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1. Introduction  

Periodicities are found in speech signals, musical rhythms, biomedical signals and machine 
vibrations. In many signal processing applications, signals are assumed to be periodic or 
quasi-periodic. Especially in acoustic signal processing, signal models based on periodicities 
have been studied for speech and audio processing. 
The sinusoidal modelling has been proposed to transform an acoustic signal to a sum of 
sinusoids [1]. In this model, the frequencies of the sinusoids are often assumed to be 
harmonically related. The fundamental frequency of the set of sinusoids has to be specified 
for this model. In order to compose an accurate model of an acoustic signal, the noise-robust 
and accurate fundamental frequency estimation techniques are required. Many fundamental 
frequency estimation techniques are performed in the short-time Fourier transform (STFT) 
spectrum by peak-picking and clustering of harmonic components [2][3][4]. These 
approaches depend on the frequency spectrum of the signal. 
The signal modeling in the time-domain has been also proposed to extract a waveform of an 
acoustic signal and its parameters of the amplitude and frequency variations [5]. This 
approach aims to represent an acoustic signal that has single fundamental frequency. For 
detection and estimation of more than one periodic signal hidden in a signal mixture, 
several signal decomposition that are capable of decomposing a signal into a set of periodic 
subsignals have been proposed. 
In Ref. [7], an orthogonal decomposition method based on periodicity has been proposed. 
This technique achieves the decomposition of a signal into periodic subsignals that are 
orthogonal to each other. The periodicity transform [8] decomposes a signal by projecting it 
onto a set of periodic subspaces. In this method, seeking periodic subspaces and rejecting 
found periodic subsignals from the observed signal are performed iteratively. For reduction 
of the redundancy of the periodic representation, a penalty of sparsity has been introduced 
to the decomposition in Ref. [9]. 
In these periodic decomposition methods, the amplitude of each periodic signal in the 
mixture is assumed to be constant. Hence, it is difficult to obtain the significant 
decomposition results for the mixtures of quasi-periodic signals with time-varying 
amplitude. In this chapter, we introduce a model for periodic signals with time-varying 
amplitude into the periodic decomposition [10]. In order to reduce the number of resultant 
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periodic subsignals obtained by the decomposition and represent the mixture with only 
significant periodic subsignals, we impose a sparsity penalty on the decomposition. This 
penalty is defined as the sum of l2 norms of the resultant periodic subsignals to find the 
shortest path to the approximation of the mixture. The waveforms and amplitude of the 
hidden periodic signals are iteratively estimated with the penalty of sparsity. The proposed 
periodic decomposition can be interpreted as a sparse coding [15] [16] with non-negativity 
of the amplitude and the periodic structure of signals. 
In our approach, the decomposition results are associated with the fundamental frequencies 
of the source signals in the mixture. So, the pitches of the source signals can be detected 
from the mixtures by the proposed decomposition. 
First, we explain the definition of the model for the periodic signals. Then, the cost function 
that is a sum of the approximation error and the sparsity penalty is defined for the periodic 
decomposition. A relaxation algorithm [9] [10] [18] for the sparse periodic decomposition is 
also explained. The source estimation capability of our decomposition method is 
demonstrated by several examples of the decomposition of synthetic periodic signal 
mixtures. Next, we apply the proposed decomposition to speech mixtures and demonstrate 
the speech separation. In this experiment, the ideal separation performance of the proposed 
decomposition is compared with the separation method obtained by an ideal binary 
masking [10] of a STFT. Finally, we provide the results of the single-channel speech 
separation with simple assignment technique to demonstrate the possibility of the proposed 
decomposition. 

 
2. Periodic decomposition of signals  

For signal analysis, the periodic decomposition methods that decompose a signal into a sum 
of periodic signals have been proposed. Most fundamental periodic signal is a sinusoid. In 
speech processing area, the sinusoidal modeling [1] that represents the signal into the linear 
combination of sinusoids with various frequencies is utilized. The sinusoidal representation 
of the signal f(n) with constant amplitude and constant frequencies is obtained as the form of 

   



J

j
jjj nAnf

1
cos  .                                                       (1) 

This model relies on the estimation of the parameters of the model. Many estimation 
techniques have been proposed for the parameters. If the frequencies {j}1jJ are 
harmonically related, all frequencies are assumed to be the multiples of the fundamental 
frequency. To detect the fundamental frequencies from mixtures of source signals that has 
periodical nature, multiple pitch detection algorithms have been proposed [2][3][4]. 
The signal modelling with (1) is a parametric modeling of the signal. On the contrast, the 
non-parametric modeling techniques that obtain a set of periodic signals that are specified in 
time-domain have been also proposed. 
For time-domain approach of the periodic decomposition, the periodic signal is defined as a 
sum of time-translated waveforms. Let us suppose that a sequence {fp(n)}0n<N is a finite 
length periodic signal with a length N and an integer period p2. It satisfies the periodicity 
condition with an integer period p and is represented as 
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where K = (N-1)/p that is the largest integer less than or equal to (N-1)/p. The sequence 
{tp(n)}0n<p corresponds to a waveform of the signal within a period and is defined over the 
interval [0, p-1]. tp(n) = 0 for n  p and n < 0. This sequence is referred to as the p-periodic 
template. The sequence {a(n)}0n<N represents the envelope of the periodic signal. If the 
amplitude coefficient a(n) is constant, the model is reduced to  
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Several periodic decomposition methods based on the periodic signal model (2) have been 
proposed [6] [7] [8] [9]. These methods decompose a signal f(n) into a set of the periodic 
signals as: 
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where P is a set of periods for the decomposition. This signal decomposition can be 
represented in the matrix form as: 





Pp

pptUf                                                                     (4) 

where tp is the vector which corresponds to the p-periodic template. The i-th column vector 
of Ap represent an impulse train with a period p. The elements of Up are defined as 



