
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

8

Model Based Software Production Utilized
by Visual Templates

Mika Karaila
Metso Automation Inc

Finland

1. Introduction

In the automation domain programs are written by engineers. Available programming
languages are normally standard IEC 61131-3 or vendor specific visual language.
Programming requires domain knowledge and programming skills. Reusing programs is
often simple copy / clone a working solution. There are different kinds of solutions done
to effective produce programs. In Metso Automation application programs are first
modeled and second systematically reused. The principles are applicable to be used in
other context.

2. Function block language

2.1 Introduction

The visual notation of FBL consists of symbols and lines connecting them. In FBL, symbols
represent advanced functions. The core elements of FBL, function blocks, are sub-routines
running specific functions to control a process. As an example, measuring the water level in
a water tank could be implemented as a function block.
In addition to function blocks, FBL programs may contain port symbols (also called

Publishers) for other programs to access function blocks and their values. The function block

values are stored in parameters. As an analogy, the role of a function block in FBL is

comparable to the role of an object in an object-oriented language. The parameters, which

can be internal (private) or public, can, in turn, be compared to member variables. An

internal parameter has its own local name that is not visible outside the program module. A

public parameter can be an interface port with a local name or a direct access port with a

globally unique name.

In addition to function blocks and ports, FBL programs may contain external data point

symbols for subscribing data published by ports, external module symbols to represent

external program modules, and I/O module symbols to represent physical input and output

connections. An external data point is a reference to data that is located somewhere else. In

distributed control systems, calculations are distributed to multiple processors. Therefore, if

a parameter value is needed from another module, the engineer has to add an external data

point symbol to the program. By using this symbol, data is actually transferred (if needed)

from another processor to local memory.

Source: Visual Servoing, Book edited by: Rong-Fong Fung,
 ISBN 978-953-307-095-7, pp. 234, April 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

Visual Servoing 150

From the FBL elements, the engineer can, for instance, build visual programs that control
some equipment in a factory that is running the process. These processes are continuous and
controlled in real-time.
Visual languages have been extensively studied in the literature (Mohamed, 2000, Burnett
1995, Shu 1988, Pressman 1997). As mentioned earlier, computer programs are usually
written using textual languages, but in more sophisticated or domain-specific environments,
programming can be done in a visual way, as in LabVIEW (Rahman, 1995). LabVIEW is
originated in 1986, while the roots of FBL go back to 1988 (Karaila, 1989). FBL is not a
standardized language as IEC 61131-6 language.

2.2 Background

In the late 1980´s the first implementation was done for FBL. The first target was to replace
a textual programming language because graphical documentation was already at that time
one of the customer's requirements. FBL was successfully taken into use and there were only
a few programs that were written in textual format.
One of the most important design goals was to design both the programming environment
and FBL for extensibility. This means that developers could easily extend the visual
language by adding new graphical symbols to it. Such new symbols, for example, may
represent new types in this strongly typed language. In fact, in FBL, users can add new
symbols to the language even without adding any new code in the programming
environment. The reuse of visual code in an integrated programming environment is
powerful and efficient. The same kinds of notifications are done (Debbie, 1995). Developers
have implemented an engineering environment that allows extensions and integration of
third party tools. Further, new symbol classes or categories can also be added to FBL. This,
however, requires modifications to the programming environment. Usability is important to
engineering efficiency. For cost effectiveness, using a commercial solution was a good way
to share code maintenance costs. As a drawing editor Metso has used commercial CAD
program, which can be AutoCAD® Copyright 2009 Autodesk or BricsCAD Copyright 2001-
2009 Menhirs NV. Both can be used for that purpose. In this way, developers were able to
focus our own work on the application domain instead of graphical editor issues.

2.3 Main design goals and principles

Developers had the following goals in the development of FBL and the programming
environment:
• Basic product configuration and a tool for customer projects.
• Both FBL and the programming environment must be flexible and possible to extend

because it was known from the beginning that new features are coming/needed every
year.

• Maintaining the language should be feasible, and adding new types and functions
should be easy.

• Easy to use, because typical users have minimal programming skills.
• Easy to reuse written applications, because customer projects are very similar.
• Third party tools and products should be easy to be integrated with the programming

environment.
FBL can be used to program basic automation and advanced quality controls. Metso's
engineers can implement different kind of applications with FBL. As the amount of different

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 151

sub domains are integrated into FBL, the use of FBL is growing. Our customers will
maintain and modify those FBL programs. Customer's people are typically automation
engineers. They will come to the FBL training. They are responsible for maintenance and
process design. They usually do not have any programming experience. Most of the time
goes into environment training and main principles of the automation system. The FBL
language itself is not so much used, only a few programs are made during the training that
is typically one week long. This is one way to evaluate the learning curve of FBL. There are
other studies about advances in data flow programming languages (Johnston, 2004). These
indicate the same findings as developers have experienced such as, 'The data flow semantics
of visual programming languages are intuitive for non-programmers to understand and
thus improve communication between the customer and the developer'.
Design principles of the language are briefly summarized next.
• In the visual drawing, symbols used should represent both data and functionality.

There will be an artifact in the system that can be mapped into a symbol. So each
symbol will have some meaningful concrete function or element in the system. There
will be very direct mapping from the eq. IO card symbol to a program physical IO card
that will run a real electrical connection.

• Symbols are for creating communication to transfer signal data. One symbol that
contains an output and can be connected by line to another symbol input to represent
data-flow. Data-flow will be in this way explicit.

• Layout should be organized so that inputs will be on the left and outputs on the right.
There will be immediate visual feedback during testing program values can be visualized.

• All of the above will create a combination that merges algorithm and user interface to
one functional entity.

These four strategies: concreteness, directness, explicitness and immediate visual feedback
are listed in (Burnett, 1999).

2.4 Basic symbols

Function block language contains thousands of symbols. The following is a categorized list
of basic symbols:

• Administration part symbol for defining purpose of the diagram,
• Function part symbol for defining CPU and execution parameters,
• External reference symbol for transferring data outside module,
• Local data symbol for allocating memory for temporary signal data,
• Port symbol for defining access name for external reference, and

• Function block symbol for making signal operation / handling / calculation.
Basic symbols are just for data (memory location) and function block symbols with numbers
are functions that are executing algorithms. Language is not making a memory location or
register references, instead that is actually done in the program loading phase into
execution. Binding is done as late as possible.
Administration symbols contain metadata about the program like process area, short
description of the program and customer logo. The program itself is drawn inside the frame
of the administration symbol defines. There are different sizes available and the program
can be extended to multiple pages. Signal connections between the pages can be created by
reference symbols.
Functional administration symbol defines execution interval and logical location in the
system. This symbol is used to define a new module.

www.intechopen.com

Visual Servoing 152

A port can be either an interface or a direct access port. Interface port name is a suffix for the
name of the module. Direct access port name is a global name that must be unique in one
system (factory level). Port is an access point to a memory location with the name.
External reference is in our terminology an external data point. It contains a name and
communication parameters. In the principle name is a reference to the port, which is a
named memory location. According to the communication parameters, data is transferred
from the port and updated to an external data point. In this way communication takes care
of values.
Local data point is inside the module and is needed only to store values between function
blocks. It can be needed for storing a value between calculation function blocks.
Function blocks in Figure 1 encapsulate actual subprograms. Encapsulation protects
memory allocation and safe execution. Function block always uses the same amount of
memory. Execution is controlled by execution order (number between 1--9999) that is given
for each function block symbol. All function blocks are sorted and executed in given order.
Function block contains inputs, outputs and parameters. Inputs are read before the
execution and parameters are used for the calculation and after execution outputs are set. In
this way, users can only use these building blocks to define their own program.

