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Visual Servoing for UAVs 

Pascual Campoy, Iván F. Mondragón,  
Miguel A. Olivares-Méndez and Carol Martínez 

Universidad Politécnica de Madrid (Computer Vision Group) 
Spain 

1. Introduction 

Vision is in fact the richest source of information for ourself and also for outdoors Robotics, 
and can be considered the most complex and challenging problem in signal processing for 
pattern recognition. The first results using Vision in the control loop have been obtained in 
indoors and structured environments, in which a line or known patterns are detected and 
followed by a robot (Feddema & Mitchell (1989), Masutani et al. (1994)). Successful works 
have demonstrated that visual information can be used in tasks such as servoing and 
guiding, in robot manipulators and mobile robots (Conticelli et al. (1999), Mariottini et al. 
(2007), Kragic & Christensen (2002).) 
Visual Servoing is an open issue with a long way for researching and for obtaining 
increasingly better and more relevant results in Robotics. It combines image processing and 
control techniques, in such a way that the visual information is used within the control loop. 
The bottleneck of Visual Servoing can be considered the fact of obtaining robust and on-line 
visual interpretation of the environment, which can be usefully treated by control structures 
and algorithms. The solutions provided in Visual Servoing are typically divided into Image 
Based Control Techniques and Pose Based Control Techniques, depending on the kind of 
information provided by the vision system that determine the kind of references that have to 
be sent to the control structure (Hutchinson et al. (1996), Chaumette & Hutchinson (2006) 
and Siciliano & Khatib (2008)). Another classical division of the Visual Servoing algorithms 
considers the physical disposition of the visual system, yielding to eye-in-hand systems and 
eye-to-hand systems, that in the case of Unmanned Aerial Vehicles (UAV) can be translated 
as on-board visual systems (Mejias (2006)) and ground visual systems (Martínez et al. 
(2009)). 
The challenge of Visual Servoing is to be useful in outdoors and non-structured 
environments. For this purpose the image processing algorithms have to provide visual 
information that has to be robust and works in real time. UAV can therefore be considered 
as a challenging testbed for visual servoing, that combines the difficulties of abrupt changes 
in the image sequence (i.e. vibrations), outdoors operation (non-structured environments) 
and 3D information changes (Mejias et al. (2006)). In this chapter we give special relevance 
to the fact of obtaining robust visual information for the visual servoing task. In section 
(2).we overview the main algorithms used for visual tracking and we discuss their 
robustness when they are applied to image sequences taken from the UAV. In sections (3). 
and (4). we analyze how vision systems can perform 3D pose estimation that can be used for 
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controlling whether the camera platform or the UAV itself. In this context, section (3). 
analyzes visual pose estimation using multi-camera ground systems, while section (4). 
analyzes visual pose estimation obtained from onboard cameras. On the other hand, section 
(5)., shows two position based control applications for UAVs. Finally section (6). explodes 
the advantages of fuzzy control techniques for visual servoing in UAVs. 

2. Image processing for visual servoing 

Image processing is used to find characteristics in the image that can be used to recognize an 
object or points of interest. This relevant information extracted from the image (called 
features) ranges from simple structures, such as points or edges, to more complex structures, 
such as objects. Such features will be used as reference for any visual servoing task and 
control system. 
On image regions, the spatial intensity also can be considered as a useful characteristic for 
patch tracking. In this context, the region intensities are considered as a unique feature that 
can be compared using correlation metrics on image intensity patterns. 
Most of the features used as reference are interest points, which are points in an image that 
have a well-defined position, can be robustly detected, and are usually found in any kind of 
images. Some of these points are corners formed by the intersection of two edges, and others 
are points in the image that have rich information based on the intensity of the pixels. A 
detector used for this purpose is the Harris corner detector (Harris & Stephens (1988)). It 
extracts corners very quickly based on the magnitude of the eigenvalues of the 
autocorrelation matrix. Where the local autocorrelation function measures the local changes 
of a point with patches shifted by a small amount in different directions. However, taking 
into account that the features are going to be tracked along the image sequence, it is not 
enough to use only this measure to guarantee the robustness of the corner. This means that 
good features to track (Shi & Tomasi (1994)) have to be selected in order to ensure the 
stability of the tracking process. The robustness of a corner extracted with the Harris 
detector can be measured by changing the size of the detection window, which is increased 
to test the stability of the position of the extracted corners. A measure of this variation is 
then calculated based on a maximum difference criteria. Besides, the magnitude of the 
eigenvalues is used to only keep features with eigenvalues higher than a minimum value. 
Combination of such criteria leads to the selection of the good features to track. Figure 1(a) 
shows and example of good features to track on a image obtained on a UAV. 
The use of other kind of features, such as edges, is another technique that can be applied on 
semi-structured environments. Since human constructions and objects are based on basic 
geometrical figures, the Hough transform (Duda & Hart (1972)) becomes a powerful 
technique to find them in the image. The simplest case of the algorithm is to find straight 
lines in an image that can be described with the equation y = mx + b. The main idea of the 
Hough transform is to consider the characteristics of the straight line not as image points x 
or y, but in terms of its parameters m and b, representing the same line as 

 in the parameter space, that is based on the angle of the vector from 

the origin to this closest point on the line (θ ) and distance between the line and the origin 
(r). If a set of points form a straight line, they will produce sinusoids that cross at the 
parameters of that line. Thus, the problem of detecting collinear points can be converted to 
the problem of finding concurrent curves. To apply this concept just to points that might be 
on a line, some pre-processing algorithms are used to find edge features, such as the Canny 
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edge detector (Canny (1986)) or the ones based on derivatives of the images obtained by a 
convolution of image intensities and a mask (Sobel I. (1968)). These methods have been used 
in order to find power lines and isolators in an UAV inspection application (Mejías et al. 
(2007)). 
The problem of tracking features can be solved with different approaches. The most popular 
algorithm to track features and image regions, is the Lucas-Kanade algorithm (Lucas & 
Kanade (1981)) which have demonstrated a good performance for real time with a good 
stability for small changes. Recently, feature descriptors have been successfully applied on 
visual tracking, showing a good robustness for image scaling, rotations, translations and 
illumination changes, eventhough they are time expensive to calculate. The generalized 
Lucas Kanade algorithm is overviewed on subsection 2.1, where it is applied for patch 
tracking and also for optical flow calculation, using the sparse L-K (subsection 2.1.1) and 
pyramidal L-K (subsection 2.1.2) variations. On subsection 2.2, features descriptors are 
introduced and used for robust matching, as explained on subsection 2.3 

2.1 Appearance tracking 
Appearance-based tracking techniques does not use features. They use the intensity values 
of a ‘patch’ of pixels that correspond to the object to be tracked. The method to track this 
patch of pixels is the generalized L-K algorithm, that works under three premises: first, the 
intensity constancy: the vicinity of each pixel considered as a feature does not change as it is 
tracked from frame to frame; second, the change in the position of the features between two 
consecutive frames must be minimum, so that the features are close enough to each other; 
and third, the neighboring points move in a solidarity form and have spatial coherence. 
The patch is related to the next frame by a warping function that can be the optical flow or 
another model of motion. Taking into account the previously mentioned L-K premisses, the 
problem can be formulated in this way: lets define X as the set of points that form the patch 

window or template image T, where x = (x,y)T
 is a column vector with the coordinates in the 

image plane of a given pixel and T(x) = T(x,y) is the grayscale value of the images a the 
locations x. The goal of the algorithm is to align the template T with the input image I 
(where I(x) = I(x,y) is the grayscale value of the images a the locations x). Because T 
transformed must match with a sub-image of I, the algorithm will find the set of parameters 

µ = (µ1,µ2, ...µn) for a motion model function ( e.g., Optical Flow, Affine, Homography) 

W(x;µ), also called the warping function. The objective function of the algorithm to be 
minimized in order to align the template and the actual image is equation 1: 

 
(1) 

where w(x) is a function to assign different weights to the comparison window. In general 
w(x) = 1. Alternatively, w could be a Gaussian function to emphasize the central area of the 
window. This equation can also be reformulated to make it possible to solve for track sparse 
feature as is explained on section 2.1.1. 
The Lucas Kanade problem is formulated to be solved in relation to all features in the form 
of a least squares’ problem, having a closed form solution as follows. 