 


otherwise0

10 where 1 for1
,

, , kikpn
u in  .                                           (5) 

The subspace that is spanned by the column vectors of Up is referred to as the p-periodic 
subspace [8] [9]. 
If the estimations of the periods hidden in signal f are available, we can choose the periodic 
subspaces with the periods that are estimated before the decomposition. For MAS [6], the 
signal is decomposed into periodic subsignals as the least-squares solution along with an 
additional constrained matrix. In Ref. [8], the periodic bases are chosen to decompose a 
signal into orthogonal periodic subsignals. Therefore, these methods require that the 
number of the periodic signals and their periods have to be estimated before decomposition. 
Periodic decomposition methods that do not require predetermined periods have also been 
proposed. In Ref. [7], the concept of periodicity transform is proposed. Periodicity transform 
decomposes a signal by projecting it onto a set of periodic subspaces. Each subspace consists 
of all possible periodic signals with a specific period. In this method, seeking periodic 
subspaces and rejecting found periodic subsignals from an input signal are performed 
iteratively. Since a set of the periodic subspaces lacks orthogonality and is redundant for 
signal representation, the decomposition result depends on the order of the subspaces onto 
which the signals are projected. In Ref. [7], four different signal decomposition methods -
small to large, best correlation, M-best, and best frequency - have been proposed. In Ref. [9], 
the penalty of sparsity is imposed on the decomposition results in order to reduce the 
redundancy of the decomposition. 
In this chapter, we discuss the decomposition of mixtures of the periodic signals with time-
varying amplitude that can be represented in the form of (1). To simplify the periodic signal 
model, we assume that the amplitude of the periodic signal varies slowly and can be 
approximated to be constant within a period. By this simplification, we define an 
approximate model for the periodic signals with time-varying amplitude as 
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periodic subsignals obtained by the decomposition and represent the mixture with only 
significant periodic subsignals, we impose a sparsity penalty on the decomposition. This 
penalty is defined as the sum of l2 norms of the resultant periodic subsignals to find the 
shortest path to the approximation of the mixture. The waveforms and amplitude of the 
hidden periodic signals are iteratively estimated with the penalty of sparsity. The proposed 
periodic decomposition can be interpreted as a sparse coding [15] [16] with non-negativity 
of the amplitude and the periodic structure of signals. 
In our approach, the decomposition results are associated with the fundamental frequencies 
of the source signals in the mixture. So, the pitches of the source signals can be detected 
from the mixtures by the proposed decomposition. 
First, we explain the definition of the model for the periodic signals. Then, the cost function 
that is a sum of the approximation error and the sparsity penalty is defined for the periodic 
decomposition. A relaxation algorithm [9] [10] [18] for the sparse periodic decomposition is 
also explained. The source estimation capability of our decomposition method is 
demonstrated by several examples of the decomposition of synthetic periodic signal 
mixtures. Next, we apply the proposed decomposition to speech mixtures and demonstrate 
the speech separation. In this experiment, the ideal separation performance of the proposed 
decomposition is compared with the separation method obtained by an ideal binary 
masking [10] of a STFT. Finally, we provide the results of the single-channel speech 
separation with simple assignment technique to demonstrate the possibility of the proposed 
decomposition. 

 
2. Periodic decomposition of signals  

For signal analysis, the periodic decomposition methods that decompose a signal into a sum 
of periodic signals have been proposed. Most fundamental periodic signal is a sinusoid. In 
speech processing area, the sinusoidal modeling [1] that represents the signal into the linear 
combination of sinusoids with various frequencies is utilized. The sinusoidal representation 
of the signal f(n) with constant amplitude and constant frequencies is obtained as the form of 
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This model relies on the estimation of the parameters of the model. Many estimation 
techniques have been proposed for the parameters. If the frequencies {j}1jJ are 
harmonically related, all frequencies are assumed to be the multiples of the fundamental 
frequency. To detect the fundamental frequencies from mixtures of source signals that has 
periodical nature, multiple pitch detection algorithms have been proposed [2][3][4]. 
The signal modelling with (1) is a parametric modeling of the signal. On the contrast, the 
non-parametric modeling techniques that obtain a set of periodic signals that are specified in 
time-domain have been also proposed. 
For time-domain approach of the periodic decomposition, the periodic signal is defined as a 
sum of time-translated waveforms. Let us suppose that a sequence {fp(n)}0n<N is a finite 
length periodic signal with a length N and an integer period p2. It satisfies the periodicity 
condition with an integer period p and is represented as 
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where K = (N-1)/p that is the largest integer less than or equal to (N-1)/p. The sequence 
{tp(n)}0n<p corresponds to a waveform of the signal within a period and is defined over the 
interval [0, p-1]. tp(n) = 0 for n  p and n < 0. This sequence is referred to as the p-periodic 
template. The sequence {a(n)}0n<N represents the envelope of the periodic signal. If the 
amplitude coefficient a(n) is constant, the model is reduced to  
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Several periodic decomposition methods based on the periodic signal model (2) have been 
proposed [6] [7] [8] [9]. These methods decompose a signal f(n) into a set of the periodic 
signals as: 
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where P is a set of periods for the decomposition. This signal decomposition can be 
represented in the matrix form as: 
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where tp is the vector which corresponds to the p-periodic template. The i-th column vector 
of Ap represent an impulse train with a period p. The elements of Up are defined as 
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The subspace that is spanned by the column vectors of Up is referred to as the p-periodic 
subspace [8] [9]. 
If the estimations of the periods hidden in signal f are available, we can choose the periodic 
subspaces with the periods that are estimated before the decomposition. For MAS [6], the 
signal is decomposed into periodic subsignals as the least-squares solution along with an 
additional constrained matrix. In Ref. [8], the periodic bases are chosen to decompose a 
signal into orthogonal periodic subsignals. Therefore, these methods require that the 
number of the periodic signals and their periods have to be estimated before decomposition. 
Periodic decomposition methods that do not require predetermined periods have also been 
proposed. In Ref. [7], the concept of periodicity transform is proposed. Periodicity transform 
decomposes a signal by projecting it onto a set of periodic subspaces. Each subspace consists 
of all possible periodic signals with a specific period. In this method, seeking periodic 
subspaces and rejecting found periodic subsignals from an input signal are performed 
iteratively. Since a set of the periodic subspaces lacks orthogonality and is redundant for 
signal representation, the decomposition result depends on the order of the subspaces onto 
which the signals are projected. In Ref. [7], four different signal decomposition methods -
small to large, best correlation, M-best, and best frequency - have been proposed. In Ref. [9], 
the penalty of sparsity is imposed on the decomposition results in order to reduce the 
redundancy of the decomposition. 
In this chapter, we discuss the decomposition of mixtures of the periodic signals with time-
varying amplitude that can be represented in the form of (1). To simplify the periodic signal 
model, we assume that the amplitude of the periodic signal varies slowly and can be 
approximated to be constant within a period. By this simplification, we define an 
approximate model for the periodic signals with time-varying amplitude as 
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In order to represent a periodic component without a DC component, the average of fp(n) 
over the interval [0, p-1] is zero. The amplitude coefficients ap, k are restricted to non-negative 
values.  
These p-periodic signals can also be represented in a matrix form as well as the previous 
periodic signal model. The matrix representation of (6) is defined as 