Fig. 1. Two function block symbols with the am symbol's parameter dialog.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 153

Common function blocks are pid for controlling, logical and/or functions for boolean
algorithm and calculations. Basic system function blocks are copy (ccox), select (disx),
analog measurement (am, am2), binary measurement (bm) and device specific blocks like
motor (mtr, mtre, mtr2) and valve (mgv, mgve, mgv2). More application specialized
function blocks are for enthalpy calculation went and steam flow calculation (stfl).

Fig. 2. FBL control loop program.

Figure 2 shows an example FBL program. Symbols A and D are standard input/output

(I/O) symbols. Symbols C 1-3 contain texts and other operability and alarming parameter

definitions (as priority and alarm group) for the control room functions. Operators in the

control room look after the process status from the monitors. The process is constantly

measured and run by the programs but people are still making decisions and performing

actions (pushing buttons) to control the process. Symbol C3 is for alarm functions. Finally, F

is the area for the actual control program. All other symbols representing function blocks

and connections are in the same program as the other symbols are building their own

individual programs. A function block is a basic subroutine running a specific function to

control the process.

The graphical layout is to be read from left to right: inputs are on the left and outputs are on

the right. Figure 2 represents a typical automation program in size and functionality. It gives

a good overview for the user of one functional entity. The symbols inside one diagram are

connected by lines, while connections outside one diagram are constructed using symbols

that contain reference names, as shown in Figure 1 symbol B.

Figure 2 shows one Function Block Diagram that can be used to generate multiple textual

files. Those files are from a one-page program to several pages long; each file is an

individual program. In addition, variables that are connected by lines in a FBL program are

www.intechopen.com

Visual Servoing 154

stored in each file. Program modules are distributed in different places in the system. The

Process Control Server (PCS) runs I/Os and control programs. Operator Server (OPS) and

Alarm Processor (ALP), in turn, run other configuration functions. For example, in the

control room OPS is for Human-Machine-Interface (HMI); the operator can change displays

and look at different parts of the process and manipulate control parameters from the

monitor windows).

2.5 Module symbols

FBL module symbols are application programs that can be distributed in the system. As an
example, the I/O- symbol generates a small application program that can be loaded to the
field bus controller. It will load needed parameters into the I/O- card and transfer data from
the I/O- card to the field bus controller that will communicate with the actual controlling
CPU unit that runs function blocks. In the same way the gateway symbol that connects an
external device to the system using communication protocol is loaded into the CPU unit that
has a serial or an Ethernet connection.
Symbols for creating a connection can be divided into two major groups:
• I/O-symbol to connect a physical field device. I/O card makes analog/digital

transformation to an electrical signal.

• Gateway-symbol to connect a software component to another system using
communication protocol.

Different kind of I/O-symbols are available, they represent I/O-card. It contains parameters
like I/O-address, filtering and other signal processing parameters. Gateway-symbol
contains address for accessing data through software protocol. The physical connection can
be Ethernet, RS-485 or RS-232. The address depends on used protocol. In MODBUS
(MODBUS) protocol addressing is register-based (address format examples 'reg 1001' or 'dw
10'). Signal data-flow is coming in principle the same way as with I/O-connection. The
interface module is executed by the driver and the actual data is connected with the external
data point to transfer the data from the driver to the application program.
The wiring from I/O-card connections to the field device connects signal flow electrically.
From the I/O-card the signal is processed digitally and field bus transfers data between the
I/O-card and CPU unit. This is physical distribution and the signal route is illustrated in
Figure 3.
Module symbols are usually for defining parameters for user interface and alarm handling,
like texts, alarm priority and alarm area. These are loaded to all operator stations and alarm
servers.
These module symbols are used for defining

• Text data for user interface,
• User interface panels,
• Alarm handling parameters,
• Long time history data collection parameters, and
• Feedback simulation (action response in virtual environment).
These application programs listed above are not connected by lines as function blocks are
connected. The connections are fixed and the user can give one connection name that creates
all other needed connections as external data points. This reduces the amount of lines in the
diagram. They are usually located near the corresponding function block symbol they are
referring. Reference is done by using the same names in the symbols.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 155

Measurement on the field

Connection to IO

CPU running controls

4-20mA electric signal

Fig. 3. I/O-signal data flow from the measuring device to the controlling CPU.

2.6 Connections and networks

The connection networks can be very simple point-to-point connections or very complex
networks. The network structure solver will take all network connections together and find
out the target connection. The target connection is the connection target for the rest of the
network participants. In other words, the connection target is the named memory location
that others will use.
Some examples of connection networks are shown in Figure 4:

• Point-to-point connection, where output is connected to input.
• Multiple connections, where lines can be connected together with a connection dot that

will join underlying lines and creates a connection junction point.

www.intechopen.com

Visual Servoing 156

• Connection references, where lines can be connected with symbols that contains
reference name from other pages to the same logical connection network.

Fig. 4. Connection network examples.

Connection resolving must first always create the whole network from the sub-networks.
After that it can run through the connection algorithm that finds the connection target. This
is a very simplified explanation for the whole underlying system that contains a lot of
specific rules for connection solving.

2.7 Strong typing

The system is strongly typed and simple basic types are represented by fixed colors. Only
the basic and most common types are with color. Having too many colors would make it
difficult for the user or programmer to distinguish the different types based on color
(Whitley, 2001). Further, the benefits of using colors are diminished when printing the
programs using a black and white printer; only some grey scales are available in that case or
in some cases different line styles are used to indicate signal types (like dashed, dotted etc.).
Colors are used in connection points and connection lines. Color defines the type of signal
data. Basic types are with color in the following way:

• Green (ana): indicates two values, value (float) and fault bits (uns16)
• Black (bin): indicates a true/false bit (bit 0) and fault bits (bits 1-15)
• Brown (binev): indicates bin and time stamp
• Blue (intl): indicates long integer and fault bits
• Cyan (ints): indicates short integer and fault bits
• Magenta (bo): indicates bin and pulse time (time)
• Red (fails): indicates fault bits (uns16, bit 1-15)

• Yellow (float): indicates plain real number (float)
• Gray (any): all other types (less used misc. types)
Note that the above are scalar types / array \& other multi--dimensional types are drawn
by a thicker line but with the same color as the element type of the vector / table.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 157

The user can draw the connection line freely by routing the line and then the program
creates the arrow-head automatically at the end of the line to represent data flow direction.
Connection lines can cross and if they are connected there is a connection dot in crossing
that will connect signals together. In addition, there are special data types for the
communication. The function blocks are also based on types that are composed as
structures.
At Metso we have developed our own meta-language for defining all the needed structures.
Types and also more complex structures such as function blocks are defined with this
metalanguage. This metainformation is available from the type database. This can be used to
build function block symbols with default layout. Default layout is to place inputs on the left
side of symbol, parameters in the middle and outputs on the right.

3. Template mechanism of Function Block Language

3.1 Introduction

Domain specific modeling is used in different levels in FBL. All the function blocks are small
models that reflect real physical devices or some needed functionality. A motor, for instance,
is modeled as a function block named mtr. The same model can be used for all basic motors
and pumps. Similar way valve model is a function block named mgv (magnetic valve). In
this way, function blocks are created to solve basic problems in the domain; the name of the
block is the name of the focused object. Function Block can be parameterized and connected
to other FBL elements. It will read inputs, run itself according to the parameters and write
output values. FBL also contains elements that are for user interface and alarm handling.
Modeling hides many complex operations.

