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1. Introduction     
 

Transparent conducting oxides (TCOs) based on ZnO are promising for application in thin-
film solar photovoltaic cells (PVCs) and various optoelectronic devices (Minami, 2005). 
Desired parameters of ZnO and doped ZnO:Al (AZO) thin films  are given by their role in 
superstrate configuration of tandem Si solar cell (Zeman, 2007): the light enters the cell 
through the glass substrate where two pin absorber thin-film structures are placed between 
two TCO layers with back metal contact. The upper front contact AZO layer should fulfill 
several important requirements: high transparency in VIS/near IR solar spectrum; high 
electrical conductivity; suitable surface texture in order to enhance light scattering and 
absorption inside the cell; high chemical stability and adhesion to silicon. Moreover, bottom 
ZnO interlayer between Si and metal (usually Ag) contact is acting as barier and adhesion 
layer as well as optical matching layer to Ag back contact to improve its reflection of 
radiation, particularly in near IR region (Dadamseh et al., 2008). Optimization of the front 
contact TCO has proven to be crucial for getting the high cell efficiency (Berginski et al., 
2008). 
RF sputtering is owning several advantages in comparison with the other physical and 
chemical deposition methods: a low-temperature ion–assisted deposition of metals, 
semiconductors, insulators, the before/post deposition modification of substrate/thin - film 
surface by ions on the micro-/nano- level; change of deposition rate in wide range (0,1 to 
10 nm/s); to control further parameters which are important for thin film growth (substrate 
temperature, plasma density, composition of working gas, ion bombardment of film during 
deposition). In addition there is a significant contribution of secondary electron 
bombardment to the atomic scale heating of the film when it is prepared by the RF diode 
sputtering. 
Therefore RF sputtering of AZO films from ceramic target is often used to get the best their 
electrical and optical properties. An influence of different technological parameters was 
investigated: partial pressure of oxygen  (Tsui & Hirohashi, 2000), substrate temperature (Fu 
& Zhuang, 2004), (Ali, 2006), (Berginski et al., 2008), substrate bias voltage (Ma & Hao, 2002), 
(Lim & Kim, 2006), post-deposition annealing (Fang at al., 2002), (Oh et al., 2007), (Berginski 
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et al., 2008), surface-texturing by chemical etching (Kluth & Rech, 1999), (Berginski et al., 
2008) or ion-sputter etching (Flickyngerova, et al. 2009). The complex study and an 
optimization of various deposition parameters were done by using in-line AC magnetron 
sputtering system with Zn/Al compound targets (Sittinger et al., 2006). 
In general, sputter deposition is determined by complex processes proceeded: (a) at the 
target bombarded by energetic ions, (b) in the low-temperature plasma, (c) on the surface of 
substrate and growing film. In general, thin film growth is influenced by the kinetic energy 
of coating species on the substrate – in addition to substrate temperature a total energy flux 
is acting to the substrate and growing thin film. It depends mainly on the amount and the 
energy of: (i) sputtered coating species, (ii) energetic neutral working gas atoms (neutralized 
and reflected at the target), (iii) energetic secondary electrons emitted from the target, (iv) 
negative ions coming from the working gas plasma or target, (v) ions bombarding the 
substrate in bias or reactive mode. These effects can cause significant changes in the 
crystallic structure, surface morphology and chemical stoichiometry of sputtered thin films, 
i.e. they can modify their electrical and optical properties. The existence of high-energy 
particles bombarding the film during both the planar diode and the planar magnetron 
sputtering of ZnO was confirmed (Tominaga et al., 1982). It was found from energy analyses 
that the high-energy neutral oxygen atoms should be taken into account above working 
pressures 1.3 Pa and negative oxygen ions accelerated at the target becomes important at 
pressures in the range of 0.1 Pa. The negative ion resputtering by oxygen ions during 
sputtering of ZnO:Al thin films has caused extended defects in the film crystalline structure 
(interstitials, lattice expansion, grain boundaries) - it was responsible for the degradation of 
electrical properties of these films (Kluth et al., 2003), (Rieth & Holloway, 2004). Thornton’s 
microstructural model developed for sputtered metal thin films (Thorton & Hoffman, 1989) 
they modified for magnetron sputtered ZnO at low-/medium-/high-pressure regions (0.04 - 
4 Pa) and they discussed the correlation of sputter parameters (sputter gas pressure and 
substrate temperature) to structural and electrical properties of thin film. These results and 
next ones obtained also later (Kluth et al., 2006) showed a strong dependence of ZnO:Al thin 
film properties on sputter gas pressure and oxygen content in working gas. 
Structural models based on Thornton’s assumptions are well satisfied in the technological 
approach of sputtering of metals. In the parameter „Ar working gas pressure“ he implicitly 
included collisions between the sputtered and Ar atoms at elevated pressures causing the 
deposited atoms to arrive at the substrate in randomized directions that promote oblique 
coating. Therefore to use more physical approach, in addition to substrate temperature Ts, 
we introduced a total energy flux density EΦ [W/m2] affecting to the substrate and the 
growing thin film (Fig. 1). A total energy flux density, by other words power density EΦ,, 
can be expressed by microscopic quantities known from the kinetic theory of gases, low-
temperature plasma physics and the models of sputtering processes. It can be also estimated 
by macroscopic sputtering parameters like supply RF power, deposition rate, average DC 
voltage induced on target, flow or pressure of working gases, substrate bias voltage or 
power (Tvarozek et al., 2007). The substrate temperature is normalized to the melting 
temperature Tm of sputtered material, Ts /Tm. The substrate temperatures are usually very 
far from melting point of ZnO (Tm = 1975°C) during the sputtering that’s why we found 
useful to express Ts/Tm in logarithmic scale. The ratio of the total energy flux density EΦ  
and its minimum value EΦmin specified by the sputtering mode and the geometrical 
arrangement of the sputtering system is EΦ /EΦmin. Optimal conditions for deposition of 

 

semiconductor oxides and nitrides (ITO, TiN, ZnO, ZnO:N, ZnO:Al, ZnO:Ga, ZnO:Sc) in our 
diode sputtering system corresponded to the relative total energy flux density EΦ / EΦmin in 
the range of 4 ÷ 7, EΦmin ~ 1 x 104 W/m2, (Fig. 1, dashed lines). 
 

