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1. Introduction

Usually, the purpose of studying data compression algorithms is twofold. The need for effi-
cient storage and transmission is often the main motivation, but underlying every compres-
sion technique there is a model that tries to reproduce as closely as possible the information
source to be compressed. This model may be interesting on its own, as it can shed light on the
statistical properties of the source. DNA data are no exception. We urge to find out efficient
methods able to reduce the storage space taken by the impressive amount of genomic data
that are continuously being generated. Nevertheless, we also desire to know how the code of
life works and what is its structure. Creating good (compression) models for DNA is one of
the ways to achieve these goals.
Recently, and with the completion of the human genome sequencing, the development of effi-
cient lossless compression methods for DNA sequences gained considerable interest (Behzadi
and Le Fessant, 2005; Cao et al., 2007; Chen et al., 2001; Grumbach and Tahi, 1993; Korodi and
Tabus, 2005; 2007; Manzini and Rastero, 2004; Matsumoto et al., 2000; Pinho et al., 2006; 2009;
2008; Rivals et al., 1996). For example, the human genome is determined by approximately
3 000 million base pairs (Rowen et al., 1997), whereas the genome of wheat has about 16 000
million (Dennis and Surridge, 2000). Since DNA is based on an alphabet of four different sym-
bols (usually known as nucleotides or bases), namely, Adenine (A), Cytosine (C), Guanine (G),
and Thymine (T), without compression it takes approximately 750 MBytes to store the human
genome (using log2 4 = 2 bits per symbol) and 4 GBytes to store the genome of wheat.
In this chapter, we address the problem of DNA data modeling and coding. We review the
main approaches proposed in the literature over the last fifteen years and we present some
recent advances attained with finite-context models (Pinho et al., 2006; 2009; 2008). Low-order
finite-context models have been used for DNA compression as a secondary, fall back method.
However, we have shown that models of orders higher than four are indeed able to attain
significant compression performance.
Initially, we proposed a three-state finite-context model for DNA protein-coding regions, i.e.,
for the parts of the DNA that carry information regarding how proteins are synthesized (Fer-
reira et al., 2006; Pinho et al., 2006). This three-state model proved to be better than a single-
state model, giving additional evidence of a phenomenon that is common in these protein-
coding regions, the periodicity of period three.

*This work was supported in part by the FCT (Fundação para a Ciência e Tecnologia) grant
PTDC/EIA/72569/2006.
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More recently (Pinho et al., 2008), we investigated the performance of finite-context models
for unrestricted DNA, i.e., DNA including coding and non-coding parts. In that work, we
have shown that a characteristic usually found in DNA sequences, the occurrence of inverted
repeats, which is used by most of the DNA coding methods (see, for example, Korodi and
Tabus (2005); Manzini and Rastero (2004); Matsumoto et al. (2000)), could also be successfully
integrated in finite-context models. Inverted repeats are copies of DNA sub-sequences that
appear reversed and complemented (A ↔ T, C ↔ G) in some parts of the DNA.
Further studies have shown that multiple competing finite-context models, working on a
block basis, could be more effective in capturing the statistical information along the sequence
(Pinho et al., 2009). For each block, the best of the models is chosen, i.e., the one that requires
less bits for representing the block. In fact, DNA is non-stationary, with regions of low infor-
mation content (low entropy) alternating with regions with average entropy close to two bits
per base. This alternation is modeled by most DNA compression algorithms by using a low-
order finite-context model for the high entropy regions and a Lempel-Ziv dictionary based
approach for the repetitive, low entropy regions. In this work, we rely only on finite-context
models for representing both regions.
Modeling DNA data using only finite-context models has advantages over the typical DNA
compression approaches that mix purely statistical (for example, finite-context models) with
substitutional models (such as Lempel-Ziv based algorithms): (1) finite-context models lead
to much faster performance, a characteristic of paramount importance for long sequences (for
example, some human chromosomes have more than 200 million bases); (2) the overall model
might be easier to interpret, because it is made of sub-models of the same type.
This chapter is organized as follows. In Section 2 we provide an overview of the DNA com-
pression methods that have been proposed. Section 3 describes the finite-context models used
in this work. These models collect the statistical information needed by the arithmetic cod-
ing. In Section 4 we provide some experimental results. Finally, in Section 5 we draw some
conclusions.

