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1. Introduction 

Many endogenous and exogenous factors can affect the physiological, mental and 
behavioral states in humans. In order to identify such states, monitoring tools need to use 
biological indicators, or biomarkers, able to identify biological events and predict outcomes. 
These biomarkers can be divided into two categories.  
The first category contains what we could call the “structural” biomarkers that are extracted 
from physiological structures and mainly defined at the genetic and/or molecular level (e.g., 
Berg, 2008; Dengler et al., 2007; Eleuteri et al., 2009; Isaac, 2008; Moura et al., 2008; Wei, 
2009). For instance, the formation or consumption of certain molecules provide biomarkers 
to identify patients with moderate to severe forms of cardiac heart failure (Eleuteri et al., 
2009; Isaac, 2008) while changes in cortisol level allow detection of an increased stress 
response (Armstrong & Hatfield, 2006). Similarly, other active molecules (e.g., C-reactive 
protein) are used as biomarkers of valvular heart disease (Moura et al., 2008) while cardiac 
troponins and N-type natriuretic peptides can be used in post-transplant patient 
surveillance (Dengler et al., 2007). Other examples of structural biomarkers aim to identify 
abnormalities in neural connectivity in the brain. For instance, the presence of certain 
molecules in venous blood or a damaged white matter provides potential predictors of risk 
of cerebral palsy (Dammann & Leviton, 2004, 2006; Kaukola et al., 2004). Also, genomic and 
proteomic biomarkers are able to define the risk of an individual to develop a 
neurodegenerative disease such as Parkinson’s disease (Gasser, 2009), Alzheimer's disease 
(Berg, 2008; Wei, 2009) or amyotrophic lateral (Tuner et al., 2009) and multiple sclerosis 
(Wei, 2009).  
The second category includes what we could call “functional” biomarkers that are further 
related to continuous measurements of body function throughout time in order to track 
physiological, mental and behavioral states (e.g., Georgopoulos et al., 2007; Hejjel & Gál, 
2001; Hofstra et al., 2008). For instance, electro-cardiograms, heartbeat, and body 
temperature are possible functional biomarkers to determine stress level (Hejjel & Gál, 
2001). Body temperature can be used to detect the phase of circadian rhythms (Hofstra et al., 
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2008), and blood pressure can be employed to identify the chronic fatigue (Newton et al., 
2009). Recently, it has been also suggested that measurements of the skin conductance was a 
better tool to monitor nociceptive stimulation and pain than heart rate and blood pressure 
(Storm et al., 2008).  
Another important family of functional biomarkers includes status measurements of brain 
functions in order to monitor and interpret neural activity, identify specific neurological 
events and predict outcomes (e.g., Gentili et al., 2008; Guarracino, 2008; Hatfield et al., 2004; 
Irani et al., 2007; Tuner et al., 2009; van Putten et al., 2005; Williams & Ramamoorthy, 2007). 
These brain indicators, or brain biomarkers, can be derived from signals recorded by means 
of invasive acquisition techniques such as implantable microelectrodes arrays or 
electrocorticography (Schalk et al., 2008), or, alternatively, non-invasive techniques such as 
electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI) or emerging neuroimaging technologies such as functional near 
infrared spectroscopy (fNIRS) (Irani et al., 2007; Parasuraman & Rizzo, 2007). For instance, 
brain biomarkers derived from temporal or spectral EEG signals processing allow for the 
determination of anesthetic depth during pediatric cardiac surgery (Williams & 
Ramamoorthy, 2009). Other brain biomarkers derived from EEG, such as the brain 
symmetry index, permit the detection of seizure activity in the temporal lobe and can be, 
therefore, useful for epileptic monitoring needed in intensive care units (van Putten et al., 
2005). Still using EEG analysis, it is also possible to detect a reduction of cerebral blood flow 
below a certain threshold (Guarracino et al., 2008). Other high-temporal resolution 
measurement techniques such as MEG have also been used to successfully classify 
respective groups of individuals subjected to multiple sclerosis, Alzheimer’s disease, 
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain and healthy controls 
(Georgopoulos et al., 2007). More recently, it has been shown that the fNIRS imaging 
technique, a relatively novel cerebral imaging tool, could provide information allowing the 
monitoring of brain oxygenation by measuring regional cerebral venous oxygen saturation 
(Guarracino et al., 2008). 
These examples provided by medical, biomedical and bioengineering research fields 
illustrate how various brain monitoring tools are being developed intending to uncover 
structural or functional brain biomarkers for detection, prevention, prediction, and 
diagnosis of heart function, adverse neurological events and neural/neurodegenerative 
diseases. However, the research aiming to uncover functional brain biomarkers directly 
relevant for the restoration of cognitive-motor and/or sensorimotor functions (e.g., disabled 
populations, advanced aging) is still a relatively young research field. Indeed, although 
many assistive technologies aiming to restore cognitive-motor and sensorimotor functions 
are currently underway (e.g., neuroprosthetics (Cipriani et al., 2008; Wolpaw et al., 2007); 
exoskeletons (Carignan et al., 2008)), few brain monitoring tools related to sensorimotor 
integration are being developed. However, these bioengineering applications, such as the 
design of smart neuroprosthetics, require a deeper understanding of brain dynamics in 
ecological situations that involve human interaction with new tools and/or changing 
environments that guide learning and more generally shape motor behavior. Specifically, 
such monitoring tools aiming to assess the dynamic status of the brain necessitates the 
knowledge of brain biomarkers able to track brain dynamics in ecological situations where 
humans have to learn new tasks, to master novel tools and/or changing environments. 
These brain biomarkers should be preferably non-invasive (i.e., no surgical intervention 

needed), simple to record and analyze, simultaneously robust and sensitive to specific 
changes in brain function in natural situations. Such assessment in ecological situations 
requires non-invasive recording of the dynamic brain activity with a high temporal 
resolution (e.g., millisecond), which is well suited for EEG. Although some research efforts 
are underway (e.g., Deeny et al., 2003, 2009; Gentili et al., 2008, 2009a,b; Hatfield et al., 2004; 
Haufler et al., 2000; Kerick et al., 2004) to develop methods to provide non-invasive 
functional brain biomarkers able to track the brain status during sensorimotor performance; 
some questions and problems remain. For example, how accurately and efficiently can a 
cognitive-motor or sensorimotor state be inferred? What methods might provide robust 
brain biomarkers applicable on single-subject and single-trial bases? How can the signal 
processing techniques used in laboratory contexts to derive such biomarkers can be 
transferred successfully in real-time applications to ecological contexts? Although this 
manuscript does not purport to exhaustively answer these questions, some elements of 
response and possible problem-solving perspectives will be presented and discussed. 
Therefore, the aims of this chapter are to provide the state-of-the-art of the research along 
with the main signal processing techniques related to functional non-invasive EEG/MEG 
brain biomarkers that allow tracking of cortical dynamics to assess the level of mastery of a 
sensorimotor task and the adaptation to novel tools or environments. It must be noted that, 
from a technical point of view, the methodological approaches presented here are also 
applicable to some (minimally) invasive techniques such as electrocorticography. However, 
when considering an invasive approach, in addition to the inherent risks and difficulties 
related to a surgical intervention, the whole scalp will not be likely covered by the recording 
device, creating limitations in terms of the regions of interest where potential biomarkers 
could be detected. Thus, we will mainly focus on non-invasive recording techniques that use 
a high-temporal resolution (EEG/MEG) with a particular emphasis on results obtained with 
EEG since this recording technique is portable and, thus, applicable in ecological situations. 
In Section 2, the main pre-processing methods employed to clean the EEG/MEG signals of 
artifacts will be explained along with the subsequent methodological approaches that allow 
for the computation of brain biomarkers. Specifically, Section 2 will focus on the spectral 
power and phase synchronization representing the two most classical univariate and 
multivariate non-invasive functional brain biomarkers of performance. In Section 3, the 
classical and the latest findings in this brain biomarker research field will be presented by 
emphasizing promising progress but also current limitations and possible solutions to 
overcome them. Section 4, will present how these brain biomarkers may provide important 
advances in bioengineering applications in ecological contexts such as the development of 
smart neuroprosthetics and brain monitoring techniques. Finally, we will summarize these 
results and suggest future research directions.  

 
2. Signal Processing Methods  

The aim of this second section is not to provide an exhaustive presentation of all the existing 
processing methods for EEG and MEG signals, but rather, to introduce some signal 
processing approaches for EEG and MEG signals to, first, pre-process the signal to remove 
artifacts and, then, to derive non-invasive functional brain biomarkers (e.g., based on 
spectral power and coherence) that are used to assess and track adaptation in cognitive-
motor/sensorimotor performance in humans. 
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2008), and blood pressure can be employed to identify the chronic fatigue (Newton et al., 
2009). Recently, it has been also suggested that measurements of the skin conductance was a 
better tool to monitor nociceptive stimulation and pain than heart rate and blood pressure 
(Storm et al., 2008).  
Another important family of functional biomarkers includes status measurements of brain 
functions in order to monitor and interpret neural activity, identify specific neurological 
events and predict outcomes (e.g., Gentili et al., 2008; Guarracino, 2008; Hatfield et al., 2004; 
Irani et al., 2007; Tuner et al., 2009; van Putten et al., 2005; Williams & Ramamoorthy, 2007). 
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of invasive acquisition techniques such as implantable microelectrodes arrays or 
electrocorticography (Schalk et al., 2008), or, alternatively, non-invasive techniques such as 
electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI) or emerging neuroimaging technologies such as functional near 
infrared spectroscopy (fNIRS) (Irani et al., 2007; Parasuraman & Rizzo, 2007). For instance, 
brain biomarkers derived from temporal or spectral EEG signals processing allow for the 
determination of anesthetic depth during pediatric cardiac surgery (Williams & 
Ramamoorthy, 2009). Other brain biomarkers derived from EEG, such as the brain 
symmetry index, permit the detection of seizure activity in the temporal lobe and can be, 
therefore, useful for epileptic monitoring needed in intensive care units (van Putten et al., 
2005). Still using EEG analysis, it is also possible to detect a reduction of cerebral blood flow 
below a certain threshold (Guarracino et al., 2008). Other high-temporal resolution 
measurement techniques such as MEG have also been used to successfully classify 
respective groups of individuals subjected to multiple sclerosis, Alzheimer’s disease, 
schizophrenia, Sjögren’s syndrome, chronic alcoholism, facial pain and healthy controls 
(Georgopoulos et al., 2007). More recently, it has been shown that the fNIRS imaging 
technique, a relatively novel cerebral imaging tool, could provide information allowing the 
monitoring of brain oxygenation by measuring regional cerebral venous oxygen saturation 
(Guarracino et al., 2008). 
These examples provided by medical, biomedical and bioengineering research fields 
illustrate how various brain monitoring tools are being developed intending to uncover 
structural or functional brain biomarkers for detection, prevention, prediction, and 
diagnosis of heart function, adverse neurological events and neural/neurodegenerative 
diseases. However, the research aiming to uncover functional brain biomarkers directly 
relevant for the restoration of cognitive-motor and/or sensorimotor functions (e.g., disabled 
populations, advanced aging) is still a relatively young research field. Indeed, although 
many assistive technologies aiming to restore cognitive-motor and sensorimotor functions 
are currently underway (e.g., neuroprosthetics (Cipriani et al., 2008; Wolpaw et al., 2007); 
exoskeletons (Carignan et al., 2008)), few brain monitoring tools related to sensorimotor 
integration are being developed. However, these bioengineering applications, such as the 
design of smart neuroprosthetics, require a deeper understanding of brain dynamics in 
ecological situations that involve human interaction with new tools and/or changing 
environments that guide learning and more generally shape motor behavior. Specifically, 
such monitoring tools aiming to assess the dynamic status of the brain necessitates the 
knowledge of brain biomarkers able to track brain dynamics in ecological situations where 
humans have to learn new tasks, to master novel tools and/or changing environments. 
These brain biomarkers should be preferably non-invasive (i.e., no surgical intervention 

needed), simple to record and analyze, simultaneously robust and sensitive to specific 
changes in brain function in natural situations. Such assessment in ecological situations 
requires non-invasive recording of the dynamic brain activity with a high temporal 
resolution (e.g., millisecond), which is well suited for EEG. Although some research efforts 
are underway (e.g., Deeny et al., 2003, 2009; Gentili et al., 2008, 2009a,b; Hatfield et al., 2004; 
Haufler et al., 2000; Kerick et al., 2004) to develop methods to provide non-invasive 
functional brain biomarkers able to track the brain status during sensorimotor performance; 
some questions and problems remain. For example, how accurately and efficiently can a 
cognitive-motor or sensorimotor state be inferred? What methods might provide robust 
brain biomarkers applicable on single-subject and single-trial bases? How can the signal 
processing techniques used in laboratory contexts to derive such biomarkers can be 
transferred successfully in real-time applications to ecological contexts? Although this 
manuscript does not purport to exhaustively answer these questions, some elements of 
response and possible problem-solving perspectives will be presented and discussed. 
Therefore, the aims of this chapter are to provide the state-of-the-art of the research along 
with the main signal processing techniques related to functional non-invasive EEG/MEG 
brain biomarkers that allow tracking of cortical dynamics to assess the level of mastery of a 
sensorimotor task and the adaptation to novel tools or environments. It must be noted that, 
from a technical point of view, the methodological approaches presented here are also 
applicable to some (minimally) invasive techniques such as electrocorticography. However, 
when considering an invasive approach, in addition to the inherent risks and difficulties 
related to a surgical intervention, the whole scalp will not be likely covered by the recording 
device, creating limitations in terms of the regions of interest where potential biomarkers 
could be detected. Thus, we will mainly focus on non-invasive recording techniques that use 
a high-temporal resolution (EEG/MEG) with a particular emphasis on results obtained with 
EEG since this recording technique is portable and, thus, applicable in ecological situations. 
In Section 2, the main pre-processing methods employed to clean the EEG/MEG signals of 
artifacts will be explained along with the subsequent methodological approaches that allow 
for the computation of brain biomarkers. Specifically, Section 2 will focus on the spectral 
power and phase synchronization representing the two most classical univariate and 
multivariate non-invasive functional brain biomarkers of performance. In Section 3, the 
classical and the latest findings in this brain biomarker research field will be presented by 
emphasizing promising progress but also current limitations and possible solutions to 
overcome them. Section 4, will present how these brain biomarkers may provide important 
advances in bioengineering applications in ecological contexts such as the development of 
smart neuroprosthetics and brain monitoring techniques. Finally, we will summarize these 
results and suggest future research directions.  

 
2. Signal Processing Methods  

The aim of this second section is not to provide an exhaustive presentation of all the existing 
processing methods for EEG and MEG signals, but rather, to introduce some signal 
processing approaches for EEG and MEG signals to, first, pre-process the signal to remove 
artifacts and, then, to derive non-invasive functional brain biomarkers (e.g., based on 
spectral power and coherence) that are used to assess and track adaptation in cognitive-
motor/sensorimotor performance in humans. 
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2.1 Pre-processing 
During recording, EEG/MEG signals are generally corrupted with some undesirable 
artifacts such as body movements, muscular artifacts, eye movements, eye blinks, 
environmental noise or heart beat. These artifacts produce possible biases in the detection 
and interpretation of brain biomarkers that will be later derived from the EEG/MEG 
signals. Constraints placed on subjects to minimize these artifacts in a laboratory setting 
cannot be realistically expected in an ecological situation. Therefore, in order to remove such 
artifacts, pre-processing of the EEG/MEG signals may be a necessary and critical step 
(Georgopoulos et al., 2007). Although several signal processing methods are available, such 
pre-processing stage can be performed by using various methods such as Independent 
Component Analysis (ICA) and adaptive filtering.  

 
2.1.1 Artifact removal using Independent Component Analysis 
In many dynamical systems, the measurements are given as a set of mixed signals with 
noise. For example, in the same way conversations are recorded by a number of 
microphones in a crowded party, brain signals containing artifacts are measured through 
multiple EEG/MEG sensors. The information in each of the original signals can be analyzed 
as long as it is possible to identify the system corresponding to the source that emits these 
signals captured by a set of sensors. In this regard, blind source separation is a relevant 
method to approximately recover the original source signals from a set of observed mixed 
signals without any a priori knowledge about either the source signals or the mixing system. 
Regarding applications in biomedical signal processing, ICA is currently considered one of 
the most sophisticated statistical approaches for solving the general problem of blind source 
separation. 

 
2.1.1.1 Basic assumptions of ICA 
ICA is a linear transformation method to find estimated source signals (i.e., the independent 
components) while optimally demixing the mixed signals where independent components 
must satisfy the following conditions (Hyvärinen & Oja, 2000; Oja, 2004; Vaseghi, 2007; 
Vigário et al., 2000): 

i) The independent components are non-Gaussian and statistically independent of 
the higher-order statistics (covariance and kurtosis). 

ii) At most, no more than one independent component can be Gaussian. 
iii) The dimension of the set of independent components does not exceed the number 

of sensors. 
 

Moreover, three additional assumptions must be considered when ICA is applied to 
EEG/MEG signals (Hyvärinen et al., 2001): 
iv) The existence of statistically independent components in EEG/MEG source signals 

is assumed. 
v) The statistically independent components are instantaneously and linearly mixed 

at the sensors. 
vi) The independent components and the mixing processes are supposed to be 

stationary. 
 

Several versions of ICA exist. First, the simple ICA will be presented. Then, the two most 
popular ICA algorithms named Infomax ICA and FastICA will be reviewed. 

