define an agent in our platform, providing a way to
declaratively build new agent-types by reusing pre-existing components and mixing them
with new ones. Agent-types are defined according to a set of concepts that also have
independent and declarative definitions: behaviours, message processors, publications,
arguments for agents parameterization and descriptions of public functionalities.

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 7

Together, the high-level conceptual model and the multi-agent declarative model provide
common guidelines and tools that control the entire process of developing interoperable
AmI systems.

3.2 Middleware fundamentals
As previously stated, sharing a common vocabulary, concepts and abstractions among AmI
developers is the first step towards more interoperable, reusable and easier to design
systems. In the end it brings to the AmI field what UML or the object oriented programming
paradigms brought to the programming field. Like paradigms such as OO, a conceptual
model for AmI systems by itself does not produce a huge improvement on AmI
development efforts. Developers still need to implement those designs that will be heavily
based on complex distributed operations and on the integration of a huge number of
techniques and technologies. In order to speed up the development of AmI systems,
developers will need software, or more precisely, middleware, that supports the previously
described models and provides them with tools and utilities that ease the development by
allowing them to focus on the logic of the desired functionality, rather than on the
interaction and integration of the different underlying technologies and devices.
As AmI is a relatively new field (it started to capture attention on the last ten years) until
recently, the majority of projects had their focus set on achieving functionalities for very
concrete niches (some examples may be found in (Tapia et al., 2004; Brdiczka et al., 2009;
Krumm et al., 2000; Bernardin et al. 2007), taking ad-hoc design and implementation
decisions focused on the particular environment dramatically reducing the possibility of
adapting those projects to other environments, objectives or technologies. In order to
operate in a real life scenario, every one of those projects needed solutions for very similar
problems, like distributed component deployment and communications, sensor/actuator
hardware interaction or fault tolerance. To put an end to that process of continuously
reinventing the wheel, much in the same way as had previously happened before in other
areas like multi-agent systems, numerous projects have been started with the aim of
producing general purpose middleware that make the development of AmI systems easier.
From a very superficial point of view, it is possible to classify them according to their
objectives. On one hand there are projects that are focused on delivering solutions to specific
environments, they make decisions and adopt technologies that may make them less general
purpose but easier to use in those environments. Prominent examples are projects like
SOPRANO (Wolf et al., 2008), focused on elderly care scenarios, (and which relies on
abstractions from that environment for component definition and on an ontology based
semantic system for component interaction). The already mentioned PERSONA project
devoted to increasing the independence of old people or the iRoom (MIT Oxygen, 2009),
centred on the work environment. On the other hand we may find projects with a general
purpose in mind. These projects usually devote great efforts to technology interoperability
aspects and to providing high level abstractions and communications capabilities suitable
for the typical requirements of AmI systems. Examples are the AMIGO project (AMIGO, b,
2009), although mostly focused on the home entertainment environment it provides a very
versatile architecture, the EMBASSI project (EMBASSI, 2009), that tries to provide the
needed technological infrastructure for the development of AmI systems in environments
like the home, automotive vehicles and kiosks. The works carried out by Chen Rui et. al (Rui

www.intechopen.com

Ambient Intelligence8

et al., 2009), towards the definition and implementation of a general purpose AmI
framework and our own approach, the HI3 project (Varela et. Al, 2007; Paz et al., 2008, b).
Before starting the discussion on the different technical approaches to the development of
ambient intelligence middleware, it is important to take a look at the objectives of AmI in
order to establish a series of prerequisites or key areas that a middleware for AmI
development should deal with. One key differentiation factor of AmI with respect to general
software development is that AmI systems are intended for operation in the real world,
interacting with the environment and its inhabitants, this fact alone brings in some strong
requirements such as:

 Multi-platform compatibility and interoperability.
 Modularity.
 Distributed operation.
 Dynamic management of components.
 System management.

Multi-platform compatibility and interoperability
AmI software needs to support its deployment on very different software and hardware
platforms, from PCs to mobile phones, going through home appliances, automotive vehicles
or consumer electronic devices. Because of this almost all the projects having to do with the
development of AmI middleware are implementing them with technologies that inherently
support multiple platforms, like interpreted programming languages such as Microsoft .Net
or SUN Java and XML based mechanisms for communications.

Modularity
Most authors agree that AmI systems need to be highly modular in order to model and
interact with a highly dynamic and complex environment like the real world. They need to
contemplate and interoperate with a large number of devices and technologies to sense,
reason and act on the environment. A design based on loosely coupled components is
essential to accommodate that disparity in a sustainable and scalable system. It also forms
the basis for component reusability, a key capacity to make more extensible and adaptable
systems.
Modularity is a key aspect of AmI middleware, this can be seen in the fact that the projects
we cited before can be divided by the techniques they apply to define components. Two
main approaches can be distinguished. Projects that rely on Service Oriented Architecture
models (SOA), and projects that use a multi-agent approach.
In the last decade, SOA has been widely adopted in the enterprise development field as a
good approach for obtaining more sustainable and scalable systems. The SOA approach
promotes a system design based on services (components) that define an interface that other
components can use to access the functionality of the services without knowing anything
about the service´s internal workings. The key design principle of SOA is that the services
must be highly decoupled and reusable so that systems can be built by the aggregation or
orchestration of multiple services. Numerous AmI projects have adopted SOA as their basis
for system design and modularization, mainly due to the fact that it provides a good
solution for modularization. Some examples of those projects are SOPRANO (Wolf et al.,
2008), which is based on the development of services that provide semantic contracts related
to different levels of an elderly care scenario to specify its functionality and requirements to