ppp tAf                                                                        (7) 
In this form, the amplitude coefficients and the template are represented in an N by p matrix 
Ap and a p-dimensional template vector tp, which is associated with the sequence tp(n), 
respectively. Ap is a union of the matrices as 

 T1,2,1, ,  Kpppp DDDA                                                         (8) 
where superscript T denotes transposition. 
{ Dp, j}1  j  K+1 are p by p diagonal matrices whose elements correspond to ap, j-1. Dp, K+1 is the p 
by N-pK matrix whose non-zero coefficients that correspond to ap, K appear only in (i, i) 
elements. Since only one element is non-zero in any row of the Ap, the column vectors of Ap 
are orthogonal to each other. The l2 norm of each column vector is supposed to be 
normalized to unity. In (6), the average of the waveform over the interval [0, p-1] must be 
zero. Hence, the condition 

0T pp tu                                                                        (9) 
where up is a vector, of which elements correspond to the diagonal elements of Dp, 1. 
Alternatively, the p-periodic signal in (2) can be represented as 

ppp aTf  .                                                                    (10) 
In this form, the amplitude coefficients and the template are represented in a N by K+1 
matrix Tp and K+1-dimensional amplitude coefficients vector ap whose elements are 
associated with the amplitude coefficients ap, k, respectively. Tp consists of the column 
vectors that correspond to the shifted versions of the p-periodic template. As same as Ap, 
only one element is non-zero in any row of Tp. So, we defined Tp as the matrix which 
consists of the normalized vectors that are orthogonal to each other. 
In this study, we propose an approximate decomposition method that obtains a 
representation of a given signal f as a form: 





Pp

pfef                                                                  (11) 

where e is an approximation error between the model and the signal f. 
We suppose that the signal f is a mixture of some periodic signals that can be approximated 
by the form of (2), however, the periods of the source signals are unknown. So, we specify 
the set of periods P as a set of all possible periods of the source signals for the 
decomposition. If the number of the periods in P is large, the set of the periodic signals 
{fp }pP that approximate the signal f with small error is not unique. To achieve the 
significant decomposition with the periodic signals that are represented in the form of (2), 
we introduce the penalty of the sparsity into the decomposition. 

 

 

3. Sparse decomposition of signals 

In Ref. [15] [16] [17], sparse decomposition methods that are capableof decomposing a signal 
into a small number of basis vectors that belong to an overcomplete dictionary have been 
proposed. Basis pursuit (BP) [17] is a well known sparse decomposition method and 
decomposes a signal into the vectors of a predetermined overcomplete dictionary. The 
signal f is represented as c, where  and c are the matrix that contains the normalized 
basis vectors and the coefficient vector, respectively. 
In sparse decomposition, the number of basis vectors in  is larger than the dimensionality 
of the signal vector f. For this decomposition, the penalty of the sparsity is defined as l1-
norm of c. The signal decomposition by BP is represented as a constrained minimization 
problem as follows: 

1min c  subject to cf                                                       (12) 

where 1 denotes the l1 norm of a vector. 
Since the l1-norm is defined as the sum of the absolutes of the elements in the coefficient 
vector c, BP determines the shortest path to the signal from the origin through the basis 
vectors. The number of the basis vectors with nonzero coefficients obtained by choosing the 
shortest path is much smaller than the least square solution obtained by minimizing the l2-
norm [17]. 
Usually, (12) is solved by linear programming [17]. However, it is difficult to apply linear 
programming to the large number of samples that appear in signal processing applications. 
So, an approximation of the solution of BP is obtained from the penalty problem of (12) as 
follows: 