Defining w(x) = 1, the objective function (equation 1) is minimized with respect to µ and the 
sum is performed over all of the pixels x on the template image. Since the minimization 

process has to be made with respect to µ, and there is no lineal relation between the pixel 
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position and its intensity value, the Lucas-Kanade algorithm assumes a known initial value 

for the parameters µ and finds increments of the parameters δµ. Hence, the expression to be 
minimized is: 

 
(2) 

and the parameter actualization in every iteration is µ = µ+δµ. In order to solve equation 2 
efficiently, the objective function is linearized using a Taylor Series expansion employing 

only the first order terms. The parameter to be minimized is δµ. Afterwards, the function to 
be minimized looks like equation 3 and can be solved like a ”least squares problem” with 
equation 4. 

 
(3) 

 
(4) 

where H is the Hessian Matrix approximation, 

 
(5) 

More details about this formulation can be found in (Buenaposada et al. (2003) and Baker 
and Matthews (2002)), where some modifications are introduced in order to make the 
minimization process more efficient, by inverting the roles of the template and changing the 
parameter update rule from an additive form to a compositional function. This is the so 
called ICIA (Inverse Compositional Image Alignment) algorithm, first proposed in (Baker 
and Matthews (2002)). These modifications where introduced to avoid the cost of computing 
the gradient of the images, the Jacobian of the Warping function in every step and the 
inversion of the Hessian Matrix that assumes the most computational cost of the algorithm. 

2.1.1 Sparse Lucas Kanade 
The Lucas Kanade algorithm can be applied on small windows around distinctive points as 
a sparse technique. In this case, the template is a small window (i.e., size of 3, 5, 7 or 9 pixels) 
and the warping function is defined by only a pure translational vector. In this context, the 
first assumption of the Lucas-Kanade method can be expressed as given a point xi = (x, y) at 

time t which intensity is I(x, y, t) will have moved by vx, vy and Δt between the two image 
frames, the following equation can be formulated: 

 (6) 

If the general movement can be consider small and using the Taylor series, equation 6 can be 
developed as: 

 
(7) 
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Because the higher order terms H.O.T. can being ignored, from equation we found that: 

 
(8) 

where vx,vy are the x and y components of the velocity or optical flow of I(x,y, t) and  
 are the derivatives of the image at point p = (x,y, t) 

 (9) 

Equation 9 is known as the Aperture Problem of the optical flow. It arises when you have a 
small aperture or window in which to measure motion. If motion is detected in this small 
aperture, it is often that it will be seeing as a edge and not as a corner, causing that the 
movement direction can not be determined. To find the optical flow another set of equations 
is needed, given by some additional constraint. 
The Lucas-Kanade algorithm forms the additional set of equation assuming that there is a 
local small window of size m × m centered at point p = (x,y) in which all pixels moves 
coherently. If the windows pixel are numerates as 1...n, with n = m2, a set of equations can be 
found: 

 

(10)

Equation 10 have more than two equations for the two unknowns and thus the system is 
over-determined. A systems of the form Ax = b can be former as equation 12 shows. 

 

(11)

The least squares method can be used to solve the over determined system of equation 12, 
finding that the optical flow can be defined as: 

 

(12)
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2.1.2 Pyramidal L-K 
On images with high motion, good matched features can be obtained using the Pyramidal 
Lucas-Kanade algorithm modification (Bouguet Jean Yves (1999)). It is used to solve the 
problem that arise when large and non-coherent motion are presented between consecutive 
frames, by firsts tracking features over large spatial scales on the pyramid image, obtaining 
an initial motion estimation, and then refine it by down sampling the levels of the images in 
the pyramid until it arrives to the original scale. 
The overall pyramidal tracking algorithm proceeds as follows: first, a pyramidal 

representation of an image I of size widthpixels × heightpixels is generated. The zeroth
 level is 

composed by the original image and defined as I0, then pyramids levels are recursively 

computed by dawnsampling the last available level (compute I1 form I0, then I2 from I1 and 

so on until ILm form IL–1)). Typical maximum pyramids Levels Lm are 2, 3 and 4. Then, the 
optical flow is computed at the deepest pyramid level Lm. Then, the result of that 
computation is propagated to the upper level Lm – 1 in a form of an initial guess for the pixel 
displacement (at level Lm – 1). Given that initial guess, the refined optical flow is computed 
at level Lm – 1, and the result is propagated to level Lm – 2 and so on up to the level 0 (the 
original image). 

2.2 Feature descriptors and tracking 
Feature description is a process to obtain interest points in the image which are defined by a 
series of characteristics that make it suitable for being matched on image sequences. This 
characteristics can include a clear mathematical definition, a well-defined position in image 
space and a local image structure around the interest point. This structure has to be rich in 
terms of local information contents that has to be robust under local and global 
perturbations in the image domain. These robustness includes those deformations arising 
from perspective transformations (i.e, scale changes, rotations and translations) as well as 
illumination/brightness variations, such that the interest points can be reliably computed 
with high degree of reproducibility. 
There are many feature descriptors suitable for visual matching and tracking, from which 
Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Feature algorithm (SURF) 
have been the more widely use on the literature and are overview in sections 2.2.1 and 2.2.2. 

2.2.1 SIFT features 
The SIFT (Scale Invariant Feature Transform) detector (Lowe (2004)) is one of the most widely 
used algorithms for interest point detection (called keypoints in the SIFT framework) and 
matching. This detector was developed with the intention to be used for object recognition. 
Because of this, it extracts keypoints invariant to scale and rotation using the gaussian 
difference of the images in different scales to ensure invariance to scale. To achieve invariance 
to rotation, one or more orientations based on local image gradient directions are assigned to 
each keypoint. The result of all this process is a descriptor associated to the keypoint, which 
provides an efficient tool to represent an interest point, allowing an easy matching against a 
database of keypoints. The calculation of these features has a considerable computational cost, 
which can be assumed because of the robustness of the keypoint and the accuracy obtained 
when matching these features. However, the use of these features depends on the nature of the 
task: whether it needs to be done fast or accurate. Figure 1(b) shows and example of SIFT 
keypoints on an aerial image taken with an UAV. 
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SIFT features can be used to track objects, using the rich information given by the keypoints 
descriptors. The object is matched along the image sequence comparing the model template 
(the image from which the database of features is created) and the SIFT descriptor of the 
current image, using the nearest neighbor method. Given the high dimensionality of the 
keypoint descriptor (128), its matching performance is improved using the Kd-tree search 
algorithm with the Best Bin First search modification proposed by Lowe (Beis and Lowe 
(1997)). The advantage of this method lies in the robustness of the matching using the 
descriptor, and in the fact that this match does not depend on the relative position of the 
template and the current image. Once the matching is performed, a perspective 
transformation is calculated using the matched Keypoints, comparing the original template 
with the current image. 