3.2 Meta template mechanism

Our solution is to use visual templates for efficient programming (Karaila & Systä, 2007). A
visual template can e.g. be used to implement motor control. The motor template will
contain a set of parameters that are used to create an application program instance.
The engineering tools and database separate data and presentation, Application has a

presentation role and actual parameter data is in the database. Transformation attaches

template and the result is the implementation. This mechanism works in the same way as in

the web applications. The Excel integration gives an effective way to modify existing data in

the database. For version upgrades it is possible to export data into one's own XML file.

These facts are behind the optimal combination of FBL and framework to maximize effective

programming.

Templates are used for example in C++ programming language and in web applications.

C++ templates are considered 'type-safe'. The FBL template engine differs from traditional

template engines because the FBL template is evaluated immediately in design time. C++

templates are expanded at compile-time. FBL templates can be parameterized using

database interface and this kind of principle is also used in web applications. Many

languages that are used in web programming like Java or Python have own template

engine. These kinds of web servers use primary data from the database and produce

interface as shown in Figure 5. This makes effective separation between the business data

and presentation. Data can be easily maintained and presentation can be modified. In this

way they are loosely coupled.

www.intechopen.com

Visual Servoing 158

In the same way FBL templates have parameters in the database and the FBL template
contains transformation information. In traditional C++ programming, people use a
Standard Template Library (STL). Web based templating testing needs to a run generator to
check the end result. In the same way in using STL, compiling is needed to validate the
template. In the FBL, template functions are evaluated immediately and transformation is
made.

Parameters
in database

#1 Test1
#2 Test 2

...

Web template
<head>

Example %s
</head>

Template
Engine

Example Test 1

Example Test 2

Produces documents

Fig. 5. Principle of web template engine.

Static metaprogramming (template metaprogramming) techniques in general are used to
enable the customization of programs at compilation time. For instance, compilation of a
program for different platforms can be made easier with such techniques like using
generative programming (Czarnecki & Eisenecker, 2000). Static metaprogramming may,
however, also be rather challenging. E.g. debugging is typically difficult due to the lack of
proper tools. This, in turn, challenges the testing of static meta-programs. Processing and
evaluation of template codes at compile-time causes an overhead, which, however, could
and desirably does make the executable code more efficient. This overhead might have some
significance in larger projects but is typically insignificant in smaller ones. In addition to
efficiency, template meta-programming techniques support genericity and facilitate code
minimization and maintenance. This is because the programmers can focus on designing
and implementing general, perhaps architecture-level structures. FBL templates are used to
define a common program structure for a family of application program instances. The
templates are further used to create these instances which are called control loops in the
terminology of the domain. One template can be used to create several program instances,
up to 100 in practice. Each instance has its own identifier and parameter set. The program

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 159

structure which is derived from the template is the same in each program instance. In
essence, FBL templates are programs that contain data structures and encapsulated
functions. Templates are built by first defining parameters that can later be used as an
interface to create an instance from the template. Templates further contain formulas, in
which the parameters are used. Evaluation of the formulas is automatic. In some cases, the
evaluation may modify the program structure, as in conditional compiling, as a result.
Formulas are used in FBL templates for evaluating mathematical expressions and for
concluding logical truth-values. Each formula is a mini-language statement. The mini-
language used is a simple language without real programming capabilities. For practical
reasons, e.g. for easy editing and understanding, the mini-language formulas and
expressions are compact and fit in one line. FBL language is generative and each template is
actually meta-programmed using the mini-language.
Larger models are for modeling more complex functions that need more connections and
generic parameters. These connections are to other modules and ports in the system.
Parameters are model specific and can be used in multiple elements.
Our engineering tools and FBL editor are main elements in a DSM environment. FBL editor
is used for model building and testing. Engineering tools are for managing templates and
instances.

3.3 Working with templates

A template is a key component for effective software production. As an example, a basic
measurement is needed in every project. But the measurement can be a temperature, a
pressure or a level measurement. There is some variation between the measurements like
the measurement range is different as the unit depends on physical measurement. The
program has input with an address and a range with a unit. The alarm limits of the
measurement can be set in programming phase to some initial values. The basic analog
measurement template is the model that solves this problem. A template contains the model
that can be parameterized and the instance is varied by these parameters. One measurement
template can be used in all these different measurements if there are no other requirements.
In practice, a visual template is built with an FBL editor. It contains commands for creating a
template. The next step is to make first a program that will contain all other needed parts.
After that, templating can start by the following steps:

• Create design members, these are parameters for a visual template,
• Define needed formulas, these use parameters defined above,
• Save a template, and
• Create an instance and test it (modify parameter values).
First, the user defines all the parameters needed. This can be done using a specific dialog
shown in Figure 6.
Parameters work like a placeholder and follow the same syntax rules as Python variables

except that they are preceded by $ enclosed in {}. Parameter example: ${var}. Parameter

identifiers are case sensitive.

After this, the user can define the formula like in Excel to a separated field that will store the

formula as shown in Figure 7. In the evaluation phase the formula is evaluated and the

result is placed in the actual value field. The engineer can already see the current value that

is calculated from the design parameter value. Formula evaluation is automatic and it helps

the engineer to always see evaluated values.

www.intechopen.com

Visual Servoing 160

Fig. 6. Step 1: User defines first design parameters.

A complete parameter use example:

• Parameter identifier: \$(MYPARAMETER)
• Parameter value: Example text
• Usage: External datapoint, comment attribute
• Formula field: Test \$(MYPARAMETER)
• Comment field: Test Example text
After step three, template saving, the engineer can create a new FBL program instance from
the template shown in Figure 8. Usually new instances are created by using Excel as a
parameter entry interface. Template testing always needs multiple instances because
otherwise there can be some non-formulated value or wrong formula that will create a non-
unique identifier or overlapping address definition.
The FBL visual templating is implemented by mini-language that needs minimal
programming. It can be extended when needed but the current functionality has been
enough. Using these functions enables the user to meta-program FBL.
Template directives / functions are listed below. Some of them are domain specific.
• eval formula
• mathematical formulas
• strings and parameter value

• function-formula (conditional part, works like snippet)
• value reference (syntax for parameter, reference to outside)
• select formula
• prefix formula (special string handling with prefix)

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 161

Fig. 7. Step 2: Formulas are defined in each needed location.

