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1. Introduction    

The prevalence of wireless standards and the introduction of dynamic standards/ 
applications, such as software-defined radio, necessitate filters with wide ranges of 
adjustable bandwidth/power, and with selectable degrees and shapes. The baseband filters 
of transceivers often utilize a significant portion of the power budget, especially when high 
linearity is required. Likewise, a widely tunable filter designed for its highest achievable 
frequency consumes more power than necessary when adjusted to its lowest frequency. 
Because power consumption is proportional to the dynamic range and frequency of 
operation, power-adjustable filters have recently gained popularity, as they can adapt their 
power consumption dynamically to meet the needs of the system.  
Dynamic variation in filter attributes (e.g. frequency, order, type) coupled with companies’ 
desire to reuse IP has popularized highly programmable filters. The lowpass-filter cutoff 
frequencies of several wireless/wireline standards are within the 1–20 MHz frequency 
range. Many of these standards are irregularly spaced in frequency and do not lend 
themselves well to standard binary-weighted resistor arrays. In previous designs frequency 
is solely controlled digitally, and hence, digital circuitry or an ADC is used to tune the 
frequency of the filters. Gm–C filters offer continuous frequency tunability and can operate 
at higher frequencies than their active-RC counterparts. MOSFET-C filters can also provide 
continuous frequency tuning, but both Gm–C and MOSFET-C filters lack good linearity. 
MOSFET-C filters additionally suffer from reduced tuning range at lower supply voltages; 
also, in MOSFET-C most of the voltage drop occurs over nonlinear MOSFET triode resistors, 
which appreciably degrades its linearity. Along these lines, filters with good linearity have 
been developed that tune on the basis of duty-cycle control in switched-R-MOSFET-C filters; 
however, duty-cycle control by nature necessitates a discrete-time filter. Active-RC filters, 
known to have good linearity, have been used for continuous-time programmable filters. 
Some such filters have narrow frequency ranges, with a few others providing wider but 
solely discrete ranges. Purely discrete switched resistor tuning limits filter frequency tuning 
to discrete frequencies determined by the overall frequency range and number of bits used. 
Tuning to different frequency bands precisely would require very fine resistor stripes to 
meet precision requirements for the low-frequency end.  
Newer technologies offer increased integration with smaller feature sizes, allowing the filter 
to be on the same chip with other transceiver blocks. This integration especially promotes 
reconfigurable architectures, as DSPs can be integrated with the transceiver and can control 
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the mode of operation. However, as minimum feature size shrinks, supply voltages also 
reduce, which complicates classical linearization techniques of Gm–C filters. In this respect, 
active-RC filters possess an intrinsic linearity advantage.  
The third generation standards will create a demand for cellular phones capable of 
operating both in the new wideband and in the existing narrower band systems. Second 
generation system has a channel bandwidth in range of tens of kilohertz, whereas channel 
bandwidths of wideband systems are in megahertz range. So the corner frequency of an 
analog channel select filter must be tunable over at least a decade of frequency. This will 
increase the power consumption and the area. The proposed multi-mode baseband filter can 
minimize the area and optimize the power consumption by sharing the capacitors and 
resistors. And new tuning method can reduce the number of switches in programmable 
capacitor arrays which can be dominant noise sources. 
This chapter is organized as follows. In Section 2, the multi-mode, multi-band active-RC 
filter architecture is described. Section 3 describes filter tuning circuits. Section IV shows 

experimental results from a 0.35 μm CMOS implementation and Section V concludes the 
paper. 

2. Multi-mode, multi-band active-RC filter architecture 

2.1 Multi-mode, multi-band active-RC low-pass filter 
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Fig. 1. (a) Resistor matrices and capacitor matrices  (b) schematic of the baseband filter. 