1
2
22

1minargˆ cΦcfc
c

                                                   (13) 

where  denotes a Lagrange multiplier. 2 denotes the l2 norm of the vector. This 
unconstrained minimization problem is referred to as a basis pursuit denoising (BPDN) [17] 
[18]. When  is specified as a union of orthonormal bases, an efficient relaxation algorithm 
can be applied [18]. 
From Bayesian point of view, the minimization (13) is the equivalent of MAP estimation of 
the coefficient vector c under the assumption that the probability distribution of each 
element of the coefficient vector is an identical Laplace distribution [15]. 
The dictionary  is fixed for signal representation in the BP and BPDN. In a sparse coding 
strategy [15] [16], the dictionary  is adapted to the set of the signals. The dictionary is 
updated with the most probable one under the estimated sparse coefficients and the set of 
the signals [15]. 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture contains a small number of periodic signals that can 
be approximated in the form of (6). Our objective is to achieve signal decomposition to 
obtain a small number of periodic subsignals rather than basis vectors. In order to achieve 
this, we define the sparsity measure as the sum of l2 norms of the periodic subsignals to find 
the shortest path to the approximation of the signal as well as BPDN. 
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In order to represent a periodic component without a DC component, the average of fp(n) 
over the interval [0, p-1] is zero. The amplitude coefficients ap, k are restricted to non-negative 
values.  
These p-periodic signals can also be represented in a matrix form as well as the previous 
periodic signal model. The matrix representation of (6) is defined as 

ppp tAf                                                                        (7) 
In this form, the amplitude coefficients and the template are represented in an N by p matrix 
Ap and a p-dimensional template vector tp, which is associated with the sequence tp(n), 
respectively. Ap is a union of the matrices as 
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where superscript T denotes transposition. 
{ Dp, j}1  j  K+1 are p by p diagonal matrices whose elements correspond to ap, j-1. Dp, K+1 is the p 
by N-pK matrix whose non-zero coefficients that correspond to ap, K appear only in (i, i) 
elements. Since only one element is non-zero in any row of the Ap, the column vectors of Ap 
are orthogonal to each other. The l2 norm of each column vector is supposed to be 
normalized to unity. In (6), the average of the waveform over the interval [0, p-1] must be 
zero. Hence, the condition 
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where up is a vector, of which elements correspond to the diagonal elements of Dp, 1. 
Alternatively, the p-periodic signal in (2) can be represented as 
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In this form, the amplitude coefficients and the template are represented in a N by K+1 
matrix Tp and K+1-dimensional amplitude coefficients vector ap whose elements are 
associated with the amplitude coefficients ap, k, respectively. Tp consists of the column 
vectors that correspond to the shifted versions of the p-periodic template. As same as Ap, 
only one element is non-zero in any row of Tp. So, we defined Tp as the matrix which 
consists of the normalized vectors that are orthogonal to each other. 
In this study, we propose an approximate decomposition method that obtains a 
representation of a given signal f as a form: 
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where e is an approximation error between the model and the signal f. 
We suppose that the signal f is a mixture of some periodic signals that can be approximated 
by the form of (2), however, the periods of the source signals are unknown. So, we specify 
the set of periods P as a set of all possible periods of the source signals for the 
decomposition. If the number of the periods in P is large, the set of the periodic signals 
{fp }pP that approximate the signal f with small error is not unique. To achieve the 
significant decomposition with the periodic signals that are represented in the form of (2), 
we introduce the penalty of the sparsity into the decomposition. 
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In Ref. [15] [16] [17], sparse decomposition methods that are capableof decomposing a signal 
into a small number of basis vectors that belong to an overcomplete dictionary have been 
proposed. Basis pursuit (BP) [17] is a well known sparse decomposition method and 
decomposes a signal into the vectors of a predetermined overcomplete dictionary. The 
signal f is represented as c, where  and c are the matrix that contains the normalized 
basis vectors and the coefficient vector, respectively. 
In sparse decomposition, the number of basis vectors in  is larger than the dimensionality 
of the signal vector f. For this decomposition, the penalty of the sparsity is defined as l1-
norm of c. The signal decomposition by BP is represented as a constrained minimization 
problem as follows: 

1min c  subject to cf                                                       (12) 

where 1 denotes the l1 norm of a vector. 
Since the l1-norm is defined as the sum of the absolutes of the elements in the coefficient 
vector c, BP determines the shortest path to the signal from the origin through the basis 
vectors. The number of the basis vectors with nonzero coefficients obtained by choosing the 
shortest path is much smaller than the least square solution obtained by minimizing the l2-
norm [17]. 
Usually, (12) is solved by linear programming [17]. However, it is difficult to apply linear 
programming to the large number of samples that appear in signal processing applications. 
So, an approximation of the solution of BP is obtained from the penalty problem of (12) as 
follows: 
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where  denotes a Lagrange multiplier. 2 denotes the l2 norm of the vector. This 
unconstrained minimization problem is referred to as a basis pursuit denoising (BPDN) [17] 
[18]. When  is specified as a union of orthonormal bases, an efficient relaxation algorithm 
can be applied [18]. 
From Bayesian point of view, the minimization (13) is the equivalent of MAP estimation of 
the coefficient vector c under the assumption that the probability distribution of each 
element of the coefficient vector is an identical Laplace distribution [15]. 
The dictionary  is fixed for signal representation in the BP and BPDN. In a sparse coding 
strategy [15] [16], the dictionary  is adapted to the set of the signals. The dictionary is 
updated with the most probable one under the estimated sparse coefficients and the set of 
the signals [15]. 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture contains a small number of periodic signals that can 
be approximated in the form of (6). Our objective is to achieve signal decomposition to 
obtain a small number of periodic subsignals rather than basis vectors. In order to achieve 
this, we define the sparsity measure as the sum of l2 norms of the periodic subsignals to find 
the shortest path to the approximation of the signal as well as BPDN. 