Eval is used in formulas to mark parts that will need mathematical evaluation. Otherwise all
variables are evaluated as strings.
Mathematical formulas are evaluated according to standard evaluation order. Most of the
basic calculations are implemented into the library.
Strings in the evaluation phase are replaced and formula evaluation result is in the value
field. Value field is usually a symbol's attribute value but it can also be a comment text.
Function formula works like a snippet. Ordinarily, these are formally-defined operative
units to incorporate into larger programming modules. In a visual template, function
formula is always included into the template. The "code" amount is fixed but the
connections and all parameters are evaluated inside elements belonging to the function
formula. It can be turned on or off by a conditional statement. If the result is true, part of the

www.intechopen.com

Visual Servoing 162

Fig. 8. Step 3: Testing template with new values. Modified design parameter values are
evaluated and new values are visible in the diagram.

code is included, otherwise not. Function formula does not minimize the use of repeated
code it is for selecting features. In FBL editor function formulas are usually marked with
dashed blue boxes.
The following Figure 9 shows function-formula definition for selected elements and Figure
10 demonstrates action that hides a snippet.
Select formula can be used as 'switch...case' or 'if...then... else...' statement for selecting
another value by given value. This is a kind of enumeration based transformation.
Prefix formula is used to minimize entering the full reference name. In automation domain,
devices are named and in the programming phase it is easy to use a pure name without any
prefix or suffix. This abstraction removes / hides programming details from the user.
In step one, shown in Figure 6, the user must first define design parameters that can be used
as variables in formulas. Mandatory parameters are:
• TAG (instance identifier),
• PACKAGE (logical name for download target) and

• TEMPLATE (template identifier).
Usual parameters are MIN, MAX, UNIT, HH (high high alarm limit), H (high alarm limit), L
(low limit), LL (lower low limit) and so on.
In step two, the user can look at properties of the symbol and add their own formula to
calculate a new value.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 163

Fig. 9. Symbols are selected & active. Function formula defined for selected elements (lower
function block and connections into it.

Fig. 10. Function formula 'hides' interlocking elements with the value 0. Elements can be
activated with value 1 back to the diagram.

www.intechopen.com

Visual Servoing 164

In the template creation process, the user has to save a diagram as a template into template
storage.
In the last step, it is good to test the template so that it works correctly and all needed
parameters are defined. The user has to create at least two instances to check that there are
no overlapping identifiers (global names like module name or direct access name).
Testing is possible in a virtual environment. There are symbols for each actuator to create
action feedback. The user can have a motor that will start from the start command and
feedback will generate motor running status. In the same way a valve or a controller will get
action feedback.
In this way, a higher level of abstraction is done to model larger functionality.
For this purpose Metso has implemented a visual template.

3.4 Experiences

Before Metso had visual templates, Metso’s engineers were using typical for modeling FBL
solutions. This first generation model is static and is based on more copying existing FBL
diagram. The main principle was to replace tokens in the typical with real instance
parameters.
When comparing visual template to other solutions, visual template is interactive and
immediately evaluated. For instance, it is faster to modify and test. Before the final testing,
the following actions are needed: specialized instance, compiling and loading into runtime
environment.
Like in other 'Little Languages' (Deursen, 1998) visual templates contain small language, but
gives an effective way to use metaprogramming.
The earlier way to create specialized instances was taking more time. An older template was
named typical. A typical contained replacement tokens. Each parameterized value field
actually contained a token. The user had to run replacement generation to get the
specialized instance. This was always needed to test the typical. The replacement token was
lost and it was possible to modify any value. The replacement did not support any
transformation or calculation. Thus, it was limited to direct replacements.
A visual template can be parameterized and it will evaluate FBL immediately. It is more

dynamic and faster to use than typical that is static and needs separate regeneration for

updating FBL. One important difference to other template techniques is that the FBL

instance contains all template functions and due to this fact it is still possible to parameterize

again and again even though the FBL is edited to differ from the original template. Typical

did not offer all the functionality that is implemented now with the domain specific

formulas.

Mass production of FBL programs is the key productivity for templating. The new visual
templating improves productivity by saving time and improving quality with standard
project templates.
Productivity is measured in many places:
• Project department measurements (annual measurements existing, over 10 years).
• Value Added Reseller (VAR) partners, specific process area: 100 templates enough.
• In general, over 90 percent of programs made from a template (project library makes

automatic calculation from each project).

• Excel or sheet as main parameter input method (data and implementation can be
separated; engineering tools can separate data from implementation).

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 165

Applicability to domain and product family principles is very good. Existing loop can be
turned into a template by a few steps. Template programming adds variables and additional
function into existing FBL diagram. Template programming is interactive and the user can
immediately test functionality.
In other template based languages, a template is separated and needs rendering /
generation that will create an instance from a template. This requires extra maintenance. In
our domain, instances contain all template formulas. This is a benefit for us even it can be in
some other domains a disadvantage. The framework allows template changes / updates so
that it keeps all matching parameter values untouched. This flexibility gives the freedom to
change an original template and update it afterwards for all needed instances.
The instance of the template can inherit values from another instance by a reference formula.
This reduces the amount of parameters that the user must enter. Referenced template
parameters are read--only values. A value change in parent instance is propagated into all
children. The purpose of the feature is to reduce parameter amount and automate parameter
value propagation. As an example, one design parameter contains text that is used in the
primary loop, but the same text is also used in its own history collection definition loop. In
this case it is easy to make reference from a history loop to a primary loop. An engineer can
change text in the primary loop and it is automatically propagated into the history loop.
And in the history loop, an engineer does not have to enter text anymore. An additional
positive effect comes to maintenance. It is better to split functionality into its own features
and bind needed parameters together by referencing. For us, our FBL and its
metaprogramming support makes visual templating a practical reuse technology.
End customers are becoming more demanding.

• Easy and fast to create from specification to template and implementation.
Specifications are coming later and later. Or in some cases the customer or process
expert defines automation functionality at the factory in the start--up phase.

• Easy to make modifications and take those into use just by changing or updating the
template.

Even through the template functionality has been in existence now for some years there is
still work to do with usability and metaprogramming. There is the need to teach this
technique. The conversion tool will need some tuning even it can transform an old typical to
a template.
Time will show the life cycle of the templates. There have already been cases that the project
is first done with templates and delivered without the formulas. This kind of downgrading
is sometimes needed to support old installed systems.

4. Reuse mechanisms

4.1 Introduction

Support for software reuse can be hard to utilize. Systematic reuse will require process,
analysis, feedback for continuous improvement and knowledge management.
Traditional software reuse can be implemented by components and libraries. In the similar
way FBL contains build-in functions that are Function Blocks. These are documented in
system manuals and are used to implement application programs.
For effective application programming, the solution is to reuse application programs. It is
harder because they do not usually contain extra documentation or they are not categorized
into any hierarchical structure like build-in Function Blocks are in the libraries. The system

www.intechopen.com

Visual Servoing 166

level reuse also actually exists in product level because the automation system is based on a
software product line (Ommering, 2005).
Another need to reuse already made projects is to estimate the effort needed to implement
the same kind of project. A project can be a part of an earlier project like just one or two
process areas are similar in a new project. ‘Similar’ means that the process area like “Fresh
water treatment” is implemented with the same process equipments and can be used in the
new project as a starting point. This kind of search and pre-study is needed and used in our
sales. If there is existing the same kind of implementation, project engineers can start
redesign using the existing implementation (Karaila & Leppäniemi, 2004).
In FBL, three types of reuse occur, in three abstraction levels:

• Level 1 Function Block (system level),
• level 2 Template (model reuse), parameter reuse between the template instances, and
• Level 3 Function Group (model group reuse, higher abstraction level).
The modeling is more demanding than the system level reuse. The user has to first select the
template which is not always as clear as selecting a function block. The basic level function
blocks are documented and always available. Templates are currently documented only in
intranet level and loaded separately as their own library.
In a search for finding a possible template, there are parameters that can be used to narrow
search results. This needs domain knowledge. The reuse library offers all parameters and
allows the user to use those in search criteria.
Another reuse level is to reuse just parameter values. This can be done in the template level.

The parent - child parameter referencing helps to maintain consistency between the same

problem entities that is implemented with multiple instances. The main instance, core loop

contains all common parameters like name and alarm area. Each child is referenced into

those common parameters. In this way, a change in common parameter is propagated into

each child instance.