Fig. 1 shows the designed active-RC 5th-order Chebyshev filter. Resistor matrices and 
capacitor matrices are shown in Fig. 1(a). Resistor matrics are composed of resistors and 
switches. Switches are controlled by Mode_sel(3:0), as defined in Table 1. Resistor for 
WCDMA is not connected to any switch. 
The bandwidths of PDC, GSM, IS-95, and WCDMA are 13 kHz, 100 kHz, 630 kHz, and 2.1 
MHz, respectively. Mode_sel(3:0) bits are set through the serial interface and represented in 
thermometer code. The corner frequency was made tunable by using programmable 
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capacitor matrices. Capacitor matrices are composed of capacitors and switches. The control 
bits required for each mode are 2-bits. Thus, total number of 8-bits are required. The tuning 
bits, cont(7:0) are determined from the on-chip tuning block based on the mode. In PDC 
mode, the low corner frequency leads to large passive components occupying a lot of die 
area [2]. Because the capacitor matrices dominate the area, capacitors were shared between 
modes. There are trade-offs between resistor values and capacitor values. When resistor 
values are reduced to make thermal noise small, capacitor values become large. That leads 
to a large area. On the other hand, as capacitor values become smaller to reduce the area, the 
noise level rises. So, capacitor values and resistor values were optimized. 
 

Mode_sel(3:0) Standard Bandwidth 

“0001” PDC 13 kHz 

“0010” GSM 100 kHz 

“0100” IS-95 630 kHz 

“1000” WCDMA 2.1 MHz 

Table 1. Mode definition and corresponding bandwidths  

2.2 Tunable active-RC complex band-pass filter 

Fig. 2 shows the Adjacent Channel Interference (ACI) of the PHS system. The nearest 

interferer is located at 600 kHz, and its magnitude is 50 dB larger than the wanted signal.  
 

0Hz 600kHz-600kHz

Wanted 
Signal

50dBInterferer

150kHz 750kHz-450kHz

Wanted 
Signal

50dBInterferer

(b)  
                                  (a)                                                                                  (b) 

Fig. 2. Characteristic of (a) Lowpass Filter in Direct-Conversion Receiver (b) Complex 
Bandpass Filter in Low-IF Receiver 

As shown in Fig. 2(a), if the direct conversion receiver architecture is used, the interferences 

are located at ±600 kHz, which can be attenuated by the lowpass filter. However, if the IF 

frequency is 150 kHz, the interferences are shifted to -450 kHz, +750 kHz, respectively as 

shown in Fig. 2(b). If the lowpass filter is used, the attenuation characteristic is tighter 

because the worst case interferer is seemed to be located at 450 kHz. Therefore, the complex 

bandpass filter whose center frequency is located at 150 kHz is designed for the ACS 

performance. 

The transfer function of the complex bandpass filter is found by frequency translating a low-

pass filter. 

 ( ) ( )bp lp cH j H j jω ω ω= −   (1) 
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The translation of a single pole is given in Eq. (2) and (3)  
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A single complex pole cannot be realized with a real filter. Only complex pole pairs can be 
realized. The result of Eq. (2) is a single complex pole. The translated version of a single 
complex pole is also given with Eq. (3). The complex part must just be added to or 

subtracted from the complex term 2 jQ . 
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Fig. 3. Block scheme for the realization of a single complex pole. 

The realization of for a single pole is given in Fig. 3. It is nothing more than the direct 
synthesis of the transfer function. Fig. 3 is the full block schematic with building blocks for 
real signals. 
Fig. 4(a) shows the designed 3rd-order Chebyshev complex bandpass filter. The wanted 

signal is composed of the in-phase signal and quadrature signal, which are separated by the 

90° phase. Complex bandpass filter uses both signals to perform the complex operations. As 

shown in Fig. 4(a), the complex bandpass filter has the in-phase signal path and the 

quadrature-phase signal path. Internal nodes of each paths are inter-connected to other 

paths. Therefore, I/Q mismatches is one of the most critical design issues in the complex 

filter. In this design, because I/Q mismatch compensation scheme is applied, I/Q mismatch 

is drastically reduced. 
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Fig. 4. (a) Schematic (b) resistor arrays (c) capacitor arrays of the complex bandpass filter 

Resistor arrays and capacitor arrays are shown in Fig. 4(a). Resistor arrays are composed of 
resistors and switches. Resistor arrays control the center frequency of the bandpass filter and 
its control signals, rconti(6:0), rcontq(6:0), are set through the serial interface and 
represented in thermometer code.  
The corner frequency was made tunable by using programmable capacitor arrays. Capacitor 
arrays are composed of capacitors and switches. The tuning bits, ccont(1:0), are determined 
from the on-chip tuning block. There are trade-offs between resistor values and capacitor 
values. When resistor values are reduced to make thermal noise small, capacitor values 
become large. That leads to a large area. On the other hand, as capacitor values become 
smaller to reduce the area, the noise level rises. So, capacitor values and resistor values were 
optimized. 
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3. Tuning circuit of active-RC filter 

