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1. Introduction

DNA microarrays have become a tool of paramount importance in the study of gene func-
tion, regulation, and interaction across large numbers of genes, and even entire genomes
(Hegde et al., 2000; Moore, 2001). Microarray experiments generate pairs of 16 bits per pixel
grayscale images (see Fig. 1, for an example). These images, which may require several tens
of megabytes in order to be stored or transmitted, are analyzed by software tools that extract
relevant information, such as the intensity of the spots and the background level. This infor-
mation is then used for evaluating the expression level of individual genes (Hegde et al., 2000;
Moore, 2001).

(a) Green channel (b) Red channel

Fig. 1. Example of a pair of images (1041 × 1044 pixels) that results from a microarray experi-
ment.

The common approach for microarray compression has been based on image analysis for spot
finding (griding followed by segmentation) with the aim of separating the microarray image
data into different streams based on pixel similarities (Adjeroh et al., 2006; Faramarzpour and
Shirani, 2004; Faramarzpour et al., 2003; Hua et al., 2003; 2002; Jörnsten et al., 2003; 2002a;
Lonardi and Luo, 2004; Zhang et al., 2005). Once separated, the streams are compressed to-
gether with the segmentation information. A potential drawback of these segmentation based

*This work was supported in part by the FCT (Fundação para a Ciência e Tecnologia).
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approaches is that different spot placements (e.g., non-rectangular) might compromise their
performance. In fact, although initially the rectangular packing was the organization used for
spot placement in microarrays, other non-rectangular packings have also been proposed (see
Fig. 2).

(a) Rectangular packing (b) Orange packing

Fig. 2. Different spot packing: (a) Rectangular packing; (b) Orange packing (sample image
from http://microarray1k.aecom.yu.edu/). Note that these images are not related.
They serve just for illustrating different spot placements.

Although initially most of the specialized techniques for microarray image compression con-
sidered the lossy approach as a reasonable possibility (Faramarzpour and Shirani, 2004; Hua
et al., 2003; 2002; Jörnsten et al., 2003; 2002a), the most recent methods address mainly re-
versible techniques (Faramarzpour et al., 2003; Lonardi and Luo, 2004; Zhang et al., 2005).
Keeping the original images allows future re-analysis by possibly better algorithms. In fact,
the analytic methods that are used for extracting information from the images are continu-
ously being improved (Kothapalli et al., 2002; Leung and Cavalieri, 2003; Sasik et al., 2004).
Also, as with other biomedical related data, legal issues might play a key role when choosing
between maintaining or deleting the original data.
Recently, we have investigated methods for compressing microarray images that do not re-
quire spot segmentation. This new approach is based on arithmetic coding that is driven by
image-dependent multi-bitplane finite-context models. Basically, the image is compressed on
a bitplane basis, going from the most significant to the least significant bitplane. The finite-
context model used by the arithmetic encoder uses (causal) pixels from the bitplane under
compression and also pixels from the bitplanes already encoded. To our knowledge, this
technique is currently the best one available in terms of compression efficiency of microarray
images (Neves and Pinho, 2009).
In this chapter, we start by describing the most important techniques for the lossless com-
pression of microarray images that have been proposed in the literature. Then, we present a
set of experiments that have been performed with the aim of providing a reference regard-
ing the performance of standard image coding techniques, namely, lossless JPEG2000, JBIG
and JPEG-LS, when applied to the lossless compression of microarray images. We proceed
with the description of an image-independent multi-bitplane finite-context approach and we
continue with the image-dependent version. Finally, we present experimental results that

Header Spots
coding

Segmentation

Microarray image

Gridding

coding
Background

coding

Compressed image
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illustrate the compression performance of the several approaches and we draw some conclu-
sions.

2. Compression techniques for microarray images

In this section, we present the most important methods for compression of microarray im-
ages, namely, the works of Jörnsten et al. (2003), Hua et al. (2002), Faramarzpour et al. (2003),
Lonardi and Luo (2004) and Zhang et al. (2005). Although all the methods presented in this
section address the microarray compression problem using different approaches, some of the
processing steps are common and similar to the ones depicted in Fig. 3.
All the methods start by segmenting the microarray images into regions of interest (ROIs) con-
taining the spot and some surrounding background. Some methods go even further, separat-
ing the spot area from the background. However, the segmentation algorithm used in each
method is different.

Header Spots
coding

Segmentation

Microarray image

Gridding

coding
Background

coding

Compressed image

Fig. 3. The common processing steps of the compression methods presented in this section.