 
Fig. 1. Crystalline structure zone model of sputtered ZnO thin films: Zone 1 – porous 
structure of tapered amorphous or crystalline nanograins separated by voids, Zone T – 
dense polycrystalline structure of fibrous and nanocrystalline grains, Zone 2 – columnar 
grain structure, Zone 3 – single-crystal micrograin structure, Zone NT – nanostructures and 
nanoelements. 
 
The aim of present work has been to find correlations among the technological parameters 
(power density, substrate temperature and post-deposition annealing) and structural / 
electrical / optical properties of AZO thin films. In the beginning to accelerate our 
investigation of desirable thin film properties we used the RF diode sputtering where one 
can get continual changes of thin film thickness (of composition also) in one deposition run. 

 
2. Modelling and simulation 
 

Computer simulations have proved to be an indispensable tool for obtaining a better 
understanding of solar photovoltaic cells (PVC) performance and for determining trends for 
optimizing material parameters and solar cell structures. We focused on the simulations of 
both the parasitic effect in real bulk PVCs and progressive thin film solar PVCs, based on 
amorphous silicon and transparent conductive layers of ZnO, ZnO:Al. 
Sputtering is an important technique for deposition of both multicomponent thin films for 
solar applications as well as multilayer coatings with only few nanometers thin layers (so-
called superlattices) which exhibit superior hardness, high wear, corrosion resistance and 
thermal stability (Panjan, 2007). Sputter deposition is attractive particularly in industrial 
applications due to the need of high deposition rates and uniform coverage over large areas. 
Therefore it is desirable to know what influence has the sputter system arrangement on 
spatial distribution of sputtered particles on the top of substrate (so-called deposition 
profile), i.e. on homogeneity of growing film properties. 

 
2.1 Electric properties of PVC 
The most important electric parameters, which are used to characterize the quality of PVC, 
are defined: the short-circuit current ISC (the current through the solar cell when the voltage 
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crystallic structure, surface morphology and chemical stoichiometry of sputtered thin films, 
i.e. they can modify their electrical and optical properties. The existence of high-energy 
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sputtering of ZnO was confirmed (Tominaga et al., 1982). It was found from energy analyses 
that the high-energy neutral oxygen atoms should be taken into account above working 
pressures 1.3 Pa and negative oxygen ions accelerated at the target becomes important at 
pressures in the range of 0.1 Pa. The negative ion resputtering by oxygen ions during 
sputtering of ZnO:Al thin films has caused extended defects in the film crystalline structure 
(interstitials, lattice expansion, grain boundaries) - it was responsible for the degradation of 
electrical properties of these films (Kluth et al., 2003), (Rieth & Holloway, 2004). Thornton’s 
microstructural model developed for sputtered metal thin films (Thorton & Hoffman, 1989) 
they modified for magnetron sputtered ZnO at low-/medium-/high-pressure regions (0.04 - 
4 Pa) and they discussed the correlation of sputter parameters (sputter gas pressure and 
substrate temperature) to structural and electrical properties of thin film. These results and 
next ones obtained also later (Kluth et al., 2006) showed a strong dependence of ZnO:Al thin 
film properties on sputter gas pressure and oxygen content in working gas. 
Structural models based on Thornton’s assumptions are well satisfied in the technological 
approach of sputtering of metals. In the parameter „Ar working gas pressure“ he implicitly 
included collisions between the sputtered and Ar atoms at elevated pressures causing the 
deposited atoms to arrive at the substrate in randomized directions that promote oblique 
coating. Therefore to use more physical approach, in addition to substrate temperature Ts, 
we introduced a total energy flux density EΦ [W/m2] affecting to the substrate and the 
growing thin film (Fig. 1). A total energy flux density, by other words power density EΦ,, 
can be expressed by microscopic quantities known from the kinetic theory of gases, low-
temperature plasma physics and the models of sputtering processes. It can be also estimated 
by macroscopic sputtering parameters like supply RF power, deposition rate, average DC 
voltage induced on target, flow or pressure of working gases, substrate bias voltage or 
power (Tvarozek et al., 2007). The substrate temperature is normalized to the melting 
temperature Tm of sputtered material, Ts /Tm. The substrate temperatures are usually very 
far from melting point of ZnO (Tm = 1975°C) during the sputtering that’s why we found 
useful to express Ts/Tm in logarithmic scale. The ratio of the total energy flux density EΦ  
and its minimum value EΦmin specified by the sputtering mode and the geometrical 
arrangement of the sputtering system is EΦ /EΦmin. Optimal conditions for deposition of 

 

semiconductor oxides and nitrides (ITO, TiN, ZnO, ZnO:N, ZnO:Al, ZnO:Ga, ZnO:Sc) in our 
diode sputtering system corresponded to the relative total energy flux density EΦ / EΦmin in 
the range of 4 ÷ 7, EΦmin ~ 1 x 104 W/m2, (Fig. 1, dashed lines). 
 

 
Fig. 1. Crystalline structure zone model of sputtered ZnO thin films: Zone 1 – porous 
structure of tapered amorphous or crystalline nanograins separated by voids, Zone T – 
dense polycrystalline structure of fibrous and nanocrystalline grains, Zone 2 – columnar 
grain structure, Zone 3 – single-crystal micrograin structure, Zone NT – nanostructures and 
nanoelements. 
 
The aim of present work has been to find correlations among the technological parameters 
(power density, substrate temperature and post-deposition annealing) and structural / 
electrical / optical properties of AZO thin films. In the beginning to accelerate our 
investigation of desirable thin film properties we used the RF diode sputtering where one 
can get continual changes of thin film thickness (of composition also) in one deposition run. 