Function Group level utilizes the next level in abstraction hierarchy. Function Group can
handle a set of instances that are template based in one Function Group diagram. Function
Group diagram visualizes connections between the application programs.

4.2 Reuse in practice

Project library application search dialog in Figure 11 is the starting point for reuse. The

search interface allows users to search application solutions according to saved metadata

and performed analysis. The search can be focused on certain process areas and projects.

More detailed search criteria can include e.g. the main function of the program (function

block like pid-controller or motor controller), the IO card type used and the application

creator.

Application data is shown in Figure 12. The general part contains metainformation about

the project and program itself. The entity count, primary function block, template generated

information and user question count are created in the analysis phase. The IO data is also

extracted in analysis. In the file information fields, data is needed to access file and template.

The template match is in this case 100\%. When no structural changes between the template

and instance exist the match value equals 100. That is, only different parameter values may

exist. Each structural chance diminishes match value by a certain amount. For example by

deleting and adding one symbol the match value is decreased by two to 98.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 167

Fig. 11. Reuse library search dialog.

Fig. 12. Reuse library shows application data.

www.intechopen.com

Visual Servoing 168

The search can be also focused on project, process area or template. The project data is
shown in Figure 13. It contains major data from the delivery and for the practical reuse
project team, main process and process supplier are needed.

Fig. 13. Reuse library shows customer project specific data.

The user can search and navigate from the application to the template or to the related
loops. User interface supports downloading multiple files together in one zip file.

4.3 Analysis

In reuse library, saving application will run FBL analyze that first creates a fingerprint from

each application program. Fingerprint is a calculated value from the diagram entities. It is

used to find similar diagrams faster. If the instance is template based, analysis will create a

link to the template. In this way user can get the template easily. The project analyze will

calculate summary information from the project. This information is used in estimating the

project efficiency. Later the same information can be used to sell a new project. This makes

better accuracy for estimating the cost of the new project.

The project library is for archiving projects, but it is actually a huge reuse library. It also

contains the template library and its own special Quality Control library. This special library

contains mainly handmade solutions that are needed for integrating some older actuator

device into our system. The project library is integrated to the project delivery process. Each

delivered project is archived into the project library for reuse.

4.4 Discussion

Traditional programming reuse analysis tries to find reusable patterns. Strategies for
component analysis are well introduced in (Rothenberger et al., 2003). These practices are
categorized to project similarity, reuse planning, measurement, process improvement,
formalized process, management support, education, object technology and commonality of
architecture.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 169

Our project library and reuse model covers project similarity very well because it is one
starting point in finding reusabable FBL programs. The reuse process is planned. The
analysis measures template usage and the feedback system with template library targets for
improved templates. Because every project is archived into the project library in the same
way, the process is formal and repeatable. The analysis also gives good numbers for the
management. Knowledge management is not so visible in our process but the reuse and
template based design are part of the project delivery process. The knowledge needed to
successfully use the templates takes some time. The automation domain is based on product
family and the basic architecture has remained solid. The technology is based on different
solutions and the object technology is used in various places.
Evolution during last four years has not affected reuse. There are new IO cards and new
function blocks. Domain specific language reuse in dynamic domain is discussed in
(Korhonen, 2002). This focuses more on code generation and language principles than
reusing actual applications. The project library internally uses XML in many places and it
has worked as a good transformation base. This was originated partly from the first agent-
based implementation. This solution offered easier maintenance for the whole reuse library
because it allowed transformations and extensions.
The publication implemented agent-based software is currently a simpler java application. It
no longer uses agents anymore. The search engine user interface was enhanced in 2008 and
new features were added by user requests. One important feature is to search special
applications, only 1-2 applications per project. These applications contain rare I/O-cards
and can be found using the card type in the search criteria. In the same way, some special
Function Blocks can be searched.
The project library for reuse is in active use. The current search request amount is still
almost one thousand searches monthly. The main page contains the amount of searches. It
shows the current value 54932 (end of 2008). This makes the last four years of use an average
of 1000 searches per month. In the initial phase in 2004, the amount of metadata was less
than 2 Gb. The current (measured in the end of 2008) amount of metadata in the library is
over 3.5 Gb and there are millions of application programs stored in the file system.
The actual metadata in the reuse database is growing and there has now been added more
data about process such as machinery supplier and project people. If the salesman compares
similar kinds of processes they have to check the supplier to validate reuse possibility. For
tacit information and other not formalized information about the project, people are listed in
the database. This makes it possible that people can be contacted and a short discussion can
solve other unclear things.
The metadata makes searches more exact and implements actually feature based reuse
library as is discussed in (Park & Palmer, 1995). The key factor is to select features as adding
primary function block and IO card type among other metainformation. But instead of
reusing components as stated in the article, Metso reuses application programs and
templates. This kind of reuse affects to both productivity and quality much better.

5. Maintenance and round-trip engineering

5.1 Introduction

The biggest parts of software life-cycle costs are shown to be due to maintenance activities
(Sneed, 1996), (Jones, 1998) (Erlikh, 2000). The systems that have long life cycles and require
high maintainability, a key for lower maintenance costs is quality. Maintenance can be

www.intechopen.com

Visual Servoing 170

supported by various reverse engineering techniques like comprehension and visualization.
Software visualization techniques applied to software written in traditional, textual
programming languages can be problematic to be linked with reengineering activities
afterwards, especially if standard notations, such as UML (UML, 2009), are not used: if the
reverse engineering tool uses a different notation than the one used in software design,
mappings between the different notations are needed. Since the models and views
constructed from the existing program are presented with the same language used for
development, the reverse engineering activities can be conveniently mapped with re-
engineering activities, therefore enabling full round-trip support.
FBL application programs are located at the customer's own factories. Those programs are
modified when there are some changes needed. These are frequent changes that must be
done quickly. Even though FBL evolves and a version is upgraded, old programs can be
used without any major work. This is part of the maintenance work that requires
compatibility.
The following goals have been set for FBL maintenance:

• application level implementation remains the same even when symbols are updated,
• better performance: faster open and save, switch to testing faster,
• better usability and
• modern outlook: style is according to operating system and CAD platform.

5.2 Reverse and forward engineering

Reverse engineering activities aim at constructing representations and models of the subject
software systems in another form or at a higher level of abstraction (Chikofsky & Cross,
1990). New representations are constructed after identifying the system's components and
their interrelations.
Clustering in traditional reverse engineering methods can be constructed, for instance, by
taking advantage of the syntax of the programming language used, by using software
product metrics to identify highly cohesive clusters, or by using existing software
architecture models and mapping them with the lower level details. In Java, for instance,
package hierarchies can be used to structure classes and interfaces of the system. These
hierarchies can be extracted by automated means. However, there are no guarantees that the
packages contain sets of classes that conceptually form subsystems or components. Software
product metrics used for identifying subsystems typically measure inter couplings and intra
cohesion of the sets of software elements. These methods can only give educated guesses for
clustering. Architectural models used in top-down reverse engineering approaches provide
a good way to form a clustering. However, such high-level models do rarely exist and the
construction of mappings with lower level software elements is typically difficult. In
Metso’s case, program uses the syntax of the language to construct high-level models for the
FBL programs (Karaila & Systä, 2005).
In FBL, abstraction can be done by creating a new symbol from the existing application
program. In Figure 14, a low-level FBL program is shown. For generating an abstract view
to this program, the details of the program are filtered out and only the input and output
symbols are preserved. An abstracted view is shown in the lower part of the same Figure 14
as one symbol. The abstracted program is called Function Group, indicating that one symbol
contains several functions (function blocks and IOs). The symbol has two input points on
the left: HLIM1 and LLIM1. These inputs limit values to form interlock interfaces H, H1 and

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 171

L. On the right there are five outputs HH, LL, H, L and H1. The outputs, in turn, are for
interlocking and for different limit thresholds. If the measurement is over H value then the
function group generates a high interlocking. If the value is even bigger and goes over HH
value, then the function block generates a higher high limit. Correspondingly, the function
group will generate low and lower low limits as signal value goes below a given limit.
Parameters are captured inside the symbol. Program visualization creates new symbols on
the fly for each abstracted component.