 
2.1.1.2 Simple ICA algorithm 
In the simple ICA algorithm, the unknown additive noise is excluded (Oja, 2004). Assume 
that the m  dimensional observed signal (e.g., EEG/MEG) vector 

        Tm kxkxkxk ,,, 21 x  is given by a linear combination of the n  

dimensional source signal vector         Tn ksksksk ,,, 21 s  at each time 

sample k , that is: 
 
        ksaksaksakx nniiii  2211 , mi ,,2,1  . (1) 
 
 
In a more compact notation, Equation (1) can be rewritten as 
 

      kksk
n

j
jj Asax 

1
 (2) 

 
where the matrix  naaaA ,,, 21   is the mixing matrix, the indices n and m 
are the number of sensors and sources, respectively. The matrix A is a m x n matrix 
(generally m ≥ n but a common choice is m = n). Practically, both the mixing matrix and the 
source signal vector are unknown; however, we can estimate a demixing matrix W  in 
order to obtain the estimation of a source signal vector  kŝ  using three fundamental 
assumptions (from i) to iii); see section 2.1.1.1) for ICA previously mentioned such that: 
 
    kk Wxs ˆ   (3) 
 

where ideally 1 AW  and the elements of  kŝ  are statistically independent.  
Practically, several preprocessing strategies make ICA simpler and better conditioned 
(Hyvärinen & Oja, 2000). For example, the centering technique simplifies the ICA algorithms 
by subtracting the mean vector from the observed signal vector so as to make it a zero mean 
valued vector. On the other hand, whitening decreases the correlation among the observed 
signals by transforming the centered observed vector to have unit variance in all directions 
(Vigário, 2000). 

 
2.1.1.3 Infomax ICA and FastICA 
Among the various ICA algorithms that are available, Infomax ICA (Bell & Sejnowski, 1995) 
and FastICA (Hyvärinen, 1999) are the two most popular ones. They use different 
independence properties to obtain the independent components. Specifically, Infomax ICA 

www.intechopen.com



Signal processing for non-invasive brain  
biomarkers of sensorimotor performance and brain monitoring 465

2.1 Pre-processing 
During recording, EEG/MEG signals are generally corrupted with some undesirable 
artifacts such as body movements, muscular artifacts, eye movements, eye blinks, 
environmental noise or heart beat. These artifacts produce possible biases in the detection 
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as long as it is possible to identify the system corresponding to the source that emits these 
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(generally m ≥ n but a common choice is m = n). Practically, both the mixing matrix and the 
source signal vector are unknown; however, we can estimate a demixing matrix W  in 
order to obtain the estimation of a source signal vector  kŝ  using three fundamental 
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Practically, several preprocessing strategies make ICA simpler and better conditioned 
(Hyvärinen & Oja, 2000). For example, the centering technique simplifies the ICA algorithms 
by subtracting the mean vector from the observed signal vector so as to make it a zero mean 
valued vector. On the other hand, whitening decreases the correlation among the observed 
signals by transforming the centered observed vector to have unit variance in all directions 
(Vigário, 2000). 

 
2.1.1.3 Infomax ICA and FastICA 
Among the various ICA algorithms that are available, Infomax ICA (Bell & Sejnowski, 1995) 
and FastICA (Hyvärinen, 1999) are the two most popular ones. They use different 
independence properties to obtain the independent components. Specifically, Infomax ICA 
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minimizes the mutual information whereas FastICA maximizes the non-Gaussian nature. 
These two algorithms provide qualitatively and quantitatively similar results. However, 
FastICA is generally faster than Infomax ICA, but is subject to more variability than Infomax 
ICA especially when applied to removal of eye blink artifacts (Glass et al., 2004). Concerning 
Infomax ICA, this approach is unable to separate source signals with a sub-Gaussian 
distribution. Therefore, an extended version of Infomax ICA, named extended Infomax ICA, 
has been introduced to separate both sub-Gaussian and super-Gaussian distributions for the 
source signals (Lee et al., 1999). 

 
2.1.1.4 Independent Components Analysis for artifact identification and removal from 
EEG and MEG signals 
ICA has been recently applied to the analysis of biomedical signals mostly acquired from 
EEG and MEG. In these applications, it is essential to associate each independent component 
with the neurophysiological nature of the phenomenon (e.g., event-related brain dynamics, 
steady-state brain activity, etc.) in order to identify them. In many cases, ICA algorithms 
have been successfully applied to EEG and MEG in order to identify and remove artifacts 
such as cardiac, ocular, or muscular activities from the neurophysiological activities of 
interest (the computational steps of these algorithms are illustrated in Fig.1), since the nature 
of the artifact sources is different from those of the actual brain activity related sources in 
terms of anatomical, physiological, and statistical considerations.  

 
Fig. 1. Computational steps for ICA-based signal processing. 
 
In general, the independent components related to the suspected artifacts must be manually 
assigned to an artifact type based on the attributes of the independent components (e.g., 
amplitude peak, frequency patterns). However, since the criteria to decide to remove such a 
component can depend of subjective judgments, this approach is sensitive to biases. 

Recently, several automatic artifact detection and removal methods have been introduced 
(Delorme et al., 2001; Rong & Contreras-Vidal, 2006). For example, the functionally similar 
independent components could be automatically categorized using neural network with 
respect to a set of features such as spatial maps, spectral properties, and higher-order 
statistics (Rong & Contreras-Vidal, 2006). 

 
2.1.1.5 Limitation of ICA 
Although ICA facilitates the analysis of the brain dynamics, this method cannot isolate 
highly correlated sources due to the assumption of statistical independence. Furthermore, it 
cannot identify uniquely ordered, correctly phased and properly scaled source signals, in 
other words, when using ICA, the independent components that are isolated could be 
randomly ordered, reversely phased, or ill scaled. However, in the case where such specific 
characteristics are of interest, it must be noted that ICA is not able to identify the source of 
the signals. Moreover, for practical bioengineering applications, artifact identification and 
removal based on ICA is not appropriate for real-time processing since it requires significant 
computational resources and a large amount of data collected from a sufficiently large 
number of channels. The next paragraph introduces adaptive filtering, another method that 
can be potentially useful for real-time applications. 

 
2.1.2 Artifact removal using adaptive filtering  
Despite the advantages of ICA as an artifact removal method, this technique is 
computationally very expensive and, thus, not well suited under some conditions such as 
real-time applications. However, other linear and nonlinear filtering based-techniques to 
remove specific artifacts in real-time are available. Among these methods, adaptive filtering 
has been introduced for removing ocular artifacts in real-time (He et al., 2004). 

 
2.1.2.1 Principle of adaptive filtering 
Adaptive filters are based on the principle that the desired (clean) signal can be extracted 
from the input signal through the adaptation of the filter parameters. The filter parameters 
are adapted based on minimizing an error function between the filter output signal and a 
desired signal. The most commonly used adaptive filtering algorithms are the Kalman filter, 
the least mean square (LMS) filter, and the recursive least square (RLS) filter (for more 
details on the implementations of these methods see Zaknich, 2005).  

 
2.1.2.2 Removing ocular artifacts by adaptive filtering 
Specifically, adaptive filtering has been used to remove ocular artifacts that could 
contaminate EEG/MEG (Georgiadis et al., 2005; Sanei & Chambers, 2007). For instance, He 
et al., (2004) suggested an adaptive filter that uses three inputs to the system. First, the actual 
EEG/MEG signal  kx  with the ocular artifacts  kz  as the primary input 

(      kzkxks  ). The second and third inputs are the vertical and horizontal eye 
movement (VEOG and HEOG) as two reference inputs (  krv  and  krh ), respectively. Each 
reference input is first processed by a finite impulse response (FIR) filter using the RLS 
algorithm (  krv̂  and  krĥ , respectively) and then subtracted from the EEG signal under 
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minimizes the mutual information whereas FastICA maximizes the non-Gaussian nature. 
These two algorithms provide qualitatively and quantitatively similar results. However, 
FastICA is generally faster than Infomax ICA, but is subject to more variability than Infomax 
ICA especially when applied to removal of eye blink artifacts (Glass et al., 2004). Concerning 
Infomax ICA, this approach is unable to separate source signals with a sub-Gaussian 
distribution. Therefore, an extended version of Infomax ICA, named extended Infomax ICA, 
has been introduced to separate both sub-Gaussian and super-Gaussian distributions for the 
source signals (Lee et al., 1999). 

 
2.1.1.4 Independent Components Analysis for artifact identification and removal from 
EEG and MEG signals 
ICA has been recently applied to the analysis of biomedical signals mostly acquired from 
EEG and MEG. In these applications, it is essential to associate each independent component 
with the neurophysiological nature of the phenomenon (e.g., event-related brain dynamics, 
steady-state brain activity, etc.) in order to identify them. In many cases, ICA algorithms 
have been successfully applied to EEG and MEG in order to identify and remove artifacts 
such as cardiac, ocular, or muscular activities from the neurophysiological activities of 
interest (the computational steps of these algorithms are illustrated in Fig.1), since the nature 
of the artifact sources is different from those of the actual brain activity related sources in 
terms of anatomical, physiological, and statistical considerations.  

 
Fig. 1. Computational steps for ICA-based signal processing. 
 
In general, the independent components related to the suspected artifacts must be manually 
assigned to an artifact type based on the attributes of the independent components (e.g., 
amplitude peak, frequency patterns). However, since the criteria to decide to remove such a 
component can depend of subjective judgments, this approach is sensitive to biases. 

Recently, several automatic artifact detection and removal methods have been introduced 
(Delorme et al., 2001; Rong & Contreras-Vidal, 2006). For example, the functionally similar 
independent components could be automatically categorized using neural network with 
respect to a set of features such as spatial maps, spectral properties, and higher-order 
statistics (Rong & Contreras-Vidal, 2006). 

 
2.1.1.5 Limitation of ICA 
Although ICA facilitates the analysis of the brain dynamics, this method cannot isolate 
highly correlated sources due to the assumption of statistical independence. Furthermore, it 
cannot identify uniquely ordered, correctly phased and properly scaled source signals, in 
other words, when using ICA, the independent components that are isolated could be 
randomly ordered, reversely phased, or ill scaled. However, in the case where such specific 
characteristics are of interest, it must be noted that ICA is not able to identify the source of 
the signals. Moreover, for practical bioengineering applications, artifact identification and 
removal based on ICA is not appropriate for real-time processing since it requires significant 
computational resources and a large amount of data collected from a sufficiently large 
number of channels. The next paragraph introduces adaptive filtering, another method that 
can be potentially useful for real-time applications. 

 
2.1.2 Artifact removal using adaptive filtering  
Despite the advantages of ICA as an artifact removal method, this technique is 
computationally very expensive and, thus, not well suited under some conditions such as 
real-time applications. However, other linear and nonlinear filtering based-techniques to 
remove specific artifacts in real-time are available. Among these methods, adaptive filtering 
has been introduced for removing ocular artifacts in real-time (He et al., 2004). 

 
2.1.2.1 Principle of adaptive filtering 
Adaptive filters are based on the principle that the desired (clean) signal can be extracted 
from the input signal through the adaptation of the filter parameters. The filter parameters 
are adapted based on minimizing an error function between the filter output signal and a 
desired signal. The most commonly used adaptive filtering algorithms are the Kalman filter, 
the least mean square (LMS) filter, and the recursive least square (RLS) filter (for more 
details on the implementations of these methods see Zaknich, 2005).  

 
2.1.2.2 Removing ocular artifacts by adaptive filtering 
Specifically, adaptive filtering has been used to remove ocular artifacts that could 
contaminate EEG/MEG (Georgiadis et al., 2005; Sanei & Chambers, 2007). For instance, He 
et al., (2004) suggested an adaptive filter that uses three inputs to the system. First, the actual 
EEG/MEG signal  kx  with the ocular artifacts  kz  as the primary input 

(      kzkxks  ). The second and third inputs are the vertical and horizontal eye 
movement (VEOG and HEOG) as two reference inputs (  krv  and  krh ), respectively. Each 
reference input is first processed by a finite impulse response (FIR) filter using the RLS 
algorithm (  krv̂  and  krĥ , respectively) and then subtracted from the EEG signal under 
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the assumption that the desired ocular artifacts cleaned EEG signal is a zero-mean stationary 
random signal that is uncorrelated with the ocular artifacts and the two reference signals. 
Thus, the desired output produced by the whole system is the EEG signal without ocular 
artifacts. Hence the whole system can be described using the following sets of equations and 
the corresponding scheme illustrated in Fig. 2: 
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parameters  mhv  and  mhh , respectively.  ke  is the error between the observed signal 
and reference inputs. 

 
Fig. 2. Computational scheme of the adaptive filter configuration for eye artifact removal 
(EOG: Electrooculography). (The different symbols used in this figure are described in the 
text above). 

 
2.1.2.3 Limitation of adaptive filtering 
The LMS and RLS filters, popular alternative algorithms to the Kalman filter, also present 
some advantages and drawbacks. The LMS filter is one of the relatively simple adaptive 
filtering algorithms, so it is computationally very efficient, but it is not suitable for signals 
with high rate of sudden changes due to its slow rate of convergence (Vaseghi, 2007). In this 
case, the RLS filter offers relatively faster convergence and smaller error rate with more 
computations. More generally, a single type of artifact can be removed with a single filter, so 
multiple filtering must be performed when multiple forms of artifacts are present, 
increasing the chances of distorting the signals of interest. 

 
2.1.3 Summary 
To summarize, many novel artifact-removal techniques have been introduced along with 
some of their variants (He et al., 2004; Lee et al., 1999; Vaseghi 2007; Vigário et al., 2000). A 
common requirement for the artifact removal method is to remove the artifacts but keep the 
neurophysiological activities of interest intact. For this reason, the employment of 
algorithms for modeling and filtering must be carefully considered along with their 

underlying assumptions, since it may undesirably alter the estimated artifact-cleaned 
EEG/MEG signal (Hyvärinen & Oja, 2000; Oja, 2004; Vaseghi, 2007; Vigário et al., 2000). ICA 
is generally the most suitable artifacts removal algorithm with minimal affects on the 
interesting EEG/MEG signals, but it is very expensive in terms of both computation and 
memory usage. Adaptive filtering, on the other hand, can effectively remove artifacts from 
EEG/MEG signals in real-time fashion. 
Once EEG/MEG signals are free of artifacts, the next step is to compute the brain 
biomarkers derived from these clean EEG/MEG signals in order to assess sensorimotor 
performance and learning. In this regard, the two main biomarkers that are available are 
derived from the spectral power and phase synchronisation between two signals located at 
different positions on the scalp. These two brain biomarkers are presented in the next two 
sections. 

 
2.2 Spectral Power 
A first type of brain biomarker that can be used to assess the level of mastery in 
sensorimotor performance and learning can be derived from the spectral power computed 
for specific frequency bands. Many different methods (e.g., parametric, non-parametric, and 
subspace methods) are available to compute the EEG/MEG spectral power (Kay, 1988; Sanei 
& Chambers, 2007; Shumway & Stoffer, 2000). For instance, some of these methods that have 
been applied are the classical fast Fourier transform (e.g., Hatfield et al., 1984; Haufler et al., 
2000) and more sophisticated procedures such as the multitaper (e.g., Conteras-Vidal & 
Kerick, 2004) or wavelet (e.g., Mu et al., 2008) techniques. While some of these approaches 
have been applied with success in EEG/MEG studies that focus on sensorimotor 
performance and/or Brain Computer Interface (BCI) systems (McFarland et al., 2006; 
Pfurtscheller & Lopes da Silva, 1999), two methods are particularly popular to compute the 
EEG/MEG spectral power. The first approach uses autoregressive (AR) methods (e.g., 
McFarland et al., 2006, 2008) while the second one uses the band power method 
(Pfurtscheller & Lopes da Silva, 1999, 2005; Pfurtscheller & Neuper, 2006) providing changes 
in power amplitude that are often referred to as “event related desynchronization (ERD)” 
and “event related synchronization (ERS).” 

 
2.2.1 Autoregressive filtering 
The first technique that consists of using AR models is a classical parametric method 
(Marple, 1987; Sanei & Chambers, 2007; Shumway & Stoffer, 2000). Contrary to the fast 
Fourier transform, parametric spectral estimation by means of AR models offers various 
advantages by presenting a more general and flexible framework for parsimonious 
dynamical modeling of time series data useful for different applications such as prediction, 
classification or causality analysis of time series (Shumway & Stoffer, 2000; Wong et al., 
2006). Specifically, an AR filter can be used for linear prediction in order to model the signal 
of interest; here an EEG or MEG signal. Namely, the real EEG/MEG signal can be 
considered as the sum of the signal modeled by the AR filter and an error term. Thus, by 
subtracting the real EEG/MEG signal to the one filtered by the AR model, the prediction 
error can be determined (Fig.3).  
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with high rate of sudden changes due to its slow rate of convergence (Vaseghi, 2007). In this 
case, the RLS filter offers relatively faster convergence and smaller error rate with more 
computations. More generally, a single type of artifact can be removed with a single filter, so 
multiple filtering must be performed when multiple forms of artifacts are present, 
increasing the chances of distorting the signals of interest. 

 
2.1.3 Summary 
To summarize, many novel artifact-removal techniques have been introduced along with 
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common requirement for the artifact removal method is to remove the artifacts but keep the 
neurophysiological activities of interest intact. For this reason, the employment of 
algorithms for modeling and filtering must be carefully considered along with their 

underlying assumptions, since it may undesirably alter the estimated artifact-cleaned 
EEG/MEG signal (Hyvärinen & Oja, 2000; Oja, 2004; Vaseghi, 2007; Vigário et al., 2000). ICA 
is generally the most suitable artifacts removal algorithm with minimal affects on the 
interesting EEG/MEG signals, but it is very expensive in terms of both computation and 
memory usage. Adaptive filtering, on the other hand, can effectively remove artifacts from 
EEG/MEG signals in real-time fashion. 
Once EEG/MEG signals are free of artifacts, the next step is to compute the brain 
biomarkers derived from these clean EEG/MEG signals in order to assess sensorimotor 
performance and learning. In this regard, the two main biomarkers that are available are 
derived from the spectral power and phase synchronisation between two signals located at 
different positions on the scalp. These two brain biomarkers are presented in the next two 
sections. 