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 9

other services. AMIGO (AMIGO, c, 2009), that make use of services to dynamically
accommodate the different devices and technologies needed to autonomously operate in a
home environment. The PERSONA project (PERSONA, 2009, a), on the other hand,
distinguishes different types of components by using multiple event-based buses with
subscriber and publisher components for direct input/output and context management, but
relies on services for the abstraction of the high level functionalities.
The other approach for system modularization is the multi-agent paradigm. It is based on
the division of the system into multiple autonomous components, called agents, that
collaborate to resolve a functionality. The key characteristic is agent autonomy, as it implies
that the agents must present other characteristics that make them very attractive to AmI
[aitami][chen-rui], like loose coupling, reactivity, proactivity and robustness. To operate in
an autonomous way, agents needs to react to changes in the environment, a good property
for systems that will operate in such a highly dynamic environments as the real world. They
also need to be proactive, because every one of them should pursue its own goals, taking
initiative and interacting with others and the environment as needed, again a good
characteristic for AmI systems that must adapt themselves to the environments and their
inhabitants, learning from them in order to predict their needs. And finally agents must be
robust to operate in an autonomous manner with very little human intervention. These
characteristics have led to different AmI projects adopting the multi-agent paradigm as its
technological base. Prominent examples are the work by Soldatos et. Al from the AIT (AIT,
2009) within the CHIL (CHILL, 2009) project (Soldatos et al., 2007), which presents a three
tier architecture with a tier of agents for high level functionality that rely on the other two
layers for sensing and signal processing, or the Intelligent Room (MIT Oxygen, 2009) project
at MIT which uses agents through its Metaglue (Hanssens et al., 2002) and Hyperglue
(Peters et al., 2003) systems to represent resources and their interactions. Chen Rui (Rui et
al., 2009) from the Embedded Software and Systems Institute of the Beijin University of
Technology present a general purpose AmI architecture with a multi-layer design and use
multi-agent systems to implement it. In our own approach, the HI3 project, we have also
proposed a multi-layer design (Paz et al., 2008, b), and we use multi-agent technology to
implement the different elements that populate each layer.

Distributed operation
Highly related to the modularization problem and the nature of the environment in which
AmI systems must operate, the components of an AmI system should operate in a
distributed fashion. They need to rely on multiple heterogeneous devices to sense and act on
the environment, and more importantly, they need to provide its functionality in an
ubiquitous way, and thus need to operate multiple devices at multiple locations. This
increases the importance of the communications capabilities that a middleware for AmI
provides to its components.
With respect to the projects that use SOA, like SOPRANO or AMIGO, almost every one of
them employs OSGi (OSGi, 2007), an specification for a dynamic module system for Java
that is a de facto standard for SOA based systems. There exist numerous implementations of
the OSGi platform specification that provide tools for the development, deployment and
management of services. Due to the nature of SOA, systems using this approach employ
RPC (Remote Procedure Call) like communications almost exclusively. That is, for instance,
the case of SOPRANO and AMIGO. With respect to the technical solutions for RPC

www.intechopen.com

Ambient Intelligence10

communications within OSGi, the initial versions of the OSGi specifications did not
contemplate distributed operation, so numerous projects started to provide that
functionality, the most widely distributed one is R-OSGi. The last revision of OSGi, release
4, version 4.1 (OSGi, 2007), contemplates support for the uPnP protocol and for the
publication of services through the HTTP protocol. With respect to multi-agent based
systems, they normally rely on ad-hoc message interchange for component communication
and on FIPA (FIPA, 2009) compatibility for interoperability with other systems.

Fig. 2. HI3 AmI platform block diagram

We think that RPC like and simple message passing communications are not enough to
support the complicated interactions between components that will be necessary to operate
on an environment as complex and dynamic as the real world and to handle its relations
with its inhabitants. Developers need more elaborate and high level communications tools
to model and implement the interactions among its components. Event-based
communications are a common solution for loosely coupled one-to-many communications,
so they perfectly fit the requirements of AmI components. They have been used by several
projects, like AMIGO, which considers an event based mechanism for context change
management, PERSONA that introduces event buses as its primary communications,
input/output and context management system. In HI3 we have also implemented an event
based communications system for agents, providing them with the capability to publish
information on publications that other agents can be subscribed to. Complex one-to-many,
and many-to-many communications are also desirable in order to coordinate societies of

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 11

components to pursue a common goal. This is also a typical problem of multi-agent systems,
and as a consequence FIPA provides some facilities for conversations, especially for the case
of one-to-many. In HI3 we have developed an extensible system to manage complex many-
to-many agent conversations, every HI3 agent can initiate and participate in conversations
whose behaviour is controlled by different conversational models that contain the logic to
drive a particular type of conversation. This include how to invite new members into a
conversation, how to leave a conversation or how to notify members of message reception.

System management
System management is often overlooked in AmI systems or at least, there is not much
information about the techniques used by the different projects. Some of the systems are
intended for home use thus, they try to avoid the need for management. However, when
intended to be used in large installations like hotels or hospitals, where there will be
professional staff supporting the systems, system management capabilities are a must. The
general approach is to rely on the management capabilities of the underlying component
technology, like remote service deployment on OSGi platforms. One noteworthy exception
is the case of AMIGO and its OSGi Deployment Framework (AMIGO, a, 2009) that is able to
dynamically deploy services taking into account their semantic descriptions. With respect to
the HI3 project, we have developed a declarative model and its associated tools that make
the declarative definition of multi-agent systems (and its components, agents, behaviours,
etc.) possible. It uses a self designed URL system for component resolution, thus providing
loosely coupled component aggregation. Currently it only resolves components that are
available within its own component container, but we are working to support remote
dynamic deployment and instantiation of components. Along with this system, HI3
provides an AmI system execution container that integrates a lightweight embedded web
server to provide a remotely accessible web interface for component life cycle management
and deployment. It also provides support for the components to use that web server to
provide web interfaces for management or even for web service compatibility.
To illustrate a complete proposal for base middleware in an AmI system, intended to
alleviate the problems of AmI system development, Figure 2 displays a block diagram of the
AmI system development and execution platform developed for HI3. The platform uses
Java as its programming language and, as mentioned before, is based on multi-agent
technologies. It uses the JADE (JADE, 2009) agent platform as its base, and on top of that
provides all the functionalities that have been describe throughout this section, such as
component definition and description, high level communications capabilities like
conversations and event-based communications, component management and searching
capabilities and hardware abstraction facilities.