 
2. Modelling and simulation 
 

Computer simulations have proved to be an indispensable tool for obtaining a better 
understanding of solar photovoltaic cells (PVC) performance and for determining trends for 
optimizing material parameters and solar cell structures. We focused on the simulations of 
both the parasitic effect in real bulk PVCs and progressive thin film solar PVCs, based on 
amorphous silicon and transparent conductive layers of ZnO, ZnO:Al. 
Sputtering is an important technique for deposition of both multicomponent thin films for 
solar applications as well as multilayer coatings with only few nanometers thin layers (so-
called superlattices) which exhibit superior hardness, high wear, corrosion resistance and 
thermal stability (Panjan, 2007). Sputter deposition is attractive particularly in industrial 
applications due to the need of high deposition rates and uniform coverage over large areas. 
Therefore it is desirable to know what influence has the sputter system arrangement on 
spatial distribution of sputtered particles on the top of substrate (so-called deposition 
profile), i.e. on homogeneity of growing film properties. 

 
2.1 Electric properties of PVC 
The most important electric parameters, which are used to characterize the quality of PVC, 
are defined: the short-circuit current ISC (the current through the solar cell when the voltage 
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across the solar cell is zero), the open-circuit voltage VOC (the maximum voltage available 
from a solar cell, at zero current), the fill factor FF (indicating how far the product ISCVOC is 
from the power delivered by the PVC) and the conversion efficiency (η).  
The conversion efficiency is defined as the ratio of the photovoltaically generated electric 
output of the cell to the radiation power falling on it Pin:  

E
VJFF

AE
VIFF

P
VI OCSCOCSC

in

mm 


 ,    (1) 

where FF is the fill factor of PVC ImVm/ISCVOC (or area ratio A / B in Fig. 2), E is value of 
irradiance and JSC is the short-circuit current density ISC/A. The values of Vm and Im are the 
co-ordinates for maximal power point (he designates the optimal operating point of PVC), 
and can be estimated from the open circuit voltage and short circuit current: Vm ~ (0.75-
0.9)×VOC, Im ~ (0.85-0.95)×ISC (Goetzberger & Hoffmann, 2005). Efficiency is measured under 
standard test conditions (temperature of PVC 25°C, irradiance 1000 Wm-2, air mass 1.5). 
 

 
Fig. 2. C-V and P-V (dash line) characteristics of illuminated solar cell 

 
2.2 PSPICE model of bulk solar cell the 1st generation 
The model of simple 1st generation PVC (i.e. p-n junction represented as bulk silicon diode of 
large-area), following equivalent circuit diagram (Fig. 3) by PSpice software (PSpice A/D 
Circuit Simulator, 2009) for analysis of electronic circuits and their simulations, was created.  
By means of the two-diode model we achieved the better description of PVC. Diode D1 is 
representing the carrier injection current IINJ and diode D2 the recombination current IR. The 
values of saturation current densities and ideality factors for this diodes are different: Js1 = 
1e-12 Acm-2, Js2 = 1e-8 Acm-2, m1 = 1 (ideal diode), m2 = 2. We define the size of PVC area A = 
100 cm2. The other components are of resistive nature, a parallel (or shunt) resistance RP and 
the series resistance RS. 
For obtaining high efficiency of PVC, the parallel parasitic resistance RP (described loss 
currents at the edges of the solar cell and surface inhomogeneities) should be as high as 
possible and the series resistance RS (the resistance through the wafer, the resistance of the 
back surface contact and the contact grid on the front surface) as a low as possible, ideally 
it's a deal: RS = 0, RP → ∞. The values of parasitic resistances depend on PVC size, 
consequently also from area. 
 

 

 
Fig. 3. Equivalent circuit of real bulk PVC modelled in PSpice 
 
In PSpice is the value of the short circuit current ISC assigned to a voltage-controlled current 
source (G-device, Fig.2) and is given by:  

EAJG SC
E 1000
      (2) 

We considered that the value of short-circuit current density JSC is given at standard test 
conditions. 
The effect of parasitic resistances RS and RP on C-V characteristic is shown in the Fig.4.  
As can be seen, for parasitic serial resistance RS (Fig.4a) the values of the short-circuit 
current and of the fill factor (it follows too efficiency) can be expressively reduced. At the 
high values of RS occur the big reduction of the short-circuit current value ISC. The open-
circuit voltage is independent of the series resistance. The product RS.ISC should never have 
been greater than 25 mV in praxis (outside temperature 25 °C).  
The parallel resistance also degrades the performance of the PVC, Fig.4b.  
 

 
a) 
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In PSpice is the value of the short circuit current ISC assigned to a voltage-controlled current 
source (G-device, Fig.2) and is given by:  
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We considered that the value of short-circuit current density JSC is given at standard test 
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As can be seen, for parasitic serial resistance RS (Fig.4a) the values of the short-circuit 
current and of the fill factor (it follows too efficiency) can be expressively reduced. At the 
high values of RS occur the big reduction of the short-circuit current value ISC. The open-
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b) 

Fig. 4. C-V characteristics of bulk PVC structure (illumination for AM1.5) for modification of 
serial (a) and parallel resistance (b) 
 
Small values of the parallel resistance heavily degrade the fill factor (i.e. efficiency). Also are 
the value of open-circuit voltage reduced, the short-circuit current is independent of the 
parallel resistance. 
The concrete values of parasitic resistances, that we used by the simulation with PSpice are: 

- serial parasitic resistance RS: 1e-4, 5e-2, 2e-1 , 
- parallel parasitic resistance RP: 1e5, 1e2, 1 . 

 
Selected parameters of illuminated PVC with the parasitic resistances RS and RP is shown in 
the Tab.1.  The parameters ISC and VOC are assigned from the graph, parameters FF and η are 
calculated by (eq. 1). 