Fig. 14. Function Group example: parameters, implementation and symbol.

When compared to traditional reverse engineering techniques, a function group can be

considered to correspond to a subsystem. Unlike in traditional approaches where various

heuristics or metrics are used to help clustering program elements to subsystems, FBL

syntax and information stored in the database are used to extract high-level views. This

difference is significant: when reverse engineering FBL programs, the abstractions are

always "correct", not educated guesses: the abstractions can be used for forward engineering

activities as such. The differences between high-level views can only be due to different

information filtering actions, not caused by different clustering. This makes reverse

engineering of FBL programs significantly easier than reverse engineering programs written

in traditional programming languages. On the other hand, this also means that the reverse

engineering activities can be conveniently integrated with forward engineering activities,

providing full round-trip support.

www.intechopen.com

Visual Servoing 172

After constructing the higher-level function groups, they can be connected to each other. In
FBL, internal communication connections are drawn inside modules by lines, while for
external connections the engineer has to give a name. These external connections are stored
in the database. To visualize external connections, database information is used to connect
symbols as shown in Figure 15.

Fig. 15. Function group abstraction from FBL refiner programs.

To limit the size of the group of function group symbols, the engineer can select only a part
of information stored in the whole database. This selection can be based on the metadata
stored as well. In the domain FBL has been used, reasonable many of a large group of
modules are from the same process area. In Figure 15, for instance, 10 symbols depicted are
from the Refiner process area. Each function group symbol has a function that will need a
user interface. Each device motor or valve has its own instance in both. Controller and
selection logic are represented but the only one that is pure software is the interlocking
logic. It is instantiated in the function group, but not in the normal user interface. The
interlocking is in own display that the operator can open on demand.
In the Refiners process wood is mechanically cut / bladed to fibers. This mixture of paper
fibers and water is pulp. Paper machines make paper from the pulp. The Refiner process is
controlled by human operators from the display like the one shown in Figure 16.
Reverse engineering and data analysis techniques are used to get an overview of FBL
programs. The environment can be used to generate high-level visual programs
automatically.
A typical problem in this step is the layout. As indicated in studies, e.g. by (Storey et
al.1997), the quality of layouts may have a significant impact on program understanding.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 173

Fig. 16 Refiner user interface, operator display for controlling process.

According to our experiences, this also applies to visual programs. A commonly used
solution for placing symbols is to use some automatic spatial spacing and auto-routing
methods. The layouts of FBL programs have some fixed properties. The FBL programs are
always read from left to right: inputs are on the left and outputs are on the right. The layout
problem thus mainly concerns the rest of the FBL program. The solution selected for lay
outing FBL programs is semiautomatic. The engineer needs to show a place for each symbol
which is created automatically on the fly. Even though this approach requires manual
intervention, it also has its advantages. The same tool environment is used for viewing and
reverse engineering on the one hand and for programming on the other. Namely, the
processes of forward and reverse engineering are not separated. In fact, the engineer is
typically programming at the same time as analyzing a reusable (reverse engineered)
solution. To be able to reuse the existing program, one has to learn the program structure
first. After inserting all symbols needed, the engineer can activate a function that completes
drawing with auto-routed connection lines. This feature is really powerful because in a
normal case the engineer has to write each external data point / port connection manually
in each FBL program. Now he can modify symbols and connections and in this way re-
design the solution, e.g., to be more common and easier to understand.

5.3 Template maintenance

Trends in our template variation will focus on isolating IO from basic templates. This will
reduce maintenance work that is needed. If a template contains some additional features
like IO (standard IO, ACN IO, and LIS IO) and a new connection is implemented like FF IO,
then all templates should be updated in case the IO is included inside the template. This is
one fact that suggests separating IO from the core template. An example of separation is
shown in Figure 17 that contains core templates in the middle and IO templates in the lower
part. Other auxiliary features are placed in the upper part in own templates, like start and
restart.
Figure 18 explains IO template in more detail. The tag application contains IO template and
CORE. Communication is in its own part. This allows changes in application both in design
time and in runtime easier. The flexibility is better because the new IO templates can be

www.intechopen.com

Visual Servoing 174

used without changes in the CORE templates. This will help in the future as new IO cards
are designed and taken into use with IO templates.

Fig. 17. Template separation levels: IO, core, auxiliary.

Fig. 18. Template modularization aims for managed variation and easier maintenance.

5.4 Discussion

According to the experiences on FBL and its programming environment at Metso
Automation, in a combined reverse and forward engineering environment for visual
programming, the role of layouts becomes quite important. Since the program analysis
activities are often followed by forward engineering activities, the layouts constructed when
analyzing programs should be "correct" and usable from the point of view of forward
engineering activities. Also, since the engineer needs to understand the programs before

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 175

being able to re-engineer or reuse them, semi-automated approaches for constructing
layouts have shown to be quite feasible.
Re-engineering existing program instances means that they can be changed by extending or
modifying them. For instance, new function blocks can be added, parameter values of
existing programs can be changed, or connections between function groups can be changed.
The engineer can thus create new programs that were first extracted from the database
using reverse engineering techniques: he first creates a group of modules which are then
visualized with the aid of reverse engineering techniques and finally re-engineered and/or
reused.
For increasing the degree of reuse and thus decreasing the development times, reusing
existing function groups instead of modifying individual programs is preferred. This
assumes that the existing function groups are general enough to be usable in various
programs. In many cases, the structure of the program itself is reusable but the differences
occur in parameter values. For enabling reuse in such cases, a concept of a template has been
introduced to FBL. The function group can use a template as a symbol to instantiate it. In
this way, function groups are built from specialized templates.
The architecture layering and template mechanism gives us good tools for managing
maintenance. At the template level, the model gives new maintenance needs as variation
points but it needs more metainformation from the context (Cuccuru et al., 2007). There are
sub-domain specific features in the templates such as power plant automation needs more
accurate time stamps and chemical process automation requires more statistical data. The
measurement template needs its own variation to fit from paper machine temperature
measurement to oil refining temperature measurement. The oil refining measurement is
more demanding and needs parallel measurements and statistical validation to insure
reliability and robustness. This kind of knowledge management is needed in the future.
The long history can be used to reflect and analyze different maintenance activities. Normal
maintenance activities focus on updating existing symbols and templates. From time to time
people find bugs, which also call for maintenance. Sometimes cosmetic changes are also
needed, like new better looking symbols or new layout that will make a program easier to
read.
One practical issue is to support application maintenance. In the system level framework,
tools can help a lot in this work. But designers have also had some bad experiences like
making a modification in existing function block structure will make a big maintenance
effort. After this designers have kept old function block structures untouched. It is better to
create a new function block. A new function block can replace an old symbol if the
connection points are matching. The framework can run a script that will automate the
work. In exactly the same way, templates are versioned. A base template will be left
untouched and a new template will be extended. An instantiated template can be easily
upgraded to the new version. This is the normal method in customer projects. The project
engineer can make a better template and changes / updates will keep all existing
parameters. This is an efficient working method that improves quality.