3.3 Context-awareness
In this section, we review various existing context-aware systems focusing on context
middleware and architectures, which facilitate the design and development of context-
aware services and applications. We discuss important aspects in context-aware systems
and present some ideas related to context management in the HI3 architecture.
Many researchers have debated definitions of context for many years without reaching a
clear consensus (Dourish, P., 2001). In the literature the term context-aware was first
introduced by Schilit and Theimer (Schilit and Theimer, 1994) in 1994. They define context

www.intechopen.com

Ambient Intelligence12

as "the location and identities of nearby people and objects and changes to those objects".
Dey, in (Dey, 2001), reviews definitions of context and provides an operational definition of
context as "any information that can be used to characterize a situation". This is the sense in
which we understand the term context. The context defines the elements that must be
observed in order to model the current state of the environment (situation). Additionally,
context-aware applications must be able to dynamically adapt their behaviour to the current
context without direct human intervention, in order to increase their usability and improve
the end-user experience.
Dey and Abowd (Dey and Abowd, 2001) propose the division of context entities into three
categories: places, people (individuals or groups) and things (physical objects). These
entities can be described by attributes which can be classified into four categories: location,
identity, status and time. Another popular way to classify context instances is the
differentiation between the external and the internal dimension. The external dimension
refers to context that can be sensed by hardware sensors, whereas the internal dimension is
extracted from user interactions.
Related with the method used for context information acquisition, we can enumerate three
different approaches (Chen et al., 2003):

 Direct sensor access. The applications gather the information directly from the
sensors. This hinders system scalability, adaptability and distribution.

 Middleware infrastructure. This approach introduces a layered architecture that
hides low-level sensing details. Hence, facilitates reusability and encapsulates the
hardware dependent software.

 Context server. This approach extends the basic middleware based architecture by
introducing distributed access to remote context data sources. We need to consider
that probably the majority of devices used in ubiquitous environments are mobile
devices operating over different network protocols.

Additionally, in order to manipulate and store context data in a computational form, we
need to define a context model. There are different context modelling approaches that use
different data structures for representing and exchanging contextual information: simple
key-value models, object oriented models, logic based models or ontology based models.
Ontologies are the most expressive models and are a very promising instrument for
modelling contextual information (Strang & Linnhoff-Popien, 2004).
Focusing attention on AmI environments, there is a high level of consensus among
researchers on the idea that it is essential to provide a framework for supporting context-
awareness. One of the goals of a smart environment is that it supports and enhances the
abilities of its occupants in executing tasks. In order to support the inhabitants, the smart
environment must be able to detect the current state of the environment and determine what
actions to take based on this context information. Therefore, applications in AmI
environments need to be context-aware so that they can dynamically adapt themselves to
different situations (Hung et al., 2003).

Related projects
Many ad-hoc context-aware systems designed to deal with predefined and restricted
scenarios can be found in the literature. These systems may be optimized for this scenario
but they aren't flexible or expandable. As a contrast, and following the global architectural

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 13

approach we promote in this chapter, we will focus on middleware or architecture based
systems. Middleware should provide uniform abstractions and independence from
hardware. It must simplify the development and maintenance of context-aware systems. It
should also simplify the interaction between different context-aware applications by means
of the use of common abstractions and tools. In what follows we will introduce various
frameworks that meet some requirements such as architectural approach, historical data
management, context model definition, sensing abstraction model or security and privacy.
An example of agent based architecture for supporting context-aware computing in AmI
environments is the Context Broker Architecture (CoBrA) (Chen, 2004). The core of this
middleware platform is the intelligent context broker that manages a shared contextual
model making it accessible to a society of software agents. The context broker also includes
components that provide a context knowledge base, components that encapsulate the
context data acquisition process and components that grant private access to the information
managed by the system.
The Service-Oriented Context-Aware Middleware (SOCAM) project (Gu et al., 2004) defines
an architecture for the rapid prototyping of context-aware mobile services. It includes a
server that collects and manages context data using distributed context providers. Services
can make use of different levels of context data in order to perform their context-aware
tasks.
Another middleware platform based on a layered architecture is developed as part of the
Hydrogen project (Hofer, 2002). The main particularity of this framework is that it manages
a local and a remote context. The local context only contains information provided by local
devices, the remote context provides the information that other remote devices know. The
devices share their context information when they are able to establish a communications.
With this strategy, a device's context consists of its own local context and a set of remote
contexts obtained from other devices. The architecture also includes a software layer that
abstracts the access to contextual information from the client applications.
The Gaia project (Roman, 2002; Gaia, 2009) defines another framework that extends typical
operating system concepts to include context, location awareness, mobile computing devices
and actuators. The project is focused on building applications in a generic way without
assumptions about the current resources of an active space. The platform must be able to
transparently locate appropriate devices, detect the addition of new devices to the system,
and adapt content when data formats are not compatible.
The PRIMA project (PRIMA, 2009) is about machine perception of people and their
activities. This project includes the development of a lightweight middleware intended to
help developers to create ubiquitous applications. The authors argue that context is a key
concept in ubiquitous computing and propose a layered architectural model for services
based on human activity (Emonet, 2006; Crowley, 2006). This model defines a conceptual
and operational division of the system in four layers: the sensor-actuation layer that
encapsulates the diversity of sensors and actuators through which the system interacts with
the world; the perception and action layer that operate at a higher level of abstraction than
sensors and actuators; the situation model layer that allows the system to focus perceptual
attention and computing resources according to the current state of the environment; and, at
the highest level of abstraction, the service layer.
Other important projects in the area of AmI, such as AMIGO (AMIGO, c, 2009) or
PERSONA (PERSONA, b, 2008), develop context-awareness frameworks as an important

www.intechopen.com

Ambient Intelligence14

part of architectures that facilitates the development and integration of AmI applications.
Both projects together with the PRIMA project share important design criteria, such as a
layered approach with different levels of abstraction, use of ontologies to represent
contextual information or the inclusion of components for user profiling and
subscription/notification mechanisms.