RS (Ω) ISC (A) VOC (V) FF (-) η (%) 
1e-4 3.200 0.628 0.825 16.58 
5e-2 3.200 0.628 0.604 12.14 
2e-1 2.844 0.628 0.261 4.66 

RP (Ω) ISC (A) VOC (V) FF (-) η (%) 
1e5 3.2 0.628 0.825 16.58 
1e2 3.2 0.628 0.824 16.56 
1 3.2 0.622 0.686 13.65 

Table 1. Selected parameters of bulk PVC structure (illumination for AM1.5) 

 
2.3 ASA model of thin film solar cell the 2nd generation 
Progressive solar PVC, 2nd and 3rd generation with higher efficiency of 20÷40%, are formed 
in thin film structures, predominantly based on amorphous silicon (a-Si:H, p-i-n junction) as 
the absorber material and transparent conducting oxide (TCO) semiconductors for 
transparent electrodes, e.g. single junction p-i-n a-Si PVC structure “glass/TCO/a-Si:H  
(p-i-n)/TCO/Ag or Al (reflective back contact)” or tandem solar cell structure 

 

“glass/TCO/a-Si:H (p-i-n)/μc-Si:H (p-i-n)/ TCO/Ag or Al (reflective back contact)” 
(Zeman, 2007). For the simulation of the thin film PVC we have used the ASA program, 
developed at Delft University of Technology (Zeman et al., 2005), which is designed for the 
simulation of multilayered heterojunction device structures. 

 
We focused for “superstrate“ configuration of thin-film solar PVC: Glass/ZnO:Al/a-Si:H (p-
i-n)/ZnO/Al (reflective back contact). Schematic structure of a single junction a-Si:H PVC is 
shown in Fig. 5. The active device consists of three layers: a p-type a-Si:H layer, an intrinsic 
a-Si:H layer and an n type a-Si:H layer. This layers form a p-i-n single junction. The doped 
layers set up an internal electric field across the intrinsic a-Si:H layer and establish low loss 
ohmic electrical contacts between the a-Si:H part of the PVC and the external electrodes 
(Zeman, 2007). 
The thickness of the i-region should be optimized for maximum current generation. In 
practice is limit the i-region thickness to around 0.5 μm (Nelson, 2003). 
Transparent conducting oxides based on ZnO are promising for application in thin-film 
solar photovoltaic cells. The upper front contact Zno:Al layer should fulfil several important 
requirements: high transparency in VIS/near IR solar spectrum; high electrical conductivity; 
suitable surface texture in order to enhance light scattering and absorption inside the cell; 
high chemical stability and adhesion to silicon. Moreover, bottom ZnO interlayer between Si 
and metal (usually Ag) contact is acting as barier and adhesion layer as well as optical 
matching layer to Ag back contact to improve its reflection of radiation, particularly in near 
IR region (Dagamseh et al., 2008). Optimization of the front contact TCO has proven to be 
crucial for the high cell efficienty (Berginski et al., 2008). 
Computer simulations for single junction a-Si:H PVC structure (Fig. 4) we compile in ASA 
software. The thicknesses of particular layers are show in Fig. 4. All important electric 
properties are set direct in the C-V characteristic for illuminated p-i-n PVC structure (Fig.6). 
Also in this case are the parameters ISC and VOC assigned from the graph, parameters FF and 
η are calculated by (eq. 1).  
 

 
Fig. 5. Superstrate PVC configuration of single junction (p-i-n) structure 
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b) 

Fig. 4. C-V characteristics of bulk PVC structure (illumination for AM1.5) for modification of 
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Small values of the parallel resistance heavily degrade the fill factor (i.e. efficiency). Also are 
the value of open-circuit voltage reduced, the short-circuit current is independent of the 
parallel resistance. 
The concrete values of parasitic resistances, that we used by the simulation with PSpice are: 

- serial parasitic resistance RS: 1e-4, 5e-2, 2e-1 , 
- parallel parasitic resistance RP: 1e5, 1e2, 1 . 

 
Selected parameters of illuminated PVC with the parasitic resistances RS and RP is shown in 
the Tab.1.  The parameters ISC and VOC are assigned from the graph, parameters FF and η are 
calculated by (eq. 1). 
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1e-4 3.200 0.628 0.825 16.58 
5e-2 3.200 0.628 0.604 12.14 
2e-1 2.844 0.628 0.261 4.66 

RP (Ω) ISC (A) VOC (V) FF (-) η (%) 
1e5 3.2 0.628 0.825 16.58 
1e2 3.2 0.628 0.824 16.56 
1 3.2 0.622 0.686 13.65 

Table 1. Selected parameters of bulk PVC structure (illumination for AM1.5) 
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Fig. 5. Superstrate PVC configuration of single junction (p-i-n) structure 
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For the simulations the next parameters of TCO layers were used (obtained experimentally 
at the wavelength 500 nm): 
1) ZnO:Al: 
 - refractive index n = 2.675 
 - absorption coefficient  = 1.71e5 m-1 
 
2) ZnO: 
 - refractive index n = 2.052 
 - absorption coefficient  = 7.55e5 m-1 
 
Reflection and quantum efficiency of selected thin film PVC structures for different 
thicknesses of ZnO layers a shown on Fig. 7 and Fig. 8. 

 

 
Fig. 6. C-V characteristics of TF PVC structure (illumination for AM1.5) for the thicknesses 
of ZnO:Al layer 800 nm and ZnO layer 100 nm 

 
Fig. 7. Reflection of TF PVC structure for different thicknesses of ZnO layers 

 

 
Reflection in the near IR region has a tendency to increase with the decrease of thickness of 
front ZnO layer. From dependences of quantum efficiency on wavelength result the fact, 
that the simple TF PVC structure shows lower effectiveness in the near IR region. 