 
2.2 Spectral Power 
A first type of brain biomarker that can be used to assess the level of mastery in 
sensorimotor performance and learning can be derived from the spectral power computed 
for specific frequency bands. Many different methods (e.g., parametric, non-parametric, and 
subspace methods) are available to compute the EEG/MEG spectral power (Kay, 1988; Sanei 
& Chambers, 2007; Shumway & Stoffer, 2000). For instance, some of these methods that have 
been applied are the classical fast Fourier transform (e.g., Hatfield et al., 1984; Haufler et al., 
2000) and more sophisticated procedures such as the multitaper (e.g., Conteras-Vidal & 
Kerick, 2004) or wavelet (e.g., Mu et al., 2008) techniques. While some of these approaches 
have been applied with success in EEG/MEG studies that focus on sensorimotor 
performance and/or Brain Computer Interface (BCI) systems (McFarland et al., 2006; 
Pfurtscheller & Lopes da Silva, 1999), two methods are particularly popular to compute the 
EEG/MEG spectral power. The first approach uses autoregressive (AR) methods (e.g., 
McFarland et al., 2006, 2008) while the second one uses the band power method 
(Pfurtscheller & Lopes da Silva, 1999, 2005; Pfurtscheller & Neuper, 2006) providing changes 
in power amplitude that are often referred to as “event related desynchronization (ERD)” 
and “event related synchronization (ERS).” 

 
2.2.1 Autoregressive filtering 
The first technique that consists of using AR models is a classical parametric method 
(Marple, 1987; Sanei & Chambers, 2007; Shumway & Stoffer, 2000). Contrary to the fast 
Fourier transform, parametric spectral estimation by means of AR models offers various 
advantages by presenting a more general and flexible framework for parsimonious 
dynamical modeling of time series data useful for different applications such as prediction, 
classification or causality analysis of time series (Shumway & Stoffer, 2000; Wong et al., 
2006). Specifically, an AR filter can be used for linear prediction in order to model the signal 
of interest; here an EEG or MEG signal. Namely, the real EEG/MEG signal can be 
considered as the sum of the signal modeled by the AR filter and an error term. Thus, by 
subtracting the real EEG/MEG signal to the one filtered by the AR model, the prediction 
error can be determined (Fig.3).  
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Fig. 3. Principle of linear prediction using an AR filter. (The different symbols used in this 
figure are described in the text below). 
 
The prediction error for an AR model is defined as: 
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where ra  (r = 1,2,3,…,p) are the coefficients, the constant p is the order of the filter, and k 

denotes the discrete time sample. )(kx and )(ke  are respectively the input signal to 
approximate and the prediction error. For a given p, the coefficients are identified by 
minimization (e.g., LMS, Durbin method) of the error or driving signal that is considered to 
be zero mean white noise. 

By applying the z-transform to equation (5) and considering Z= je we obtain: 
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Where )(E represents the power spectrum of the white noise that is constant (i.e., 

)(E = K ), and )(X represents the power spectrum of the signal. From this model, the 
spectral power can be estimated for any specific frequency band. 
AR models may suffer from poor estimation of the model parameters mainly due to the 
limited length of the measured signal (Sanei & Chambers, 2007) while the order of the AR 
filter may influence the precision of the computation of power spectrum. For instance, 
McFarland et al., (2008) recently showed that the resolution of lower frequency signals 
requires higher AR model orders and also that increasing AR model order provided an 
enhanced spectral resolution. It must be noted that an increase of the AR model order 
results in a higher computational cost even if the tremendous advances in digital signal 
processor and field-programmable gate-array technology tend to weaken this drawback 
(Wang et al., 2006). Also, in the case of non-stationarity, parametric spectral estimation may 
also be applied with a moving window (Ozaki & Tong, 1975) or using some alternative 
approaches avoiding, thus, the introduction of such a moving window (Wong et al., 2006). 
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2.2.2 ERD/ERS method 
The second method is well-established and has been successfully applied to many different 
EEG/MEG investigations (Gentili et al., 2008 ,2009a, 2009a; Kerick et al., 2004; Pfurtscheller 
& Lopes da Silva, 1999, 2005; Pfurtcheller & Neuper 2006; Tombini et al., 2009). Specifically, 
this method computes the spectral power by squaring and averaging across trials the output 
of a band pass filter in order to detect the changes in power amplitude. ERD and ERS 
correspond respectively to a decrease and an increase of the spectral power for specific 
frequency bands (e.g., alpha band) and brain regions (e.g., frontal region). These measures 
are often expressed as a percentage of a decrease or increase with respect to a baseline 
condition preceding task performance and are computed according to the following 
equation (for more details see Pfurtscheller & Lopes da Silva, 1999): 
 

 (%)100/ 



R

RE

P
PPERDERS   (7) 

where EP  and RP correspond to the power computed within the frequency band of interest 
in the period after the event begins and during the preceding baseline or reference period, 
respectively.  
 
It must be noted that although these ERD/ERS quantifications can be computed using 
different methods including AR filters, (e.g., see Table 1 in Pfurtscheller & Lopes da Silva, 
1999) the term ERD/ERS is generally associated with the band pass method (see 
Pfurtscheller & Lopes da Silva, 1999, 2005 for a comprehensive review). From a 
physiological point of view, ERD/ERS mirror variations of the activity of local interactions 
between main neurons and interneurons that control the frequency components of the 
ongoing EEG (Pfurtscheller & Lopes da Silva 1999, 2005). As previously mentioned, 
although several methods can be used to isolate some specific frequency bands; one of the 
main problems of the EEG/MEG spectral analysis is the definition of the upper and lower 
bounds of the bands (Pfurtscheller & Lopes da Silva, 1999). Although the definition of the 
frequency band limits can slightly differ from one study to another, a possible approach for 
partitioning the frequency bands related to human motor performance for healthy adults is 
to consider the theta ([4-7 Hz]), alpha ([8-13 Hz]), beta ([14-35 Hz]) and gamma ([36-44 Hz]) 
frequency bands (e.g., Hatfield et al., 2004; Haufler et al., 2000; Tombini et al., 2009). 
Sometimes, the frequency range spread from 8 to 15 Hz (Blankertz & Vidaurre, 2009) or 
from 9 to 13Hz (Blankertz et al., 2009; Pfurtscheller & Neuper, 1997) are also named alpha 
frequency (or mu rhythm under certain conditions). Moreover, since it has been shown that 
certain frequency sub-bands are related to specific brain states during a sensorimotor task 
(e.g., Contreras-Vidal et al., 2004; Gentili et al., 2008; Hatfield et al., 2004; Tombini et al., 
2009), most of the EEG/MEG studies refined their analysis by considering sub-frequency 
bands, typically, the low and high component of the original entire band. Therefore, for the 
bands previously defined, the low theta ([4-5 Hz]), high theta ([6-7 Hz]), low alpha ([8-10 
Hz]), high alpha ([11-13 Hz]), low beta ([14-23 Hz]) and high beta ([24-35 Hz]) frequency 
bands can also be considered. In addition to the classical gamma band ([36-44 Hz]) it is also 
possible to consider the extended gamma band spread from 45 to 100 Hz or higher. This 
gamma band extension can be divided into several sub-bands with a method using a 10-Hz-
wide band with an overlap of 5 Hz frequency bins ranging from 45 to 100 Hz (Crone et al., 
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Where )(E represents the power spectrum of the white noise that is constant (i.e., 

)(E = K ), and )(X represents the power spectrum of the signal. From this model, the 
spectral power can be estimated for any specific frequency band. 
AR models may suffer from poor estimation of the model parameters mainly due to the 
limited length of the measured signal (Sanei & Chambers, 2007) while the order of the AR 
filter may influence the precision of the computation of power spectrum. For instance, 
McFarland et al., (2008) recently showed that the resolution of lower frequency signals 
requires higher AR model orders and also that increasing AR model order provided an 
enhanced spectral resolution. It must be noted that an increase of the AR model order 
results in a higher computational cost even if the tremendous advances in digital signal 
processor and field-programmable gate-array technology tend to weaken this drawback 
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2.2.2 ERD/ERS method 
The second method is well-established and has been successfully applied to many different 
EEG/MEG investigations (Gentili et al., 2008 ,2009a, 2009a; Kerick et al., 2004; Pfurtscheller 
& Lopes da Silva, 1999, 2005; Pfurtcheller & Neuper 2006; Tombini et al., 2009). Specifically, 
this method computes the spectral power by squaring and averaging across trials the output 
of a band pass filter in order to detect the changes in power amplitude. ERD and ERS 
correspond respectively to a decrease and an increase of the spectral power for specific 
frequency bands (e.g., alpha band) and brain regions (e.g., frontal region). These measures 
are often expressed as a percentage of a decrease or increase with respect to a baseline 
condition preceding task performance and are computed according to the following 
equation (for more details see Pfurtscheller & Lopes da Silva, 1999): 
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where EP  and RP correspond to the power computed within the frequency band of interest 
in the period after the event begins and during the preceding baseline or reference period, 
respectively.  
 
It must be noted that although these ERD/ERS quantifications can be computed using 
different methods including AR filters, (e.g., see Table 1 in Pfurtscheller & Lopes da Silva, 
1999) the term ERD/ERS is generally associated with the band pass method (see 
Pfurtscheller & Lopes da Silva, 1999, 2005 for a comprehensive review). From a 
physiological point of view, ERD/ERS mirror variations of the activity of local interactions 
between main neurons and interneurons that control the frequency components of the 
ongoing EEG (Pfurtscheller & Lopes da Silva 1999, 2005). As previously mentioned, 
although several methods can be used to isolate some specific frequency bands; one of the 
main problems of the EEG/MEG spectral analysis is the definition of the upper and lower 
bounds of the bands (Pfurtscheller & Lopes da Silva, 1999). Although the definition of the 
frequency band limits can slightly differ from one study to another, a possible approach for 
partitioning the frequency bands related to human motor performance for healthy adults is 
to consider the theta ([4-7 Hz]), alpha ([8-13 Hz]), beta ([14-35 Hz]) and gamma ([36-44 Hz]) 
frequency bands (e.g., Hatfield et al., 2004; Haufler et al., 2000; Tombini et al., 2009). 
Sometimes, the frequency range spread from 8 to 15 Hz (Blankertz & Vidaurre, 2009) or 
from 9 to 13Hz (Blankertz et al., 2009; Pfurtscheller & Neuper, 1997) are also named alpha 
frequency (or mu rhythm under certain conditions). Moreover, since it has been shown that 
certain frequency sub-bands are related to specific brain states during a sensorimotor task 
(e.g., Contreras-Vidal et al., 2004; Gentili et al., 2008; Hatfield et al., 2004; Tombini et al., 
2009), most of the EEG/MEG studies refined their analysis by considering sub-frequency 
bands, typically, the low and high component of the original entire band. Therefore, for the 
bands previously defined, the low theta ([4-5 Hz]), high theta ([6-7 Hz]), low alpha ([8-10 
Hz]), high alpha ([11-13 Hz]), low beta ([14-23 Hz]) and high beta ([24-35 Hz]) frequency 
bands can also be considered. In addition to the classical gamma band ([36-44 Hz]) it is also 
possible to consider the extended gamma band spread from 45 to 100 Hz or higher. This 
gamma band extension can be divided into several sub-bands with a method using a 10-Hz-
wide band with an overlap of 5 Hz frequency bins ranging from 45 to 100 Hz (Crone et al., 
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1998). Although, as previously mentioned, the limits of these bands can slightly change from 
one study to another; many EEG/MEG investigations consider frequency bands where 
upper and lower limits of the bandpass filter is the same for all the subjects tested. It must be 
noted that another approach (Pfurtscheller & Lopes da Silva, 1999, 2005) defines these 
frequency band limits for each individual subject in order to take into account some inter-
individual differences. For instance, three possible methods can be used to determine the 
upper and lower limits of the bandpass filter; i) detection of the most reactive frequency 
band by comparing the two short-term power spectra; ii) use of a continuous wavelet 
transform; iii) definition of frequency bands relative to the spectral peak frequency (for more 
details see Pfurtscheller & Lopes da Silva, 1999, 2005). 

 
2.3 Phase synchronization: Coherence and Phase Locking Value  
Another important brain biomarker of sensorimotor performance can also be provided by 
analyzing the phase synchronization between different cortical sites. Such phase 
synchronization measures the level of interaction and cross talk among EEG/MEG channels 
allowing the identification of how signals propagate within the neural network of the brain. 
These spatial EEG/MEG coherence measures, generally presented for individual frequency 
bands, result from correlations among different cortical sources. Therefore, spectral 
coherence is a common method for determining synchrony in EEG/MEG activity. 
Regarding the literature aiming to find brain biomarkers for human sensorimotor 
performance and learning, spectral power analysis has been widely used for a long time, 
however, the use of spectral coherence is relatively more recent, while the phase locking 
value (PLV), despite its advantages, still remains rarely used in this field. Generally, the 
literature focusing on EEG/MEG signal analysis computes the synchronization between two 
time signals recorded from two electrodes x and y by using classical coherence  (Nunez & 
Srinivasan, 2006). First the cross-spectrum (CS) has to be computed using the following 
equation: 
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where )( fSx  is the Fourier transform of the signal )(tsx , )( fS x is the complex conjugate 

of the Fourier transform of the signal )(tsx and is the expectation operator. Then, the 

complex coherence (CC) is computed by using the cross-spectrum normalized with respect 
to the two corresponding spectra of the two signals. Thus we have: 
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Where )( fCSxy  is the cross-spectrum of the two time signals )(tsx  and )(tsy  and 

)( fCCxy  the complex coherence.  

 

Finally, the coherence (C) can be calculated by considering the absolute value of the complex 
coherence: 
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Another way to interpret these equations is to consider the following equation: 
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where the Fourier transform )( fSx of the signal )(tsx  is expressed in order to explicitly 

illustrate its amplitude x and its phase x  (here j denotes the imaginary unit and j2=-1) . 
 
Now the cross-spectrum expressed in equation (8) can be rewritten as: 
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where   denotes the phase difference between the two signals (i.e.,   = yx   ).  

Thus, the complex coherence expressed in equation (9) can be rewritten as: 
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Leading to the classical coherence provided by the following equation: 
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Although this measure of classical coherence is usually used in EEG/MEG studies, two 
main drawbacks have to be considered (Lachaux et al., 1999). First, the coherence can be 
applied only to stationary signals. Most of the time this assumption of stationarity (in time 
or across trials) is not strictly valid, however, the measure of phase-locking does not require 
this assumption on the signal. Second, coherence does not specifically quantify phase 
relationships. In fact, coherence increases with amplitude covariance (see the presence of the 
signal amplitudes x and y in the numerator and denominator of the formula in equation 

(14)) implying an uncertainty concerning the relative importance of amplitude and phase 
covariance in the coherence. In other words, the coherence does not separate the effects of 
amplitude and phase in the interrelations between two signals. Thus, based on these 
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1998). Although, as previously mentioned, the limits of these bands can slightly change from 
one study to another; many EEG/MEG investigations consider frequency bands where 
upper and lower limits of the bandpass filter is the same for all the subjects tested. It must be 
noted that another approach (Pfurtscheller & Lopes da Silva, 1999, 2005) defines these 
frequency band limits for each individual subject in order to take into account some inter-
individual differences. For instance, three possible methods can be used to determine the 
upper and lower limits of the bandpass filter; i) detection of the most reactive frequency 
band by comparing the two short-term power spectra; ii) use of a continuous wavelet 
transform; iii) definition of frequency bands relative to the spectral peak frequency (for more 
details see Pfurtscheller & Lopes da Silva, 1999, 2005). 

 
2.3 Phase synchronization: Coherence and Phase Locking Value  
Another important brain biomarker of sensorimotor performance can also be provided by 
analyzing the phase synchronization between different cortical sites. Such phase 
synchronization measures the level of interaction and cross talk among EEG/MEG channels 
allowing the identification of how signals propagate within the neural network of the brain. 
These spatial EEG/MEG coherence measures, generally presented for individual frequency 
bands, result from correlations among different cortical sources. Therefore, spectral 
coherence is a common method for determining synchrony in EEG/MEG activity. 
Regarding the literature aiming to find brain biomarkers for human sensorimotor 
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equation: 
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Where )( fCSxy  is the cross-spectrum of the two time signals )(tsx  and )(tsy  and 

)( fCCxy  the complex coherence.  

 

Finally, the coherence (C) can be calculated by considering the absolute value of the complex 
coherence: 
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Another way to interpret these equations is to consider the following equation: 
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Leading to the classical coherence provided by the following equation: 
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Although this measure of classical coherence is usually used in EEG/MEG studies, two 
main drawbacks have to be considered (Lachaux et al., 1999). First, the coherence can be 
applied only to stationary signals. Most of the time this assumption of stationarity (in time 
or across trials) is not strictly valid, however, the measure of phase-locking does not require 
this assumption on the signal. Second, coherence does not specifically quantify phase 
relationships. In fact, coherence increases with amplitude covariance (see the presence of the 
signal amplitudes x and y in the numerator and denominator of the formula in equation 

(14)) implying an uncertainty concerning the relative importance of amplitude and phase 
covariance in the coherence. In other words, the coherence does not separate the effects of 
amplitude and phase in the interrelations between two signals. Thus, based on these 
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premises and since phase-locking provides a measure that is sufficient to conclude if two 
brain regions interact, another measure of phase synchronization, the PLV, has been 
introduced, offering, thus, an alternative measure only based on the detection of phase 
covariance (Lachaux et al., 1999; Le Van Quyen et al., 2001; Tass et al., 1998).  
Before computing the PLV, the frequency bands and sub-bands of interest mentioned in 
Section 2.2.2 are extracted for each subject and each single-trial by means of a filter bank 
using band-pass FIR (Lachaux et al., 1999) or IIR filters (Brunner et al., 2006). 
 
Then, the PLV can be computed for each frequency band. Contrary to the classical 
coherence, it is defined by only considering the phases of the two signals. 
 

 
 jePLV  (15) 

 
where   denotes the phase difference between the two signals )(tsx  and )(ts y  (i.e.,   

= yx   ).  