 

www.intechopen.com



Signal Processing156

 

4. Sparse periodic decomposition 

4. 1 Cost function for periodic decomposition 
For our periodic decomposition, we also impose the sparsity penalty on the decomposition 
under the assumption that the mixture consists of a small number of periodic signals that 
can be approximated in the form of (2). Our objective is to achieve signal decomposition 
with a small number of periodic subsignals rather than the basis vectors. In order to achieve 
this, the probability distribution of the l2 norm of each periodic signal is assumed to be a 
Laplace distribution, and then the probability distribution of the set of the periodic signals is 
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The noise is assumed to be Gaussian, and then the conditional probability distribution of f is 
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Along with Bayes' rule, the conditional probability distribution of the set of the periodic 
signals is 
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Substituting the prior distributions of the periodic signals and the noise into (16), we can 
derive the likelihood function of the set of periodic signals. From the likelihood function, we 
define the cost function E for the periodic decomposition as: 
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In our periodic decomposition, a signal f is decomposed into a set of periodic subsignals 
while reducing the cost E and maximizing the likelihood. 
In the cost for BPDN (12), the sparsity penalty is defined as the l1-norm of the coefficient 
vector that is identical the total length of the decomposed vector of the signal. In our 
periodic decomposition, the sparsity penalty is also defined as the sum of the decomposed 
vectors that are represented in the form of the periodic signal model shown in (6). 

 
4. 2 Algorithm for sparse periodic decomposition 
To find the set of the periodic subsignals {fp}pP, we employ a relaxation algorithm. This 
relaxation algorithm always updates one chosen periodic subsignal while decreasing the 
cost function (17). The template vector tp and amplitude vector ap of the chosen period p are 
alternatively updated in an iteration. In the algorithm, we suppose that the set of the periods 
P consists of M periods which are indexed as {p1 pM}. 
The relaxation algorithm for the sparse periodic decomposition is as follows: 
 
1)   Set the initial amplitude coefficients for {Ap}.  
2)  i = 1 
3)  Compute the residual 
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 where “a  0” denotes that the all elements of the vector a is positive.  
6) If i < M, update i  i + 1 and go to step 3). If i = M and the stopping criterion is not 

satisfied, go to step 2). 
 
For stable computation, the update stage of the amplitude coefficient in Step 5) is omitted 
when the l2-norm of the template 

ipt becomes zero after Step 4). 
The closed form solution of (19) is 
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()+ denotes replacing the negative elements of a vector with zero. The both solutions of the 
subproblems guarantee the decrement of the cost E. Thus, the cost E decreases until 
convergence. However, the set of the resultant periodic subsignals after the convergence of 
the iteration does not always obtain a minimum of the cost function E exactly. If any 
periodic subsignal becomes zero in iteration, the amplitude coefficients are specified to be 
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4. Sparse periodic decomposition 

4. 1 Cost function for periodic decomposition 
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Along with Bayes' rule, the conditional probability distribution of the set of the periodic 
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In the cost for BPDN (12), the sparsity penalty is defined as the l1-norm of the coefficient 
vector that is identical the total length of the decomposed vector of the signal. In our 
periodic decomposition, the sparsity penalty is also defined as the sum of the decomposed 
vectors that are represented in the form of the periodic signal model shown in (6). 
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cost function (17). The template vector tp and amplitude vector ap of the chosen period p are 
alternatively updated in an iteration. In the algorithm, we suppose that the set of the periods 
P consists of M periods which are indexed as {p1 pM}. 
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()+ denotes replacing the negative elements of a vector with zero. The both solutions of the 
subproblems guarantee the decrement of the cost E. Thus, the cost E decreases until 
convergence. However, the set of the resultant periodic subsignals after the convergence of 
the iteration does not always obtain a minimum of the cost function E exactly. If any 
periodic subsignal becomes zero in iteration, the amplitude coefficients are specified to be 
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constant in step 4) of the next iteration. The proper search direction for 
ipt may not be 

obtained by these amplitude coefficients. However, the l2 norms of the periodic signals that 
eliminated by the shrinkage in (21) and (23) is small enough to approximate the signal. 
Hence, we accept the periodic subsignals obtained by this algorithm as the result of the 
sparse decomposition instead of the proper minimiser of the cost E. 
 

Tested set Ave. Std. Dev 
28, 44, 52 14.6, 16.6, 12.6 2.4, 2.4, 2.2 
30, 31, 32 16.9, 21.0, 20.7 3.1, 2.7, 2.7 
50, 51, 52 10.8, 12.7, 10.8 1.7, 1.9, 1.7 

Table 1. SNR improvements (dB) obtained by the sparse periodic decomposition for 
mixtures of three periodic signals. 

 
5. Decomposition examples 

In this section, we provide several examples of the sparse periodic decomposition. The 
examples demonstrate the decomposition of synthetic signals generated by adding three 
periodic signals. The length of the mixture and three source signals N is 256. Each source 
signal is generated with the model for the periodic signals shown in (1). Each waveform 
within a period is generated by Gaussian random variables. The average of the waveform of 
a period is normalized to zero. The amplitude envelope of one of the three source signals are 
specified as a constant. The envelopes of the other two source signals are specified as a 
decreasing Gaussian function 
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respectively. The squared norms of the three source signals are normalized to unity. Since 
the three source periodic signals can be assumed to be independent to each other, the SNR 
of each source signal in the mixture is about -3.0 dB. The sets of three periods for mixtures 
are shown in the first column of Table. 1. The first set contains the periods have three 
divisors. The second and third consist of closely spaced periods. An example of the mixture 
is shown in Fig. 1(a). The three source periodic signals are shown in Fig. 1(b), (c) and (d), 
respectively. 
For the sparse periodic decomposition, the sequence of the parameters {p}pP and the 
sparsity parameter  have to be specified. The shrinkage of the l2-norm of the periodic 
component in the decomposition algorithm is performed with the threshold p in (21) and 
(23).  The periodic signal fp with the l2-norm that is less than the threshold is eliminated by 
the shrinkage. Obviously, if the residual r in (18) can be assumed to be a noise that is small 
enough to approximate the input signal, its periodic approximation has to be eliminated 
during the decomposition. We assume that the noise as a Gaussian noise with a variance 2. 
The product p is specified as proportional value to the expected l2 norm of the 

 

approximated Gaussian noise with the periodic signal model. The expected l2 norm of the 
periodic signal fp that approximates a Gaussian noise, of which envelope is constant, is 
approximated as  

 
p
NpE p  1

2
f                                                     (25) 

 
Fig. 1. (a) Example of mixture of three periodic signals, the source periodic signals, (a) p = 28, 
(c) p = 44 and (d) p =52. 
 