 
2.4 Sputtering 
Computer simulations of magnetron sputtering corresponding to multi-source and multi-
fold substrate rotation facilities have been progressively improved [Rother, 1999], [Jehn, 
1999]. These calculations consider over-cosine distribution of sputter-deposited fluxes on the 
substrate area As , dJ/dAs ~ cosn Θ, 1 < n ≤ 2, which reflects the kinetic energy losses of 
sputtered particles due to their collisions with working gas atoms. 
 We have applied the model and simulations of the spatial distribution of sputtered particles 
(Tvarozek et al., 1982) - deposition profile - in our diode system consisting of the plan-
parallel arrangement of target and substrate in the distance of D (Fig. 9) with these idealized 
assumptions: 
 

(a)  Material of the target is emitted uniformly from the target area At;  
(b) Angular distribution of the intensity of particles rejected from the target (sputtered 

particle flux J in the direction given by an angle Θ to the normal of surface) conforms 
with the Knudsen cosine law (Kaminsky, 1965) 

 
J = J0  cos Θ (3) 

 
or with its slight modifications, J0 is the sputtered flux perpendicular to the target 
surface; 

(c) Scattering of particles on the way to substrate is neglected; 
(d) Accommodation coefficient of particles condensed on the substrate is equal 1 (re-

sputtering is not included). 

 
Fig. 8. Quantum efficiency of TF PVC structure for different thicknesses of ZnO layers 
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Then the flux of material sputtered from the target surface element dAt to the substrate area 
element dAs in the point P is given  
 
 d2J = (J0/πL2 ) cos2 Θ dAt dAs, (4) 
 
where Θ is an angle between dAt – dAs path and the normal of target/substrate planes (dAt = 
dAs cos Θ ). By integrating of Eq. (4) over the target area At we can get the deposition profile 
G(P) in the arbitrary point P on the substrate 
 
 G(P) = (π /J0) dJ/dAs  =  ∫ cos2 Θ /L2 dA (5) 
               At 

 
It is useful to normalize the deposition profile GN (P) towards the maximal value of G(0) 
which is usually the beginning of the co-ordinal system across the substrate 
 
 GN (P) = G(P) / G(0) (6) 
 
For computing and simulations of deposition profiles we used Agilent Visual Engineering 
Environment (Agilent VEE Pro, 2009) - graphical language programming environment 
optimized for the use with electronic instruments, that provides a quick path to 
measurement and analysis. 
 

  
Fig. 9. Arrangement of the diode sputtering system 
 
Simulated deposition profiles were compared with the lateral radial distribution of thin film 
thickness over the substrate. RF diode sputtering was performed at the working Ar gas 
pressure pAr = 1.3 Pa and Corning glass substrates were placed on different radial positions 
under the target of a diameter of 152.4 mm (ZnO+2 wt. % Al2O3) or of 76.2 mm (ZnO+2 
wt. % Ga2O3 and ZnO+2 wt. % Sc2O3). In this case, simulations and experiments confirmed 
that an intensity of particles emitted from target approximately conforms to the Knudsen 
cosine law (Fig. 10 a). Changes of thin film thicknesses were less than 5% in the central 
substrate region of diameter ≤ ½ of target diameter. In lateral distances larger than target 
radius, the thin film thickness decreased down to 1/4 of the maximal value. 
 
The detail comparison of various theoretical and experimental deposition profiles has 
shown that the sputtered fluxes from target follow slightly over-cosine angular distribution 

 

during the diode sputtering at pressures below 1 Pa (Fig. 10 b). Sputtered particle flux J in 
the direction given by an angle Θ towards normal of target surface can be described by 
equation 
 

 J = J0  (c1 cos Θ + c2 cos2 Θ) (7) 
 
where the coefficients were estimated from experimental deposition profiles (approximately  
c2 ≈  0.1 c1). 
Using the RF diode sputtering in the low-pressure region (p ≤ 1.3 Pa), the mean free path of 
sputtered particles (~ 10-2 m) is comparable with the distance of target – substrate and 
therefore we can assume “collision-less” regime, particularly for high energetic particles 
passed through RF discharge. Neutral sputtered particles and energetic species (ions 
neutralized at the target and reflected from it) sputtered from the target conform to the 
Knudsen cosine law slightly modified by over-cosine dependence and their spatial 
distribution on the substrate (deposition profile) is described by power cosine dependence 
(Eq. 5).  
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Fig. 10. Experimental and theoretical deposition profiles of: (a) ZnO:Al target with diameter
of 152.4 mm and ZnO:Ga, ZnO:Sc targets with diameter of 76.2 mm; (b) target in diameter of
50.8 mm and comparison of deposition profiles calculated on the base of the Knudsen cosine
law (curve 1) and the over-cosine angular dependence of sputtered particles (curves 2 and 3)
with the experimental deposition profile  
 
This “directional” sputtering can be exploited for preparation of strong textured thin films, 
e.g. c-axis inclined ZnO (Link, 2006) applicable in solar cells and in various optoelectronic 
devices, but also in an engineering of the nanoscale morphology, e.g. for preparation of a 
new class of optical nanomaterials – sculptured thin films – consisting of shaped, parallel, 
identical nanowires generally grown by physical vapor deposition techniques (Lakhtakia, 
2008), (Jen, 2009). 
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This “directional” sputtering can be exploited for preparation of strong textured thin films, 
e.g. c-axis inclined ZnO (Link, 2006) applicable in solar cells and in various optoelectronic 
devices, but also in an engineering of the nanoscale morphology, e.g. for preparation of a 
new class of optical nanomaterials – sculptured thin films – consisting of shaped, parallel, 
identical nanowires generally grown by physical vapor deposition techniques (Lakhtakia, 
2008), (Jen, 2009). 
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3. Technology 
 