Resistors and capacitors are usually varied about ±15% due to the process variation. In 
continuous time filters, this leads to a large variation of the corner frequency, which in most 
case, must be compensated by adjusting the component values. 
Conventional full analog tuning circuit based on VCO is shown in Fig. 5(a). However, this 
tuning circuit is not suitable to tune an active-RC filter with programmable capacitor 
matrices. The output of the loop filter in the PLL is analog voltage, which cannot be 
interfaced directly with the capacitor matrices.  
On the other hand, too many digital bits are required for fine resolution in the conventional 
full digital circuit shown in Fig. 5(b). Thus, the area and noise level are too high due to many 
number of switches and capacitor matrices. 
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Voltage-controlled
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Reference

Clock

Main FilterVin Vout

VF
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oscillator

M-counter
Tuning
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comparator
Clock 

Generator

Reference
Clock

Reference

Vin Vout

 

(b) 

Fig. 5. (a) Full analog tuning method (b) Full digital tuning method. 

The concepts of the full analog, full digital and proposed two-step tuning method are shown 
in Fig. 6(a), (b) and (c), respectively. 
The block diagram of the proposed two-step tuning scheme is shown in Fig. 7. The clock 
generator provides the clocks, clk0, clk1 to coarse and fine tuning controllers. Ctu is charged 
during clk0 is high, and VCOMP is sampled by clk1. Reference voltages for comparators, 
Vref, Refl, RefH, RefM are generated in the reference voltage generator block. The operation 
is as follows. Before main capacitor tuning steps, the reference tuning loop is enabled to 
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(a) Full Analog Tuning
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Fig. 6. Concept of (a) full analog tuning method (b) full digital tuning method (c) proposed 
two-step tuning method. 
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Fig. 7. Block diagram of the proposed two-step tuning method. 

compensate the resistor variation. Pbias is compared with Vref, and vres(2:0) is controlled 
according to the result. When pbias is larger than Vref, resistor load should be smaller, so 
vres(2:0) is increased.  On the other hand, if pbias is smaller than Vref, resistor load should 
be larger, so vres(2:0) is decreased. Reference tuning is completed when pbias crosses the 
Vref. 
After the reference tuning, main capacitor tuning is done in two-steps, that is, the coarse 
tuning and the fine tuning.  
Fig. 8 shows the timing diagram of the proposed two-step tuning method. 
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Step 1 : Coarse Tuning Step 2 : Fine Tuning
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Fig. 8. Timing diagram of the proposed tuning method. 
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Fig. 9. (a) Block diagram (b) timing diagram of the replica filter in coarse tuning block. 

Fig. 9 shows the block diagram and the timing diagram of the replica filter in the coarse 
tuning block. When VCOMP voltage is precharged when clk0 and clk1 are high. When clk0 
goes from high to low, the VCOMP voltage is determined as Eq. 4. 

 ( )_

1
com ref ct com

tu

VCOMP V V V T
RC

= − −   (4) 

First, CCONT(1:0) are tuned until VCOMP is located between pre-determined ranges. 
VCOMP is compared with refL and refH. When VCOMP is higher than refH, CCONT(1:0) 
are increased. Whereas, if VCOMP is lower than refL, CCONT(1:0) are decreased. When 
VCOMP is located between refL and refH, coarse_Lock signal goes from low to high. 
Usually, many tuning capacitance levels are required for fine resolution. But, only two bits 
are sufficient in this design with the two-step tuning method. After the coarse_lock signal is 
asserted, the corner frequency is tuned by the fine tuning control block.  
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Fbias controls the tail current of the op-amp. Thus, the DC-gain of the op-amp is changed 
according to the Fbias voltage. If the DC-gain of the op-amp is infinite, the cut-off frequency 
does not change. However, because the DC-gain of the op-amp is finite, the cut-off 
frequency of the filter is changed as the DC-gain of the op-amp changes. Fbias is compared 
with refM. When VCOMP is larger than refM, Fbias should be increased. On the other hand, 
Fbias should be decreased when VCOMP is smaller than refM. The range of Fbias is 0.8 V to 
1.2 V. The bandwidth of the op-amp is adjustable according to the mode to save the power. 
And the transistor sizes in the op-amp are designed to be very large to reduce the 1/f noise. 