6. Summary

FBL is a visual domain specific language that heavily relies on the usage of templates and
meta-programming. FBL has been developed for writing automation control programs. Based
on several years of practical use, it has proved to be easy to learn and adapted by its users.

www.intechopen.com

Visual Servoing 176

Despite their undeniable benefits, template meta-programming techniques also have some
drawbacks. Many compilers historically have quite poor support for templates. The use of
templates can, in fact, make code somewhat less portable. Further, when errors are detected
in template codes, most of the compilers produce confusing, unhelpful error messages. This
can make templates difficult to develop. Debuggers also often have difficulties in working
with templates.
A large group of methods and tool support for visual domain-specific programming is
available. For example, (TRACE MODE, 2009), supports several IEC 6-1131/3 standard
languages that can also be used to program control systems and business applications. One
of the languages, namely Function Block Diagram (FBD), resembles FBL. Another toolkit is
the Generic Modeling Environment (GME, 2009) that supports creating domain-specific
modeling and program synthesis environments. In (Fröhlich et al., 2002), propose a meta-
modeling based approach to provide and enforce modeling rules relevant for specific types
of conceptual models used in automation domain, e.g. industrial plants or control systems.
MetaEdit+ (Luoma et al., 2005 & MetaCase, 2006), in turn, supports meta-modeling for
defining new domain-specific modeling languages and provides CASE-tool support for
their use. While these approaches are partly related to ours, in this paper we have discussed
yet new ideas, aspects, and working methods that are novel in using visual domain-specific
languages.
In reference (Czarnecki, 2000), points out the following goals of generative programming: (i)
decreasing the conceptual gap between program code and domain concepts, (ii) high
reusability and adaptability, (iii) simplified managements of many variations of a
component, and (iv) increased efficiency. In our case, where a visual domain-specific
language FBL is used, all these generative programming goals can be achieved.
First, FBL as a visual language is intuitive. Moreover, custom symbols and icons can be used
when programming certain types of applications. This provides a nice and customer-
friendly way to map domain concepts with program elements. Second, templates have a
significant role in FBL programs. A typical programming scenario includes selection of an
appropriate template and its customization to a real program. A specific template library
has been constructed and is constantly updated to better support programmers. In practice,
the degree of reuse is very high. In new projects that are utilizing templates to a full extent,
almost 100% of application programs are implemented by using templates. On the other
hand, there are still projects that do not use any templates. New templates can, however, be
easily constructed by comparing similarities of existing programs. i.e., new families of
programs can be identified. This also supports the management of the programs belonging
to this family. Finally, having ready-made templates can increase efficiency.
Reuse library developed has enabled an efficient way for users to archive and share
implemented solutions and knowledge. The current java-based application solution filing
process together with search tool has proven to be an efficient and practical solution.
The current content management database size exceeded 3.5 Giga bytes (2008). Database
contains over hundreds of projects and links together over 62 Giga bytes of compressed files
(1.2 million files). The usage of search tool has become a part of application engineers
working manners. Approximately 1000 searches are performed monthly.
The analyses and template-matching processes implemented have allowed Metso to study
more the real problem of finding a higher abstraction level for mass customization. Reuse
helps sales and pre-design is started usually from the reuse library.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 177

The software quality and usability has been improved based on internal measurements
carried out at Metso and based on feedback from satisfied customers. In the programming
environment, there has been a steady evolution and a desire to improve it. User group
feedback has been collected to make further improvements, in a similar way to works
presented in (Costagliola et al., 2002, Cox et al., 1997, Smedley & Cox, 1997).
The same environment that is used for development is also used for reverse engineering and
maintaining FBL programs, thus providing a full round-trip support. The implemented
environment together with the information on existing FBL programs gives engineers better
understanding on the large existing group of FBL modules and their connections. The same
kind of presentation of control diagrams and applications for interlocking are actually
presented in German energy sector. This association of power and heat generating utilities is
named VGB (German appreviation from Vereinigung der Großkraftwerksbetreiber; VGB,
2009). The documentation of the whole factory and its processes (water system or power
generation) are normally written according to association guidance that is quite close to
Metso’s function group. Similar standard is System Control Diagram that is specified in
Norway (SCD, 2009). The symbols and principles are almost the same as in programming
with Function Groups.
To a great extent, the future design of controls could be carried out using function groups.
Engineers who design advanced controls are seldom interested in details, but would rather
like to program at higher level of abstraction, namely using function groups. The
engineering environment indeed allows that. The actual experiences of the environment are
still under study. Function groups are constructed for different processes to compare control
structures and patterns that are used. From these existing solutions we will find out most
common building blocks by statistical analysis using metadata stored in a reuse library.
During last five years more entities and diagrams have been used in projects than before.
The complexity of the programs has been almost at the same level. The conclusion of this
five years trend is that the automation level is increasing steadily. Therefore, there is more
implementation work in each project. The experiences gained so far indicate that similar
physical processes with the same kind of machinery are easier to understand and reuse as
high-level models, namely as packages with function groups in our case. Similar experiences
have been presented (Wilkening et al., 1995). This also supports understanding on how to
combine hardware and software as complete products (Holz, 2003). The experiences gained
have shown that FBL and the engineering environment used is a flexible, practical, and well
suited for the domain it is designed for, namely automation industry. We further believe
that many of the features and advantages of the proposed FBL environment can be useful in
traditional reverse engineering environments. In fact, features and benefits of an
engineering framework corresponding to one discussed have been presented (Tilley, 1998).
One of the most valuable parts of the proposed work is a possibility to reuse and re-engineer
existing solutions. Unlike what is often used in traditional reverse engineering
environments, semi-automated methods for constructing layouts have shown to be quite
useful and feasible in the FBL environment. The semi-automated layout encourages the
engineer to gradually learn the program, which is in any case required before he is able to
re-engineer or reuse it. In addition, the usage of metadata has shown to be quite useful for
querying the program database and to support program comprehension and analysis,
especially concerning the evolution of the programs. Similar advantages could also be
gained in traditional reverse engineering and program analysis tool support. We believe that

www.intechopen.com

Visual Servoing 178

traditional reverse engineering environments could provide more advanced support for
using metadata than what is currently available.
To summarize, the development of the template meta-programming support for FBL
proceeded as follows. After the first release, fast feedback from the users had to be utilized
in order to increase usability. Metso development team focused development on mini-
language functionality in order to match our domain requirements. After that, the tools
were modified to support different kinds of maintenance activities. The most important
factor was always efficiency. Development team has learnt that getting feedback
continuously from the users is crucial for successful maintenance and further development
of FBL and its programming environment. These maintenance and development activities
should and will continue as long as FBL is in use.
Future research and development will focus on further enhancing support for template
meta-programming, e.g. by extending the template mini-language and by providing the
additional means to raise the abstraction level of programming. Modern techniques and
programming principles can be applied to the automation domain. Visual programming
requires own specialized support that can be tuned to fit into the language and domain.

7. References

Burnett M., A. G. & Lewis, T. G. (1995) Visual Object-Oriented Programming Manning

Publications Co. Greenwich, 280.

Burnett M. M., Webster, J. G. (ed.) (1999) Visual Programming In Encyclopedia of Electrical and

Electronics Engineering, John Wiley & Sons Inc., New York.