We prepared ZnO:Al thin films in a planar RF sputtering diode system Perkin Elmer 
2400/8L, using a ceramic target (ZnO+2 wt.% Al2O3) in Ar working gas at constant pressure 
of 1.3 Pa. Films with thickness from 560 nm to 800 nm, depended on the sputtering power 
density and deposition time, were deposited on Corning glass 7059 substrates. Three 
technology parameters (chosen to tailor the physical properties of the AZO films) were 
investigated: the sputtering RF power density EФ (1.1 ÷ 4.4 x 10 4 W/m2), the substrate 
temperature Ts (RT, 100 ÷ 300C) and the post-deposition annealing at temperatures Ta (200 
÷ 400C) in the forming gas (80% N2 + 20% H2) for 1 hour. 
The real structure characterization (crystallite size and their crystallographic orientation, 
micro-strains and biaxial lattice stresses) of the films was investigated by X-ray diffraction 
(XRD) analysis. The XRD patterns were carried out using an automatic powder X-ray 
diffractometer AXS Bruker D8 equipped with a position sensitive area detector Histar. 
Cobalt K radiation (λ = 0.179 nm) was used as an X-rays source. Six strongest diffraction 
lines in the range of 2 - diffraction angle from 30o to 80o of a ZnO powder are used as 
reference patterns. The position, height, integrated intensity and FWHM are the main four 
parameters that characterize the diffraction lines. The broadening of a diffraction line is a 
result of a real material structure, where the size of the crystallites and the micro-strains are 
the most important contributors to the broadening of the line. In this study we used a 
procedure utilizing an integral breadth of a diffraction line (Langford, 1978), (Delhez et al., 
1982). Equation 8 characterizes the integral breadth β that includes two parameters namely 
the height and the integrated intensity: 
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where intI  is the integrated intensity (area below the line) and 0I  is the maximal intensity of 
the diffraction line. In general, the instrumental resolution of the equipment has also to be 
taken into account in order to obtain a physical (depended only on the properties of the 
matter) component of the broadening of the diffraction line. Furthermore, the physical 
component of the integral breadth of the diffraction line is a convolution of Cauchy and 
Gaussian components and so it is necessary to do de-convolution into a Cauchy part f

C  and 

a Gaussian part f
G  before the main real structure parameters are carried out. The Cauchy 

and Gaussian parts of the integral breadth of the line represent the size of the crystallites 
and the micro-strains, respectively. The average crystallite size and micro-strains are 
determined using Equations 9 and 10, respectively (Delhez et al., 1982): 
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where <D> is the average crystallite size in the direction perpendicular to the diffracting 
lattice planes,  is the X-ray wavelength used and  is the Bragg's angle; 
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where <ε> is the average micro-strain in the diffracting volume.  Biaxial lattice stresses were 
calculated from a shift of the most intensive diffraction line (002) according to the equation 
(Sutta et al., 1982) 
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where d0 is the strain free reference lattice spacing, d is the lattice spacing obtained from the 
experiment, E is Young’s modulus and μ is Poisson’s ratio. Preferred orientation of 
crystallites (texture) in a certain direction can be approximately characterized by the Harris  
texture index (Okolo et al., 2005) 
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where n is the number of investigated diffraction lines, Ii is the observed intensity and Ri is 
the corresponding intensity of the sample with randomly oriented crystallites (this value can 
be calculated from the theory if the structure of material is known or it can be picked up 
from the standard diffraction data files). In our case the Ri values were calculated from the 
theory. The maximal value that the Harris texture index can reach is equal to the number of 
lines taken into the calculation. For samples with completely randomly oriented crystallites 
the Harris texture index is equal to one. 
The grain size was observed by transmission electron microscopy (TEM) by JOEL Electron 
Microscope. The thickness of AZO thin films was measured by DEKTAK 150, their electrical 
resistivity was obtained by Van der Pauw method and optical transmittance was 
determined by spectrometer Specord 210 and Avantes AVASPEC Fiber Optic Spectrometer. 
The optical transmittance in the UV spectrum region (blue–shift of the absorption edge) 
gives the information about the width of optical band-gap. The absorption edge for direct 
inter-band transitions is given by  
 

 αhν = A(hν - Eg)1/2 (13) 
 
where A is a constant for a direct transition, a is the optical absorption coefficient, which is 
given from dividing absorbance by film thickness, and h  is the photon energy. The direct 
band-gap of materials was obtained by plotting and extrapolation of (αh)2 vs. h.  

 
4. Results and discussion 
 

4.1 Deposition profile and properties of sputtered AZO thin films  
AZO thin films were sputtered in the planar diode sputtering system (Fig. 9) at power 
density 4 times higher than the value of minimal energy flux density (~ 1 x 104 W/m2). 
Corning glass substrates with dimension of 10x10 mm were placed on different positions 
under the target, ZnO+2 wt. % Al2O3, with diameter of 152 mm. We have applied the model 
of spatial distribution of sputtered particles in our diode system (see Section 2.4) to get 
continual changes of thickness of thin films in one deposition run from 700 nm in the center 
to 300 nm at the border of substrate holder (Fig. 10 a). All sputtered AZO films were 
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polycrystalline with the columnar structure and a very strong texture in the [001] direction 
perpendicular to the surface, what was confirmed by XRD, TEM and SEM analyses (Fig. 11, 
Fig.12). Properties of AZO thin films have been changed in lateral direction across the 
substrate holder. In the central region we can expect the highest power density 
(corresponding to deposition profile) what caused also an increase of mean grain size of 50 
nm in comparison with value of 20 nm in peripheral position (Fig. 11 a).  

 
 
TEM of samples: 
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Fig. 11. Changes of properties of AZO thin films with the substrate position: (a) grain size
observed by TEM, (b) lattice biaxial stresses σ1+σ2 and size of crystallites <D> evaluate from
XRD patterns, (c) transmission T and resistivity ρN, (d) optical band gap Ego 

Evaluation of XRD patterns also showed the tendency mentioned previously (Fig. 11 b): the 
average size of crystallites <D> (regions of coherent X-ray scattering) changed from 54 nm to 
136 nm (in central region) and compressive lattice biaxial stresses σ1+σ2 increased from -3.8 
GPa to -6.4 GPa (in peripheral position).  Resistivity of AZO films placed in middle substrate 
region was in the range of 10-2 Ωcm and gradually towards the side of holder, has increased 
up to 3 Ωcm (Fig. 11 c). Remarkable increase of resistivity with position may be explained by 
the variation of particular fluxes of sputtered particles, dominantly by change of mutual 
ratios of sputtered ZnO, Al and O fluxes. Particularly, the bombardment of growing film by 
negative O ions generates large amount of oxygen intersticials that act as trap for free 