The product p is hence specified to a value that is proportional to this expectation. In 
actual decomposition,  is assumed to be 1% of the l2-norm of the input signal. p is 
specified as the expectation shown in (25). 
In the experiments, we supposed that the period of the source signals are integer in the 
range [10, 59]. The periods for the decomposition are also defined as integers in this range. 
So, the number of the periodic signals that are obtained by the decomposition is 60. The 
iteration of the decomposition algorithm explained in Sect. 4. 2 is stopped when l-norm of 
the difference of the periodic signals before and after updating is lower than a threshold 
value. The threshold is specified as 0.01 p for all experiments. 
In order to evaluate the decomposition, we compute the improvement in SNR. The 
improvement in SNR is computed as the difference of the SNRs of the mixture and 
decomposition results for each source period. We generate 1,000 mixtures to test the 
decomposition algorithm for each set of periods. Table 1 shows the averages and standard 

www.intechopen.com



Sparse signal decomposition for periodic signal mixtures 159

 

constant in step 4) of the next iteration. The proper search direction for 
ipt may not be 

obtained by these amplitude coefficients. However, the l2 norms of the periodic signals that 
eliminated by the shrinkage in (21) and (23) is small enough to approximate the signal. 
Hence, we accept the periodic subsignals obtained by this algorithm as the result of the 
sparse decomposition instead of the proper minimiser of the cost E. 
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28, 44, 52 14.6, 16.6, 12.6 2.4, 2.4, 2.2 
30, 31, 32 16.9, 21.0, 20.7 3.1, 2.7, 2.7 
50, 51, 52 10.8, 12.7, 10.8 1.7, 1.9, 1.7 
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In this section, we provide several examples of the sparse periodic decomposition. The 
examples demonstrate the decomposition of synthetic signals generated by adding three 
periodic signals. The length of the mixture and three source signals N is 256. Each source 
signal is generated with the model for the periodic signals shown in (1). Each waveform 
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respectively. The squared norms of the three source signals are normalized to unity. Since 
the three source periodic signals can be assumed to be independent to each other, the SNR 
of each source signal in the mixture is about -3.0 dB. The sets of three periods for mixtures 
are shown in the first column of Table. 1. The first set contains the periods have three 
divisors. The second and third consist of closely spaced periods. An example of the mixture 
is shown in Fig. 1(a). The three source periodic signals are shown in Fig. 1(b), (c) and (d), 
respectively. 
For the sparse periodic decomposition, the sequence of the parameters {p}pP and the 
sparsity parameter  have to be specified. The shrinkage of the l2-norm of the periodic 
component in the decomposition algorithm is performed with the threshold p in (21) and 
(23).  The periodic signal fp with the l2-norm that is less than the threshold is eliminated by 
the shrinkage. Obviously, if the residual r in (18) can be assumed to be a noise that is small 
enough to approximate the input signal, its periodic approximation has to be eliminated 
during the decomposition. We assume that the noise as a Gaussian noise with a variance 2. 
The product p is specified as proportional value to the expected l2 norm of the 

 

approximated Gaussian noise with the periodic signal model. The expected l2 norm of the 
periodic signal fp that approximates a Gaussian noise, of which envelope is constant, is 
approximated as  
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Fig. 1. (a) Example of mixture of three periodic signals, the source periodic signals, (a) p = 28, 
(c) p = 44 and (d) p =52. 
 
The product p is hence specified to a value that is proportional to this expectation. In 
actual decomposition,  is assumed to be 1% of the l2-norm of the input signal. p is 
specified as the expectation shown in (25). 
In the experiments, we supposed that the period of the source signals are integer in the 
range [10, 59]. The periods for the decomposition are also defined as integers in this range. 
So, the number of the periodic signals that are obtained by the decomposition is 60. The 
iteration of the decomposition algorithm explained in Sect. 4. 2 is stopped when l-norm of 
the difference of the periodic signals before and after updating is lower than a threshold 
value. The threshold is specified as 0.01 p for all experiments. 
In order to evaluate the decomposition, we compute the improvement in SNR. The 
improvement in SNR is computed as the difference of the SNRs of the mixture and 
decomposition results for each source period. We generate 1,000 mixtures to test the 
decomposition algorithm for each set of periods. Table 1 shows the averages and standard 
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deviations of the SNR improvements of the decomposed periodic signals for 1,000 tests. The 
average SNR improvements of the decomposition results exceed 10 dB. By these results, we 
see that the proposed decomposition can obtain significant decomposition results and 
separate three sources into its periods. In Fig. 2 and 3, an example of the mixture and its 
decomposition result are shown. The discrete Fourier transform (DFT) spectrum of the 
mixture (Fig. 1(a)) is shown in Fig. 2(a). 

  
Fig. 2. (a) DFT spectrum of the mixture in Fig. 1(a)  and (b) distribution of the l2 norm of the 
decomposed periodic signals. 
 

 
Fig. 3. Decomposed periodic signals, (a) p =28, (b) p = 44 and (c) p =52. 
 