 
It must be noted that equations (14) and (15) are comparable; however, the equation 
expressing the PLV does not include the amplitudes of the two signals, allowing 
examination of synchronization phenomena in EEG/MEG signals by directly capturing the 
phase synchronization. 
Two methods to compute the phases x and y are available. The first one (Lachaux et al., 

1999) uses a complex Gabor wavelet as defined by equation (16): 
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The second method (Tass et al., 1998) uses the Hilbert transform as defined by the following 
equation:  
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In this definition, )(~ tsx  is the Hilbert transform of the time series )(tsx (in our case an 
EEG/MEG signal), and PV indicates that the integral is taken in the sense of Cauchy 
principal value. The instantaneous phase  can then be calculated as: 
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It must be noted that these two methods provide very similar results when applied to EEG 
data (Le Van Quyen et al., 2001).  
The averaging process can be performed either over time (i.e., in equation (19), n   [1…N], 
where n is the sample number of the time series) for single-trial applications such as BCI 
approaches (Brunner et al., 2006; Lachaux et al., 2000) or over trials (Lachaux et al., 1999) 
(i.e., in equation (19), n   [1…N], where n is the trial number). Thus, equation (19) is 
obtained: 
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where ),( nt  is the phase difference and ),( nt = ),(),( ntnt yx   .  

 
As for the coherence, the PLV is ranged from 0 to 1 indicating that during this time window 
the two channels considered are ranged from unsynchronized to perfectly synchronized, 
respectively. It must be noted that, despite the previously mentioned advantages of the PLV, 
it has been also suggested that one reason to use coherence rather than the PLV directly is 
that coherence measures are weighted in favor of epochs with large amplitudes. In 
particular, more consistent phase estimates will be probably obtained when amplitudes are 
large (if large amplitudes show a large signal-to-noise ratio as is generally the case in 
EEG/MEG) (Nunez & Srinivasan, 2006). Therefore, both coherence and PLV measures can 
be used. Interestingly, due to their unique advantages and pitfalls, some studies apply and 
compare both techniques that, in the case of convergence, lead to robust results, although in 
the case of EEG both approaches are subject to the electrode reference problem that can 
distort such measurements (Nunez & Srinivasan, 2006). Recently, Darvas et al., (2009) have 
proposed an extension of the PLV, called bi-PLV that is specifically sensitive to non-linear 
interactions providing, thus, robustness behavior to spurious synchronization arising from 
linear crosstalk. This property is particularly useful when analyzing data recorded by EEG 
or MEG. From a physiological point of view, both coherence and PLV methods quantify the 
magnitude of correlation, for a given frequency (or band), between different areas of the 
cerebral cortex. Thus, high coherence and/or PLV implies substantial communication 
between different cortical areas while low coherence and/or PLV reflects regional 
autonomy or independence (Nunez & Srinivasan, 2006).  

 
3 Non-Invasive Functional Brain Biomarkers of Human Sensorimotor 
Performance:  

Although the signal processing approaches described above are applicable to both EEG and 
MEG signals, we will focus mainly on brain biomarkers derived from EEG since, as 
mentioned in the introduction, this technique is portable and therefore is particularly well 
suited for ecological motor tasks such as aiming (e.g., marksmanship, archery), drawing, 
arm reaching and grasping task. Therefore, most of the examples below will present the 
results of brain biomarkers derived from EEG signals. 
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introduced, offering, thus, an alternative measure only based on the detection of phase 
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Section 2.2.2 are extracted for each subject and each single-trial by means of a filter bank 
using band-pass FIR (Lachaux et al., 1999) or IIR filters (Brunner et al., 2006). 
 
Then, the PLV can be computed for each frequency band. Contrary to the classical 
coherence, it is defined by only considering the phases of the two signals. 
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It must be noted that these two methods provide very similar results when applied to EEG 
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The averaging process can be performed either over time (i.e., in equation (19), n   [1…N], 
where n is the sample number of the time series) for single-trial applications such as BCI 
approaches (Brunner et al., 2006; Lachaux et al., 2000) or over trials (Lachaux et al., 1999) 
(i.e., in equation (19), n   [1…N], where n is the trial number). Thus, equation (19) is 
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As for the coherence, the PLV is ranged from 0 to 1 indicating that during this time window 
the two channels considered are ranged from unsynchronized to perfectly synchronized, 
respectively. It must be noted that, despite the previously mentioned advantages of the PLV, 
it has been also suggested that one reason to use coherence rather than the PLV directly is 
that coherence measures are weighted in favor of epochs with large amplitudes. In 
particular, more consistent phase estimates will be probably obtained when amplitudes are 
large (if large amplitudes show a large signal-to-noise ratio as is generally the case in 
EEG/MEG) (Nunez & Srinivasan, 2006). Therefore, both coherence and PLV measures can 
be used. Interestingly, due to their unique advantages and pitfalls, some studies apply and 
compare both techniques that, in the case of convergence, lead to robust results, although in 
the case of EEG both approaches are subject to the electrode reference problem that can 
distort such measurements (Nunez & Srinivasan, 2006). Recently, Darvas et al., (2009) have 
proposed an extension of the PLV, called bi-PLV that is specifically sensitive to non-linear 
interactions providing, thus, robustness behavior to spurious synchronization arising from 
linear crosstalk. This property is particularly useful when analyzing data recorded by EEG 
or MEG. From a physiological point of view, both coherence and PLV methods quantify the 
magnitude of correlation, for a given frequency (or band), between different areas of the 
cerebral cortex. Thus, high coherence and/or PLV implies substantial communication 
between different cortical areas while low coherence and/or PLV reflects regional 
autonomy or independence (Nunez & Srinivasan, 2006).  

 
3 Non-Invasive Functional Brain Biomarkers of Human Sensorimotor 
Performance:  

Although the signal processing approaches described above are applicable to both EEG and 
MEG signals, we will focus mainly on brain biomarkers derived from EEG since, as 
mentioned in the introduction, this technique is portable and therefore is particularly well 
suited for ecological motor tasks such as aiming (e.g., marksmanship, archery), drawing, 
arm reaching and grasping task. Therefore, most of the examples below will present the 
results of brain biomarkers derived from EEG signals. 
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3.1 Spectral power 
A series of studies that began in the early 80's provided a growing body of evidence that it is 
possible to assess the cortical dynamics of motor skills in novice and expert performers 
during visuomotor challenge such as marksmanship and archery tasks. These studies 
revealed changes in EEG activity with skill learning as well as differences in EEG power 
between novice and expert sport performers (Del Percio et al., 2008; Hatfield et al., 1984, 
2004; Haufler et al., 2000; Kerick et al., 2004; Landers et al., 1994; Slobounov et al., 2007). 
Specifically, the power computed for the alpha and theta frequency bands were positively 
related to the level of motor performance (Del Percio et al., 2008; Hatfield et al., 2004; 
Haufler et al., 2000; Kerick et al., 2004).  
 

 
Fig. 4. Mean EEG power (mV2) spectra (1–44 Hz) at left and right homologous sites in the 
frontal and temporal regions during the aiming period of the shooting task for expert 
marksmen versus novice shooters (Adapted from Haufler et al., (2000) with permission from 
Elsevier Science). 
 
For instance, Haufler et al., (2000) showed that, compared to novices, experts revealed an 
overall increase in EEG alpha power in the left temporal lobe (i.e., T3) while the same 
comparison between novices and experts performing cognitive tasks that were equally 
familiar to them did not provide any differences. The authors concluded, therefore, that the 
EEG alpha power differences observed were likely due to the difference of level in mastery 
of the motor task (see Fig. 4). Obviously, the differences in cortical dynamic between novices 
and experts revealed by these studies were accompanied with important differences 
between performances (i.e., the novices scored lower and exhibited more variability in their 
performance than the experts). Thus, these studies provided brain biomarkers (e.g., alpha 
power) able to identify a high level of motor performance resulting from an extensive 
practice period, without, however, considering the changes of such brain biomarker 
throughout the training period itself. 
Interestingly, in a more recent study Kerick et al., (2004) extended these investigations by 
assessing the dynamic changes throughout a marksmanship intensive training for novices 
during three months. The results revealed that, throughout the training, the performance for 
the shooting task was enhanced (Fig. 5A) concomitantly with an increased EEG alpha power 
(Fig. 5B) at the temporal level located on the contralateral side (i.e., T3, left temporal lobe) 
while such observation was not observed when the subjects were at rest. Such EEG changes 
are generally interpreted as indicative of high levels of skill and associated with a cortical 
refinement leading to reductions of nonessential cortical resources (Hatfield & Hillman, 
2001). This kind of neural adaptation process may result in simplification of neurocognitive 
activity and less possibility of interference with essential visuomotor processes. Within an 

activation context, a decrease in alpha power frequency band (i.e., desynchronization) 
represents an activated cortical site. Conversely, an increase in alpha power (i.e., 
synchronization) corresponds to a reduction of activation of a given cortical region 
(Pfurtscheller et al., 1996) indicating a decrease of the recruitment of neural resources.  
In addition to the alpha frequency band, several studies suggested that theta oscillations are 
also related to performance enhancement (Caplan et al., 2003; Tombini et al., 2009). For 
instance, during a virtual maze navigation task, Caplan et al., (2003) observed that theta 
oscillations reflected an updating of motor plans in response to incoming sensory 
information that facilitates the information encoding of participant’s cognitive map. 
  

 
Fig. 5. A. Shooting percentages by practice session. The slope of the linear regression 
revealed a significant increase in performance over all practice sessions from time 1 to 3 
(equation lower right corner). The different symbols represent the performance scores of 
individual participants on separate days of practice. B. Changes in mean power from time 1 
to 3 during shooting (SH), postural (PS), and Baseline (BL) condition (T3, left panel; T4, right 
panel). (Adapted from Kerick et al., (2004) with permission from Wolters 
Kluwer/Lippincott Williams). 
 
Although other interpretations of theta power increases are plausible (e.g., frontal theta EEG 
synchronization could also reflect an increased short term memory load; for a review see 
Klimesch et al., 2008), a growing body of work suggest that theta oscillations are 
functionally associated with error monitoring (Cavanagh et al., 2009; Larson & Lynch, 1989; 
Smith et al., 1999; Yordanova et al., 2004).  
Thus, taken together these studies suggested that changes in alpha and theta power can be 
used as non-invasive functional brain biomarkers capable either to assess the level of 
mastery of a given sensori-motor task (e.g., marksmanship task) and/or to track the brain 
status during motor practice. However, these studies used visuomotor task where upper 
limb movements were extremely specific (e.g., archery, marksmanship task) without 
considering more familiar movements used in daily activities such as arm reaching, 
grasping and tool or object manipulations. Moreover, these investigations addressed the 
improvement of an established motor ability (e.g., Haulfer et al., 2000), or a long learning 
period of a skill involving no interference with previous motor experience (e.g., Caplan et 
al., 2003; Kerick et al., 2004). Interestingly, Kranczioch et al., (2008) showed that the learning 
of a visuomotor power grip tool led to EEG changes in spectral power and cortico-cortical 
coupling (i.e., coherence). However, this study did not involve a tool that required 
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comparison between novices and experts performing cognitive tasks that were equally 
familiar to them did not provide any differences. The authors concluded, therefore, that the 
EEG alpha power differences observed were likely due to the difference of level in mastery 
of the motor task (see Fig. 4). Obviously, the differences in cortical dynamic between novices 
and experts revealed by these studies were accompanied with important differences 
between performances (i.e., the novices scored lower and exhibited more variability in their 
performance than the experts). Thus, these studies provided brain biomarkers (e.g., alpha 
power) able to identify a high level of motor performance resulting from an extensive 
practice period, without, however, considering the changes of such brain biomarker 
throughout the training period itself. 
Interestingly, in a more recent study Kerick et al., (2004) extended these investigations by 
assessing the dynamic changes throughout a marksmanship intensive training for novices 
during three months. The results revealed that, throughout the training, the performance for 
the shooting task was enhanced (Fig. 5A) concomitantly with an increased EEG alpha power 
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while such observation was not observed when the subjects were at rest. Such EEG changes 
are generally interpreted as indicative of high levels of skill and associated with a cortical 
refinement leading to reductions of nonessential cortical resources (Hatfield & Hillman, 
2001). This kind of neural adaptation process may result in simplification of neurocognitive 
activity and less possibility of interference with essential visuomotor processes. Within an 
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represents an activated cortical site. Conversely, an increase in alpha power (i.e., 
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(Pfurtscheller et al., 1996) indicating a decrease of the recruitment of neural resources.  
In addition to the alpha frequency band, several studies suggested that theta oscillations are 
also related to performance enhancement (Caplan et al., 2003; Tombini et al., 2009). For 
instance, during a virtual maze navigation task, Caplan et al., (2003) observed that theta 
oscillations reflected an updating of motor plans in response to incoming sensory 
information that facilitates the information encoding of participant’s cognitive map. 
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Although other interpretations of theta power increases are plausible (e.g., frontal theta EEG 
synchronization could also reflect an increased short term memory load; for a review see 
Klimesch et al., 2008), a growing body of work suggest that theta oscillations are 
functionally associated with error monitoring (Cavanagh et al., 2009; Larson & Lynch, 1989; 
Smith et al., 1999; Yordanova et al., 2004).  
Thus, taken together these studies suggested that changes in alpha and theta power can be 
used as non-invasive functional brain biomarkers capable either to assess the level of 
mastery of a given sensori-motor task (e.g., marksmanship task) and/or to track the brain 
status during motor practice. However, these studies used visuomotor task where upper 
limb movements were extremely specific (e.g., archery, marksmanship task) without 
considering more familiar movements used in daily activities such as arm reaching, 
grasping and tool or object manipulations. Moreover, these investigations addressed the 
improvement of an established motor ability (e.g., Haulfer et al., 2000), or a long learning 
period of a skill involving no interference with previous motor experience (e.g., Caplan et 
al., 2003; Kerick et al., 2004). Interestingly, Kranczioch et al., (2008) showed that the learning 
of a visuomotor power grip tool led to EEG changes in spectral power and cortico-cortical 
coupling (i.e., coherence). However, this study did not involve a tool that required 
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suppression of a familiar response. Nevertheless, in daily activities, we frequently need to 
adapt our motor commands related to our upper limb to learn new input-output mappings 
characterizing novel tools by inhibiting familiar behavior or responses that are no longer 
valid to manipulate them. Such tool learning requires the selection and guidance of 
movements based on visual and proprioceptive inputs while frontal executive function 
would inhibit the pre-potent input-output relationships during acquisition of the internal 
model (also called internal representation) of the new tool. This would be typically the case 
if a person has to learn to manipulate a new tool such as a neuroprosthetic. It should be 
noted that Anguera et al., (2009) used a visuomotor adaptation task requiring suppression of 
preexisting motor responses in order to quantify the changes in error-related negativity 
associated with the magnitude of the error. However, this study did not focus on tracking 
the learning process by using brain biomarkers derived from spectral power and/or phase 
synchronization. 
Based on this rational, a recent study (Gentili et al., 2008) intended to address this problem 
by analyzing the cortical dynamics during the learning of a new tool having unknown 
kinematics features.  In this experiment, fifteen right-handed healthy adults subjects sat at a 
table facing a computer screen and, with their right hand, had to perform “centre-out” 
drawing movements (on a digitizing tablet) linking a central target and one of four 
peripheral targets. Movement paths were displayed on the screen, but a horizontal board 
prevented any vision of the moving limb on the tablet. EEG signals were acquired using an 
electro-cap with 64 tin electrodes, which was fitted to the participant’s head in accordance 
with the standards of the extended International 10-20 system (Fig.6). First, the subjects 
performed 20 practice trials at the beginning of the experiment in order to be familiarized 
with the experimental setup. After this familiarization period, the experiment was divided 
into three sessions: i) pre-exposure, ii) exposure and iii) post-exposure. During the pre- and 
post-exposure phases the subjects performed, under normal visual conditions, 20 trials (i.e., 
1 block). During the exposure phase, (180 trials, i.e., 20 trials x 9 blocks) ten subjects (i.e., 
learning croup) had to adapt to a 60º counter clock-wise screen cursor rotation. In addition, 
five healthy (i.e., control group) subjects were examined using the same protocol but in the 
absence of any visual distortion. Movements were self-initiated and targets were self-
selected one at a time. All the targets were displayed throughout each trial. The instructions 
were to draw a line as straight and as fast as possible linking the home target and the 
peripheral target. Unknown to the participants, a trial was aborted and restarted if the time 
between entering the home target and movement onset was less than 2s. Therefore, 
participants had enough time to both select the target and plan their movement providing, 
thus, an extended time-window to analyze cortical activations related to preparation 
processes (i.e., planning) of the movement. 
In order to quantify the motor performance during both movement planning and movement 
execution periods, the Movement Time (MT), Movement Length (ML) and Root Mean 
Square of the Error (RMSE) were computed from the 2D horizontal displacements. The MT 
was defined as the elapsed time between leaving the home circle and entering the target. 
The ML was defined as the distance traveled in each trial. 
 

 
Fig. 6. Experimental device to record kinematics and EEG signals during the visuomotor 
adaptation task. Subjects sat at a table facing a computer screen located in front of them at a 
distance of ~60 cm and had to execute the motor task which consisted of drawing a line on a 
digitizing tablet (represented in light blue on the figure) that was displayed in real-time on 
the computer screen. The home target circle was the origin of a direct polar frame of 
reference, and the target circles were positioned 10 cm from the origin  disposed at 45°, 135°, 
225°, and 315°. Once a successful trial was performed, to prevent any feedback, all visual 
stimuli were erased from the screen in preparation for the next trial.  
 