2. DNA compression methods

The interest in DNA coding has been growing with the increasing availability of extensive
genomic databases. Although only two bits are sufficient to encode the four DNA bases,
efficient lossless compression methods are still needed due to the large size of DNA sequences
and because standard compression algorithms do not perform well on DNA sequences. As a
result, several specific coding methods have been proposed. Most of these methods are based
on searching procedures for finding exact or approximate repeats.
The first method designed specifically for compressing DNA sequences was proposed by
Grumbach and Tahi (1993) and was named Biocompress. This technique is based on the sliding
window algorithm proposed by Ziv and Lempel, also known as LZ77 (Ziv and Lempel, 1977).
According to this universal data compression technique, a sub-sequence is encoded using a
reference to an identical sub-sequence that occurred in the past. Biocompress uses a charac-
teristic usually found in DNA sequences which is the occurrence of inverted repeats. These
are sub-sequences that are both reversed and complemented (A ↔ T, C ↔ G). The second
version of Biocompress, Biocompress-2, introduced an additional mode of operation, based on
an order-2 finite-context arithmetic encoder (Grumbach and Tahi, 1994).
Rivals et al. (1995; 1996) proposed another compression technique based on exact repetitions,
Cfact, which relies on a two-pass strategy. In the first pass, the complete sequence is parsed
using a suffix tree, producing a list of the longest repeating sub-sequences that have a potential
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coding gain. In the second pass, those sub-sequences are encoded using references to the past,
whereas the rest of the symbols are left uncompressed.
The idea of using repeating sub-sequences was also exploited by Chen et al. (1999; 2001).
The authors proposed a generalization of this strategy such that approximate repeats of sub-
sequences and of inverted repeats could also be handled. In order to reproduce the original
sequence, the algorithm, named GenCompress, uses operations such as replacements, inser-
tions and deletions. As in Biocompress, GenCompress includes a mechanism for deciding if it is
worthwhile to encode the sub-sequence under evaluation using the substitution-based model.
If not, it falls back to a mode of operation based on an order-2 finite-context arithmetic encoder.
A further modification of GenCompress led to a two-pass algorithm, DNACompress, relying on
a separated tool for approximate repeat searching, PatternHunter, (Chen et al., 2002). Besides
providing additional compression gains, DNACompress is considerably faster than GenCom-
press.
Before the publication of DNACompress, a technique based on context tree weighting (CTW)
and LZ-based compression, CTW+LZ, was proposed by Matsumoto et al. (2000). Basically,
long repeating sub-sequences or inverted repeats, exact or approximate, are encoded by a
LZ-type algorithm, whereas short sub-sequences are compressed using CTW.
One of the main problems of techniques based on sub-sequence matching is the time taken by
the search operation. Manzini and Rastero (2004) addressed this problem and proposed a fast,
although competitive, DNA encoder, based on fingerprints. Basically, in this approach small
sub-sequences are not considered for matching. Instead, the algorithm focus on finding long
matching sub-sequences (or inverted repeats). Like most of the other methods, this technique
also uses fall back mechanisms for the regions where matching fails, in this case, finite-context
arithmetic coding of order-2 (DNA2) or order-3 (DNA3).
Tabus et al. (2003) proposed a sophisticated DNA sequence compression method based on
normalized maximum likelihood discrete regression for approximate block matching. This
work, later improved for compression performance and speed (Korodi and Tabus (2005),
GeNML), encodes fixed-size blocks by referencing a previously encoded sub-sequence with
minimum Hamming distance. Only replacement operations are allowed for editing the ref-
erence sub-sequence which, therefore, always have the same size as the block, although may
be located in an arbitrary position inside the already encoded sequence. Fall back modes of
operation are also considered, namely, a finite-context arithmetic encoder of order-1 and a
transparent mode in which the block passes uncompressed.
Behzadi and Le Fessant (2005) proposed the DNAPack algorithm, which uses the Hamming
distance (i.e., it relies only on substitutions) for the repeats and inverted repeats, and either
CTW or order-2 arithmetic coding for non-repeating regions. Moreover, DNAPack uses dy-
namic programming techniques for choosing the repeats, instead of greedy approaches as
others do.
More recently, two other methods have been proposed (Cao et al., 2007; Korodi and Tabus,
2007). One of them (Korodi and Tabus, 2007), is an evolution of the normalized maximum
likelihood model introduced by Tabus et al. (2003) and improved by Korodi and Tabus (2005).
This new version, NML-1, is built on the GeNML framework and aims at finding the best
regressor block using first-order dependencies (these dependencies were not considered in
the previous approach).
The other method, proposed by Cao et al. (2007) and called XM, relies on a mixture of ex-
perts for providing symbol by symbol probability estimates which are then used for driv-
ing an arithmetic encoder. The algorithm comprises three types of experts: (1) order-2
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Markov models; (2) order-1 context Markov models, i.e., Markov models that use statis-
tical information only of a recent past (typically, the 512 previous symbols); (3) the copy
expert, that considers the next symbol as part of a copied region from a particular off-
set. The probability estimates provided by the set of experts are them combined using
Bayesian averaging and sent to the arithmetic encoder. Currently, this seems to be the method
that provides the highest compression on the April 14, 2003 release of the human genome
(see results in ftp://ftp.infotech.monash.edu.au/software/DNAcompress-XM/