Context model
We believe that an extensible, adaptable and efficient model for handling, sharing and
storing context information is fundamental to providing effective and usable applications to
a variety of users in scenarios with large variations in resources and activities. Context is too
complex to be defined and programmed as a fixed set of variables. This demands the use of
higher-level knowledge approaches together with reasoning and learning techniques.
The context model and context processing logic are the major components for providing
intelligent, adaptable and proactive context-aware services and applications. As indicated
before, ontologies provide an interesting formalism for specifying contextual information.
Based on ontological models we can develop more sophisticated tools that provide a generic
middleware platform to support context modelling in heterogeneous smart environments.
In the conceptual model of the HI3 architecture, we propose the division of AmI systems
into four main layers (Figure 1). These layers represent different levels of abstraction and, as
a consequence, the system can manage multiple views of the same contextual information in
different layers and with different levels of abstraction. Hence, middleware must provide
context aggregation capabilities that permit the composition of fine-grained context data in
order to obtain higher-level context representations of the information. Middleware must
also provide context interpretation capabilities to perform transformations of context data.

Awareness and notification
The awareness and notification capability must provide the functionality required to
develop applications that can easily stay aware of any significant change in context. To
achieve this, we propose a subscription/notification mechanism that allows services to
register rules that specify what changes in context they should be notified of.

Historical information
Managing historical context data provides the possibility of implementing highly adaptable
context-aware services. Furthermore, using learning algorithms, contextual information can
be predicted to proactively adapt system behaviour to user habits. Related with historical
data we can introduce in our architecture the concepts of granularity and period of validity.
These properties are important to determine the relevance of contextual data to solve a
certain task.

Information storage, privacy and security
We believe that it is necessary to use persistent storage systems to save coherent context
data. This storage system must manage privacy policies and different levels of abstraction
for data representation. Furthermore, is important that this component has facilities to query
historical context data. Context usually includes sensitive information about people
(location, activity, medical data, etc.). Hence, it is necessary to be able to protect privacy
specifying policies and ownership of context information. We propose a transversal view of
privacy and security components that operates in all the layers of the architecture. Thus, at

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 15

every level of abstraction, one must incorporate mechanisms to support privacy, trust and
security.

User modelling and profiling
A major requirement of AmI systems is that they must be capable of learning from the use
and habits of the users in order to predict and anticipate them. Moreover, these systems
must exhibit proactive, adaptive, predictive and autonomous behaviour. These goals are
achieved by constructing, maintaining and exploiting user models and profiles, which are
explicit representations of individual user preferences. Hence, an ambitious AmI
architecture and context-aware framework must provide components and structures that
facilitate the development of applications that make use of user models and profiles.

3.4 Mobility
Ambient Intelligence systems should provide an ubiquitous experience to its users, in other
words, as far as possible, they should offer their services and functionalities independently
of user location. For example, if the user is in his office accessing a travel planning
application to prepare his next work trip and suddenly the user needs to go out to a client's
office, the application should transfers its execution to his mobile phone, maybe by changing
to simpler algorithms for data processing due to the lack of resources of mobile devices, and
obviously changing the user interface. As soon as the user is in his car, the system transfers
the functionality to the car computer in order to increase resources to use the more
demanding algorithms and again changing the user interface, for instance to voice
commands. Examples of this desired behaviour can be found almost for every functionality
that an AmI system could provide to its users, except those that are highly related to a
specific hardware device or installation.
Achieving these types of mobility capabilities is not an easy goal and is yet in an early
research phase. To provide such capabilities to its developers, AmI architectures and their
supporting middleware must support classical techniques from the fault tolerance field,
such as component duplication and component state synchronization. They should also
provide new techniques that make use of the semantic descriptions and contextual
information in order to correctly move and duplicate functionalities between devices and
spaces, taking into account component requirements, such as memory footprint or specific
devices needed for its operation, as well as context information, such us preferences or even
abilities of the users in order to select the correct user interface.
Mobility has been a hot topic in multi-agent systems research because with mobility agents
gain numerous interesting capabilities (Oshima & Lange, 1999). For this reason, projects that
use multi-agent paradigms have a huge advantage on this particular aspect. In fact multi-
agent platforms like JADE provide basic support for agent mobility. Agent based
approaches can focus on providing high level features that use their semantic and context
systems to achieve intelligent component mobility.
With respect to SOA based approaches (usually based on OSGi platforms), OSGi does not
support integrated mobility or fault tolerance features so, currently, a lot of efforts are being
devoted to the development of OSGi extensions to support fault tolerance (Ahn et al., 2006;
Filipe & Torr, 2009) that could be used as the basis for mobility features by reusing its
component replication capabilities. Some work on SOA services mobility is starting to be
reported. An interesting paper in this line is (Preuveneers & Berbers, 2008). It provides a

www.intechopen.com

Ambient Intelligence16

good overview of mobility in pervasive systems and, in particular, it proposes solutions for
mobility in OSGi based systems, also presenting an interesting implementation example.

3.5 Hardware abstraction
Ambient Intelligence systems are intended for operation in real environments, more
specifically; real life social environments like homes, hospitals or hotels, inhabited by
people, with the objective of making people's life easier and more comfortable. To achieve
this, AmI systems must infer quality contextual information about the environment and its
inhabitants. Complex algorithms and techniques are being proposed for this purpose but, in
the end, all of them must rely on real data coming from the environment, and there is no
other way to obtain those data than using sensing/actuation devices deployed in the
environment or even on the people (wearable sensors, etc.).
There are many technologies competing for the domestic and social market, each one
offering adequate solutions for its portion of the market. AmI software must be able to take
advantage of these technologies but, the huge disparity of the different technologies and
interfaces results in a series of problems:

 Difficulty of interoperating groups of devices of different natures.
 Portability of software components to different hardware platforms.
 Risk of translating the complexity of the hardware set-up to the software

applications.
 Risks derived from the dependence on a given technology vendor.
 In real environments there may already be hardware elements present, such as

classical domotics buses, which require their integration.