Chikofsky E. and Cross J. (1990), Reverse Engineering and Design Recovery: A Taxonomy,

IEEE Software, 7, 1, 1990, pp. 13-17.

Costagliola G., Francese R., Risi M., Scanniello G. (2002), A Component-Based Visual

Environment Development Process, In The Proc. of Software Engineering and

Knowledge Engineering (SEKE’02), pp.327-334.

Cox P.T., Smedley T.J., Garden J., and McManus M. (1997), Experiences with Visual

Programming in a Specific Domain – Visual Language Challenge, In The Proc. of

IEEE 1997 Symposium on Visual Languages (VL ’97).

Cuccuru, A.; Mraidha, C.; Terrier, F. & Gérard, S. (2007) Templatable Metamodels for

Semantic Variation Points Model Driven Architecture- Foundations and

Applications, Model Driven Architecture - Foundations and Applications, Springer, 68-

82.

Czarnecki, K. & Eisenecker, U. (2000) Generative Programming: Methods, Tools, and

Applications Addison-Wesley Professional.

Deursen, A. V. (1998) Little Languages: Little maintenance?

Debbie K. Carter, Albert D. Baker, W. B. A. (1995) I-I-Con: A Visual communications

paradigm to integrate industrial control system engineering, ISA Transactions,

Elsevier Science Ltd., 34 (2), 153-163.

Erlikh L., (2000) Leveraging legacy system dollars for E-business, IEEE IT Pro, pp. 17-23.

Fröhlich P., Hu Z., and Schoelzke M. (2002), Imposing Modeling Rules on Industrial

Applications through Meta-modeling, ER 2001 Workshops, HUMACS, DASWIS,

ECOMO, and DAMA, LNCS 2465, pp. 166-182.

www.intechopen.com

Model Based Software Production Utilized by Visual Templates 179

GME (Last visited September 200), Institute for Software Integrated Systems, The Generic

Modeling Environment, http://www.isis.vanderbilt.edu/projects/gme/.

Hotz, L, Krebs, T. Günter, A.(2003) A Knowledge-based Product Derivation Process and

some Ideas how to Integrate Product Development (position paper), Workshop on

Software Variability Management, Groningen, The Netherlands), February 13-14, 2003.

Johnston, W. M.; Hanna, J. R. P. & Millar, R. J. (2004). Advances in dataflow programming

languages, ACM Comput. Surv. 36, pp 1-34.

Jones T.C., (1998) Estimating Software Costs, McGraw Hill.

Karaila, M. and Leppäniemi, A. (2004), Multi-Agent Based Framework for Large Scale

Visual Program Reuse, IFIP, Volume 159/2005, 91-98.

Karaila M., Systä T. (2005), On the Role of Metadata in Visual Language Reuse and Reverse

Engineering – An Industrial Case Electronic Notes in Theoretical Computer Science,

2005, Volume 137, Issue 3, 29-41.

Karaila, M. and Systä, T. (2007), Applying Template Meta-Programming Techniques for a

Domain-Specific Visual Language - An Industrial Experience Report, ICSE 2007.

Korhonen, K. (2002), A case study on reusability of a DSL in a dynamic domain 2nd

OOPSLA Workshop on Domain Specific Visual Languages.

Luoma J., Kelly S., Tolvanen J.P., (2005) Defining Domain-Specific Modeling Languages:

Collected Experiences, In Proc. of the 4th OOPSLA Workshop on Domain-Specific

Modeling (DSM’04), LNCS 3714, Springer, pp. 198-209.

MetaCase, (2006) Domain-Specific Modeling with MetaEdit+, http://www.metacase.com/.

Mohamed E. Fayad, R. E. J. (ed.) (2000) Domain-Specific Application Frameworks.

Frameworks Experience by Industry Wiley, 681

MODBUS, http://www.modbus.org/ Last visited September 2008.

Pressman, R. S. (1997) Software Engineering a Practioner's Approach McGraw-Hill.

Ommering, R. (2005) Software Reuse in Product Populations Software Engineering, IEEE

Transactions on, 31, 537-550.

Park, S. & Palmer, J. D. (1995) A feature based reuse library Springer Berlin / Heidelberg,

1995, Volume 945/1995, 493-500.

Rahman Jamal, L. W. (1995). The Applicability of the Visual Programming Language

LabVIEW to Large Real-World Applications, In the Proc. of the 11th International

IEEE Symposium on Visual Languages, IEEE Computer Society Washington, DC, US.

Rothenberger, M. A.; Dooley, K. J.; Kulkarni, U. R. & Nada, N. (2003) Strategies for Software

Reuse: A Principal Component Analysis of Reuse Practices IEEE Transactions on

Software Engineering, IEEE Computer Society, 2003, 29, 825-837.

SCD, The Standardization Organizations in Norway, I-005 System Control Diagrams (Last

visited September 2009), http://www.standard.no/.

Shu, N. C. Visual Programming Book Van Nostrand Reinhold Company. New York, 1988

Smedley T.J. and Cox P.T. (1997), Visual Languages for the Design and Development of

Structured Objects, Journal of Visual Languages and Computing, 8, pp. 57-84.

Sneed maintenance costs, H. Sneed, (1996) Encapsulating Legacy Software for Use in

Client/Server Systems, In The Proc. of WCRE 1996, pp. 104-119.

Storey M.-A.D. , K. Wong, F.D. Fracchia and H. A. Müller , (1997) On Integrating

Visualization Techniques for Effective Software Exploration, In Proc. of IEEE

www.intechopen.com

Visual Servoing 180

Symposium on Information Visualization (InfoVis'97), Phoenix, Arizona, U.S.A., 1997,

pp. 38-45.

Tilley S (1998), A Reverse-Engineering Environment Framework. Technical Report CMU/SEI-

98-TR-005, April 1998, 44 pages.

TRACE MODE, AdAstrA Research Group, (Last visited September 2009) TRACE MODE

(IEC6-1131/3, http://www.tracemode.com/products/overview/IEC61131/,

UML, (Last visited September 2009), http://www.uml.org/.

VGB, Association of power and heat generating utilities. (Last visited September 2009),

http://www.vgb.org/.

Whitley K.N., A. F. B. (2001) Visual Programming in the Wild: A Survey of LabVIEW

Programmers Journal of Visual Languages and Computing, 2001, 12, 435-472.

Wilkening D.E., Loyall J. P., Pitarys M. J. and Littlejohn K. (1995), A Reuse Approach for

Reengineering. Journal of Systems Software 30, pp. 117-125.

www.intechopen.com

Visual Servoing

Edited by Rong-Fong Fung

ISBN 978-953-307-095-7

Hard cover, 234 pages

Publisher InTech

Published online 01, April, 2010

Published in print edition April, 2010

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The goal of this book is to introduce the visional application by excellent researchers in the world currently and

offer the knowledge that can also be applied to another field widely. This book collects the main studies about

machine vision currently in the world, and has a powerful persuasion in the applications employed in the

machine vision. The contents, which demonstrate that the machine vision theory, are realized in different field.

For the beginner, it is easy to understand the development in the vision servoing. For engineer, professor and

researcher, they can study and learn the chapters, and then employ another application method.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Mika Karaila (2010). Model Based Software Production Utilized by Visual Templates, Visual Servoing, Rong-

Fong Fung (Ed.), ISBN: 978-953-307-095-7, InTech, Available from: http://www.intechopen.com/books/visual-

servoing/model-based-software-production-utilized-by-visual-templates

© 2010 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