XMCompress/humanGenome.html). However, both NML-1 and XM are computationally
intensive techniques.

3. Finite-context models

Consider an information source that generates symbols, s, from an alphabet A. At time t, the
sequence of outcomes generated by the source is x

t = x1x2 . . . xt. A finite-context model of
an information source (see Fig. 1) assigns probability estimates to the symbols of the alphabet,
according to a conditioning context computed over a finite and fixed number, M, of past
outcomes (order-M finite-context model) (Bell et al., 1990; Salomon, 2007; Sayood, 2006). At
time t, we represent these conditioning outcomes by c

t = xt−M+1, . . . , xt−1, xt. The number of
conditioning states of the model is |A|M, dictating the model complexity or cost. In the case
of DNA, since |A| = 4, an order-M model implies 4M conditioning states.

G G

symbol
Input

Encoder
Output

 bit−stream 

CAGAT... AA C T ...

FCM

xt−4 xt+1

P (xt+1 = s|ct)

c
t

Fig. 1. Finite-context model: the probability of the next outcome, xt+1, is conditioned by the
M last outcomes. In this example, M = 5.

In practice, the probability that the next outcome, xt+1, is s, where s ∈ A = {A, C, G, T}, is
obtained using the Lidstone estimator (Lidstone, 1920)

P(xt+1 = s|ct) =
n

t
s + δ

∑
a∈A

n
t
a + 4δ

, (1)

where n
t
s represents the number of times that, in the past, the information source generated

symbol s having c
t as the conditioning context. The parameter δ controls how much probabil-

ity is assigned to unseen (but possible) events, and plays a key role in the case of high-order
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AAAAA 23 41 3 12 79
...

...
...

...
...

...
ATAGA 16 6 21 15 58

...
...

...
...

...
...

GTCTA 19 30 10 4 63
...

...
...

...
...

...
TTTTT 8 2 18 11 39

Table 1. Simple example illustrating how finite-context models are implemented. The rows
of the table represent probability models at a given instant t. In this example, the particular
model that is chosen for encoding a symbol depends on the last five encoded symbols (order-5
context).

models.1 Note that Lidstone’s estimator reduces to Laplace’s estimator for δ = 1 (Laplace,
1814) and to the frequently used Jeffreys (1946) / Krichevsky and Trofimov (1981) estimator
when δ = 1/2. In our work, we found out experimentally that the probability estimates cal-
culated for the higher-order models lead to better compression results when smaller values of
δ are used.
Note that, initially, when all counters are zero, the symbols have probability 1/4, i.e., they are
assumed equally probable. The counters are updated each time a symbol is encoded. Since
the context template is causal, the decoder is able to reproduce the same probability estimates
without needing additional information.
Table 1 shows an example of how a finite-context model is typically implemented. In this
example, an order-5 finite-context model is presented (as that of Fig. 1). Each row represents a
probability model that is used to encode a given symbol according to the last encoded symbols
(five in this example). Therefore, if the last symbols were “ATAGA”, i.e., ct = ATAGA, then
the model communicates the following probability estimates to the arithmetic encoder:

P(A|ATAGA) = (16 + δ)/(58 + 4δ),

P(C|ATAGA) = (6 + δ)/(58 + 4δ),

P(G|ATAGA) = (21 + δ)/(58 + 4δ)

and
P(T|ATAGA) = (15 + δ)/(58 + 4δ).

The block denoted “Encoder” in Fig. 1 is an arithmetic encoder. It is well known that practical
arithmetic coding generates output bit-streams with average bitrates almost identical to the
entropy of the model (Bell et al., 1990; Salomon, 2007; Sayood, 2006). The theoretical bitrate
average (entropy) of the finite-context model after encoding N symbols is given by

HN = −
1

N

N−1

∑
t=0

log2 P(xt+1 = s|ct) bps, (2)

1 When M is large, the number of conditioning states, 4M , is high, which implies that statistics have to be
estimated using only a few observations.
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AAAAA 23 41 3 12 79
...

...
...

...
...

...

ATAGA 16 7 21 15 59
...

...
...

...
...

...
GTCTA 19 30 10 4 63

...
...

...
...

...
...

TTTTT 8 2 18 11 39

Table 2. Table 1 updated after encoding symbol “C”, according to context “ATAGA”.

where “bps” stands for “bits per symbol”. When dealing with DNA bases, the generic
acronym “bps” is sometimes replaced with “bpb”, which stands for “bits per base”. Recall
that the entropy of any sequence of four symbols is, at most, two bps, a value that is achieved
when the symbols are independent and equally likely.
Referring to the example of Table 1, and supposing that the next symbol to encode is “C”,
it would require, theoretically, − log2((6 + δ)/(58 + 4δ)) bits to encode it. For δ = 1, this is
approximately 3.15 bits. Note that this is more than two bits because, in this example, “C”
is the least probable symbol and, therefore, needs more bits to be encoded than the more
probable ones. After encoding this symbol, the counters will be updated according to Table 2.

3.1 Inverted repeats

As previously mentioned, DNA sequences frequently contain sub-sequences that are reversed
and complemented copies of some other sub-sequences. These sub-sequences are named “in-
verted repeats”. As described in Section 2, this characteristic of DNA is used by most of the
DNA compression methods that rely on the sliding window searching paradigm.
For exploring the inverted repeats of a DNA sequence, besides updating the corresponding
counter after encoding a symbol, we also update another counter that we determine in the
following way. Consider the example given in Fig. 1, where the context is the string “ATAGA”
and the symbol to encode is “C”. Reversing the string obtained by concatenating the context
string and the symbol, i.e., “ATAGAC”, we obtain the string “CAGATA”. Complementing
this string (A ↔ T, C ↔ G), we get “GTCTAT”. Now we consider the prefix “GTCTA” as the
context and the suffix “T” as the symbol that determines which counter should be updated.
Therefore, according to this procedure, for taking into consideration the inverted repeats, after
encoding symbol “C” of the example in Fig. 1, the counters should be updated according to
Table 3.

3.2 Competing finite-context models

Because DNA data are non-stationary, alternating between regions of low and high entropy,
using two models with different orders allows a better handling both of DNA regions that are
best represented by low-order models and regions where higher-order models are advanta-
geous. Although both models are continuously been updated, only the best one is used for

G

symbol
Input

CAGATA C T ...... G T G A G CT A

FCM1

FCM2

www.intechopen.com



Finite-context models for DNA coding 123

Context, ct nt
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AAAAA 23 41 3 12 79
...

...
...

...
...

...

ATAGA 16 7 21 15 59
...

...
...

...
...

...

GTCTA 19 30 10 5 64
...

...
...

...
...