The distribution of l2 norm of the resultant periodic signals of the mixture is shown in Fig. 
2(b). As seen in Fig. 2(b), three periodic signals with large amplitude appear at the source 
periods. Small harmonics components are separated from the source periods due to the 

 

weighting of the sparsity penalty, however, the almost energy of the mixture is decomposed 
into the three source periods. In Fig. 3, the periodic signals that appear in the decomposition 
result are also shown. In this set of the periods, the harmonics with periods 1, 2, and 4 which 
are the common divisors of the source periods cannot be separated accurately. However, the 
other harmonics are well collected to three fundamental periods. 
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Fig. 4. (a) Speech signal (male, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 
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Fig. 5. (a) Speech signal (female, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 

 
6. Application to speech representation 

In the synthetic signal examples, the signal mixtures consist of source periodic signals with 
integer periods. However, periods of many periodic signals that include speech and acoustic 
signals are not integer. In order to examine the sparse periodic decomposition for the signals 
with non-integer periods, we apply the proposed sparse decomposition to speech mixtures. 
The speech signals for the experiments were selected 3 Japanese male and 3 female 
continuous speeches of about 8 s taken from ATR-SLDB (Spoken Language Database). The 
sampling rate of each speech signal is converted to 8 kHz. 15 speech mixtures that consist of 
two different speeches that are normalized to same power are generated. 
For periodic decomposition, each mixture is divided into segments that contain 360 samples 
with 3/4 overlap. In each segment, the periods for decomposition are specified to be 
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deviations of the SNR improvements of the decomposed periodic signals for 1,000 tests. The 
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separate three sources into its periods. In Fig. 2 and 3, an example of the mixture and its 
decomposition result are shown. The discrete Fourier transform (DFT) spectrum of the 
mixture (Fig. 1(a)) is shown in Fig. 2(a). 

  
Fig. 2. (a) DFT spectrum of the mixture in Fig. 1(a)  and (b) distribution of the l2 norm of the 
decomposed periodic signals. 
 

 
Fig. 3. Decomposed periodic signals, (a) p =28, (b) p = 44 and (c) p =52. 
 
The distribution of l2 norm of the resultant periodic signals of the mixture is shown in Fig. 
2(b). As seen in Fig. 2(b), three periodic signals with large amplitude appear at the source 
periods. Small harmonics components are separated from the source periods due to the 
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Fig. 5. (a) Speech signal (female, duration: 8.1 s, sampling freq. : 8 kHz) and (b) time-period 
energy distribution of (a). 

 
6. Application to speech representation 

In the synthetic signal examples, the signal mixtures consist of source periodic signals with 
integer periods. However, periods of many periodic signals that include speech and acoustic 
signals are not integer. In order to examine the sparse periodic decomposition for the signals 
with non-integer periods, we apply the proposed sparse decomposition to speech mixtures. 
The speech signals for the experiments were selected 3 Japanese male and 3 female 
continuous speeches of about 8 s taken from ATR-SLDB (Spoken Language Database). The 
sampling rate of each speech signal is converted to 8 kHz. 15 speech mixtures that consist of 
two different speeches that are normalized to same power are generated. 
For periodic decomposition, each mixture is divided into segments that contain 360 samples 
with 3/4 overlap. In each segment, the periods for decomposition are specified to be 
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integers in the range [10, 120] which corresponds to the range of the fundamental 
frequencies of most men and women. The stopping rule of the iteration of the relaxation 
method and the parameters are specified as the same rule that is mentioned in Sect. 5. 
The examples of the male and female utterances and its time-period energy distributions are 
shown in Fig. 4 and Fig. 5, respectively. In Fig. 4(b) and 5(b), the brightness indicates the 
power of the resultant periodic signals for each segment and period. Darker pixels indicate 
higher powers of the resultant periodic subsignals. 

 
Fig. 6. (a) Mixture of female and male speeches and (b) time-period energy distribution of (a) 
 

Speakers Ave. SNR Min. SNR Max. SNR Ave. num. of 
periods 

(M, M) 20.1 10.4 28.9 16.1 
(F, F) 20.2 10.3 27.6 11.2 
(F, M) 20.2 10.2 28.9 14.0 

Table. 2. Average, minimum and maximum SNRs (dB) of approximated speech segments 
and average numbers of periodic signals obtained by the sparse decomposition 
 
Our method decomposes a signal into the periodic signals with only integer periods. Under 
this limitation, the speech components with non-integer periods and the frequency 
variations that occur in a segment are represented as the sum of some periodic signals. So, 
we see that the pitch contours are represented by some neighbouring periods in these time-
period distribution. Moreover, small periodic components with periods that are multiples 
and divisors of the fundamental periods appear. These periodic components appear due to 
the non-integer periodic components of the speeches and the weighting of the sparsity 
measure in (17). However, the most of the signal energy is concentrated around the 
fundamental pitch periods of the speeches. 
We also show the time-period energy distributions of the mixture of two speeches. Fig. 6(a) 
and (b) show the mixture of the source speech signals shown in Fig. 3(a) and Fig. 4(a) and its 
time-period energy distributions, respectively. We see that the time-period energy 
distribution of the mixture in Fig. 6 is almost equal to the sum of the two distributions of the 
source speeches shown in Fig. 4(b) and Fig. 5(b). The both of the pitch contours of the two 
source speeches are preserved in the distribution of the mixture. The proposed 
decomposition method can approximate the mixture while concentrating the energy of each 
speech to its pitch periods and provides sparse representation of the mixture. It is expected 
that the pitch periods of both the speech signals will be tracked in this time-period energy 

 

distribution. Moreover, speech separation will be achieved by assigning the resultant 
periodic signals to the sources. 
In order to evaluate the approximate decomposition, we compute the SNR and the number 
of the non-zero resultant periodic signals for each segment where the l2 norm is greater than 
the noise level. The average, maximum and minimum SNRs over all voice active segments 
of mixtures are shown in Table 2. In this table, F an M denote female and male source 
speeches, respectively. The average numbers of periods for approximation of a segment are 
also shown. We see that the average approximation precision of the proposed 
decomposition is about 20 dB in the segmental SNR. The average number of the periods 
yield by the decomposition is about 14 for segments of speech mixtures consist of two 
speeches. 
 