2.2.2 SURF features 
Speeded Up Robust Feature algorithm (Herbert Bay et al. (2006)) extracts features from an 
image which can be tracked over multiple views. The algorithm also generates a descriptor 
for each feature that can be used to identify it. SURF features descriptor are scale and 
rotation invariant. Scale invariance is attained using different amplitude gaussian filters, in 
such a way that its application results in an image pyramid. The level of the stack from 
which the feature is extracted assigns the feature to a scale. This relation provides scale 
invariance. The next step is to assign a repeatable orientation to the feature. The angle is 
calculated through the horizontal and vertical Haar wavelet responses in a circular domain 
around the feature. The angle calculated in this way provides a repeatable orientation to the 
feature. As with the scale invariance the angle invariance is attained using this relationship. 
Figure 1(c) shows and example of SURF features on an aerial image. 
SURF descriptor is a 64 element vector. This vector is calculated in a domain oriented with 
the assigned angle and sized according to the scale of the feature. Descriptor is estimated 
using horizontal and vertical response histograms calculated in a 4 by 4 grid. There are two 
variants to this descriptor: the first provides a 32 element vector and the other one a 128 
element vector. The algorithm uses integral images to implement the filters. This technique 
makes the algorithm very efficient. 
The procedure to match SURF features is based on the descriptor associated to the extracted 
interest point. An interest point in the current image is compared to an interest point in the 
previous one by calculating the Euclidean distance between their descriptor vectors. 
 

   

                       (a)                                                  (b)                                                   (c) 

Fig. 1. Comparison between features point extractors. Figure 1(a) are features obtained using 
Good Features to Track, figure 1(b) are keypoints obtained using SIFT (the green arrows 
represents the keypoints orientation and scale) and figure 1(c) are descriptors obtained 
using SURF (red circles and line represents the descriptor scale and angle). 
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2.3 Robust matching 
A set of corresponding or matched points between two images are frequently used to 
calculate geometrical transformation models like affine transformations, homographies or 
the fundamental matrix in stereo systems. The matched points can be obtained by a variety 
of methods and the set of matched points obtained often has two error sources. The first one 
is the measurement of the point position, which follows a Gaussian distribution. The second 
one is the outliers to the Gaussian error distribution, which are the mismatched points given 
by the selected algorithm. These outliers can severely disturb the estimated function, and 
consequently alter any measurement or application based on this geometric transformation. 
The goal then, is to determine a way to select a set of inliers from the total set of 
correspondences, so that the desired projection model can be estimated with some standard 
methods, but employing only the set of pairs considered as inliers. This kind of calculation is 
considered as robust estimation, because the estimation is tolerant (robust) to measurements 
following a different or unmodeled error distribution (outliers). 
Thus, the objective is to filter the total set of matched points in order to detect and 

eliminated erroneous matched and estimate the projection model employing only the 

correspondences considered as inliers. There are many algorithms that have demonstrated 

good performance in model fitting, some of them are the Median of Squares (LMeds) 

(Rousseeuw & Leroy (1987)) and Random Sample Consensus (RANSAC) algorithm (Fischer 

& Bolles (1981)). Both are randomized algorithms and are able to cope with a large 

proportion of outliers. 

In order to use a robust estimation method for a projective transformation, we will assume 

that a set of matched points between two projective planes (two images) obtained using 

some of the methods describe in section (2). are available. This set includes some unknown 

proportion of outliers or bad correspondences, giving a series of matched points  

(xi,yi) ↔(x′i ,y′i) for i = 1. . .n, from which a perspective transformation must be calculated, 

once the outliers have been discarded. 

For discard the outliers from the set of matched points, we use the RANSAC algorithm 

(Fischer & Bolles (1981)). It achieves its goal by iteratively selecting a random subset of the 

original data points by testing it to obtain the model and evaluating the model consensus, 

which is the total number of original data points that best fit the model. The model is 

obtained using a close form solution according to the desired projective transformation (an 

example is show on section 2.3.1). This procedure is then repeated a fixed number of times, 

each time producing either a model which is rejected because too few points are classified as 

inliers, or a refined model. When total trials are reached, the algorithm return the projection 

model with the largest number of inliers. The algorithm 1 shows a the general steps to 

obtain a robust transformation. Further description can be found on (Hartley & Zisserman 

(2004), Fischer & Bolles (1981)). 

2.3.1 Robust homography 

As an example of the generic robust method described above, we will show its application 

for a robust homography estimation. It can be viewed as the problem of estimating a 2D 

projective transformation that given a set of points xi  in P2 and a corresponding set of 

points ′xi  in P2, compute the 3x3 matrix H that takes each xi  to ′xi  or ′xi  = H xi . In general 

the points xi  and ′xi  are points in two images or in 2D plane surfaces. 
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Taking into account that the number of degrees of freedom of the projective transformation 

is eight (defined up to scale) and because each point to point correspondences (xi,yi) ↔(x′i ,y′i) 
gives rise to two independent equations in the entries of H, is enough with four 

correspondences to have a exact solution or minimal solution. If more than four points 

correspondences are given, the system is over determined and H is estimated using a 

minimization method. So, in order to use the algorithm 1, we define the minimum set of 

points to be s = 4. 

If matrix H is written in the form of a vector h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]t the 

homogeneous equations ′x = H x  for n points could be formed as Ah = 0, with A a 2n × 9 

matrix defined by equation 13: 

 

(13)

In general, equation 13 can be solved using three different methods (the inhomogeneous 
solution, the homogeneous solution and non-linear geometric solution) as explained in 
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Criminisi et al. (1999). The most widely use of these methods is the inhomogeneous solution. 
In this method, one of the nine matrix elements is given a fixed unity value, forming an 
equation of the form A’h’ = b as is shown in equation 14. 

 

(14)

The resulting simultaneous equations for the 8 unknown elements are then solved using a 
Gaussian elimination in the case of a minimal solution or using a pseudo-inverse method in 
case of an over-determined system Hartley and Zisserman (2004). 
Figure 2 shows an example of a car tracking using a UAV, in which SURF algorithm, is used 
to obtain visual features, and the RANSAC algorithm is used for outliers rejection. 
 

 

Fig. 2. Robust Homography Estimation using SURF features on a car tracking from a UAV. 
Up: Reference template. Down: Scene view, in which are present translation, rotation, and 
occlusions. 