...
TTTTT 8 2 18 11 39

Table 3. Table 1 updated after encoding symbol “C” according to context “ATAGA” (see
example of Fig. 1) and taking the inverted repeats property into account.

encoding a given region. To cope with this characteristic, we proposed a DNA lossless com-
pression method that is based on two finite-context models of different orders that compete
for encoding the data (see Fig. 2).
For convenience, the DNA sequence is partitioned into non-overlapping blocks of fixed size
(we have used one hundred DNA bases), which are then encoded by one (the best one)
of the two competing finite-context models. This requires only the addition of a single bit
per data block to the bit-stream in order to inform the decoder of which of the two finite-
context models was used. Each model collects statistical information from a context of
depth Mi, i = 1, 2, M1 �= M2. At time t, we represent the two conditioning outcomes by
ct

1 = xt−M1+1, . . . , xt−1, xt and by ct
2 = xt−M2+1, . . . , xt−1, xt.

G

symbol
Input

CAGATA C T ...... G T G A G CT A

FCM1

FCM2

xt−10

P (xt+1 = s|ct2)

P (xt+1 = s|ct1)

xt−4 xt+1

c
t

2

c
t

1

Fig. 2. Proposed model for estimating the probabilities: the probability of the next outcome,
xt+1, is conditioned by the M1 or M2 last outcomes, depending on the finite-context model
chosen for encoding that particular DNA block. In this example, M1 = 5 and M2 = 11.
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Using higher-order context models leads to a practical problem: the memory needed to repre-
sent all of the possible combinations of the symbols related to the context might be too large. In
fact, as we mentioned, each DNA model of order-M implies 4M different states of the Markov
chain. Because each of these states needs to collect statistical data that is necessary to the en-
coding process, a large amount of memory might be required as the model order grows. For
example, an order-16 model might imply a total of 4 294 967 296 different states.

GCAGATA C T ...... G T G A G CT A

function

Model

symbol
Input

Hash

Key
Hash table

xt−10 xt+1

P (xt+1 = s|ct2)

c
t

2

Fig. 3. The context model using hash tables. The hash table representation is shown in Fig. 4.

In order to overcome this problem, we implemented the higher-order context models using
hash tables. With this solution, we only need to create counters if the context formed by the
M last symbols appears at least once. In practice, for very high-order contexts, we are limited
by the length of the sequence. In the current implementation we are able to use models of
orders up to 32. However, as we will present later, the best value of M for the higher-order
models is 16. This can be explained by the well known problem of context dilution. Moreover,
for higher-order models, a large number of contexts occur only once and, therefore, the model
cannot take advantage of them.
For each symbol, a key is generated according to the context formed by the previous symbols
(see Fig. 3). For that key, the related linked-list if traversed and, if the node containing the
context exists, its statistical information is used to encode the current symbol. If the context
never appeared before, a new node is created and the symbol is encoded using an uniform
probability distribution. A graphical representation of the hash table is presented in Fig. 4.

Counters
Context

Counters
Context

Counters
Context

Counters
Context

Key 2

Key 3

Key 1 NULL

NULL

Key N

Fig. 4. Graphical representation of the hash table used to represent higher-order models. Each
node stores the information of the context found (Context) and the counters associated to
that context (Counters), four in the case of DNA sequences.
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4. Experimental results

For the evaluation of the methods described in the previous section, we used the same DNA
sequences used by Manzini and Rastero (2004), which are available from www.mfn.unipmn.

it/~manzini/dnacorpus. This corpus contains sequences from four organisms: yeast (Sac-
charomyces cerevisiae, chromosomes 1, 4, 14 and the mitochondrial DNA), mouse (Mus muscu-
lus, chromosomes 7, 11, 19, x and y), arabidopsis (Arabidopsis thaliana, chromosomes 1, 3 and
4) and human (Homo sapiens, chromosomes 2, 13, 22, x and y).
First, we present results that show the effectiveness of the proposed inverted repeats updating
mechanism for finite-context modeling. Next, we show the advantages of using multiple (in
this case, two) competing finite-context models for compression.