The RMSE was computed to assess the average deviation between the movement trajectory 
from the ‘ideal’ straight line connecting the home and the pointing target. For the nine 
learning blocks, the mean and standard deviation of the ML and MT were computed. In 
order to take into account any differences in subject’s performance during the pre-exposure 
phase (i.e., baseline condition) and to focus on changes due solely to adaptation, the MT, ML 
and RMSE values were standardized with respect to the pre-exposure stage. 
Continuous EEG data were epoched in 2-s windows centered at movement onset. Both pre- 
(i.e., planning) and post- (i.e., execution) movement time-windows were considered. Single-
trial data were detrended to remove DC amplifier drift, low-pass filtered to suppress line 
noise, and baseline-corrected by averaging the mean potential from -1 to 1 s. The EEG 
signals were cleaned by means of the ICA Infomax method applied  on  a  single‐trial  basis 
described in section 2.1.1. For each subject and each single-trial, the EEG power (ERS/ERD) 
were computed by squaring and integrating the output of a dual band-pass Butterworth 
fourth order filter, and standardized with respect to the pre-exposure stage. The EEG power 
was computed for the alpha (low: 8-10 Hz, high: 11-13 Hz), beta (low: 13-20 Hz, high: 21-35 
Hz); theta (Low: 4-5 Hz, High: 6-7 Hz) and γ (36-44 Hz) bands. The entire alpha, beta and 
theta frequency bands were also analyzed. For the alpha band, two similar frequency ranges 
have been considered. i) alpha1: spread form 8 to 13Hz, and ii) alpha2: spreads from 9 to 13 
Hz. For each sensor and each block, the average power changes (across subjects) were fitted 
using a linear model from which the coefficient of determination (R2) and its slope were 
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suppression of a familiar response. Nevertheless, in daily activities, we frequently need to 
adapt our motor commands related to our upper limb to learn new input-output mappings 
characterizing novel tools by inhibiting familiar behavior or responses that are no longer 
valid to manipulate them. Such tool learning requires the selection and guidance of 
movements based on visual and proprioceptive inputs while frontal executive function 
would inhibit the pre-potent input-output relationships during acquisition of the internal 
model (also called internal representation) of the new tool. This would be typically the case 
if a person has to learn to manipulate a new tool such as a neuroprosthetic. It should be 
noted that Anguera et al., (2009) used a visuomotor adaptation task requiring suppression of 
preexisting motor responses in order to quantify the changes in error-related negativity 
associated with the magnitude of the error. However, this study did not focus on tracking 
the learning process by using brain biomarkers derived from spectral power and/or phase 
synchronization. 
Based on this rational, a recent study (Gentili et al., 2008) intended to address this problem 
by analyzing the cortical dynamics during the learning of a new tool having unknown 
kinematics features.  In this experiment, fifteen right-handed healthy adults subjects sat at a 
table facing a computer screen and, with their right hand, had to perform “centre-out” 
drawing movements (on a digitizing tablet) linking a central target and one of four 
peripheral targets. Movement paths were displayed on the screen, but a horizontal board 
prevented any vision of the moving limb on the tablet. EEG signals were acquired using an 
electro-cap with 64 tin electrodes, which was fitted to the participant’s head in accordance 
with the standards of the extended International 10-20 system (Fig.6). First, the subjects 
performed 20 practice trials at the beginning of the experiment in order to be familiarized 
with the experimental setup. After this familiarization period, the experiment was divided 
into three sessions: i) pre-exposure, ii) exposure and iii) post-exposure. During the pre- and 
post-exposure phases the subjects performed, under normal visual conditions, 20 trials (i.e., 
1 block). During the exposure phase, (180 trials, i.e., 20 trials x 9 blocks) ten subjects (i.e., 
learning croup) had to adapt to a 60º counter clock-wise screen cursor rotation. In addition, 
five healthy (i.e., control group) subjects were examined using the same protocol but in the 
absence of any visual distortion. Movements were self-initiated and targets were self-
selected one at a time. All the targets were displayed throughout each trial. The instructions 
were to draw a line as straight and as fast as possible linking the home target and the 
peripheral target. Unknown to the participants, a trial was aborted and restarted if the time 
between entering the home target and movement onset was less than 2s. Therefore, 
participants had enough time to both select the target and plan their movement providing, 
thus, an extended time-window to analyze cortical activations related to preparation 
processes (i.e., planning) of the movement. 
In order to quantify the motor performance during both movement planning and movement 
execution periods, the Movement Time (MT), Movement Length (ML) and Root Mean 
Square of the Error (RMSE) were computed from the 2D horizontal displacements. The MT 
was defined as the elapsed time between leaving the home circle and entering the target. 
The ML was defined as the distance traveled in each trial. 
 

 
Fig. 6. Experimental device to record kinematics and EEG signals during the visuomotor 
adaptation task. Subjects sat at a table facing a computer screen located in front of them at a 
distance of ~60 cm and had to execute the motor task which consisted of drawing a line on a 
digitizing tablet (represented in light blue on the figure) that was displayed in real-time on 
the computer screen. The home target circle was the origin of a direct polar frame of 
reference, and the target circles were positioned 10 cm from the origin  disposed at 45°, 135°, 
225°, and 315°. Once a successful trial was performed, to prevent any feedback, all visual 
stimuli were erased from the screen in preparation for the next trial.  
 
The RMSE was computed to assess the average deviation between the movement trajectory 
from the ‘ideal’ straight line connecting the home and the pointing target. For the nine 
learning blocks, the mean and standard deviation of the ML and MT were computed. In 
order to take into account any differences in subject’s performance during the pre-exposure 
phase (i.e., baseline condition) and to focus on changes due solely to adaptation, the MT, ML 
and RMSE values were standardized with respect to the pre-exposure stage. 
Continuous EEG data were epoched in 2-s windows centered at movement onset. Both pre- 
(i.e., planning) and post- (i.e., execution) movement time-windows were considered. Single-
trial data were detrended to remove DC amplifier drift, low-pass filtered to suppress line 
noise, and baseline-corrected by averaging the mean potential from -1 to 1 s. The EEG 
signals were cleaned by means of the ICA Infomax method applied  on  a  single‐trial  basis 
described in section 2.1.1. For each subject and each single-trial, the EEG power (ERS/ERD) 
were computed by squaring and integrating the output of a dual band-pass Butterworth 
fourth order filter, and standardized with respect to the pre-exposure stage. The EEG power 
was computed for the alpha (low: 8-10 Hz, high: 11-13 Hz), beta (low: 13-20 Hz, high: 21-35 
Hz); theta (Low: 4-5 Hz, High: 6-7 Hz) and γ (36-44 Hz) bands. The entire alpha, beta and 
theta frequency bands were also analyzed. For the alpha band, two similar frequency ranges 
have been considered. i) alpha1: spread form 8 to 13Hz, and ii) alpha2: spreads from 9 to 13 
Hz. For each sensor and each block, the average power changes (across subjects) were fitted 
using a linear model from which the coefficient of determination (R2) and its slope were 
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obtained. The sensors that showed a fit indicating a coefficient of determination capable to 
explain at least 50% of the variability of the data (i.e., R2≥0.50) allowed us to determine the 
sensor clusters and the frequency bands of interest. The results of this procedure led us to 
consider the two alpha  frequency bands and the high component of the theta  frequency 
band for the right (FT8, T8, TP8) and left (FT7, T7, TP7) temporal and right (FP2, AF4, F4, F6, 
F8) and left (FP1, AF3, F3, F5, F7,) frontal lobes. This procedure led us also to consider the 
two alpha frequency bands for the left (P1, P3, P5, P7, PO3, PO5, PO7) and right (P2, P4, P6, 
P8, PO4, PO6, PO8) parietal and left (O1) and right (O2) occipital regions (For the electrodes 
sites see Fig. 6). It must be noted that the results for both alpha bands were similar. 
However, since the findings for the second alpha band (i.e., [9-13Hz]) were slightly better 
only this frequency band will be presented and discussed. For the alpha (i.e., [9-13Hz]) and 
high theta (i.e., [6-7Hz]) bands and the eight clusters of interest, the average power values 
were computed, and the same fitting process was applied. Furthermore, in order to 
investigate any correlation between the kinematics data and the EEG power, the average 
EEG power values obtained for the clusters of interest were plotted versus the MT, ML and 
RMSE values. Exponential (single and double), linear and quadratic models were used to fit 
these relationships. The best fit was selected by considering the coefficient of determination 
and its adjusted value, the mean square error of the fit, and the sum of squares due to the 
fitting error. 
The results showed that, during the early learning phase, the subjects performed distorted 
movement trajectories with a slow progression towards the targets. However, as the subjects 
of the learning group learned the unknown physical (kinematics) properties of the novel 
tool, the analysis of the motor performance revealed that the MT, ML and RMSE decreased 
throughout adaptation (Fig. 7A-C). From the early to the late learning period, the trajectories 
were straighter and smoother while the control group did not show any performance 
improvement (Fig. 7A-C).  
 

 
Fig. 7. Concomitant EEG and kinematic changes throughout learning for the learning and 
control groups. (A) Changes in MT (±SE) throughout the learning blocks. (B) Changes in ML 
(±SE) (purple) and RMSE (±SE) (blue) throughout the learning blocks. (C) Changes in 
average trajectory (thick black lines) throughout learning for early, middle and late exposure 
(the grey area represents the standard error across subjects). (D) Qualitative EEG changes in 
alpha (first and third row) and high theta (second and fourth row) frequency bands for the 

frontal, temporal, parietal and occipital regions during planning (two first rows) and 
execution (two last rows). For the sake of clarity, sensors which did not belong to the 
clusters of interest were set to the minimal value of the scale for the scalp plot. The results of 
the learning group and control group are represented in the left and right column, 
respectively. (Adapted from Gentili et al., (2008) with permission from EURASIP). 
 
Simultaneously to these behavioral changes, the results revealed that, as the subject adapt, 
the alpha and the high component of the theta power increased in the frontal and temporal 
lobes whereas an increased in alpha power also took place in the parietal lobes. Moreover, 
these spectral changes occurred during both movement planning (i.e., movement 
preparation) and movement execution. It must be noted that this alpha frequency band 
spread form 9 to 13Hz showed the largest reactivity during the adaptation to the novel tool 
and thus provides a better brain biomarker. Contrary to the learning group, the control 
group did not exhibit any changes in spectral power (Fig. 7D).  

 

 
Fig. 8. Linear fits of EEG power changes for the frontal and temporal clusters for the 
participants of the learning group. Standardized values of the average EEG power 
computed across subjects (n=10) of the learning group and blocks (n=9) for the alpha and 
the high theta frequency bands recorded from the right (FT8, T8, TP8) and left (FT7, T7, TP7) 
temporal lobes and right (FP2, AF4, F4, F6, F8) and left (FP1, AF3, F3, F5, F7) frontal lobes. 
The blue and red stars indicate that the slopes were significantly different from zero for 
planning and execution, respectively. The black star indicates that the slopes between 
planning and execution were significantly different. The two bars on the right side of each 
panel represent the average value of the EEG power for the same cortical sites and the same 
frequency band for planning (blue) and execution (red) of the control group. (Adapted from 
Gentili et al., (2008) with permission from EURASIP). 
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obtained. The sensors that showed a fit indicating a coefficient of determination capable to 
explain at least 50% of the variability of the data (i.e., R2≥0.50) allowed us to determine the 
sensor clusters and the frequency bands of interest. The results of this procedure led us to 
consider the two alpha  frequency bands and the high component of the theta  frequency 
band for the right (FT8, T8, TP8) and left (FT7, T7, TP7) temporal and right (FP2, AF4, F4, F6, 
F8) and left (FP1, AF3, F3, F5, F7,) frontal lobes. This procedure led us also to consider the 
two alpha frequency bands for the left (P1, P3, P5, P7, PO3, PO5, PO7) and right (P2, P4, P6, 
P8, PO4, PO6, PO8) parietal and left (O1) and right (O2) occipital regions (For the electrodes 
sites see Fig. 6). It must be noted that the results for both alpha bands were similar. 
However, since the findings for the second alpha band (i.e., [9-13Hz]) were slightly better 
only this frequency band will be presented and discussed. For the alpha (i.e., [9-13Hz]) and 
high theta (i.e., [6-7Hz]) bands and the eight clusters of interest, the average power values 
were computed, and the same fitting process was applied. Furthermore, in order to 
investigate any correlation between the kinematics data and the EEG power, the average 
EEG power values obtained for the clusters of interest were plotted versus the MT, ML and 
RMSE values. Exponential (single and double), linear and quadratic models were used to fit 
these relationships. The best fit was selected by considering the coefficient of determination 
and its adjusted value, the mean square error of the fit, and the sum of squares due to the 
fitting error. 
The results showed that, during the early learning phase, the subjects performed distorted 
movement trajectories with a slow progression towards the targets. However, as the subjects 
of the learning group learned the unknown physical (kinematics) properties of the novel 
tool, the analysis of the motor performance revealed that the MT, ML and RMSE decreased 
throughout adaptation (Fig. 7A-C). From the early to the late learning period, the trajectories 
were straighter and smoother while the control group did not show any performance 
improvement (Fig. 7A-C).  
 

 
Fig. 7. Concomitant EEG and kinematic changes throughout learning for the learning and 
control groups. (A) Changes in MT (±SE) throughout the learning blocks. (B) Changes in ML 
(±SE) (purple) and RMSE (±SE) (blue) throughout the learning blocks. (C) Changes in 
average trajectory (thick black lines) throughout learning for early, middle and late exposure 
(the grey area represents the standard error across subjects). (D) Qualitative EEG changes in 
alpha (first and third row) and high theta (second and fourth row) frequency bands for the 

frontal, temporal, parietal and occipital regions during planning (two first rows) and 
execution (two last rows). For the sake of clarity, sensors which did not belong to the 
clusters of interest were set to the minimal value of the scale for the scalp plot. The results of 
the learning group and control group are represented in the left and right column, 
respectively. (Adapted from Gentili et al., (2008) with permission from EURASIP). 
 
Simultaneously to these behavioral changes, the results revealed that, as the subject adapt, 
the alpha and the high component of the theta power increased in the frontal and temporal 
lobes whereas an increased in alpha power also took place in the parietal lobes. Moreover, 
these spectral changes occurred during both movement planning (i.e., movement 
preparation) and movement execution. It must be noted that this alpha frequency band 
spread form 9 to 13Hz showed the largest reactivity during the adaptation to the novel tool 
and thus provides a better brain biomarker. Contrary to the learning group, the control 
group did not exhibit any changes in spectral power (Fig. 7D).  

 

 
Fig. 8. Linear fits of EEG power changes for the frontal and temporal clusters for the 
participants of the learning group. Standardized values of the average EEG power 
computed across subjects (n=10) of the learning group and blocks (n=9) for the alpha and 
the high theta frequency bands recorded from the right (FT8, T8, TP8) and left (FT7, T7, TP7) 
temporal lobes and right (FP2, AF4, F4, F6, F8) and left (FP1, AF3, F3, F5, F7) frontal lobes. 
The blue and red stars indicate that the slopes were significantly different from zero for 
planning and execution, respectively. The black star indicates that the slopes between 
planning and execution were significantly different. The two bars on the right side of each 
panel represent the average value of the EEG power for the same cortical sites and the same 
frequency band for planning (blue) and execution (red) of the control group. (Adapted from 
Gentili et al., (2008) with permission from EURASIP). 
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Among the various models tested to fit these spectral changes, the best model that was able 
to capture these changes was linear. Only the left temporal lobe presented a significantly 
linear increase for the high component of theta power during movement planning (Fig. 8A). 
However, for the frontal lobes, the same linear theta power increase occurred during both 
movement planning and execution with similar slopes (Fig. 8C). For both the temporal and 
frontal lobes, the alpha power significantly increased linearly during both movement 
planning and execution. The slopes were also different between movement planning and 
execution (Fig. 8B, D). Finally, the alpha power showed a significant linear increase in the 
left and right parietal lobes for the planning while only a tendency was observed for the 
execution and both movement stages for the two occipital lobes (Fig. 9A, C). 

 
Fig. 9. Linear fits of EEG power changes for the occipital (A) and parietal (B) clusters for the 
learning group. Standardized values of the average EEG power computed across subjects 
(n=10) and blocks (n=9) for the alpha frequency bands recorded from the right (O2) and left 
(O1) occipital lobes and right (P2, P4, P6, P8, PO4, PO6, PO8) and left (P1, P3, P5, P7, PO3, PO5, 
PO7) parietal lobes. The blue stars indicate that the slopes were significantly different from 
zero for planning. The two bars on the right side of each panel represent the average value of 
the EEG power for the same cortical sites and the same frequency band for planning (blue) and 
execution (red) for the control group.  The scalp plot depicts the clusters of electrodes in the 
occipital and parietal sites (C) and also for the frontal and temporal sites (D). For both panels, 
the blue and red circles indicate that the linear models for the alpha and theta power showed a 
coefficient of determination (R2) greater than 0.5 for the planning and execution of movement, 
respectively. The blue and red stars indicate that the linear models had a slope significantly 
different from zero for planning and execution phases, respectively. The black star indicates 
that the slopes for planning and execution are significantly different from each other. 
 
The previous results were obtained at a cluster level; however, a refined analysis conducted 
at the sensor level also showed that these linear changes where located on specific sensors 
(Fig. 9C, D) for these two frequency bands and both movement planning and execution. 
Finally, in order to find a correlation model between these spectral changes and those 
observed in kinematics during performance several models have been tested.  
 

 
Fig. 10. Changes in EEG power in the alpha and high theta bands versus kinematics. The 
first two  rows represent the average values of the standardized power of the alpha bands 
computed for the right and left temporal and frontal regions during planning and execution 
versus the concomitant changes in ML (first row) and RMSE (second row) for the learning 
group. The third row represents the same relationship for both alpha versus ML and high 
theta versus RMSE for the control group. (Adapted from Gentili et al., (2008) with 
permission from EURASIP). 
 