4. Experimental results 

4.1 Multi-mode, multi-band active-RC low-pass filter 

The multi-mode, multi-band active-RC low-pass filter was fabricated using a 0.35 μm CMOS 
process. The chip area is 3.8 mm2 and the supply voltage is 3 V.  
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Fig. 10. Amplitude response of the filter in WCDMA mode. 

Fig. 10 shows the amplitude response of the filter in WCDMA mode at every code. The cut-
off frequency is 2.1 MHz in WCDMA mode. The current consumptions are 5.2 mA, 6.1 mA, 
7.1 mA, and 8.4 mA, respectively. The current in PDC mode is less than that of WCDMA 
mode because the gain and the bandwidth of the op-amp are smaller in PDC mode. The 
frequency tuning range is from 10 kHz to 3MHz. Out-of-band IIP3 was determined by 
performing IM3 test. In PDC mode, when two tones of +15 dBm at 20 kHz and 30 kHz are 
applied, IM3 is –77 dBm. In WCDMA mode, out-of-band IM3 is –68 dBm, when two tones of 
+14 dBm at 1.8 MHz and 3.0 kHz are applied. Input-referred average passband noise 

densities of the filter are 250, 130, 85, and 54 /nV Hz for PDC, GSM, IS-95, and WCDMA, 

respectively. The passband ripple is less than 0.5 dB in all modes. The stopband rejections 
are 79, 79, 75, and 75 dB for PDC, GSM, IS-95, and WCDMA, respectively. Table 2 
summarizes the performance of the filter. 

www.intechopen.com



 Advances in Solid State Circuits Technologies 

 

104 

Technology 0.35 μm CMOS 

Chip area 3.8 mm2 

Supply voltage 3 V 

Tuning range 10 kHz ~ 3 MHz 

 PDC GSM IS-95 WCDMA

Current (mA) 5.2 6.1 7.1 8.4 

IIP3 (dBm) 28 25 23 21 

Noise 

( /nV Hz ) 
250 130 85 54 

Passband ripple 0.5 0.5 0.5 0.5 

Stopband 
rejection 

79 79 75 75 

Table 2. Performance summary  

4.2 Tunable active-RC complex band-pass filter 

The complex bandpass filter was fabricated using a 0.35 μm CMOS process. The chip area is 
3.8 mm2. The supply voltage is 3 V. Fig. 11 shows the microphotograph. 
 

Complex Bandpass Filter

Filter Tuning Circuit

1.2mm

0.5mm

2.0mm

1.9mm

 

Fig. 11. Chip microphotograph 

Fig. 12 shows measured amplitude response of the complex baseband filter, when the 

temperature is changed from -10°C to 60°C. The cut-off frequency is 150 kHz ± 110 kHz. The 
cut-off frequency is almost constant as the temperature is changed due to the proposed filter 
tuning method. 
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Fig. 12. Measured amplitude response of the complex bandpass filter 

The power consumption is 13 mW. The frequency tuning range is 100 kHz, which is the 50% 

of the signal bandwidth. That is, the cut-off frequency can be adjusted by 100 kHz although 

it is shifted due to the temperature, the supply voltage, and the process variations.  

Out-of-band IIP3 was determined by performing IM3 test. When two tones of -44 dBm at 

600 kHz and 1.2 MHz are applied, IIP3 is +25 dBm. 

Input-referred average passband noise density of the filter is 85 /nV Hz . The passband 

ripple is less than 0.8 dB, and the stopband rejection at -450 kHz is 66 dB. Table 3 

summarizes the performance of the filter. 

 

Technology 0.35 μm CMOS 

Chip area 3.8 mm2 

Supply voltage 3 V 

Tuning range 100 kHz 

Power (mW) 13 

IIP3 (dBm) 25 

Noise ( /nV Hz ) 85 

Passband ripple 0.8 

Table 3. Performance summary  

5. Conclusion 

The CMOS multi-mode, multi-band low-pass filter and complex baseband filter are presented. 
Capacitors and resistors were shared to minimize the area. Proposed two-step tuning method 
can reduce the number of switches and thus, can reduce the noise and the area.  
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