4.1 Inverted repeats

Regarding the inverted repeats updating mechanism, each of the sequences was encoded us-
ing finite-context models with orders ranging from four to thirteen, with and without the
inverted repeats updating mechanism. As in most of the other DNA encoding techniques,
we also provided a fall back method that is used if the main method produces worse results.
This is checked on a block by block basis, where each block is composed of one hundred DNA
bases. As in the DNA3 version of Manzini’s encoder, we used an order-3 finite-context model
as fall back method (Manzini and Rastero, 2004). Note that, in our case, both the main and fall
back methods rely on finite-context models.
Table 4 presents the results of compressing the DNA sequences with the “normal” finite-
context model (FCM) and with the model that takes into account the inverted repeats (FCM-
IR). The bitrate and the order of the model that provided the best results are indicated. For
comparison, we also included the results of the DNA3 compressor of Manzini and Rastero
(2004).
As can be seen from the results presented in Table 4, the bitrates obtained with the finite-
context models using the updating mechanism for inverted repeats (FCM-IR) are always bet-
ter than those obtained with the “normal” finite-context models (FCM). This confirms that the
finite-context models can be modified according to the proposed scheme to exploit inverted
repeats. Figure 5 shows how the finite-context models perform for various model orders, from
order-4 to order-13, for the case of the “y-1” and “h-y” sequences.

4.2 Competing finite-context models

Each of the DNA sequences used by Manzini was encoded using two competing finite-context
models with orders M1, M2, 3 ≤ M1 ≤ 8 and 9 ≤ M2 ≤ 18. For each DNA sequence, the pair
M1, M2 leading to the lowest bitrate was chosen. The inverted repeats updating mechanism
was used, as well as δ = 1 for the lower-order model and δ = 1/30 for the higher-order model.
All information needed for correct decoding is included in the bit-stream and, therefore, the
compression results presented in Table 5 take into account that information. The columns
of Table 5 labeled “M1” and “M2” represent the orders of the used models and the columns
labeled with the percent sign show the percentage of use of each finite-context model.
As can be seen from the results presented in Table 5, the method using two competing finite-
context models always provides better results than the DNA3 compressor. This confirms that
the finite-context models may be successfully used as the only coding method for DNA se-
quences. Although we do not include here a comprehensive study of the impact of the δ

parameter in the performance of the method, nevertheless we show an example to illustrate
its influence on the compression results of the finite-context models. For example, using δ = 1
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Name Size DNA3 FCM FCM-IR
bpb Order bpb Order bpb

y-1 230 203 1.871 10 1.935 11 1.909
y-4 1 531 929 1.881 12 1.920 12 1.910
y-14 784 328 1.926 9 1.945 12 1.938
y-mit 85 779 1.523 6 1.494 7 1.479

Average – 1.882 – 1.915 – 1.904

m-7 5 114 647 1.835 11 1.849 12 1.835
m-11 49 909 125 1.790 13 1.794 13 1.778
m-19 703 729 1.888 10 1.883 10 1.873
m-x 17 430 763 1.703 12 1.715 13 1.692
m-y 711 108 1.707 10 1.794 11 1.741

Average – 1.772 – 1.780 – 1.762

at-1 29 830 437 1.844 13 1.887 13 1.878
at-3 23 465 336 1.843 13 1.884 13 1.873
at-4 17 550 033 1.851 13 1.887 13 1.878

Average – 1.845 – 1.886 – 1.876

h-2 236 268 154 1.790 13 1.748 13 1.734
h-13 95 206 001 1.818 13 1.773 13 1.759
h-22 33 821 688 1.767 12 1.728 12 1.710
h-x 144 793 946 1.732 13 1.689 13 1.666
h-y 22 668 225 1.411 13 1.676 13 1.579

Average – 1.762 – 1.732 – 1.712

Table 4. Compression values, in bits per base (bpb), for several DNA sequences. The “DNA3”
column shows the results obtained by Manzini and Rastero (2004). Columns “FCM” and
“FCM-IR” contain the results, respectively, of the “normal” finite-context models and of the
finite-context models equipped with the inverted repeats updating mechanism. The order of
the model that provided the best result is indicated under the columns labeled “Order”.

for both models would lead to bitrates of 1.869, 1.865 and 1.872, respectively for the “at-1”,
“at-3” and “at-4” sequences, i.e., approximately 2% worse than when using δ = 1/30 for the
higher-order model.
Finally, it is interesting to note that the lower-order model is generally the one that is most
frequently used along the sequence and also the one associated with the highest bitrates. In
fact, the bitrates provided by the higher-order finite-context models suggest that these are
chosen in regions where the entropy is low, whereas the lower-order models operate in the
higher entropy regions.