Solving these problems is not an easy goal, and the majority of AmI projects have mostly
ignored them, adopting concrete technologies. This approach anchors the software solution
to the selected hardware technologies, introducing unnecessary complexities on the
software side and distracting developers from the core logic of its functionality.
Furthermore, the software needs to be adapted to the hardware characteristics, loosing its
generality and making its reuse on other project or environments difficult.
Almost all the projects working on integral architectural solutions for AmI have identified
the hardware access as a key aspect. The good news is that all of them agree on the
paradigm that should be applied to deal with this problem and are developing hardware
abstraction layers that hide the complexities and differences of heterogeneous technologies.
The main differences found between the approaches have to do with the design of those
layers and the type of devices they are dealing with. On one hand there are projects that
have focused on particular niches. For example, projects focused on home entertainment are
mainly working on the interoperation of consumer electronic devices. This is the case of the
INTERPLAY system (Messer et al., 2006), that tries to provide integration among home
entertainment devices by using a three-layer architecture to support multiple device
technologies and hide their heterogeneity.

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 17

Fig. 3. Physical vs. Virtual hardware architecture

On the other hand there are projects that try to provide a general solution to the hardware
integration problem. A prominent example is the AMIGO project (AMIGO, c, 2005) that has
worked on the integration of heterogeneous technologies coming from domotics and
consumer electronics. AMIGO relies on standardized solutions as much as possible,
developing abstractions to hide the heterogeneity of the devices and translate their
functionality to AMIGO compatible services. AMIGO proposes uPnP as a standard for
hardware access so, when a non uPnP compatible device needs to bee used, AMIGO
develops proxy services that use ad-hoc drivers to interact with the device and translate its
interface. Proxies have been developed for two widely used domotic technologies, BDF and
EIB. Chen Rui et al. (Rui et al., 2009) propose a similar solution to AMIGO, integrating
technologies through the use of encapsulating proxies. The main difference is that they also
provide a hardware solution to simplify the physical integration of technologies as well as
the development of new devices.
From the beginning of HI3 we though that a solution for the integration of hardware
technologies was the first step towards more reusable and maintainable AmI systems, so we
started the development of the HI3 architecture from its hardware abstraction layers (Varela
et al., 2007). Our approach is similar to the ones proposed by AMIGO and Chen Rui et al. It
is based on the definition of a standardized paradigm for hardware access and the
development of proxy-like devices to adapt current existing technologies.

www.intechopen.com

Ambient Intelligence18

Fig. 4. Deployment diagram of the Device Access Layer components.

The HI3 project proposes a conceptual model based on a multilayer design with two layers
in charge of abstracting hardware technologies. Going from the top down, the Sensing and
Actuation layer is made up of agents that provide higher level views of hardware devices,
for example aggregating them, applying some basic signal processing algorithms, etc. The
Device Access Layer takes inspiration from the IEEE-1451 (NIST, 2009) standard (Varela et
al., 2007). It is based on a distributed model inspired by the network and application layers
of IEEE1451.1 standard and is supported by three basic pillars:

 Unified and generic view of the different hardware devices.
 Definition of a paradigm for the operating model of the sensing/actuation device

network.
 Abstraction of the device network topology.

The first two abstractions provide functionality-based access to devices. They are accessed
through read/write operations over parameters that represent the objects or states of the
physical environment that a device can operate with. The third one is implemented as a
network layer and a node abstraction that enables the integration of multiple and
heterogeneous device networks.
This model is summarized in Figure 3 which displays the two visions of a complex scenario.
On the top there is the physical vision of the installation, in which the software is exposed to
the complexities of each different device. The bottom represents the homogeneous view the
hardware abstraction subsystem provides.
The Device Access Layer is implemented through two components Figure 4, a software
library to provide homogeneous and ubiquitous access to a network of devices (called
ILHAS), and node software that can be used to integrate devices into that network. We have
also developed a hardware prototype device (Varela et al., 2007) that integrates this node

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 19

software with COTS hardware, creating a good low cost solution for the development of
new devices as well as hardware proxies for existing devices or technologies.

4. Applying HI3 technology

In the previous section of this chapter we have presented a review of different interesting
approximations to provide Ambient Intelligence with models and supporting software to
speed up the development of AmI systems. The HI3 architecture, a general purpose base
architecture for AmI, has been presented along with these descriptions. In order to clearly
illustrate how AmI support middleware, and more specifically the HI3 architecture, can
help in the development of AmI software, we are going to show how it can be used to build
a simple but interesting example that includes many of the typical requirements of AmI
systems.
The example is a fairly typical one, a simple meeting management application. Similar
examples have been used in numerous AmI articles to date as this type of application has
functionalities that are easy to explain but presents complex underlying requirements like
heterogeneous hardware integration, dynamic component collaboration, distributed
operation or IA capabilities. It is an AmI application in charge of the management of one or
more meeting rooms. It has to control all the devices involved in a meeting process, like the
lights of the room, the projector display or the computer that shows the presentation. It also
needs to autonomously know when a meeting can start by looking at who is in the room
and checking if all the expected members have already arrived. In order to introduce some
high level data processing techniques, we also want the application to autonomously extract
user preferences about meeting room configuration.
In order to implement this example, we have at our laboratory a meeting room with all the
required hardware devices:

 An EIB bus with light actuation devices, presence sensors and a collapsible
projector display.

 A video projector with ethernet connectivity that is compatible with the PJLink
protocol for remote control purposes.

 One computer with its video output connected to the video projector in order to
display presentations.

 One computer with various bluetooth dongles that will provide a list of MAC
addresses that are detected inside the room. Therefore, the users must simply carry
a mobile device with bluetooth support in order to be located and identified.