 (b)  

 (c)   (d)  

 

electrons, thereby increasing the resistivity. Transmission of films sputtered in the central 
region was about 89 % and it increased to 91 % at the edge of substrate holder. The course of 
the optical band-gap dependence on substrate position is copying the transmittance 
dependence (Fig. 11 d).  
For the explanation of previous mentioned phenomena, both effects the negative oxygen ion 
bombardment, or resputtering respectively, of growing film and the local atomic-scale 
heating of film surface by energetic secondary electrons, should be taken in the 
consideration. We assume, that it is a difference of the spatial distribution between energetic 
negative oxygen ions and secondary electrons, coming from the target and accelerating at it. 
Even the both fluxes have obtained the same kinetic energy (in order of 10 – 100 eV), the 
mean velocity of electrons and ions differs of 103-times because another masses. Therefore in 
the case of RF diode sputtering, the distribution of negative oxygen ions sputtered from the 
target will be more uniform across its area (in comparison with sputtered neutral particles) 
since the flux of negative oxygen ions is collimated by the induced electric field of target. 
The distribution of secondary electrons bombarding the growing film will follow the 
deposition profile because the induced target voltage has no significant influence on their 
angular emission due to small electron mass and high velocity. Then we can expect a higher 
local atomic-scale heating of the growing film in the central region.  
We can conclude, that our arrangement provides sputtering of AZO thin films with 
relatively homogenous properties in the central region of diameter of 50 mm. 
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Based on previous results we used the central region for sputtering and the effect of three 
technological parameters on structure of AZO thin films has been investigated: power 
density, substrate temperature and post-deposition annealing. 
An increase of both sputtering power density up to 4,4.10 4 W/m2 and substrate 
temperature to 200°C as well as post-deposition annealing provided highly textured films 
with a preferential c-axis [001] orientation (Fig. 13, 15, 17). Typical columnar structure of 
AZO films and their surface morphology are shown in Fig. 12.  
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indicates that there is a region with heterogeneous structure at the substrate – film interface 
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polycrystalline with the columnar structure and a very strong texture in the [001] direction 
perpendicular to the surface, what was confirmed by XRD, TEM and SEM analyses (Fig. 11, 
Fig.12). Properties of AZO thin films have been changed in lateral direction across the 
substrate holder. In the central region we can expect the highest power density 
(corresponding to deposition profile) what caused also an increase of mean grain size of 50 
nm in comparison with value of 20 nm in peripheral position (Fig. 11 a).  
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Fig. 11. Changes of properties of AZO thin films with the substrate position: (a) grain size
observed by TEM, (b) lattice biaxial stresses σ1+σ2 and size of crystallites <D> evaluate from
XRD patterns, (c) transmission T and resistivity ρN, (d) optical band gap Ego 
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200°C improved the crystallinity of the films (Fig. 15).The asymmetry of (002) line as well as 
heterogeneous regions completely diminished at higher substrate temperatures and small 
shifts from the reference line position were observed, which indicates only unimportant 
lattice strains (Fig. 15 b). The widths of (002) lines became narrower and dimensions of 
crystallites growing were from 60 to 120 nm for films deposited at RT and to more than 
200 nm for those deposited at higher substrate temperatures. The widths of azimuthal line 
profiles also decreased from 15 to 3.5° with increasing energy delivered to the growing film 
during the deposition. This indicates lower declination of individual crystallites from the 
normal to the substrate (stronger texture). At the highest substrate temperature (300°C) also 
the other diffraction lines appeared, which is caused by more randomly oriented crystallites 
of the film. Other authors report the same changes with the temperature (Fu et al., 2003). In 
this case the film loosed its anisotropy. These phenomena induced by power density and 
temperature during deposition indirectly confirmed by changes of the surface morphology 
of films (Fig. 14, Fig. 16).  
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Fig. 13. AZO films sputtered at different power densities, EΦ = 1,1 - 4,4.10 4 W/m2 : (a) XRD 
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Fig. 14. Surface morphology of AZO films sputtered at different power densities: (a)  
EΦ = 1,1.10 4 W/m2, (b) EΦ = 4,4.10 4 W/m2 

 

The shift up of the 2 with increasing RF power, as well as substrate and annealing 
temperatures, is a result of the increase of Al3+ substituents (Al3+ that substitute for Zn2+ in 
the ZnO lattice) and a reduction of the interplanar distance, which changes the lattice 
distortion in AZO films from compressive to tensile lattice stresses. An increase of the 
power density and temperature during growth are resulting in the larger grains (growth 
from 60 to more than 200 nm) and better crystalline structure (no line asymmetry). In our 
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case the maximal value of the Harris texture index can reach the number 3 (3 lines of ZnO 
can be taken into the calculation in the range of 2 = 36 - 44°). Value of Hi = 2,97 has 
confirmed the best crystallite texture (002) of films sputtered at the substrate temperature of 
200 °C. 
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Fig. 15. AZO films sputtered at different substrate temperatures and constant power density, 
EΦ = 4,4.10 4 W/m2 :  (a) RTG patterns, (b) Harris texture index 
        

   
Fig. 16. Surface morphology of AZO films sputtered at different substrate temperatures TS 
 