3. Ground visual system for pose estimation 

Multi-camera systems are considered attractive because of the huge amount of information 
that can be recovered and the increase of the camera FOV (Field Of View) that can be 
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obtained with these systems. These characteristics can help solving common vision 
problems such as occlusions, and can offer more tools for control, tracking, representation of 
objects, object analysis, panoramic photography, surveillance, navigation of mobile vehicles, 
among other tasks. However, in spite of the advantages offered by these systems, there are 
some applications where the hardware and the computational requirements make a multi-
camera solution inadequate, taking into account that the larger the number of cameras used, 
the greater the complexity of the system is. 
For example, in the case of pose estimation algorithms, when there is more than one camera 
involved, there are different subsystems that must be added to the algorithm: 

• Camera calibration 

• Feature Extraction and tracking in multiple images 

• Feature Matching 

• 3D reconstruction (triangulation) 
Nonetheless, obtaining an adequate solution for each subsystem, it could be possible to 
obtain a multiple view-based 3D position estimation at real-time frame rates. 
This section presents the use of a multi-camera system to detect, track, and estimate the 
position and orientation of a UAV by extracting some onboard landmarks, using the 
triangulation principle to recovered their 3D location, and then using this 3D information to 
estimate the position and orientation of the UAV with respect to a World Coordinate System. 
This information will be use later into a UAV’s control loop to develop positioning and 
landing tasks. 

3.0.2 Coordinate systems 

Different coordinate systems are used to map the extracted visual information from ℜ2 to ℜ3, 
and then to convert this information into commands to the helicopter. This section provides 
a description of the coordinate systems and their corresponding transformations to achieve 
vision-based tasks. 
There are different coordinate systems involved: the Image Coordinate System (Xi), that 
includes the Lateral (Xf ) and Central Coordinate Systems (Xu) in the image plane, the Camera 
Coordinate System (Xc), the Helicopter Coordinate System (Xh), and an additional one: the World 
Coordinate System (Xw), used as the principal reference system to control the vehicle (see 
figure 3). 

• Image and Camera Coordinate Systems 
The relation between the Camera Coordinate System and the Image Coordinate System is taken 

from the “pinhole” camera model. It states that any point referenced in the Camera Coordinate 

System xc is projected onto the image plane in the point xf by intersecting the ray that links 

the 3D point xc with the center of projection and the image plane. This mapping is described 

in equation15, where xc and xf are represented in homogenous coordinates. 

 

(15)

The matrix Kk contains the intrinsic camera parameters of the kth
 camera, such as the 

coordinates of the center of projection (cx, cy) in pixel units, and the focal length (fx, fy), where  
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Fig. 3. Coordinate systems involved in the pose estimation algorithm. 

fx = fmx and fy = fmy represent the focal length in terms of pixel dimensions, being mx and my 

the number of pixels per unit distance. 
The above-mentioned camera model assumes that the world point, the image point, and the 
optical center are collinear; however, in a real camera lens there are some effects (lens 
distortions) that have to be compensated in order to have a complete model. This 
compensation can be achieved by the calculation of the distortion coefficients through a 
calibration process (Zhang (2000)), in which the intrinsic camera parameters, as well as the 
radial and tangential distortion coefficients, are calculated. 

• Camera and World Coordinate Systems 
Considering that the cameras are fixed, these systems are related by a rigid transformation 

that allows to define the pose of the kth camera in a World Coordinate Frame. As presented in 

equation (16), this transformation is defined by a rotation matrix Rk and a translation vector 

tk that link the two coordinate systems and represent the extrinsic camera parameters. Such 
parameters are calculated through a calibration process of the trinocular system. 

 
(16)

• World and Helicopter Coordinate Systems 
The Helicopter Reference System, as described in figure 3, has its origin at the center of mass of 
the vehicle and its correspondent axes: Xh, aligned with the helicopter’s longitudinal axis; 
Yh, transversal to the helicopter; and Zh, pointing down. Considering that the estimation of 
the helicopter’s pose with respect to the World Coordinate System is based on the distribution 
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of the landmarks around the Helicopter Coordinate System, and that the information extracted 
from the vision system will be used as reference to the flight controller, a relation between 
those coordinate systems has to be found. 
In figure 3, it is possible to observe that this relation depends on a translation vector that 
defines the helicopter’s position (t), and on a rotation matrix R that defines the orientation of 
the helicopter (pitch, roll and yaw angles). Considering that the helicopter is flying at low 

velocities (< 4m/s), pitch and roll angles are considered ≈ 0, and only the yaw angle (θ) is 
taken into account in order to send the adequate commands to the helicopter. 
Therefore, the relation of the World and the Helicopter Coordinate Systems can be expressed as 
follows: 

 

(17)

Where (tx, ty, tz) will represent the position of the helicopter   with respect to 

the World Coordinate System, and θ the helicopter’s orientation. 

3.1 Feature extraction 

The backprojection algorithm proposed by Swain and Ballar in ( Swain & Ballard (1991)) is 

used to extract the different landmarks onboard the UAV. This algorithm finds a Ratio 

histogram k
iRh  for each landmark i in the kth camera as defined in equation 18: 

 
(18)

This ratio k
iRh  represents the relation between the bin j of a model histogram Mhi and the 

bin j of the histogram of the image Ihk which is the image of the kth camera that is being 

analyzed. Once k
iRh  is found, it is then backprojected onto the image. The resulting image is 

a gray-scaled image, whose pixel’s values represent the probability that each pixel belongs 

to the color we are looking for. 

The location of the landmarks in the different frames are found using the previous-

mentioned algorithm and the Continuously Adaptive Mean Shift (CamShift) algorithm (Bradski 

(1998)). The CamShift takes the probability image for each landmark i in each camera k and 

moves a search window (previously initialized) iteratively in order to find the densest 

region (the peak) which will correspond to the object of interest (colored-landmark i). The 

centroid of each landmarks ( k
ix , k

iy ) is determined using the information contained inside 

the search window to calculate the zeroth (
00

k
im ), and first order moments (

10

k
im , 

01

k
im ), 

(equation 19). These centroids found in the different images (as presented in figure. 4) are 

then used as features for the 3D reconstruction stage. 

 
(19)

When working with overlapping FOVs in a 3D reconstruction process, it is necessary to find 
the relation of the information between the different cameras. This process is known as 
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Fig. 4. Feature Extraction. Different features must be extracted from images taken by 
different cameras. In this example color-based features have been considered. 

feature matching. This is a critical process, which requires the differentiation of features in 

the same image and also the definition of a metric which tells us if the feature i in image I1 is 

the same feature i in image I2 (image -I- of camera k). 
However, in this case, the feature matching problem has been solved taking into account the 

color information of the different landmarks; so that, for each image Ik there is a matrix ×
k
4 2F  

that will contain the coordinates of the features i found in this image. Then, the features are 

matched by grouping only the characteristics found (the central moments of each landmark) 
with the same color, that will correspond to the information of the cameras that are seing the 
same landmarks. 

3.1.1 3D reconstruction 

Assuming that the intrinsic parameters (Kk) and the extrinsic parameters (Rk and tk) of each 

camera are known (calculated through a calibration process), the 3D position of the matched 

landmarks can be recovered by intersecting in the 3D space the backprojection of the rays 

from the different cameras that represent the same landmark. 