Following the HI3 architecture model guidelines, those devices will be abstracted as ILHAS
parameters that represents their device functionalities, like the state of the lights and
operations to read/write it, the state of the presence sensor or a list of detected MAC
addresses in the case of the bluetooth device that will be used to know who is in the room.
The type and number of ILHAS parameters is standardized across devices that provide the
same functionality, in other words, two light switching devices from different vendors, for
example EIB and X10, will present the same parameters to the ILHAS subsystem. As the
ILHAS library provides direct access to those parameters, homogeneous access to
heterogeneous device technologies is effectively achieved.

www.intechopen.com

Ambient Intelligence20

Fig. 5. Hardware deployment diagram

ILHAS provides also a homogeneous network topology on top of complex topologies that
integrate multiple network technologies. As can be seen on Figure 5, there is at least one
device adaptor for each technology that translates its concrete interaction protocols to the
ILHAS parameter read/write paradigm. In order to use EIB devices, a bridge node has been
implemented by using the ILHAS node software we talked about in the previous sections. It
is deployed on a PC and connected to the EIB bus through a RS-232 interface using the
Calimero EIBnet/IP tunneling library and the Tweety EIBnet/IP tunneling server from the
TU Vienna (TU, 2009). With respect to the video projector, even though it has TCP/IP
connectivity by using the PJLink protocol, a bridge node was also developed. This bridge
node uses the PJLink protocol to interact with the projector and provides its functionality as
parameters through ILHAS. This PJLink bridge node can be directly reused with other
PJLink projectors. Finally, the bluetooth devices can be seen as a native ILHAS node because
in this case there are no translations involved. The bluetooth dongles are deployed on a PC
that runs an ILHAS node with device drivers that access those bluetooth devices.
As proposed by the HI3 architecture, all the devices are accessed through elements in the
Sensing/Actuation layer that will translate them to a higher level view, by, for example,
incorporating new information like their location, and providing automatic fault tolerance
by transparently changing from one device to another in case of failure or by aggregating
them. In this example we are going to keep this layer as simple as possible so it can be seen
as redirecting proxies. It is important to notice that these elements are independent of the
hardware technologies of the devices they represent because they access the hardware by
using the ILHAS library, thus the video projector component can use any type of video
projector, from a PJLink compatible one to an RS-232 device, as long as they are adapted to
ILHAS.

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 21

As shown on Figure 6, the proxy components are elements of the Sensing/Actuation layer
of the HI3 architecture. As such, they are implemented as multi-agent systems (in this
particular case, they have only one agent) and they have an associated formal description of
their functionality that is registered by the HI3 container at deployment time, and that can
be used by other system elements to dynamically find them. The functionality descriptions
of every element (in any of the layers) can be parameterized at deployment time or at
runtime with specific values like, for example, a location in which the element operates.
Looking again at Figure 6, a high level view of the system's design is shown. As proposed
by the HI3 architecture model we have designed the system as a set of loosely coupled
components that collaborate to resolve the proposed functionality. Those components have
been developed within each one of the proposed HI3 layers by looking at their purpose.
Hardware access components are on the Sensing/Actuation and Device Access layers.
General purpose components that can be reused by other components or projects are inside
the Service layer. This is the case of components in charge of identifying the detected users
of the system or controlling the set-up of a meeting room. Those components are examples
of loosely coupled functionalities that, by having them modularized, can be directly reused
in other applications and environments. Finally there are the components that provide
concrete, not easily reusable functionalities; we call them applications, as they are the
components that implement the use cases that a user expects from the system. In this
example we have only one application, the meeting room management application. It relies
on the available services to provide its required functionality and incorporates custom logic
for its specific functions, such as, for example in this case, the profiling of the meeting room
configuration.
We are now going to look more carefully at how the different elements resolve the proposed
functionalities.
To achieve user location and identification functionalities a simple approach was applied.
Users must carry a device with bluetooth support (for example a mobile phone) and we will
use bluetooth dongles integrated in the system to detect those mobile devices. On top of
these detection devices there will be a Presence service. It is associated to a location and
knows who is in that location. It infers that information in a multi-modal way by using two
types of information. Bluetooth devices to know who are in the room, and discrete presence
sensors for fault tolerance and to alleviate the problems of the bluetooth technology like
detecting people that is the contiguous room. Together with the Presence service there is the
Identification service that uses the presence information and user data to generate user
location and identification information. The communication between the Identification and
Presence services, is achieved using the publish/subscribe capabilities provided by the HI3
middleware. The Identification service is subscribed to a Presence information publication.
The same strategy is applied for the Presence service and the devices it uses. It is important
to highlight that multiple services of each type can be present in the system at any time and
the connection between them is performed dynamically. Their functionality is registered in
the HI3 container and, as we have already indicated, can be parameterized, for example by
the location they control. Thus, for example, when an identification service is deployed it
will search for an adequate Presence service by using its standardized functionality
description parameterized with its location.

www.intechopen.com

Ambient Intelligence22

Fig. 6. Component diagram of the proposed example

The Projection service is similar in concept to the Presence service. It is in charge of
aggregating and providing control over the typical devices found in a meeting room. There
can be multiple meeting rooms in a building, so there is one Projection service for each room
and at runtime it will search for partners (video projector, projector display, lighting, etc.) by
using their descriptions parameterized with the location value. As with the case of the
identification and presence services, this effectively achieves dynamic component
composition and collaboration.
The meeting room management application uses all these services to control the devices
involved in a meeting and to access information about the environment and its users, like
the people present in the meeting, the state of the lights, etc. It applies profiling algorithms
to this information in order to extract preferences about the lighting configuration that a
particular user (or group of users) prefers for a meeting. More specifically, it monitors the
state of the meeting room lights during meetings detecting patterns in their behaviour. For
example, when the system does not know the preferences of a user it may, by default, turn
off the lights when a presentation starts, if the user does not like that configuration it will
turn on the lights (or a given subset of them) using any of the available actuators. This is the

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 23

information used by the system to learn the preferences of the user. This information is
associated with the context and objective in order to increase the probability of the system
automatically turning on some lights during a presentation when the context is similar.
In this simple example we have introduced typical AmI application requirements, like
environment sensing and actuation through multiple paths, dynamic component
composition and collaboration and even IA algorithm integration. It also has presented how
an AmI general purpose architecture can speed up the development of AmI systems by
providing solutions that are ready to use in multiple problems and a structured way of
integrating them.