Post-deposition annealing in the forming gas at 400 °C diminished an asymmetry of (002) 
diffraction line (Fig. 17).  
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Fig. 17. Post-deposition annealing (in forming gas at TA = 200 – 400 °C) of AZO films
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200°C improved the crystallinity of the films (Fig. 15).The asymmetry of (002) line as well as 
heterogeneous regions completely diminished at higher substrate temperatures and small 
shifts from the reference line position were observed, which indicates only unimportant 
lattice strains (Fig. 15 b). The widths of (002) lines became narrower and dimensions of 
crystallites growing were from 60 to 120 nm for films deposited at RT and to more than 
200 nm for those deposited at higher substrate temperatures. The widths of azimuthal line 
profiles also decreased from 15 to 3.5° with increasing energy delivered to the growing film 
during the deposition. This indicates lower declination of individual crystallites from the 
normal to the substrate (stronger texture). At the highest substrate temperature (300°C) also 
the other diffraction lines appeared, which is caused by more randomly oriented crystallites 
of the film. Other authors report the same changes with the temperature (Fu et al., 2003). In 
this case the film loosed its anisotropy. These phenomena induced by power density and 
temperature during deposition indirectly confirmed by changes of the surface morphology 
of films (Fig. 14, Fig. 16).  
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Fig. 17. Post-deposition annealing (in forming gas at TA = 200 – 400 °C) of AZO films
sputtered at room temperature of substrate and power density EΦ = 4,4.10 4 W/m2: (a) RTG
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The average size of crystallites was  100 nm at TA = 200°C and it increased to  400 nm by 
the growth of annealing temperature up to TA = 400 °C (Fig. 17 b). Post-deposition annealing 
reduced biaxial lattice stresses due to elimination of grain boundary defects. Both effects can 
be explained by recrystallization and phase transformation. 

 
4.3 Influence of technological parameters on electrical and optical properties  
The substrate temperature increase during sputtering caused the decrease of sheet resistance 
from 300 Ω/square to 50 Ω/square with a minimum 36 Ω/square at Ts = 200°C (Fig. 18 a). 
Sputter power density has changed considerable Rs from 1137 Ω/square at 
EΦ = 1.1.10 4 W/m2 to 300 Ω/square at EΦ = 4.4.10 4 W/m2 (Fig. 18 b). After annealing (over 
the TA > 200°C) the decrease of the sheet resistance to 10.4 Ω/square was observed (Fig. 18 
c). The lowering of the sheet resistance by temperature (during or after deposition) was 
caused by both the improvement of crystalline structure and the increase of free electron   
concentration particularly, what has been supported by optical measurements. 
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Fig. 18. The effect of: (a) substrate temperature, (b) power density and (c) annealing 
temperature on the sheet resistance 
 
AZO thin films sputtered at a higher substrate temperature showed the “blue shift” in 
optical spectrum (Fig. 19), so-called the Burstein – Moss effect, which is dependent on the 
dopant concentration and the effective mass state density (Sernelius et al. 1988). The 
widening of the optical band-gap with the substrate temperature is originated by the 
increase of the electron concentration caused by Al doping (Liu et al. 2006), (Moon et al. 
2006). No significant influence of the substrate temperature on the transmittance was 
observed (Fig. 20). 
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Fig. 19. The influence of the substrate temperature on: (a) the transmittance spectrum with 
glass substrate, (b) the blue–shift of the absorption edge and the optical band-gap width was 
obtained by plotting and extrapolation of (αh)2 vs. h.  
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Fig. 20. The effect of the substrate temperature on the transmittance for AZO layer and the 
optical band-gap width 
 
The dependence of transmittance on the power density showed a minimum at a middle 
powers and the highest value of 93 % was reached at power density of EΦ = 4.4.10 4 W/m2 
(Fig. 21). The post-deposition annealing had a positive effect on the increase of transmittance 
accompanied with the decrease of the optical band-gap width (Fig. 22). 
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The average size of crystallites was  100 nm at TA = 200°C and it increased to  400 nm by 
the growth of annealing temperature up to TA = 400 °C (Fig. 17 b). Post-deposition annealing 
reduced biaxial lattice stresses due to elimination of grain boundary defects. Both effects can 
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AZO thin films sputtered at a higher substrate temperature showed the “blue shift” in 
optical spectrum (Fig. 19), so-called the Burstein – Moss effect, which is dependent on the 
dopant concentration and the effective mass state density (Sernelius et al. 1988). The 
widening of the optical band-gap with the substrate temperature is originated by the 
increase of the electron concentration caused by Al doping (Liu et al. 2006), (Moon et al. 
2006). No significant influence of the substrate temperature on the transmittance was 
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 (c)  

 (a)   (b)  

 

200 400 600 800
0

20

40

60

80

100

RT

300°C

200°C

Corning glass

Tr
an

sm
ita

nc
e 

[%
]

Wavelenght [nm]

100°C

 

2,50 2,75 3,00 3,25 3,50 3,75
0,0

0,5

1,0

1,5

0 100 200 300
3,25

3,30

3,35

3,40

3,45

3,50

 

 

E

 = 4.4 104 W/m2

TS [°C]

O
pt

ic
al

 b
an

d 
ga

p 
[e

V]

 

 

(

  

 23°C
 100°C
 200°C
 300°C

E [eV]

 

 

 

Fig. 19. The influence of the substrate temperature on: (a) the transmittance spectrum with 
glass substrate, (b) the blue–shift of the absorption edge and the optical band-gap width was 
obtained by plotting and extrapolation of (αh)2 vs. h.  
 

0 100 200 300
3,28
3,30
3,32
3,34
3,36
3,38
3,40
3,42
3,44
3,46
3,48

80

85

90

95

100

O
pt

ic
al

 b
an

d 
ga

p 
[e

V]

E

 = 4,4 104 W/m2

 

 

TS [°C]

Top
t  [%

]

 
Fig. 20. The effect of the substrate temperature on the transmittance for AZO layer and the 
optical band-gap width 
 
The dependence of transmittance on the power density showed a minimum at a middle 
powers and the highest value of 93 % was reached at power density of EΦ = 4.4.10 4 W/m2 
(Fig. 21). The post-deposition annealing had a positive effect on the increase of transmittance 
accompanied with the decrease of the optical band-gap width (Fig. 22). 
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Fig. 21. The influence of the power density on: (a) the transmittance spectrum with glass 
substrate, (b) the transmittance only for AZO layer and the optical band-gap width 
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Fig. 22. The effect of the annealing temperature on: (a) the transmittance spectrum with 
glass substrate, (b) the transmittance only for AZO layer and the optical band-gap width 

 
4.3 Summary  
An influence of substrate temperature, power density, post-deposition annealing 
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enhancement of light scattering by AZO film using chemical or ion etching modification of 
their surface. 
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