The findings showed that, among the models tested, the single exponential was able to 
capture with the best accuracy these co-variations between EEG power changes and the 
corresponding motor production (Fig. 10A, B). The control group did not show any changes 
(Fig. 10C). 
Thus, it appears that these changes in theta and alpha power provide informative brain 
biomarkers to track the cortical dynamics in order to assess the level of performance and 
also to track during both planning and execution the level of mastery of a novel tool 
throughout learning. Although useful, this first type of brain biomarker has the drawback to 
be univariate, that is, the power computed at a particular scalp site is able to characterize 
activation patterns for a particular channel (or brain region) without accounting for 
functional network connectivity or communications between different regions of the cortex 
during performance. It must be noted that these spectral power changes have been robustly 
observed in EEG/MEG studies and represent today a classical brain biomarker of human 
performance. Beside the spectral power, another type of brain biomarker, derived from 
EEG/MEG, is the computation of the phase synchronization between two scalp sites. 
Although initially less popular, this second technique (see section 2.3) is increasingly used to 
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Among the various models tested to fit these spectral changes, the best model that was able 
to capture these changes was linear. Only the left temporal lobe presented a significantly 
linear increase for the high component of theta power during movement planning (Fig. 8A). 
However, for the frontal lobes, the same linear theta power increase occurred during both 
movement planning and execution with similar slopes (Fig. 8C). For both the temporal and 
frontal lobes, the alpha power significantly increased linearly during both movement 
planning and execution. The slopes were also different between movement planning and 
execution (Fig. 8B, D). Finally, the alpha power showed a significant linear increase in the 
left and right parietal lobes for the planning while only a tendency was observed for the 
execution and both movement stages for the two occipital lobes (Fig. 9A, C). 
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learning group. Standardized values of the average EEG power computed across subjects 
(n=10) and blocks (n=9) for the alpha frequency bands recorded from the right (O2) and left 
(O1) occipital lobes and right (P2, P4, P6, P8, PO4, PO6, PO8) and left (P1, P3, P5, P7, PO3, PO5, 
PO7) parietal lobes. The blue stars indicate that the slopes were significantly different from 
zero for planning. The two bars on the right side of each panel represent the average value of 
the EEG power for the same cortical sites and the same frequency band for planning (blue) and 
execution (red) for the control group.  The scalp plot depicts the clusters of electrodes in the 
occipital and parietal sites (C) and also for the frontal and temporal sites (D). For both panels, 
the blue and red circles indicate that the linear models for the alpha and theta power showed a 
coefficient of determination (R2) greater than 0.5 for the planning and execution of movement, 
respectively. The blue and red stars indicate that the linear models had a slope significantly 
different from zero for planning and execution phases, respectively. The black star indicates 
that the slopes for planning and execution are significantly different from each other. 
 
The previous results were obtained at a cluster level; however, a refined analysis conducted 
at the sensor level also showed that these linear changes where located on specific sensors 
(Fig. 9C, D) for these two frequency bands and both movement planning and execution. 
Finally, in order to find a correlation model between these spectral changes and those 
observed in kinematics during performance several models have been tested.  
 

 
Fig. 10. Changes in EEG power in the alpha and high theta bands versus kinematics. The 
first two  rows represent the average values of the standardized power of the alpha bands 
computed for the right and left temporal and frontal regions during planning and execution 
versus the concomitant changes in ML (first row) and RMSE (second row) for the learning 
group. The third row represents the same relationship for both alpha versus ML and high 
theta versus RMSE for the control group. (Adapted from Gentili et al., (2008) with 
permission from EURASIP). 
 
The findings showed that, among the models tested, the single exponential was able to 
capture with the best accuracy these co-variations between EEG power changes and the 
corresponding motor production (Fig. 10A, B). The control group did not show any changes 
(Fig. 10C). 
Thus, it appears that these changes in theta and alpha power provide informative brain 
biomarkers to track the cortical dynamics in order to assess the level of performance and 
also to track during both planning and execution the level of mastery of a novel tool 
throughout learning. Although useful, this first type of brain biomarker has the drawback to 
be univariate, that is, the power computed at a particular scalp site is able to characterize 
activation patterns for a particular channel (or brain region) without accounting for 
functional network connectivity or communications between different regions of the cortex 
during performance. It must be noted that these spectral power changes have been robustly 
observed in EEG/MEG studies and represent today a classical brain biomarker of human 
performance. Beside the spectral power, another type of brain biomarker, derived from 
EEG/MEG, is the computation of the phase synchronization between two scalp sites. 
Although initially less popular, this second technique (see section 2.3) is increasingly used to 
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track the level of sensorimotor performance/learning. Recently this approach led to 
interesting results that will be presented in the next section. 

 
3.2 Phase synchronisation 
Contrary to the previously mentioned investigations focusing on the spectral power analysis, 
there are only a few studies that analyzed the cortical networking by means of coherence 
and/or PLV to assess the level of motor performance and/or to track the learning dynamic. 
For instance, Bell and Fox (1996) reported a decreased EEG coherence in experienced infant 
crawlers relative to novice crawlers and attributed their findings to a pruning of synaptic 
connections as crawling became more routine. Another experiment, further directly related 
to our purpose and conducted by Deeny et al., (2003), compared EEG coherence between a 
frontal site (i.e., sensor Fz) and several other cortical regions in two groups of highly skilled 
marksmen who were similar in expertise, but who differed in competitive performance 
history. One of the two groups performed consistently better in competition and exhibited 
significantly lower coherence between the left temporal region (i.e., T3) and the premotor 
area (i.e., Fz) in the low-alpha (8–10 Hz) and low-beta (13–22 Hz) bandwidths during the 
aiming period (Fig. 11).   

 
Fig. 11. Upper row. Expert and skilled group means for low-alpha (8–10 Hz) coherence 
estimates between Fz (premotor area) and frontal, central, temporal, parietal, and occipital 
sites in each cerebral hemisphere. Lower row. Expert and skilled group means for low-beta 
(13–22 Hz) coherence estimates between Fz (premotor area) and frontal, central, temporal, 
parietal, and occipital sites in each cerebral hemisphere. *Significant difference, p <0.05; 
**T3–Fz coherence was significantly lower than T4–Fz coherence in the expert group only. 
(Adapted from Deeny et al., (2003) with permission from Human Kinetics Publishers). 
 
More recently, Deeny et al., (2009) confirmed that the coherence could also be useful to 
assess the brain dynamic in relation to the level of mastery of a motor task. Specifically, they 

showed that experts generally exhibited lower coherence over the whole scalp compared 
with novices, with the effect most prominent in the right hemisphere. Coherence was 
positively related to aiming movement variability in experts (Fig. 12).  
 

 
Fig. 12. A. Average variability of rifle aiming path during the 4 s prior to trigger pull in 1-s 
time bins for experts and novices. Error bars represent standard error. B. Coherence values 
for high alpha. C. Coherence values for low beta. *Indicate significantly higher coherence in 
novice shooters relative to experts (p <0.05). C = central; F = frontal; O = occipital; P = 
parietal; T = temporal. (Adapted from Deeny et al., (2009) with permission from Heldref 
Publications). 
 
Taken together, the authors of these two studies suggested that these coherence results 
reflect a refinement of cortical networks in experts that was interpreted as a reduction of 
nonessential functional communications among the cortical regions of interest inducing in 
turn an improvement in motor performance. In other words, such coherence patterns 
provide brain biomarkers of specific motor planning as skill level increases allowing 
assessing the mastery level of a given task. As previously explained in the section related to 
the spectral power analysis, these studies assessed cortical dynamics for a well-established 
motor ability without addressing any learning manipulations of object or tool having 
unknown properties. As far as we know, only two investigations (Busk & Galbraith, 1975; 
Kranczioch et al., 2008) used coherence measurement to study learning during a visuomotor 
task. Specifically, Busk & Galbraith, (1975) reported decreased coherence between premotor 
(Fz) and motor (C3, C4) areas of the cortex and between the premotor and occipital regions, 
following practice on an eye–hand tracking task. More recently, Kranczioch et al., (2008) 
found changes in cortico-cortical coupling during learning of a visuomotor power grip tool. 
Specifically, they revealed that learning was variably associated with increased coherence 
between contralateral and/or ipsilateral frontal and parietal, fronto-central, and occipital 
brain regions. However, the learning period was relatively short (e.g., only the early 
learning stage was considered in Busk & Galbraith, (1975)) and these studies did not involve 
the suppression of familiar behavior used in the daily life. 
By using the same tool learning protocol with unknown kinematics features (see section 3.1, 
Fig.6), a recent analysis (Gentili et al., 2009b) aimed to identify any changes in phase 
synchronization between two electrode pairs using both spectral coherence and PLV. The 
aim was to extract information from these measures to provide additional non-invasive 
functional brain biomarkers able to track the sensorimotor performance while subjects 
learned to manipulate a novel tool. The pre-processing of the EEG, the choice of the 
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track the level of sensorimotor performance/learning. Recently this approach led to 
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More recently, Deeny et al., (2009) confirmed that the coherence could also be useful to 
assess the brain dynamic in relation to the level of mastery of a motor task. Specifically, they 

showed that experts generally exhibited lower coherence over the whole scalp compared 
with novices, with the effect most prominent in the right hemisphere. Coherence was 
positively related to aiming movement variability in experts (Fig. 12).  
 

 
Fig. 12. A. Average variability of rifle aiming path during the 4 s prior to trigger pull in 1-s 
time bins for experts and novices. Error bars represent standard error. B. Coherence values 
for high alpha. C. Coherence values for low beta. *Indicate significantly higher coherence in 
novice shooters relative to experts (p <0.05). C = central; F = frontal; O = occipital; P = 
parietal; T = temporal. (Adapted from Deeny et al., (2009) with permission from Heldref 
Publications). 
 
Taken together, the authors of these two studies suggested that these coherence results 
reflect a refinement of cortical networks in experts that was interpreted as a reduction of 
nonessential functional communications among the cortical regions of interest inducing in 
turn an improvement in motor performance. In other words, such coherence patterns 
provide brain biomarkers of specific motor planning as skill level increases allowing 
assessing the mastery level of a given task. As previously explained in the section related to 
the spectral power analysis, these studies assessed cortical dynamics for a well-established 
motor ability without addressing any learning manipulations of object or tool having 
unknown properties. As far as we know, only two investigations (Busk & Galbraith, 1975; 
Kranczioch et al., 2008) used coherence measurement to study learning during a visuomotor 
task. Specifically, Busk & Galbraith, (1975) reported decreased coherence between premotor 
(Fz) and motor (C3, C4) areas of the cortex and between the premotor and occipital regions, 
following practice on an eye–hand tracking task. More recently, Kranczioch et al., (2008) 
found changes in cortico-cortical coupling during learning of a visuomotor power grip tool. 
Specifically, they revealed that learning was variably associated with increased coherence 
between contralateral and/or ipsilateral frontal and parietal, fronto-central, and occipital 
brain regions. However, the learning period was relatively short (e.g., only the early 
learning stage was considered in Busk & Galbraith, (1975)) and these studies did not involve 
the suppression of familiar behavior used in the daily life. 
By using the same tool learning protocol with unknown kinematics features (see section 3.1, 
Fig.6), a recent analysis (Gentili et al., 2009b) aimed to identify any changes in phase 
synchronization between two electrode pairs using both spectral coherence and PLV. The 
aim was to extract information from these measures to provide additional non-invasive 
functional brain biomarkers able to track the sensorimotor performance while subjects 
learned to manipulate a novel tool. The pre-processing of the EEG, the choice of the 
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frequency bands of interest and the kinematics processing were similar to that previously 
described in section 3.1 for the same tool learning task. Both the spectral coherence and the 
PLV have been computed as mentioned in section 2.3. A visual inspection of the data led us 
to consider a linear and a logarithmic model to fit the relationship between the spectral 
coherence/PLV changes and the kinematics parameters (MT, ML, RMSE) throughout 
learning. However, based on the criteria previously mentioned (see section 3.1), the 
logarithmic model allowed a better fitting of these relationships. It must be noted that, since 
for this experiment both spectral coherence and PLV provided similar results, thus, only the 
PLV results are presented in the following. The kinematics results are the same that those 
presented in section 3.1 (see Fig. 7A-C) indicating that the subjects learned to manipulate 
correctly the novel tool. 
 

 
Fig. 13. Changes in PLV throughout the learning. A. Pair of electrodes showing a decrease of 
their synchronization throughout the learning during planning (top scalp plot) and 
execution (bottom scalp plot). B. Linear model capturing the changes in PLV during 
planning and execution for the pair of electrodes Fz-F3 (low alpha band), Fz-F4 (low beta 
band), Fz-C3 (low beta band) and Fz-O1 (gamma band). C. Linear model capturing the 
changes in PLV during execution for the pair of electrodes Fz-T7 (low theta band), Fz-P3 
(high alpha band), Fz-P4 (high alpha band), and Fz-F3 (high theta band).  (Panels A and B 
reproduced from Gentili et al., (2009b) with permission from IEEE). 
 
While throughout learning the kinematics was enhanced (see Fig. 7A-C); 
electrophysiological changes in phase synchronization were simultaneously observed (Fig. 
13A). Namely, as the subjects adapt, the electrodes pair Fz-F3 (low alpha band), Fz-F3 (low 
beta band), Fz-F4 (low beta band), Fz-C3 (low beta band) and Fz-O1 (gamma band) revealed 
a decrease captured by a linear model (i.e., R2≥0.50) for both movement planning and 
execution (Fig. 13B). For planning, the slopes of these linear models were significantly 
different from zero (t-test, p<0.05) for Fz-F3 (low components of the alpha and beta bands), 
Fz-C3 (low beta band), Fz-O1 (gamma band) and during execution for Fz-F3 (low alpha 
band) and Fz-C3 (low beta band) while a trend was observed for Fz-F3 (low beta band, 
p=0.06) and Fz-F4 (low beta band, p=0.07). Also, for execution, the same analysis revealed 
that the electrode pairs Fz-T7 (low theta band), Fz-P3 (high alpha band), Fz-P4 (high alpha 

band) and Fz-F3 (high theta band) showed a significant linear decrease of the PVL (t-test, 
p<0.05) throughout adaptation (Fig.13C). 
Such linear decrease was correlated with an enhancement of the performance and 
particularly good logarithmic correlations were found between the changes in phase 
synchronization and the MT and ML parameters. The results for the correlation analyses 
showed that the relationships between the changes in PLV for the pairs Fz-F3, Fz-F4,  Fz-C3, 
Fz-O1 and the MT and ML values were best fitted by using a logarithm (R2≥0.40) for both 
planning and execution. The same correlation analysis performed for the pairs Fz-T7, Fz-P3, 
Fz-P4, Fz-F3 and the MT and ML values revealed that the same results were obtained 
(R2≥0.50) only for movement execution. 

  

 
Fig. 14. Representation of the PLV versus the MT (first row) and the ML (second row) for 
both movement planning (blue color) and execution (red color). A. Pair Fz-F3 (low alpha 
band); B. Pair Fz-C3 (low beta band); C. Pair Fz-O1 (gamma band); D. Pair Fz-T7 (low theta 
band); E. Pair Fz-F3 (low alpha band); F. Pair Fz-C3 (low beta band);  G. Pair Fz-O1 (gamma 
band); H. Pair Fz-F3 (high theta band). Since the Pair Fz-T7 (low theta band) and Fz-F3 (high 
theta band) revealed a non significant linear decrease during planning, the fits for PLV 
values versus MT and ML are only presented for execution (see panel D and H). (Panels 
A,B,E,F reproduced from Gentili et al., (2009b) with permission from IEEE). 
 
As for the spectral power changes for the alpha and theta frequency bands, these changes in 
coherence/PLV presented above, allow assessing the level of performance but also its 
development throughout a learning period. Therefore, the spectral power and 
coherence/PLV provide brain biomarkers of the performance and learning in Human that 
may be useful in bioengineering/biomedical applications, particularly for brain monitoring 
applications and/or when the access to the actual performance is impossible. This will be 
presented in section 4, beforehand; the section 3.3 will present and discuss the advantages of 
these brain biomarkers but also their current limitations and the potential solutions to 
overcome them. 
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development throughout a learning period. Therefore, the spectral power and 
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3.3 Strengths, weaknesses, and perspectives for brain biomarkers of the 
sensorimotor performance 
 

3.3.1 Strengths and weaknesses 
By revealing correlations between the spectral power, coherence/PLV and motor 
performance, the research lines presented in this chapter provide potential non-invasive 
functional brain biomarkers to assess and track the level of performance and learning. It is 
important to note that these biomarkers are able to detect important differences in skills 
level such as those existing between novices and experts (e.g., Hatfield et al., 1984, 2004; 
Haufler et al., 2000) as well as to identify the learning dynamic related to different types of 
tasks inducing different neural resources (e.g., Gentili et al., 2008, 2009a,b; Kerick et al., 
2004). Moreover, although their scalp locations and frequency band of interest present slight 
variations from one task to another, it appears that these biomarkers share also some 
frequency (e.g., alpha band) and spatial (e.g., temporal region) features while being located 
on specific electrodes for the various tasks tested. Therefore, beyond certain specificities that 
are task-dependent, these biomarkers of human performance share a common consistent 
topology in term of frequency and spatial scalp locations across different tasks. Moreover, it 
must be noted that changes in phase synchronization for a specific frequency range do not 
necessarily imply similar power changes for the same electrodes (Kiroi & Aslanyan, 2006). 
Therefore, the availability of processing techniques for extracting and combining both 
univariate (i.e., spectral power) and multivariate (i.e., spectral coherence/PLV) cortical 
measures might provide “multidimensional” brain biomarkers in the future. Such 
multidimensionality resulting from the combination previously described is expected to 
provide enhanced, robust biomarkers capable of tracking performance and learning 
dynamics, thus providing a potential solution to overcome limitations in current practical 
applications. This will be explained in the section 3.3.2.  
Another important point is directly linked to the fact that these biomarkers were derived 
from EEG during movement execution, but, more importantly, during movement 
preparation (i.e., planning; Deeny et al., 2003, 2009; Gentili et al., 2008, 2009a,b; Hatfield et 
al., 2004; Haufler et al., 2000). The availability of these biomarkers during movement 
execution and particularly during movement preparation (i.e., planning) involves two 
specific advantages.  
First, a biomarker of the performance during execution can be considered as a good 
complement of the behavioral measures available during and/or after movement execution. 
More importanty, the presence of these brain biomarkers during planning also allow 
estimating/predicting the on-coming performance level that is not available with usual 
peripheral and behavioral measurements. This important feature is common to many 
biomarkers such as the bispectral index derived from EEG used for the identification of 
anesthetic depth during pediatric cardiac surgery while the usual clinical signs are not 
accessible (Williams & Ramamoorthy, 2009).  
Second, the availability of brain biomarkers of the performance during movement 
preparation is a feature that becomes particularly important when considering overt but, 
more importantly, covert movement executions in the context of bioengineering and 
biomedical applications for rehabilitation. The expression “overt movement execution” 
corresponds to a movement actually performed such as those executed in daily activities. In 
this case, the person can see and feel his/her own limb moving. Conversely, the term 
“covert movement execution”, also commonly named mental or motor imagery, refers to a 

dynamic mental process during which a subject internally simulates a motor action without 
activating the muscles and, therefore, without any apparent motion of the limbs involved in 
that action (Gentili et al., 2004, 2006; Jeannerod, 2001). Such motor imagery or covert 
execution is commonly used for mental practice/rehearsal of specific performance skills, 
BCI approaches and more generally in rehabilitation (see section 4 of this chapter). 
Interestingly, many studies revealed that common neurocognitive mechanisms in terms of 
both similar neural structures and behaviour exist between overt and covert motor actions 
(Fadiga & Craighero, 2004; Gentili et al., 2006; Jeannerod et al., 2001). In particular, several 
investigations suggest that motor imagery involves the same neural mechanisms as those 
activated during preparation (i.e., planning) and execution of overt movements (e.g., 
Jeannerod, 1994, 2001). Therefore, although our task involved actual movements, since the 
present results suggest that these brain biomarkers are accessible during movement 
preparation, they may also be suitable for covert movement execution when a task is 
performed using motor imagery. 
Despite this research provided some interesting results and is still currently making 
progresses, two main limitations have to be considered. First, the present brain biomarkers 
of performance are based on a population analysis without considering subject individually. 
Second, their computation was based on the average value across several trials (e.g., 20 
trials). Definitely, considering the variability of the MEG/EEG signals from one trial to 
another and also the sensitivity of the EEG signal to environmental noise and artefacts, the 
approach consisting in defining brain biomarkers of the performance needs to investigate, to 
what extent these results can be extended when single subject and single trials are 
considered. This is important for future applications since they will be designed for single 
subjects and ideally based on single or eventually few trials. Recently, by using MEG 
applied to a similar tool learning task (described in Fig. 6), we started to address these two 
problems by analyzing the alpha power band ([9-13Hz]) in individual subjects using the 
same ERD/ERS techniques and testing different sliding window (e.g., length, overlap) 
across trials. The preliminary results suggest that, at the individual level, the spectral power 
for the alpha band ([9-13Hz]) computed at the frontal, temporal and parietal regions during 
movement preparation were able to predict the motor performance (Gentili et al. 2009a).  