Speaker Proposed 
(with sources) 

DFT 
(with sources) 

Proposed 
(with ref. sig.) 

(M, M) 9.90.6 13.50.5 3.91.0 
(F, F) 9.50.3 13.50.5 3.20.9 
(F, M) F: 10.11.5 

M: 9.81.0 
F: 14.41.0 
M: 14.31.0 

F: 6.52.5 
M: 6.72.7 

Table  3.  Average SNRs (dB) of separated speeches. 
 
Next, we demonstrate the speech separation from a mixture with the sparse periodic 
decomposition. In this experiment, the speech separation is performed by assignment of the 
resultant periodic subsignals to the sources in each segment. 
First, we use the clean source signals for assignment of the resultant periodic signals. 
The separation is carried out by the following steps for each segment: 
 
1.  The segment of the mixture is decomposed into the set of the periodic signals {fp}pP. 
2.  The normalized correlations between the resultant periodic signals and the clean source 

segments {si}i = 1, 2 are computed. 
3.  Each resultant periodic signal fp are added to the separated output that is associated 

with the i-th source si that obtains larger correlation. 
 
For recovering source signals, each resultant periodic signal is multiplied with a Hanning 
window in each segment. This assignment method does not obtain optimum separated 
results in terms of the SNR exactly. However, this experiment gives the rough ideal 
performance of the source separation by using the proposed sparse decomposition. 
For comparison, the ideal separation results that are obtained by a STFT that is widely 
utilized for the sparse representation of speech signals are demonstrated. In the separation 
with the STFT, the ideal binary masks [20] are computed from the clean source speeches. 
The mixture and the source signals are segmented by 512 points Hamming window with 
3/4 overlap. In each segment, the DFT spectrum of the mixture and the source signals are 
computed. Each frequency bin of the DFT is assigned to the source whose amplitude of the 
frequency bin is larger than the other. The separation results obtained by the proposed 
decomposition and the DFT are shown in Table 3. 
In this table, the SNRs of the separated speech signals are shown. We see that the SNRs of 
the separated speeches obtained by the proposed method are lower than the DFT by about 
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Fig. 6. (a) Mixture of female and male speeches and (b) time-period energy distribution of (a) 
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4dB. In the separation obtained by the proposed method, the approximation errors caused 
during the decomposition are involved in the separated output. Since the frequency 
resolution of the periodic decomposition is lower than the DFT at high frequency bands, the 
interferences between two speeches mainly occur at high-frequencies. However, the 
proposed representation is sparser than the DFT spectrum. In this experiment, the DFT 
yields 257 frequency bins for each segment. So, the DFT based separation is the problem of 
the assignment of the 257 frequency bins. In contrast, the average number of the periodic 
signals yield by the proposed method is about 14 for a segment. Comparing the proposed 
decomposition with the DFT, the separation problem can be reduced to relatively small size 
of a combinatorial optimization by the proposed decomposition. 
 

(b)

-20000
-10000

0
10000
20000
30000

0 10000 20000 30000 40000 50000 60000

(a)

-20000
-10000

0
10000
20000
30000

0 10000 20000 30000 40000 50000 60000

 
Fig. 7. Separated speech signals obtained by sparse periodic decomposition with reference 
speeches, (a) separated male speech (SNR: 7.2dB) and (b) female speech (SNR: 7.1dB) from 
the mixture shown in Fig. 5(a) 
 
In above separation experiments, we assume that the source speeches are known. Next, we 
demonstrate the single-channel speech separation by referencing the clean speech segments.  
In this scenario of the separation, two speakers in a mixture are known and the clean 
speeches of the speakers are available, but the contents of the speeches in the mixture are 
unknown. In order to assign the periodic signals to the sources, a set of the clean speech 
segments of the i-th speaker is defined as {ci, j}1jNr where Nr is the number of the reference 
segments. 
The resultant periodic signal fp is assigned to the i-th speaker that gives the maximum of the 
normalized correlation as: 
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For this experiment, segments that are generated from a clean speech of 20 s are used for the 
references of each speaker. The segments where the voice is not active are rejected from the 
references. The references do not include the source utterances in the mixtures. The SNRs 
obtained by the separation with the references are also shown in Table. 3. Obviously, such a 
simple separation method causes many false assignments. For separation of the mixture 
consists of the speakers of same gender, the averages of the improvements of SNR are lower 
than 4dB. However, the averages of SNR close to the ideal results and are about 6.5dB for 

 

the speakers of opposite gender. The separated signals from the mixture in Fig. 6(a) are 
shown in Fig. 7(a) and (b). 
The single channel speech separation methods based on frequency masking of spectrum 
have been proposed [12] [13] [14]. In these methods, statistical models for the frequency 
spectra of the speakers are preliminary learnt. The separation is performed on the frequency 
spectrum of the mixture by using the statistical models. In our approach, the proposed 
sparse decomposition yields the small number of the periodic signals which approximate 
the source signal due to the sparsity penalty. So, the separation of two speeches that have 
less similarity can be performed by such a lazy assignment method. 

 
7. Conclusions 

In this chapter, we present a sparse decomposition method for periodic signal mixtures. The 
proposed decomposition is based on the model for the periodic signals with time-varying 
amplitude and the sparsity of the periods that appear in the decomposition result. In 
decomposition experiments of the synthetic signal and the speech mixtures, we 
demonstrated that the proposed decomposition has the ability of source separation. 
The assignment method that is employed for the single-channel speech separation 
demonstrated in this paper is too simple to obtain good separation results. In our 
decomposition results, as seen in the figures in Sect. 4, the speech pitch contours are 
involved. We can use the temporal continuity of the speech pitches and spectra over the 
consecutive segments for improvement of the accuracy of the assignment.  The accurate and 
robust assignment of the decomposed periodic signals is a topic for future research. 
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