5. Conclusion

Finite-context models have been used by most DNA compression algorithms as a secondary,
fall back method. In this work, we have studied the potential of this statistical modeling
paradigm as the main and only approach for DNA compression. Several aspects have been
addressed, such as the inclusion of mechanisms for handling inverted repeats and the use
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Fig. 5. Performance of the finite-context model as a function of the order of the model, with
and without the updating mechanism for inverted repeats (IR), for sequences “y-1” and “h-y”.

of multiple finite-context models that compete for encoding the data. This study allowed us
to conclude that DNA models relying only on Markovian principles can provide significant
results, although not as expressive as those provided by methods such as MNL-1 or XM. Nev-
ertheless, the experimental results show that the proposed approach can outperform methods
of similar computational complexity, such as the DNA3 coding method (Manzini and Rastero,
2004).
One of the key advantages of DNA compression based on finite-context models is that the
encoders are fast and have O(n) time complexity. In fact, most of the computing time needed
by previous DNA compressors is spent on the task of finding exact or approximate repeats
of sub-sequences or of their inverted complements. No doubt, this approach has proved to
give good returns in terms of compression gains, but normally at the cost of long compression

www.intechopen.com



Signal Processing128

Name Size DNA3 FCM1 FCM2 FCM
bps M1 % bps M2 % bps bps

y-1 230 203 1.871 3 82 1.939 12 18 1.462 1.860
y-4 1 531 929 1.881 4 88 1.930 14 12 1.470 1.879
y-14 784 328 1.926 3 90 1.938 13 10 1.716 1.923
y-mit 85 779 1.523 5 83 1.533 9 17 1.178 1.484

Average – 1.882 – – 1.920 – – 1.533 1.877

m-7 5 114 647 1.835 6 81 1.907 14 19 1.353 1.811
m-11 49 909 125 1.790 4 76 1.917 16 24 1.230 1.758
m-19 703 729 1.888 4 83 1.920 13 17 1.582 1.870
m-x 17 430 763 1.703 6 70 1.896 15 30 1.081 1.656
m-y 711 108 1.707 3 66 1.896 13 34 1.199 1.670

Average – 1.772 – – 1.911 – – 1.206 1.738

at-1 29 830 437 1.844 6 82 1.898 16 18 1.475 1.831
at-3 23 465 336 1.843 6 80 1.901 16 20 1.495 1.826
at-4 17 550 033 1.851 6 80 1.897 15 20 1.560 1.838

Average – 1.845 – – 1.899 – – 1.503 1.831

h-2 236 268 154 1.790 4 76 1.905 16 24 1.212 1.755
h-13 95 206 001 1.818 5 80 1.895 15 20 1.279 1.723
h-22 33 821 688 1.767 3 68 1.925 15 32 1.180 1.696
h-x 144 793 946 1.732 5 66 1.901 16 34 1.217 1.686
h-y 22 668 225 1.411 4 47 1.901 16 53 0.941 1.397

Average – 1.762 – – 1.903 – – 1.212 1.711

Table 5. Compression values, in bits per symbol (bps), for several of DNA sequences. The
“DNA3” column shows the results obtained by Manzini and Rastero (2004). Column “FCM”
contains the results of the two combined finite-context models. The orders of the two models
that provided the best result for each sequence are indicated under the columns labeled “M1”
and ”M2”.

times. Although slow encoders could be tolerated for storage purposes (compression could
be ran in batch mode), for interactive applications such as those involving the computation
of complexity profiles (Dix et al., 2007) they are certainly not the most appropriate; faster
methods, such as those examined in this chapter, could be particularly useful in those cases.
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