The relation of the found position of each landmark, expressed in the Lateral Coordinate 
System (image plane), with the position expressed in the Camera Coordinate System, is defined 
as: 

 
(20)

where (
i

k
fx , 

i

k
fy ) is the found position of each landmark expressed in the image plane, (

i

k
cx , 

i

k
cy ,

i

k
cz ) represent the coordinates of the landmark expressed in the Camera Coordinate 

System, ( k
xc , k

yc ) the coordinates of the center of projection in pixel units, and ( k
xf , k

yf ) the 

focal length in terms of pixel dimensions. 
If the relation of the 3D position of landmark i with its projection in each Camera Coordinate 
System is defined as: 

 
(21)

Then, integrating equation 21 and equation 20, and reorganizing them, it is possible to 

obtain the following equations: 
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(22)

 
(23)

Where 
i

k
ux  and 

i

k
uy  represent the coordinates of landmark i expressed in the Central Camera 

Coordinate System of the kth camera, rk and tk are the components of the rotation matrix Rk and 

the translation vector tk that represent the extrinsic parameters, and 
iwx , 

iwy , 
iwz  are the 

3D coordinates of landmark i. 
From equations 22 and 23 we have a linear system of two equations and three unknowns 
with the following form: 

 

(24)

If there are at least two cameras seeing the same landmark, it is possible to solve the 

overdetermined system using the least squares method whose solution will be equation 25, 

where the obtained vector c represents the 3D position (
iwx , 

iwy , 
iwz ) of the ith landmark: 

 (25)

Once the 3D coordinates of the landmarks onboard the UAV have been calculated, the 

UAV’s position (
uavwx ) and its orientation with respect to World Coordinate System can be 

estimated using the 3D position found and the landmark’s distribution around the Helicopter 

Coordinate System (see figure 5). The helicopter’s orientation is defined only with respect to 

the Zh axis (Yaw angle θ) and it is assumed that the angles, with respect to the other axes, are 

considered to be ≈ 0 (helicopter on hover state or flying at low velocities < 4 m/s). Therefore, 

equation 17 can be formulated for each landmark. 

Reorganizing equation 17, considering that cθ = cos(θ), sθ = sin(θ), 
uavwx = tx, 

uavwy = ty, 

uavwz = tz, and formulating equation 17 for all the landmarks detected, it is possible to create 

a system of equations of the form Ac = b as in equation 26, with five unknowns: cθ, sθ, 

,
uavwx ,

uavwy .
uavwz  If at least the 3D position of two landmarks is known, this system of 

equations can be solved as in equation 25, and the solution c is a 4 × 1 vector whose 

components define the orientation (yaw angle) and the position of the helicopter expressed 

with respect to a World Coordinate System. 

 

(26)
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Fig. 5. Distribution of landmarks. The distribution of the landmarks in the Helicopter 
coordinate system is a known parameter used to extract the helicopter position and 
orientation with respect to the World coordinate system. 

In figures: 6(a), 6(b), 6(c) and 6(d), it is possible to see an example of the UAV’s position 
estimation using a ground-based multi camera system (see Martínez et al. (2009) for more 
details). In these figures, the vision-based position and orientation estimation (red lines) is 
also compared with the estimation obtained by the onboard sensors of the UAV (green 
lines). 

4. Onboard visual system for pose estimation 

In this section, a 3D pose estimation method based on projection matrix and homographies 
is explained. The method estimates the position of a world plane relative to the camera 
projection center for every image sequence using previous frame-to-frame homographies 
and the projective transformation at first frame, obtaining for each new image, the camera 
rotation matrix R and a translational vector t. This method is based on the propose by Simon 
et. al. (Simon et al. (2000), Simon & Berger (2002)). 

4.1 World plane projection onto the Image plane 

In order to align the planar object on the world space and the camera axis system, we 

consider the general pinhole camera model and the homogeneous camera projection matrix, 

that maps a world point xw
 in P3 (projective space) to a point xi on ith image in P2, defined by 

equation 27: 

 (27)

where the matrix K is the camera calibration matrix, Ri and ti are the rotation and translation 
that relates the world coordinate system and camera coordinate system, and s is an arbitrary 
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scale factor. Figure 7 shows the relation between a world reference plane and two images 
taken by a moving camera, showing the homography induced by a plane between these two 
frames. 
 

  

                                       (a)                                                                                (b) 

  

                                         (c)                                                                             (d) 

Fig. 6. Vision-based estimation vs. helicopter state estimation. The state values given by the 
helicopter state estimator after a Kalman f ilter (green lines) are compared with a multiple 
view-based estimation of the helicopter’s pose (red lines). 

 

Fig. 7. Projection model on a moving camera and frame-to-frame homography induced by a 
plane. 
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If point xw is restricted to lie on a plane Π , with a coordinate system selected in such a way 

that the plane equation of Π is Z = 0, the camera projection matrix can be written as equation 

28: 

 

(28)

where 〈Pi〉 denotes that this matrix is deprived on its third column or 〈Pi〉 = K[ 1 2r r ti i i ]. The 

deprived camera projection matrix is a 3 × 3 projection matrix, which transforms points on 

the world plane ( now in P2) to the ith image plane (likewise in P2), that is none other that a 

planar homography Hi
w Hiw defined up to scale factor as equation 29 shows. 

 (29)

Equation 29 defines the homography which transforms points on the world plane to the ith 

image plane. Any point on the world plane xΠ = [xΠ,yΠ,1]T is projected on the image plane as 

x = [x,y,1]T. Because the world plane coordinates system is not known for the ith image, Hi
w

 

can not be directly evaluated. However, if the position of the word plane for a reference 

image is known, a homography 0Hw , can be defined. Then, the ith image can be related with 

the reference image to obtain the homography 0Hi . This mapping is obtained using 

sequential frame-to-frame homographies 1−Hi
i , calculated for any pair of frames (i-1,i) and 

used to relate the ith frame to the first imagen 0Hi  using equation 30: 

 (30)

This mapping and the aligning between initial frame to world plane reference is used to 

obtain the projection between the world plane and the ith
 image Hi

w  = 0Hi 0Hw . In order to 

relate the world plane and the ith
 image, we must know the homography 0Hw . A simple 

method to obtain it, requires that a user selects four points on the image that correspond to 

corners of rectangle in the scene, forming the matched points (0,0) ↔ (x1,y1), (0,ΠWidth) ↔ 

(x2,y2), (ΠLenght,0) ↔ (x3,y3) and (ΠLenght,ΠWidth) ↔ (x4,y4). This manual selection generates a 

world plane defined in a coordinate frame in which the plane equation of Π is Z = 0. With 

these four correspondences between the world plane and the image plane, the minimal 

solution for homography 0Hw  = [h1
0
w  h2

0
w  h3

0
w ] is obtained using the method described on 

section 2.3.1. 

The rotation matrix and the translation vector are computed from the plane to image 

homography using the method described in (Zhang (2000)). From equation 29 and defining 

the scale factor λ = 1/s, we have that: 

 

(31)
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The scale factor λ can be calculated using equation 32: 

 
(32)

Because the columns of the rotation matrix must be orthonormal, the third vector of the 
rotation matrix r3 could be determined by the cross product of r1 × r2. However, the noise on 
the homography estimation causes that the resulting matrix R = [r1 r2 r3] does not satisfy the 
orthonormality condition and we must find a new rotation matrix R’ that best approximates 
to the given matrix R according to smallest Frobenius norm for matrices (the root of the sum 
of squared matrix coefficients) (Sturm (2000), Zhang (2000)). As demonstrated by (Zhang 
(2000)), this problem can be solved by forming the Rotation Matrix R = [r1 r2 r2] and using 
singular value decomposition (SVD) to form the new optimal rotation matrix R’ as equation 
33 shows: 

 

(33)

Thus, the solution for the camera pose problem is defined by equation 34: 

 (34)