5. Conclusion

This chapter provides a review of some of the most important operational aspects of
Ambient Intelligence as well as their bearing on the development of the software/hardware
platforms that must support it. In this line, a series of issues that an architectonic approach
to AmI software development should tackle have been identified and we have shown how
the research community in general, and our laboratory, in particular, is dealing with them.
Through the study and presentation of the HI3 architecture proposal and by relating it to
other approaches found in the literature, the different solutions to the issues that arise and
how they must be considered in the design and tool development phase have been visited.
Some of these solutions have been taken to a high level of development through their use in
other fields. This is the case of distributed operation technology, modularity and low level
communication. Others are currently in an intermediate state, some good advances have
been made, but much work is needed to fulfil requirements like ubiquity and full
autonomous operation; this is case of technologies for issues such as security, mobility, fault
tolerance or hardware access and configuration. Finally other areas are still in an early stage
of development, some promising work has been carried out, but it is still isolated (not
integrated) or assumes too many simplifications in order to deal with the problems. In this
situation we find areas such as context-awareness, component self-organization and
collaboration or natural human-computer interaction. As a consequence, it is easy to see that
there is still much to do in this area and formal and structural approaches are still needed in
order to achieve the operational degree that would be required of such a system operating
in real life situations with humans. Obviously, it is a very interdisciplinary subject, that will
require bringing together knowledge and technologies from very different fields, both
technological and social, within a framework that really allows a systematic approach to the
construction and adaptation of these structures without leading to a quagmire of ad hoc
solutions or a complete deadlock as the systems scale. And it is also evident that to achieve
this end powerful design and development tools and architectures will be a key issue.

www.intechopen.com

Ambient Intelligence24

6. References

Ahn, H., Oh, H., & Sung, C. O. (2006). Towards Reliable OSGi Framework and Applications,
Proceedings of the 2006 sympossiumon Applied computing, Vol. 6, 1456-1461, Dijon,
France, ACM, New York.

AIT. (2009). Athens Information Technology, Center of Execelence for Research and
Graduate Education, http://www.ait.gr.

AMIGO (2009), a. AMIGO OSGi Deployment Framework,
http://amigo.gforge.inria.fr/home/components/wp3/OSGi_Framework/index/i
ndex.html, 2009.

AMIGO (2009), b. AMIGO Project, http://www.hitech-projects.com/euprojects/amigo/.
AMIGO (2005), c. Specification of the Amigo Abstract Middleware Architecture.
Bernardin, K., Ekenel, H. K., & Stiefelhagen, R. (2007). Multimodal identity tracking in a

smart room. Personal and Ubiquitous Computing, Vol. 13(1), Issue 5, 25-31.
Brdiczka, O., Crowley, J. L., & Reignier, P. (2009). Learning situation models in a smart

home. IEEE transactions on systems, man, and cybernetics. Part B, Vol. 39(1), 56-63.
Chen, H. (2004). An Intelligent Broker Architecture for Pervasive Context-Aware Systems,

PhD Thesis, University of Maryland, Baltimore County.
Chen, H., Finin, T. and Joshi, A. (2003). An ontology for context-aware pervasive computing

environments, The Knowledge Engineering Review, Cambridge University Press, Vol.
18, pp.197–207. 2003.

CHIL (2009). CHIL - Computers In the Human Interaction Loop, http://chil.server.de.
Crowley, J., Brdiczka, O., & Reignier, P. (2006). Learning situation models for understanding

activity, International Conference on Development and Learning.
Dey, A. (2001). Understanding and using context, Personal and ubiquitous computing, 5(1), 4–7.

Springer.
Dey, A. K. and Abowd, G.D. (2001). A conceptual framework and a toolkit for supporting

rapid prototyping of context-aware applications, Human-Computer Interactions
(HCI) Journal, Vol. 16, Nos. 2–4, pp.7–166. 2001

Dourish, P. (2001). Where the Action Is: The Foundation of Embodied Interaction, MIT
Press, Cambridge, 2001.z

EMBASSI (2009). EMBASSI - Multimodal Assistance for Infotainment and Service
Infrastructures, http://www.embassi.de.

Emonet, R., Vaufreydaz, D., Reignier, P., & Letessier, J. (2003). O3MiSCID, a Middleware for
Pervasive Environments, 1st IEEE International Workshop on Services Integration in
Pervasive Environments.

Filipe, C., & Torr, L. (2009). Fault Tolerance in the OSGi Service Platform.
FIPA (2009). FIPA - Foundation for Intelligent Physical Agents, http://www.fipa.org.
Gaia (2009). Gaia Project, http://gaia.cs.uiuc.edu/
Gu, T., Pung, H.K. and Zhang, D.Q. (2004). A middleware for building context-aware mobile

services, Proceedings of IEEE Vehicular Technology Conference (VTC), Milan, Italy.
Hanssens, N., Kulkarni, A., Tuchinda, R., & Horton, T. (2002). Building agent-based

intelligent workspaces, ABA Conference Proceedings (p. 675–681).
Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G. and Altmann, J. (2002). Context-

awareness on mobile devices - the hydrogen approach, Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, pp.292–302.

www.intechopen.com

Integrating Ambient Intelligence Technologies Using an Architectural Approach 25

Hung, N., Ngoc, N., Hung, L., Lei, S., & Lee, S. (2003). A Survey on Middleware for Context-
Awareness in Ubiquitous Computing Environments, Korean Information
Processing Society Review, 1-20.

JADE (2009). JADE - Java Agent DEvelopment Framework, http://jade.tilab.com/.
Klein, M., Onig-ries, B. K., Ussig, M. M. (2005). What is needed for semantic service

descriptions - a proposal for suitable language constructs, International Journal of
Web and Grid Services, 1(3/4), 328-364.

Krumm, J., Harris, S., Meyers, B., Brumitt, B., Hale, M., Shafer, S., et al. (2000). Multi-camera
multi-person tracking for easyliving, IEEE Workshop on Visual Surveillance (Vol. 6,
pp. 1-8).