 
3.3.2 Overcoming the current limitations by means of multiple constrains 
As suggested in section 3.3.1, a possible way to overcome the two main limitations 
previously mentioned (i.e., single subject and computation based on single or few trials) is 
to obtain robust multidimensional EEG/MEG biomarkers able to assess the level of 
performance and learning by combining several individual biomarkers. In other words, the 
combination of several biomarkers would result in an increased number of conditions that 
have to be satisfied for estimating reliably any enhancement of the performance. The 
prediction problem is therefore constrained since a reliable estimation of performance needs 
to satisfy several constraints represented by the right combinations of biomarkers. For 
instance, if both a power increase and a coherence/PLV decrease are simultaneously 
observed for specific frequency bands and brain regions, it seems reasonable to predict with 
a certain confidence that the subjects are successfully learning the task. Conversely, if we 
would have only one biomarker, this prediction would be less reliable. Therefore, the 
combination of several brain biomarkers such as phase synchronization and spectral power 
would provide cross-information resulting in the generation of robust and accurate non-
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invasive brain biomarkers of the motor performance. This approach could also give insight 
into possible reasons for the failure of sensorimotor learning and adaptations. Thus, such 
multidimensional brain biomarkers might be better suited for applications based on 
individual subjects and single or few trials. 
It must be noted that, this first type of constraint was related to a combination of various 
biomarkers using the same brain imaging modality, i.e., EEG/MEG signals. However, 
another type of combination could also be considered by using the fusion across multiple 
recoding modalities in order to complement information provided from each imaging 
technique. For instance, in order to complement EEG/MEG signals analysis, fNIRS signals 
processing could provide additional brain biomarker by measuring the hemodynamic of 
brain activity. The choice to use fNIRS is guided by three reasons: First, although the 
hemodynamic activity has a lower temporal resolution than EEG, the fNIRS potentially 
provides more direct spatial resolution or localization abilities over EEG (Soraghan et al., 
2008). Thus, with the superior temporal resolution of EEG, merging these two techniques 
would allow for “the best of both worlds” (Coyle et al., 2007). Second, contrary to EEG, the 
hemodynamic response is influenced by head/body orientation with respect to the 
gravitational axis whereas fNRIS signal is relatively less sensitive to artefact and 
environmental noise than EEG. Once again, since both do not have these two common 
weaknesses their combination appears to be advantageous. Third, although fNIRS only 
penetrate the cortex relatively superficially (~2.0 cm; Rolfe, 2003) contrary to classical fMRI, 
these signals can be recorded by portable devices as it is also the case for EEG, making them, 
particularly well suited for applications in practical/ecological situations with various 
populations (e.g., healthy persons, patients, children, elderly, military personnel, etc.). It 
must be noted that the idea to combine several biomarkers within (power, coherence/PLV) 
and between (fNIRS) imaging modalities has already been proposed for clinical applications 
(Guarracino et al., 2008) such as for brain injury prediction (Ramaswamy et al., 2009) and 
amyotrophic lateral sclerosis (Turner et al., 2009). From a practical point of view, this signal 
fusion across multiple imaging modalities could ideally be performed by using a recoding 
system that embed both EEG and fNIRS sensors. 

 
3.3.3 Emotional states on brain biomarkers of the performance  
A question that is naturally raised is the influence that some psychological and mental states 
such as emotion, stress or fatigue could exert over the quality of sensorimotor performance. 
If such adverse psychological and mental states disrupt the motor performance, it is 
legitimate to wonder to which extent the biomarkers tracking this same performance would 
also be affected. However, the majority of the performance stress-related studies focus on 
behavioural aspects without analyzing the cortical dynamics (Staal et al., 2004). Ongoing 
research by Hatfield and colleagues is beginning to provide some insight into such 
questions by placing performers under stressful conditions. For instance, Rietschel et al., 
(2008) asked participants to perform a marksmanship task under both regular performance-
alone and competitive conditions. Changes in the Spielberger State Anxiety Inventory 
(STAI), heart rate, cortisol and skin conductance evidenced an increased state anxiety during 
the competitive condition. Furthermore, the performance was affected during the 
competition along with a significant decrease in alpha power. Similarly, when subjects 
performed a drawing movement task under high level arousal conditions they exhibited 
higher levels of coherence associated with decreases in performance (Rietschel et al., 2006). 

Therefore, these results provide evidence that the brain biomarkers of sensorimotor 
performance can be disrupted by psychological and mental states such as emotion, stress. 
Thus, from a physiological point of view, it is possible to consider that an increased degree 
of stress would induce the recruitment of nonessential neural resources during task 
execution, leading to a reduction of cortical refinement (i.e., a reduction of alpha power and 
an increase in cortico-cortical communication) that reflects sub-optimal performance. In 
other words, we could consider that, to some degree, the brain biomarkers are contaminated 
with a sort of noise. However, even in this case, they may still be informative since in some 
instances they could also unravel the possible causes (e.g., stress, fatigue) of alterations in 
behavioral performance which cannot be revealed by peripheral motion parameters (e.g., 
kinematics) alone. For instance, in the study where subjects learn a novel tool, the absence of 
learning/adaptation could also be due to fatigue. Nevertheless, when considering the 
spectral power, the frontal biomarkers evidenced here are neither in the same spatial 
location (frontal midline) nor in the same frequency band (low theta band) than the fatigue-
related EEG power (Makeig et al., 2000; Oken et al., 2006). Similarly, when considering the 
coherence/PLV, factors such as stress or fatigue imply an increase and not a decrease in 
phase synchronization and is generally identified for different electrodes pairs and/or 
frequency bands (Andersen et al., 2009; Lorist et al., 2009) than those found in the tool 
learning study (see section 3.2). Therefore, this clearly illustrates: i) the advantage to 
combine different biomarkers of the performance to obtain more robust predictions, ii) the 
benefit to combine them with other biomarkers identifying some adverse mental states (e.g., 
fatigue, stress) to be able to better decipher or indicate potential causes of a poor learning 
performance. Futures research should provide insights about these various possibilities, 
their benefit and limits. 

 
3.3.4 Fusion of structural and functional brain biomarkers  
Although the two previous sections (3.3.2 and 3.3.3) focused on different problems, both of 
them emphasized the importance for cross-information by combining several biomarkers. 
Indeed, it can be reasonably expected that such combination of biomarkers would lead to a 
robust tracking of motor performance and learning. It must be noted that such a 
combination can be performed not only between functional biomarkers but also between 
both structural and functional biomarkers. For instance, biomarkers can predict the 
performance based on information at the genetic/molecular level (e.g., naloxone, cortisol) or 
from behaviour such as heart rate or skin conductance (Armstrong & Hatfield, 2006). Thus, 
such convergence between these biomarkers, different in nature, would allow performing 
an even more robust prediction to assess accurately the level of performance and to 
track/predict precisely the learning dynamic. Although this chapter introduced mainly the 
concept of functional brain biomarkers for performance assessment, it appears clearly that 
both structural and functional brain biomarkers must be seen as a complementary source of 
information. Interestingly, while structural brain biomarkers using methods form genetic 
may be more appropriate on a long timescale prediction such as very early diagnostic, 
functional biomarkers may be better suited for short timescale prediction such as a real-time 
tracking of the neural events. Such combination of structural and functional brain 
biomarkers is an emerging research line. For instance, recently Deeny et al., (2008) 
investigated MEG measurements in relation to genetic markers such as the epsilon4 allele of 
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invasive brain biomarkers of the motor performance. This approach could also give insight 
into possible reasons for the failure of sensorimotor learning and adaptations. Thus, such 
multidimensional brain biomarkers might be better suited for applications based on 
individual subjects and single or few trials. 
It must be noted that, this first type of constraint was related to a combination of various 
biomarkers using the same brain imaging modality, i.e., EEG/MEG signals. However, 
another type of combination could also be considered by using the fusion across multiple 
recoding modalities in order to complement information provided from each imaging 
technique. For instance, in order to complement EEG/MEG signals analysis, fNIRS signals 
processing could provide additional brain biomarker by measuring the hemodynamic of 
brain activity. The choice to use fNIRS is guided by three reasons: First, although the 
hemodynamic activity has a lower temporal resolution than EEG, the fNIRS potentially 
provides more direct spatial resolution or localization abilities over EEG (Soraghan et al., 
2008). Thus, with the superior temporal resolution of EEG, merging these two techniques 
would allow for “the best of both worlds” (Coyle et al., 2007). Second, contrary to EEG, the 
hemodynamic response is influenced by head/body orientation with respect to the 
gravitational axis whereas fNRIS signal is relatively less sensitive to artefact and 
environmental noise than EEG. Once again, since both do not have these two common 
weaknesses their combination appears to be advantageous. Third, although fNIRS only 
penetrate the cortex relatively superficially (~2.0 cm; Rolfe, 2003) contrary to classical fMRI, 
these signals can be recorded by portable devices as it is also the case for EEG, making them, 
particularly well suited for applications in practical/ecological situations with various 
populations (e.g., healthy persons, patients, children, elderly, military personnel, etc.). It 
must be noted that the idea to combine several biomarkers within (power, coherence/PLV) 
and between (fNIRS) imaging modalities has already been proposed for clinical applications 
(Guarracino et al., 2008) such as for brain injury prediction (Ramaswamy et al., 2009) and 
amyotrophic lateral sclerosis (Turner et al., 2009). From a practical point of view, this signal 
fusion across multiple imaging modalities could ideally be performed by using a recoding 
system that embed both EEG and fNIRS sensors. 

 
3.3.3 Emotional states on brain biomarkers of the performance  
A question that is naturally raised is the influence that some psychological and mental states 
such as emotion, stress or fatigue could exert over the quality of sensorimotor performance. 
If such adverse psychological and mental states disrupt the motor performance, it is 
legitimate to wonder to which extent the biomarkers tracking this same performance would 
also be affected. However, the majority of the performance stress-related studies focus on 
behavioural aspects without analyzing the cortical dynamics (Staal et al., 2004). Ongoing 
research by Hatfield and colleagues is beginning to provide some insight into such 
questions by placing performers under stressful conditions. For instance, Rietschel et al., 
(2008) asked participants to perform a marksmanship task under both regular performance-
alone and competitive conditions. Changes in the Spielberger State Anxiety Inventory 
(STAI), heart rate, cortisol and skin conductance evidenced an increased state anxiety during 
the competitive condition. Furthermore, the performance was affected during the 
competition along with a significant decrease in alpha power. Similarly, when subjects 
performed a drawing movement task under high level arousal conditions they exhibited 
higher levels of coherence associated with decreases in performance (Rietschel et al., 2006). 

Therefore, these results provide evidence that the brain biomarkers of sensorimotor 
performance can be disrupted by psychological and mental states such as emotion, stress. 
Thus, from a physiological point of view, it is possible to consider that an increased degree 
of stress would induce the recruitment of nonessential neural resources during task 
execution, leading to a reduction of cortical refinement (i.e., a reduction of alpha power and 
an increase in cortico-cortical communication) that reflects sub-optimal performance. In 
other words, we could consider that, to some degree, the brain biomarkers are contaminated 
with a sort of noise. However, even in this case, they may still be informative since in some 
instances they could also unravel the possible causes (e.g., stress, fatigue) of alterations in 
behavioral performance which cannot be revealed by peripheral motion parameters (e.g., 
kinematics) alone. For instance, in the study where subjects learn a novel tool, the absence of 
learning/adaptation could also be due to fatigue. Nevertheless, when considering the 
spectral power, the frontal biomarkers evidenced here are neither in the same spatial 
location (frontal midline) nor in the same frequency band (low theta band) than the fatigue-
related EEG power (Makeig et al., 2000; Oken et al., 2006). Similarly, when considering the 
coherence/PLV, factors such as stress or fatigue imply an increase and not a decrease in 
phase synchronization and is generally identified for different electrodes pairs and/or 
frequency bands (Andersen et al., 2009; Lorist et al., 2009) than those found in the tool 
learning study (see section 3.2). Therefore, this clearly illustrates: i) the advantage to 
combine different biomarkers of the performance to obtain more robust predictions, ii) the 
benefit to combine them with other biomarkers identifying some adverse mental states (e.g., 
fatigue, stress) to be able to better decipher or indicate potential causes of a poor learning 
performance. Futures research should provide insights about these various possibilities, 
their benefit and limits. 

 
3.3.4 Fusion of structural and functional brain biomarkers  
Although the two previous sections (3.3.2 and 3.3.3) focused on different problems, both of 
them emphasized the importance for cross-information by combining several biomarkers. 
Indeed, it can be reasonably expected that such combination of biomarkers would lead to a 
robust tracking of motor performance and learning. It must be noted that such a 
combination can be performed not only between functional biomarkers but also between 
both structural and functional biomarkers. For instance, biomarkers can predict the 
performance based on information at the genetic/molecular level (e.g., naloxone, cortisol) or 
from behaviour such as heart rate or skin conductance (Armstrong & Hatfield, 2006). Thus, 
such convergence between these biomarkers, different in nature, would allow performing 
an even more robust prediction to assess accurately the level of performance and to 
track/predict precisely the learning dynamic. Although this chapter introduced mainly the 
concept of functional brain biomarkers for performance assessment, it appears clearly that 
both structural and functional brain biomarkers must be seen as a complementary source of 
information. Interestingly, while structural brain biomarkers using methods form genetic 
may be more appropriate on a long timescale prediction such as very early diagnostic, 
functional biomarkers may be better suited for short timescale prediction such as a real-time 
tracking of the neural events. Such combination of structural and functional brain 
biomarkers is an emerging research line. For instance, recently Deeny et al., (2008) 
investigated MEG measurements in relation to genetic markers such as the epsilon4 allele of 
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the apolipoprotein, providing a method to detect risk factors for Alzheimer's disease 
(Corder et al., 1993).  

 
4. Current Brain Biomarkers for Sensorimotor Performance and 
Bioengineering Applications 

Beyond the considerations presented in section 3, the techniques presented to record and 
process brain biomarkers non-invasively using portable systems make them particularly 
well suited for real-time (or close to real-time) prediction in practical/ecological 
applications. Although multiple potential applications can be considered for the future, this 
section will illustrate two possible applications. The first one will be the design of future 
smart neuroprosthetics by proposing solutions to overcome some well-known BCI-related 
problems. The second application (that is actually to some extent a generalization of the first 
one) will be related to brain monitoring in the context of overt and covert movement 
execution to accelerate learning or re-learning when a task is performed/learned using 
actual movements and/or motor imagery. 