4.2 UAV 3D estimation based on planar landmarks 
This section shows the use of a pose estimation method based on frame to frame object 
tracking using robust homographies. The method, makes a matching between consecutive 
images of a planar reference landmark, using either, homography estimation based on good 
features to track (Shi & Tomasi (1994)), matched using the pyramidal L-K method, or the 
ICIA algorithm (Baker & Matthews (2002)) for an object template appearance tracking using 
a homography warping model. The frame to frame matching is used to estimate a projective 
transformation between the reference object and the image, using it to obtain the 3D pose of 
the object with respect to the camera coordinate system. 
For these tests a Monocromo CCD Firewire camera with a resolution of 640x480 pixels is 
used. The camera is calibrated before each test, so the intrinsic parameters are know. The 
camera is installed in such a way that it is looking downward with relation to the UAV. A 
know rectangular helipad is used as the reference object to which estimate the UAV 3D 
position. It is aligned in such a way that its axes are parallel to the local plane North East 
axes. This helipad was designed in such a way that it produces many distinctive corner for 
the visual tracking. Figure 8(a), shows the helipad used as reference and figure 8(b), shows 
the coordinate systems involved in the pose estimation. 
The algorithm begins, when a user manually selects four points on the image that 
correspond to four points on a rectangle in the scene, forming the matched points (0,0) ↔ 
(x1,y1), (910mm,0) ↔ (x2,y2), (0,1190mm) ↔ (x3,y3) and (910mm,1190mm) ↔ (x4,y4). This 
manual selection generates a world plane defined in a coordinates frame in which the plane 

equation of Π is Z = 0 (figure 7) and also defining the scale for the 3D results. With these 
four correspondences between the world plane and the image plane, the minimal solution 

for homography 0Hw  is obtained. 

www.intechopen.com



 Visual Servoing 

 

200 

 

                                      (a)                                                                  (b) 

Fig. 8. 8(a) Helipad used as a plane reference for UAV 3D pose estimation based on 
homographies. 8(b) Helipad, camera and U.A.V coordinate systems. 

Once the alignment between the camera coordinate system and the reference helipad is 

known ( 0Hw ) the homographies between consecutive frames are estimated, using either, the 

Pyramidal L.K. or the ICIA algorithm as is described below: 

Optical Flow and RANSAC: good features to track are extracted on the zone corresponding 

to the projection of the helipad on image I0. Then a new image I1 is captured, and for 

each corner on image I0, the pyramidal implementation of the Lucas Kanade optical 

flow method is applied, obtaining for each one either, the corresponding position 

(velocity vector) on image I1 (if the corresponding point was found on the second 

image), or ”null” if it was not found. With these points that have been matched or its 

optical flow was found on image I1, a Homography 1
0H  is robustly estimated using the 

algorithm described on section ??. Homography 1
0H  is used to estimate the alignment 

between image I1 and the reference helipad using 1Hw  = 1
0H 0Hw , which is used to 

obtain the rotation matrix 1Rw  and the translation vector 1tw  using the method 

described on section 4.1. Then, the original frame formed by points ((x1,y1), (x2,y2), (x3,y3) 

and (x4,y4)) are projected on image I1 using 
1

xi
I = 1

0H
0

xi
I , defining the actual position of 

the helipad on the image I1. For this position, good features to track are once again 

estimated and used to calculate a new set of matched points between images I1 and I2. 

These set of matched points are used to calculate 2
1H , and then 2

0H  and 2Hw  from 

which 2Rw  and 2tw  is estimated. The process is successively repeated until either, the 

helipad is lost or the user finishes the process. 
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Fig. 9. Homography motion model estimated on a partial occluded image using either, the 
Lucas-Kanade Algorithm with RANSAC robust function fitting (left) or with the Inverse 
Compositional Algorithm ICA (right). Superimposed (top left), is the original frame or 
template under tracking. 

ICIA: The zone corresponding to the projection of the helipad on image I0 is defined as the 

template to track T(x) on the image sequence. Then for each new image Ik on the 

sequence, the following equation Σ∀x∈X(T(W(x; δµ) − Ik(W(x;µ))2
 is minimized in order to 

get the parameters µ = (µ1,µ2, ...µn) for a Homography motion model (section 2.1), 

obtaining directly the homography 0Hk  that relates the image Ik with the template T(x) 

on image I0. The alignment between frame k and the world plane is obtained using  

Hk
w  = 0Hw 0Hk  from which Rk

w and tk
w  is estimated. 

Figure 9 shows the homography estimation using both, the Pyramidal Lucas Kanade tracker 
and the ICIA algorithm. 

The translational vector obtained using the method described on section 4.1, is already 

scaled based on the dimensions defined for the reference plane during the alignment 

between the helipad and image I0, so in our case the resulting vector ti
w  is in mm. The 

rotation matrix can be decomposed on Tait-Bryan or Cardan Angles. The Tait-Bryan or 

Cardan angles are formed when the three rotation sequences each occur about a different 

axis. This is the preferred sequence in flight and vehicle dynamics. Specifically, these angles 

are formed by the sequence: (1) ψ about z axis (yaw), (2) θ about ya (pitch), and (3) φ about 

the final xb axis (roll), where a and b denote the second and third stage in a three-stage 

sequence or axes. This set of rotation sequences is defined by the rotation matrices as 

equation 35 shows: 

 

(35)

The final coordinate transformation matrix for Tait-Bryan angles is defined by the 

composition of the rotations Rx,φRy,θRz,ψ forming the equation 36. 

www.intechopen.com



 Visual Servoing 

 

202 

 

(36)

The angles ψ, θ and φ can be obtained from the rotation matrix Ri
w  (remember the rotation 

sequence order) using the equation 37. 

 

(37)

Equation 37 is singular when θ = 0 or θ = π. 
Figure 10 shows some examples of the 3D pose estimation, based on a reference helipad. 
This figure shows the original reference image, the current frame, the optical flow between 
last and current frame, the helipad coordinates in the current frame camera coordinate 
system and the Tait-Bryan angles obtained from the rotation matrix. 
The estimated 3D pose is compared with helicopter position estimated by the Kalman Filter 
of the controller on the local plane with reference to the takeoff point (Center of the 
Helipad). Because the local tangent plane to the helicopter is defined in such a way that the 
X axis is the North position, the Y axis is the East position and Z axis is the Down Position 
(negative), the measured X and Y values must be rotated according with the helicopter 
heading or yaw angle, in order to be comparable with the estimated values obtaining from 
the homographies. Figures 11(a), 11(b) and 12(a) shows the landmark position with respect 
to the UAV and figure 12(b), shows the estimated yaw angle. 

5. UAV position control 

The 3D pose estimation techniques on sections 3.and 4.are integrated with the UAV control 
loop using Position Based Visual Servoing architectures in Dynamic Look and Move Systems 
(Hutchinson et al. (1996), Chaumette and Hutchinson (2006), Siciliano and Khatib (2008)). In 
this kind of control, an error between the current and the desired position of the UAV is 
calculated and used by the low level controller (onboard flight controller) to generate the 
control commands to move the UAV to the desired position. Depending on the camera 
configuration in the control system, we will have an eye-in-hand or an eye-to-hand 
configuration. In the case of onboard control, it is considered to be an eye-in-hand, while in 
the case of ground control it is an eye-to-hand configuration as is shown on figure 13. 
When the ground control is used (figure 13(a)), the vision system determines the position of 
the UAV in the World Coordinate System, so that the position 

setPointWx  and the position 

information given by the trinocular system uavWx , both defined in the World Coordinate 

System, will be compared to generate references to the position controller. These references  
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Fig. 10. Two different test for 3D pose estimation based on a helipad tracking using Robust 
Homography estimation. The reference image is on the small rectangle on the upper left 
corner. Left it the current frame and Right the Optical Flow between the actual and last 
frame. Superimposed are the Translation vector and the Tait-Bryan angles. 