Messer, A., Song, H., Kumar, P., Kunjithapatham, A., & Sheshagiri, M. (2006). Interplay: a
middleware for integration of devices, services and contents in the home
networking environment, 3rd IEEE Consumer Communications and Networking
Conference, pp. 1083-1087.

MIT Oxygen (2009). MIT Oxygen Project – E21: Intelligent Spaces,
http://oxygen.lcs.mit.edu/E21.html.

NIST (2009). NIST IEEE-P1451 Draft Standard, IEEE1451, http://ieee1451.nist.gov/.
OSGi Alliance (2007). OSGi Service Platform Release 4 Version 4.1,

http://www.osgi.org/Download/Release4V41.
Oshima, M., & Lange, D. B. (1999). Seven Good Reasons For Mobile Agents, Communications

of the ACM, 42(3), 88-89.
Paz, A., Varela, G., Monroy, J., Vazquez, S., & Duro, R. J. (2008), a. HI3 Project: Software

Architecture System for Elderly Care in a Retirement Home, 3rd Symposioum of
Ubiquitous Computing and Ambient Intelligence, 11-20, Salamanca, Spain.

Paz, A., Varela, G., Monroy, J., Vazquez, S., & Duro, R. J. (2008), b. HI3 Project: General
Purpose Ambient Intelligence Architecture, Proceedings of the 3rd Workshop on
Artificial Intelligence Techniques for ambient Intelligence, AITAmI08, 77-81, Patras,
Greece.

PERSONA (2009), a. PERSONA Project, http://www.aal-persona.org.
PERSONA (2007), b. Full version of ambient assisted architecture specification,

http://www.aal-persona.org/deliverables/D3.1.1-
Full_version_of_ambient_assisted_architecture_specification.pdf.

Peters, S., Look, G., Quigley, K., Shrobe, H., & Gajos, K. (2003). Hyperglue: Designing high-
level agent communication for distributed applications.

Preuveneers, D., & Berbers, Y. (2008). Pervasive services on the move: Smart service
diffusion on the OSGi framework, Lecture Notes in Computer Science, 5061, 46–60.
Springer.

PRIMA (2009). PRIMA Project. http://www-prima.imag.fr
Roman, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H. and Nahrstedt, K.

(2002). A middleware infrastructure for active spaces, IEEE Pervasive
Computing,Vol. 1, No. 4, pp.74–83.

Rui, C., Yi-bin, H., Zhang-qin, H., & Jian, H. (2009). Modeling the Ambient Intelligence
Application System: Concept, Software, Data, and Network, IEEE transactions on
systems, man, and cybernetics. Part C., 39(3), 299-314.

Schilit, B. and Theimer, M. (1994). Disseminating active map information to mobile hosts,
IEEE Network, Vol 8 pp 22-32, 1994.

www.intechopen.com

Ambient Intelligence26

Soldatos, J., Dimakis, N., Stamatis, K., & Polymenakos, L. (2007). A breadboard architecture
for pervasive context-aware services in smart spaces: middleware components and
prototype applications, Personal and Ubiquitous Computing , Vol 11, Issue 3, 193-212.

SOPRANO (2007). Review state-of-the-art and market analysis, http://www.soprano-
ip.org/ecportal.asp?id=350&nt=18&lang=1.

Strang, T. and Linnhoff-Popien, C. (2004). A Context Modeling Survey, First International
Workshop on Advanced Context Modeling, Reasoning and Management, UbiComp.

Tapia, E., Intille, S., & Larson, K. (2004). Activity recognition in the home using simple and
ubiquitous sensors, Lecture Notes in Computer Science, 158–175. Springer

TU Vienna (2009). Institute of Computer Aided Automation, Automation Systems Group,
https://www.auto.tuwien.ac.at/a-lab/knx-eib.html.

Vallee, M., Ramparany, F., & Vercouter, L. (2005). Dynamic service composition in ambient
intelligence environments: a multi-agent approach, Proceeding of the First European
Young Researcher Workshop on Service-Oriented Computing (pp. 1-6).

Varela, G., Paz-Lopez, a., Vazquez-Rodriguez, S., & Duro, R. J. (2007). HI3 Project: Design
and Implementation of the Lower Level Layers, 2007 IEEE Symposium on Virtual
Environments, Human-Computer Interfaces and Measurement Systems, 36-41, Ostuni,
Italy.

Wolf, P., Schmidt, A., & Klein, M. (2008). SOPRANO – An extensible, open AAL platform
for elderly people based on semantical contracts, Proceedings of the 3rd Workshop on
Artificial Intelligence Techniques for ambient Intelligence, AITAmI08, 11-15, Patras,
Greece.

www.intechopen.com

Ambient Intelligence

Edited by Felix Jesus Villanueva Molina

ISBN 978-953-307-078-0

Hard cover, 144 pages

Publisher InTech

Published online 01, March, 2010

Published in print edition March, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

It can no longer be ignored that Ambient Intelligence concepts are moving away from research labs

demonstrators into our daily lives in a slow but continuous manner. However, we are still far from concluding

that our living spaces are intelligent and are enhancing our living style. Ambient Intelligence has attracted

much attention from multidisciplinary research areas and there are still open issues in most of them. In this

book a selection of unsolved problems which are considered key for ambient intelligence to become a reality,

is analyzed and studied in depth. Hopefully this book will provide the reader with a good idea about the current

research lines in ambient intelligence, a good overview of existing works and identify potential solutions for

each one of these problems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

A. Paz-Lopez, G. Varela, S. Vazquez-Rodriguez, J. A. Becerra and R. J. Duro (2010). Integrating Ambient

Intelligence Technologies Using an Architectural Approach, Ambient Intelligence, Felix Jesus Villanueva Molina

(Ed.), ISBN: 978-953-307-078-0, InTech, Available from: http://www.intechopen.com/books/ambient-

intelligence/integrating-ambient-intelligence-technologies-using-an-architectural-approach

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