 
4.1 Neuroprosthetic applications: towards a smart Brain Computer Interface 
The changes previously described in EEG power and coherence/PLV that mirror human 
motor performance may potentially provide powerful biomarkers for tracking human 
learning/adaptation status when one has to learn/adapt to a new tool. A first potential 
interesting role of these brain biomarkers would be to overcome the well-known difficulties 
related to BCI systems such as adaptive decoding, constant recalibration and the 
maintenance of stable performance while a user tries to control a neuroprosthesis (Vaughan 
et al., 2003). Traditionally, motor-imagery-based BCI approaches are divided into two 
phases. The first one consists of a calibration phase to determine the parameters of a 
decoding algorithm, which has to map neural signals to a class of imagined movement. The 
second phase aims to train the subject by providing him/her sufficient feedback to change 
his/her cortical dynamics in order to control an external device via the BCI system. It is 
important to note that during this second stage, since the adaptation depends on the 
capacity of the user’s brain to change its cortical dynamics, frequent recalibrations of the 
decoding algorithms are required when the user’s performance degrades (Blankertz et al., 
2009). In order to address these problems, some solutions have been proposed and notably 
by means of adaptive algorithms (Blankertz et al., 2006; Sykacek et al., 2004). However, these 
approaches use supervised adaptation based on a priori knowledge of an external target. 
Although helpful, the requirement of such a priori information actually represents a major 
pitfall for practical BCI applications since the user should decide when and where to direct 
his/her intentions. In other words, no information of external targets is available to the 
decoding algorithm (Blankertz et al., 2006; Vidaurre et al., 2007). The complexity of using 
two adaptive controllers (the user’s brain and the decoding algorithm) is not new and has 
been already raised (McFarland et al., 2006; Vaughan et al., 1996); however, it continues to 
be an issue, and no satisfying solutions of this problem have been provided (McFarland et 
al., 2006). The brain biomarkers of performance presented in this chapter may help to 
overcome such important drawbacks of BCI. Indeed, such biomarkers could be used to 
continuously adapt the decoding algorithm to the subject’s mental states, thereby allowing a 
stable co-adaptation/cooperation between the user and the BCI system. This is especially 

relevant when the user has to learn the physical properties of a new tool and/or a novel 
environment as is the case when a user intends to control a neuroprosthetic device. For 
example, the alpha power at the frontal, temporal and parietal sites combined with 
coherence/PLV for the low beta frequency bands between the pair of electrodes Fz-F3 and 
Fz-C3 could be computed using a sliding window (e.g., 15-20 trials). If the user’s brain 
considerably adapts as indicated by an increased alpha power combined with a reduced 
coherence/PLV at the brain sites mentioned above, then the BCI decoding algorithm should 
not update its parameters. Conversely, it should adjust the parameters, by using, for 
instance, a reinforcement learning signal, to compensate for a user’s poor performance (in 
that case reflected by a decreased alpha power and an increased coherence/PLV at the brain 
sites mentioned above).  
As previously mentioned in section 3.3.3, the use of such biomarkers could also reveal the 
sources of alteration in behavioral performance which cannot be revealed by kinematics 
parameters alone. For instance, poor learning/adaptation performance could be due to 
other factors such as stress or fatigue. These biomarkers, thanks to their specificities in term 
of scalp sites and frequency bands (and also with eventual additional information such as 
hemodynamic response provided by fNIRS), could reasonably unravel the possible origin of 
poor motor learning, providing, therefore, relevant covert supervision of the user during 
BCI training. For example, in practical use, it is important to decipher if a user’s poor BCI 
performance is related to fatigue or to bottlenecks related to information processing guiding 
the algorithm to adapt to the user’s cognitive state, which is usually impossible to access 
from behavior.  

 
4.2 Brain monitoring applications 
Another possible application of functional brain biomarkers would be related to brain 
monitoring for overt and more importantly for covert execution. It is well known that motor 
imagery, or covert execution, share a lot of functional commonalities and that many neural 
structures are commonly activated during both overt and covert movement. On the other 
hand, there is also a growing body of evidence that suggests that it is possible to learn, or at 
least improve, performance with practice using motor imagery also called mental training. 
Most of the studies focusing on mental practice either considered performance enhancement 
in a healthy population (e.g., Gentili et al., 2006; Yaguez et al., 1998) or a rehabilitation (e.g., 
Jackson et al., 2004; Page et al., 2001) context where a positive effect on subsequent actual 
motor performance was evidenced. While it is possible to assess the effects of such covert 
practice on subsequent actual movements, it is impossible to continuously monitor mental 
training (unless a trial is actually executed) since no overt execution is available. However, 
the brain biomarkers presented here would allow for assessing the level of performance 
during mental training and tracking of learning dynamics. Such brain biomarkers could be 
coupled to a neurofeedback system providing, thus, an enhanced feedback of performance 
during overt execution (in addition to classical feedback) or covert execution where usually 
no feedback is available. Such brain monitoring systems for covert/overt movement 
execution would allow efficient supervision of performance, resulting in an accelerated 
learning or re-learning. Such bioengineering systems could be applied in various 
populations ranging from military personnel desiring to rapidly acquire skills to any 
persons subjected to a motor impairment undergoing rehabilitation where enhanced 
guidance for both patient and therapist would be beneficial. It must be noted that these 
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the apolipoprotein, providing a method to detect risk factors for Alzheimer's disease 
(Corder et al., 1993).  

 
4. Current Brain Biomarkers for Sensorimotor Performance and 
Bioengineering Applications 

Beyond the considerations presented in section 3, the techniques presented to record and 
process brain biomarkers non-invasively using portable systems make them particularly 
well suited for real-time (or close to real-time) prediction in practical/ecological 
applications. Although multiple potential applications can be considered for the future, this 
section will illustrate two possible applications. The first one will be the design of future 
smart neuroprosthetics by proposing solutions to overcome some well-known BCI-related 
problems. The second application (that is actually to some extent a generalization of the first 
one) will be related to brain monitoring in the context of overt and covert movement 
execution to accelerate learning or re-learning when a task is performed/learned using 
actual movements and/or motor imagery. 

 
4.1 Neuroprosthetic applications: towards a smart Brain Computer Interface 
The changes previously described in EEG power and coherence/PLV that mirror human 
motor performance may potentially provide powerful biomarkers for tracking human 
learning/adaptation status when one has to learn/adapt to a new tool. A first potential 
interesting role of these brain biomarkers would be to overcome the well-known difficulties 
related to BCI systems such as adaptive decoding, constant recalibration and the 
maintenance of stable performance while a user tries to control a neuroprosthesis (Vaughan 
et al., 2003). Traditionally, motor-imagery-based BCI approaches are divided into two 
phases. The first one consists of a calibration phase to determine the parameters of a 
decoding algorithm, which has to map neural signals to a class of imagined movement. The 
second phase aims to train the subject by providing him/her sufficient feedback to change 
his/her cortical dynamics in order to control an external device via the BCI system. It is 
important to note that during this second stage, since the adaptation depends on the 
capacity of the user’s brain to change its cortical dynamics, frequent recalibrations of the 
decoding algorithms are required when the user’s performance degrades (Blankertz et al., 
2009). In order to address these problems, some solutions have been proposed and notably 
by means of adaptive algorithms (Blankertz et al., 2006; Sykacek et al., 2004). However, these 
approaches use supervised adaptation based on a priori knowledge of an external target. 
Although helpful, the requirement of such a priori information actually represents a major 
pitfall for practical BCI applications since the user should decide when and where to direct 
his/her intentions. In other words, no information of external targets is available to the 
decoding algorithm (Blankertz et al., 2006; Vidaurre et al., 2007). The complexity of using 
two adaptive controllers (the user’s brain and the decoding algorithm) is not new and has 
been already raised (McFarland et al., 2006; Vaughan et al., 1996); however, it continues to 
be an issue, and no satisfying solutions of this problem have been provided (McFarland et 
al., 2006). The brain biomarkers of performance presented in this chapter may help to 
overcome such important drawbacks of BCI. Indeed, such biomarkers could be used to 
continuously adapt the decoding algorithm to the subject’s mental states, thereby allowing a 
stable co-adaptation/cooperation between the user and the BCI system. This is especially 

relevant when the user has to learn the physical properties of a new tool and/or a novel 
environment as is the case when a user intends to control a neuroprosthetic device. For 
example, the alpha power at the frontal, temporal and parietal sites combined with 
coherence/PLV for the low beta frequency bands between the pair of electrodes Fz-F3 and 
Fz-C3 could be computed using a sliding window (e.g., 15-20 trials). If the user’s brain 
considerably adapts as indicated by an increased alpha power combined with a reduced 
coherence/PLV at the brain sites mentioned above, then the BCI decoding algorithm should 
not update its parameters. Conversely, it should adjust the parameters, by using, for 
instance, a reinforcement learning signal, to compensate for a user’s poor performance (in 
that case reflected by a decreased alpha power and an increased coherence/PLV at the brain 
sites mentioned above).  
As previously mentioned in section 3.3.3, the use of such biomarkers could also reveal the 
sources of alteration in behavioral performance which cannot be revealed by kinematics 
parameters alone. For instance, poor learning/adaptation performance could be due to 
other factors such as stress or fatigue. These biomarkers, thanks to their specificities in term 
of scalp sites and frequency bands (and also with eventual additional information such as 
hemodynamic response provided by fNIRS), could reasonably unravel the possible origin of 
poor motor learning, providing, therefore, relevant covert supervision of the user during 
BCI training. For example, in practical use, it is important to decipher if a user’s poor BCI 
performance is related to fatigue or to bottlenecks related to information processing guiding 
the algorithm to adapt to the user’s cognitive state, which is usually impossible to access 
from behavior.  

 
4.2 Brain monitoring applications 
Another possible application of functional brain biomarkers would be related to brain 
monitoring for overt and more importantly for covert execution. It is well known that motor 
imagery, or covert execution, share a lot of functional commonalities and that many neural 
structures are commonly activated during both overt and covert movement. On the other 
hand, there is also a growing body of evidence that suggests that it is possible to learn, or at 
least improve, performance with practice using motor imagery also called mental training. 
Most of the studies focusing on mental practice either considered performance enhancement 
in a healthy population (e.g., Gentili et al., 2006; Yaguez et al., 1998) or a rehabilitation (e.g., 
Jackson et al., 2004; Page et al., 2001) context where a positive effect on subsequent actual 
motor performance was evidenced. While it is possible to assess the effects of such covert 
practice on subsequent actual movements, it is impossible to continuously monitor mental 
training (unless a trial is actually executed) since no overt execution is available. However, 
the brain biomarkers presented here would allow for assessing the level of performance 
during mental training and tracking of learning dynamics. Such brain biomarkers could be 
coupled to a neurofeedback system providing, thus, an enhanced feedback of performance 
during overt execution (in addition to classical feedback) or covert execution where usually 
no feedback is available. Such brain monitoring systems for covert/overt movement 
execution would allow efficient supervision of performance, resulting in an accelerated 
learning or re-learning. Such bioengineering systems could be applied in various 
populations ranging from military personnel desiring to rapidly acquire skills to any 
persons subjected to a motor impairment undergoing rehabilitation where enhanced 
guidance for both patient and therapist would be beneficial. It must be noted that these 
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biomarkers would allow monitoring and fitting of the training time-scale for each individual 
since it is reasonable to expect that two individuals will not mentally learn at the same 
speed. For instance, for the same task some individuals using mental practice may need 40 
trials to reach acceptable performance while others would need 60 trials to reach the same 
level of performance. However, it is not possible to detect any progression in performance 
when using motor imagery (except by occasionally using actual execution) unless we use 
these brain biomarkers to create a customized training timescale for each individual. 
Moreover, as for BCI application, it would also be possible to know if a poor performance is 
related to sensorimotor learning processes or induced by some adverse mental states such as 
fatigue. Thus, the therapist could adapt the current rehabilitation session to the patient’s 
cognitive state in order to improve training efficiency without having to access behavioral 
measures. 
At present, the current research focuses mainly on brain biomarkers for healthy people since 
a well-established model of these brain biomarkers needs to be defined before moving 
towards practical applications for pathology in a rehabilitation context. It is of interest to 
consider if such brain biomarkers would be applicable for patients subjected to neural 
pathologies. Although these biomarkers should be affected by a given pathological state, it 
is still possible to find their modified version adapted to this pathology as a BCI decoding 
algorithm is able to map a pathological neural activity to the desired output (Neuper et al., 
2003). This would necessitate applying the same techniques and approaches, albeit with 
some modifications, to provide biomarkers engineered for specific neural pathologies. For 
instance, it has been suggested that mental imagery practice would have positive effects on 
persons subjected to cerebral palsy (Trusceli et al., 2008; Zabalia, 2002). Therefore, under 
such conditions, the cerebral palsy-specific performance biomarkers would allow 
monitoring of the brain to provide feedback for a therapist in order to accelerate and 
improve performance and, thus, the physical therapy process. It must be noted that, beyond 
application, such brain biomarkers could also provide useful information about the cortical 
neural networks of patients suffering from neural diseases. Still taking the example of 
patients with cerebral palsy, specifically, these brain biomarkers could provide insights into 
the effects of physical therapy by, for instance, estimating the benefit of motor imagery on 
reorganization of cortical dynamics and the degree of automatization of the movement. 
Namely, the coherence/PLV biomarker (Busk & Galbraith, 1975; Deeny et al., 2003, 2009; 
Gentili et al., 2009b) may be of particular interest to analyze any possible changes in cortical 
network recruitments throughout the rehabilitation procedure associated with any potential 
motor performance improvement. Moreover, several investigations have suggested that an 
increase in alpha power in the temporal, frontal regions would reflect that movement 
become more automatized as a function of practice, requiring less attentional and processing 
resources, since as strategies and skills are developed, there is a less extensive cortical 
contribution to task performance, resulting in increased alpha power (Gentili et al., 2008, 
2009a; Hatfield et al., 2004; Smith et al., 1999). Therefore, when using mental imagery the 
computation of such spectral power could provide a biomarker able to assess the degree of 
automatization of the repeated actions throughout a rehabilitation session. Finally, as 
previously mentioned, a multidimensional brain biomarker could be even more effective by 
combining information such as the spectral power, coherence/PLV and hemodynamic 
responses using fNIRS. 

 

5. Conclusions and Perspectives 

Nowadays, some non-invasive functional brain biomarkers able to assess cognitive-
motor/sensorimotor performance and learning level are available. However, they were 
mainly analyzed by means of investigations based on populations of subjects. The next 
challenge is to generalize these biomarkers to single subjects using single or few trials in 
tasks using actual movements or motor imagery. In order to reach these new aims, further 
research is needed to provide multidimensional biomarkers by considering the fusion of 
both processing techniques (e.g., EEG/MEG spectral power and coherence) and the nature 
of neural signals (e.g., hemodynamic response with fNIRS). Such approaches are expected to 
provide robust models for these biomarkers. Today, these brain biomarkers are engineered 
based on healthy people; however, in the future these methods could be transferred to 
alleviate neural disorders, provide new types of smart neural prostheses, and create brain 
monitoring tools to allow the emergence of a new generation of assistive technology for both 
healthy (e.g., accelerated learning) and pathological (e.g., rehabilitation) human populations. 
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biomarkers would allow monitoring and fitting of the training time-scale for each individual 
since it is reasonable to expect that two individuals will not mentally learn at the same 
speed. For instance, for the same task some individuals using mental practice may need 40 
trials to reach acceptable performance while others would need 60 trials to reach the same 
level of performance. However, it is not possible to detect any progression in performance 
when using motor imagery (except by occasionally using actual execution) unless we use 
these brain biomarkers to create a customized training timescale for each individual. 
Moreover, as for BCI application, it would also be possible to know if a poor performance is 
related to sensorimotor learning processes or induced by some adverse mental states such as 
fatigue. Thus, the therapist could adapt the current rehabilitation session to the patient’s 
cognitive state in order to improve training efficiency without having to access behavioral 
measures. 
At present, the current research focuses mainly on brain biomarkers for healthy people since 
a well-established model of these brain biomarkers needs to be defined before moving 
towards practical applications for pathology in a rehabilitation context. It is of interest to 
consider if such brain biomarkers would be applicable for patients subjected to neural 
pathologies. Although these biomarkers should be affected by a given pathological state, it 
is still possible to find their modified version adapted to this pathology as a BCI decoding 
algorithm is able to map a pathological neural activity to the desired output (Neuper et al., 
2003). This would necessitate applying the same techniques and approaches, albeit with 
some modifications, to provide biomarkers engineered for specific neural pathologies. For 
instance, it has been suggested that mental imagery practice would have positive effects on 
persons subjected to cerebral palsy (Trusceli et al., 2008; Zabalia, 2002). Therefore, under 
such conditions, the cerebral palsy-specific performance biomarkers would allow 
monitoring of the brain to provide feedback for a therapist in order to accelerate and 
improve performance and, thus, the physical therapy process. It must be noted that, beyond 
application, such brain biomarkers could also provide useful information about the cortical 
neural networks of patients suffering from neural diseases. Still taking the example of 
patients with cerebral palsy, specifically, these brain biomarkers could provide insights into 
the effects of physical therapy by, for instance, estimating the benefit of motor imagery on 
reorganization of cortical dynamics and the degree of automatization of the movement. 
Namely, the coherence/PLV biomarker (Busk & Galbraith, 1975; Deeny et al., 2003, 2009; 
Gentili et al., 2009b) may be of particular interest to analyze any possible changes in cortical 
network recruitments throughout the rehabilitation procedure associated with any potential 
motor performance improvement. Moreover, several investigations have suggested that an 
increase in alpha power in the temporal, frontal regions would reflect that movement 
become more automatized as a function of practice, requiring less attentional and processing 
resources, since as strategies and skills are developed, there is a less extensive cortical 
contribution to task performance, resulting in increased alpha power (Gentili et al., 2008, 
2009a; Hatfield et al., 2004; Smith et al., 1999). Therefore, when using mental imagery the 
computation of such spectral power could provide a biomarker able to assess the degree of 
automatization of the repeated actions throughout a rehabilitation session. Finally, as 
previously mentioned, a multidimensional brain biomarker could be even more effective by 
combining information such as the spectral power, coherence/PLV and hemodynamic 
responses using fNIRS. 

 

5. Conclusions and Perspectives 

Nowadays, some non-invasive functional brain biomarkers able to assess cognitive-
motor/sensorimotor performance and learning level are available. However, they were 
mainly analyzed by means of investigations based on populations of subjects. The next 
challenge is to generalize these biomarkers to single subjects using single or few trials in 
tasks using actual movements or motor imagery. In order to reach these new aims, further 
research is needed to provide multidimensional biomarkers by considering the fusion of 
both processing techniques (e.g., EEG/MEG spectral power and coherence) and the nature 
of neural signals (e.g., hemodynamic response with fNIRS). Such approaches are expected to 
provide robust models for these biomarkers. Today, these brain biomarkers are engineered 
based on healthy people; however, in the future these methods could be transferred to 
alleviate neural disorders, provide new types of smart neural prostheses, and create brain 
monitoring tools to allow the emergence of a new generation of assistive technology for both 
healthy (e.g., accelerated learning) and pathological (e.g., rehabilitation) human populations. 
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