 

 

                                         (a)                                                                                (b) 

Fig. 11. Comparison between the homography estimation and IMU data. 11(a) X axis 
displacement. 11(b) Y axis displacement 
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                                        (a)                                                                               (b) 

Fig. 12. Comparison between the homography estimation and IMU data. 12(a) Z axis 
displacement. 12(b) Yaw angle 

 

 

                                           (a)                                                                           (b) 

Fig. 13. UAV visual control system following a dynamic look-and-move architecture. 13(a) is an 
eye-to-hand configuration (ground control), while 13(b) is an eye-in-hand configuration 
(onboard control) 

are first transformed into commands to the helicopter 
setPointhx  by taking into account the 

helicopter’s orientation, and then those references are sent to the position controller in order 

to move the helicopter to the desired position (figure 13(a)) 
In case of the Onboard (figure 13(b)) control and depending on the control task, a reference 
point in coordinates relative to the helipad will be defined (e.g. For landing the reference 
point will be (0,0,0)). Because, the estimated position of the helipad (relative to the camera 
coordinate system onboard the UAV) is known by the visual system, the reference point can 
be transformed to coordinates relative to the helicopter coordinate system and will be used 
to generate the references (X,Y,Z) and (Heading) commands, relative to the UAV coordinate 
system, that will be used by the low-level controller to position the helicopter (e.g. in the 
landing case the command will be the translation vector obtained by the visual system) 
(figure 13(b)). 
These control architectures have been tested with the COLIBRI III testbed that is shown in 

figure 14 (COLIBRI (2009), Campoy et al. (2009)). It has a low-level controller based on PID  
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Fig. 14. COLIBRI III Electric helicopter UAV used in a dynamic look-and-move control 
architecture. 
 

 

                                              (a)                                                                           (b) 

Fig. 15. UAV control. Vision-based position commands (figure 15(b) yellow line) are sent to 
the flight controller to develop a vision-based landing task. The vision-based estimation (red 
line) is compared with the position estimation of the onboard sensors during the task. 

control loops to ensure the helicopter’ stability, using the state estimation obtained by a 

Kalman Filter on information given by the GPS, IMU and Magnetometer sensors. In order to 

enable the UAV to perform onboard image processing, it has a dedicated onboard computer 

in which the visual systems runs. 

The system runs in a client-server architecture using TCP/UDP messages working in a 

multi-client wireless network, allowing the integration of vision systems and visual tasks 

with the low level flight control. This architecture allows applications to run both, onboard 

the autonomous helicopter or with an external processes, through a high level switching 

layer. The visual control system sends position references to the flight control through this 

layer using TCP/UDP messages, forming a dynamic look-and-move system architecture that is 

shown in figure 13. 

In figure 15, the client server architecture, and the control architectures presented in figure 

13 have been used to send position-based commands (figure 15(b) yellow line) to the flight 

controller in order to develop a vision-based landing task. Those position commands have 

been generated using the vision-based position estimation (figure 15 red line) obtained with 

the multi-camera system presented in section 3.. In figure 15(a) the 3D reconstruction of the 

vision-based position estimation (red line) during the landing task and the position 

estimation using the onboard sensors (green line) are compared. 
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6. Fuzzy controllers for visual servoing 

This section shows the implementation of a visual control system using a tracker algorithm 
and three controllers working in parallel. Two of these controllers used to control the 
camera platform onboard the UAV (one for the pitch axis and the other for the yaw axis) 
and the third one is used to control the yaw angle of the helicopter (heading). The 
implementation of the controllers is based on Fuzzy logic, because this controller offers 
faster setpoint recovery with less overshoot than PID control for both setpoint changes and 
load changes. At the same time, it offers immunity to process noise when it is near setpoint 
because the controller develops a nonlinear response analogous to an error-squared PID 
controller. Also, when the error is larger, the control action is larger than for PID; while 
when it is smaller, the control action is smaller. However, the nonlinearity is less severe than 
for an error-squared controller and robustness is not compromised. Also, this controller is 
ideally suited for large time constants (not dead time) where overshoot and slow recovery 
are both undesirable. In fact, this controller generally outperforms PID loops in most 
situations. Another thing in favor is that using Fuzzy controllers it is not necessary to get the 
model of the helicopter in order to fit the controllers. 
The system uses a firewire camera mounted on a pan and tilt platform, that takes images 
with 320x240 pixels resolution. The visual system is used to track an object of interest, using 
its position on the image plane (pixels) as the input for the fuzzy system, getting a yaw error 
(for platform and helicopter) in the range of -160 to 160 pixels, and a range of -120 to 120 
pixels error for the platform pitch error. 
The fuzzification of the inputs and the outputs are defined by using a triangular and 
trapezoidal membership functions. The controllers have two inputs, the error between the 
center of the object and the center of the image (figures 16(a) and 17(a)) and the difference 
between the last and the actual error (figures 16(b) and 17(b)), derivative of the position or 
the velocity of the object to track. The platform controllers output represents how many 
degrees the servo-motor must turn, in the two axis, to gets the center of the object in the 
center of the image. The output of both variables of the axis of the visual platform have the 
same output, as is shown in figure 18(a). 
The heading controller uses the two same inputs of the yaw controller (figures 16(a) and 
16(b)) and the output of the controller represents how many degrees must, the helicopter, 
turn to line up to the object to track (figure 18(b)). 
The process of fuzzification transforms a numerical value to a linguistic value. We defined a 
linguistic value of each set at the inputs and output of each variables, putting the acronyms 
in the images of figure 18. The Meaning of these acronyms are shown in the table 1. 
The three controllers are working in parallel giving a redundant operation to the yaw axis, but 
what we want to do with this action is to reduce the error that we have with the yaw-platform 
controller, where the limitations of the visual algorithm and the movements velocity of the 
servos hinders us to take a quicker response. The controllers are guided by a 49 rules base. The 
platform controllers output are defining in such a way that the sector near to the zero 
response, has more membership functions, as is shown in figure 18(a). This option, give us the 
possibility to define a very sensible controller when the error is so small (the object is very near 
to the center of the image), and a very quick respond controller when the object is so far. For 
the heading controller we defined a trapezoidal part in the middle of the output in order to 
help the platform controller, just when the object to track is with so far to the center of the 
image. With these trapezoidal definition we get a more stable behavior of the helicopter, in the 
situations where the object to track is near to the center, obtaining a 0 value. 
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Error 

VBL 
BL 
LL  
C 

LR 
BR 

VBR 

Very Big to the Left  
Big to the Left  

Little to the Left  
Center  

Little to the Right  
Big to the Right  

Very Big to the Right 

Derivative Error 

VBN 
BN 
LN 
Z  

LP 
BP 

VBP 

Very Big Negative  
Big Negative  

Little Negative  
Zero  

Little Positive  
Big Positive  

Very Big Positive 

Output: Turn 

VBL 
BL  
L  

LL  
C 

LR  
R  

BR 
VBR 

Very Big to the Left  
Big to the Left  

Left  
Little to the Left  

Center  
Little to the Right  

Right  
Big to the Right  

Very Big to the Right 

Table 1. Meaning of the acronym of the linguistic value of the fuzzy variables inputs and the 
output. 
 

DE \ E  VBL  BL  LL  C  LR  BR  VBR  

VBN  VBL  VBL  VBL  BL  L  LL  Z  

BN  VBL  VBL  BL  L  LL  Z  LR  

LN  VBL  BL  L  LL  Z  LR  R  

Z  BL  L  LL  Z  LR  R  BR  

LP  L  LL  Z  LR  R  BR  VBR  

BP  LL  Z  LR  R  BR  VBR  VBR  

VBP  Z  LR  R  BR  VBR  VBR  VBR  

Table 2. Rules base of the Yaw and Pitch controllers. Where DE is the derivative error and E 
the error. 

For the inference process (in the defuzzification) we used a product classic method, and for 

the defuzzification part itself, we used the Height Method (equation 38). 

 

(38)

In tables 2 and 3 the base of fuzzy rules used by the controllers are shown. 
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DE \ E VBL BL LL C LR BR VBR 

VBN BL BL BL BL L LL Z 

BN BL BL BL L LL Z LR 

LN BL BL L LL Z LR R 

Z BL L LL Z LR R BR 

LP L LL Z LR R BR BR 

BP LL Z LR R BR BR BR 

VBP Z LR R BR BR BR BR 

Table 3. Rules base of the Heading controller. Where DE is the derivative error and E the 
error. 

 

(a) Yaw Error. 

 

(b) Derivative of the Yaw error. 

Fig. 16. Inputs Variables of the Yaw and Heading controllers. 
 

 

(a) Pitch Error. 

 

(b) Derivative of the Pitch error Membership functions. 

Fig. 17. Inputs Variables of the Pitch controllers. 
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(a) Output of the Yaw and the Pitch Fuzzy Controllers. 

 

(b) Output of the Heading Fuzzy Controller. 

Fig. 18. Variables of the Fuzzy-MOFS controllers. 

These controllers are implemented using the software MOFS (Miguel Olivares’ Fuzzy 

Software), with a definition in classes shown in figure 19. Details about this software and the 

differences between this and others implementations of Fuzzy Logic software can be 

consulted on Olivares and Madrigal (2007) and Olivares et al. (2008). 

In the following paragraphs some results from real tests onboard the UAV, tracking static 

and moving objects are presented. For these tests, we use the Fuzzy controllers to control the 

pan and tilt camera platform. 

 

 

Fig. 19. Software definition. 
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Fig. 20. 3D flight reconstruction from the GPS and the IMU data from the UAV. Where, the 
’X’ axis represents the NORTH axis of the surface of the tangent of the earth, the ’Y’ axis 
represents the EAST axis of the earth, the ’Z’ is the altitude of the helicopter and the red 
arrows show the pitch angle of the helicopter. 

Tracking Static Objects 

In this test, we tracked a static object during the full flight of the UAV, from takeoff to 

landing. This flight was made by sending set-points from the ground station. Figure 20 

shows a 3D reconstruction of the flight using the GPS and IMU data on three axes: North 

(X), East (Y), and Altitude (Z), the first two of which are the axes forming the surface of the 

local tangent plane. The UAV is positioned over the north axis, looking to the east, where 

the mark to be tracked is located. The frame rate is 15 frames per second, so those 2500 

frames represent a full flight of almost 3 minutes. 

Figure 21 shows the UAV’s yaw and pitch movements. In figure 23, the output of the two 

Fuzzy-MOFS controllers in order to compensate the error caused by the changes of the 

different movements and angle changes of the UAV flight, where we can see the different 

responses of the controllers, depending the sizes and the types of the perturbations. 
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(a) Pitch angle movements. 

 

(b) Yaw angle movements. 

Fig. 21. Different pitch and yaw movements of the UAV. 
 

 

Fig. 22. Error between center of the image and center of the object to track. 

 

 

Fig. 23. Output from the Fuzzy Controller. 

Tracking Moving Objects 

In this part we present the tracking of a van with continuous movements of the helicopter 
increasing the difficulty of the test. In figure 24 we can see the error in pixels of the two axes 
of the image. Also, we can see the moments where we deselected the template and re-
selected it, in order to increase the difficulty to the controller. These intervals show up as the 
error remains fixed in one value for a long time. At the same time the pilot move the 
helicopter in order to increase the difficulty to the controllers, and also, the template was 
deselected and reselected for made the situation more adverse. In figure 24 it is possible to 
see the error in pixels of the x and y axis of the image. 
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Fig. 24. Error between center of the image and center of the dynamic object (a van) to track. 

In figures 25 and 26 we can see the response of the two controllers, showing the large 
movements sent by the controller to the servos when the mark is re-selected. Notice that in 
all the figures that show the controller responses, there are no data registered when the 
mark selection is lost because no motion is tracked. Figure 24 shows the data from the flight 
log, the black box of the helicopter. We can see that the largest response of the controllers 
are almost ±10 degrees for the yaw controller and almost 25 degrees for the pitch controller, 
corresponding to the control correction in a period of fewer than 10 frames. 
 

 

Fig. 25. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a 
dynamic object (a van). 
 

 

Fig. 26. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a 
dynamic object (a van). 

UAV Heading Control 

Finally, we present results of one of the tests where the heading of the helicopter, and the 

camera platform are controlled using the three controllers explained. 

In figure 28 we can see the response of the Fuzzy controller of the visual platform pitch 
angle, responding very quickly and with good behavior. In addition, figure 29 shows the 
controller response of the other axis of the platform. We can see a big and rapid movement 
near 1600 frames, reaching an error of almost 100 pixels. For this change we can see that the 
response of the controller is very fast, only 10 frames. 
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Fig. 27. Error between the static object tracked and the center of the image, running with the 
UAV simulator. 

 

 

Fig. 28. Response of the Fuzzy control for the Pitch axis of the visual platform tracking a 
static object with the simulator of the UAV control. 

 

 

Fig. 29. Response of the Fuzzy control for the Yaw axis of the visual platform tracking a 
static object with the simulator of the UAV control. 

The response of the heading controller is shown in figure 30, where we can see that it only 

responds to big errors in the yaw angle of the image. Also, we can see, in figure 31, how 

these signals affect the helicopter’s heading, changing the yaw angle in order to collaborate 

with the yaw controller of the visual platform. 

 

 

Fig. 30. Response of the Fuzzy control for the heading of the helicopter. 
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Fig. 31. Heading Response. 

7. Conclusion 

In this chapter, we have presented some of the techniques used for real time visual servoing 
on UAVs. These techniques includes visual algorithms for features detection and tracking, 
pose estimation, visual and pose based control systems, and fuzzy controllers, using them to 
increase the capabilities of UAVs in situations like object tracking, low altitude tasks such as: 
positioning and landing. 
The methods explained have been integrated in a UAV control architecture, forming both, 
visual and pose based control systems, that have been tested on real UAV flights, showing 
the advantages of using visual systems on this kind of robots. Additional examples and 
videos of the visual systems and process presented in this chapter are available at the 
Colibri Project web page COLIBRI (2009) 
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