Through segmentation, it is possible to encode the spots and background separately. This
is explicitly done in the works of Hua et al. (2003; 2002); Jörnsten et al. (2003); Jörnsten and
Yu (2000; 2002); Jörnsten et al. (2002a;b); Lonardi and Luo (2004), and more implicilty in the
work of Faramarzpour and Shirani (2004); Faramarzpour et al. (2003), because, in this case, the
separation between the spot area and the background is performed only when the sequence
is entropy encoded.
Almost all available methods have also a lossy compression version. These methods remove
what is considered to be noise or redundant. Although this step sounds obvious, the question
is “What should be considered noise or redundant?” Note that, in the context of microarray
images, the background is very important for noise estimation, because the bias due to noise
can be estimated and removed in the calculation of the gene expression level of each spot.
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The technique proposed by Jörnsten et al. (2003) is characterized by a first stage devoted
to griding and segmentation. Using the approximate center of each spot, a seeded region
growing is performed for segmenting the spots. The segmentation map is encoded using
chain-coding, whereas the interior of the regions are encoded using a modified version of the
LOCO-I algorithm (LOw COmplexity LOssless COmpression for Images, the algorithm be-
hind the JPEG-LS coding standard), named SLOCO. Besides lossy-to-lossless capability, Jörn-
sten’s technique allows partial decoding by means of independently encoded image blocks.
Hua et al. (2002) presented a transform-based coding technique. Initially, a segmentation is
performed using the Mann-Whitney algorithm and the segmentation information is encoded
separately. Due to the thresholding properties of the Mann-Whitney algorithm, the griding
stage is avoided. Then, a modified EBCOT (Embedded Block Coding with Optimized Trun-
cation) (Taubman and Marcellin, 2002) for handling arbitrarily shaped regions is used for en-
coding the spots and background separately, allowing lossy-to-lossless coding of background
only (with the spots encoded in lossless mode) or both background and spots.
The compression method proposed by Faramarzpour et al. (2003) starts by locating and ex-
tracting the microarray spots, isolating each spot into an individual ROI. A spiral path is ad-
justed to each of these ROIs, such that its center coincides with the center of mass of the spot.
The idea is to transform the ROI into an one-dimensional signal with minimum entropy. Then,
predictive coding is applied along this path, with a separation between residuals belonging to
the spot area and those belonging to the background area.
Lonardi and Luo (2004) proposed lossless and lossy compression algorithms for microarray
images (MicroZip). The method uses a fully automatic griding procedure, similar to that
of Faramarzpour’s method, for separating spots from the background (which can be lossy
compressed). Through segmentation, the image is split into two streams: foreground and
background. Then, for entropy coding, each stream is divided into two 8 bit sub-streams
and arithmetic encoded, with the option of being previously processed by a Burrows-Wheeler
transform.
The method proposed by Adjeroh et al. (2006); Zhang et al. (2005) is based on PPAM (Pre-
diction by Partial Approximate Matching). PPAM is an image compression algorithm which
extends the PPM text compression algorithm, considering the special characteristics of natural
images (Zhang et al., 2005). Initially, the microarray image is separated into background and
foreground. Then, for each of these two components, the pixel representation is separated
into its most significant and least significant parts. To compress the data, the most significant
part is first processed by an error prediction scheme. The residuals are then encoded by the
PPAM context model and encoder. The least significant part is encoded directly by the PPAM
encoder and the segmentation information is saved without compression.

3. Standard image compression methods

JBIG, JPEG-LS and JPEG2000 are state-of-the-art standards for coding digital images. They
have been developed with different goals in mind, being JBIG more focused on bi-level
imagery, JPEG-LS dedicated to the lossless compression of continuous-tone images and
JPEG2000 designed with the aim of providing a wide range of functionalities.
The JBIG standard (Joint Bi-level Image Experts Group) was issued in 1993 by ISO/IEC (In-
ternational Organization for Standardization / International Electrotechnical Commission)
and ITU-T (Telecommunication Standardization Sector of the International Telecommunica-
tion Union) for the progressive lossless compression of binary and low-precision gray-level
images (typically, having less than 6 bits per pixel). The major advantages of JBIG over other
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existing standards, such as FAX Group 3/4, are its capability of progressive encoding and its
superior compression efficiency (Hampel et al., 1992; ISO/IEC, 1993; Netravali and Haskell,
1995; Salomon, 2000). The core of JBIG is an adaptive context-based arithmetic encoder, rely-
ing on 1024 contexts when operating in sequential mode or on low resolution layers of the pro-
gressive mode, or 4096 contexts when encoding high resolution layers. More recently, a new
version, named JBIG2, has been published (ISO/IEC, 2000b), introducing additional function-
alities to the standard, such as multipage document compression, two modes of progressive
compression, lossy compression and differentiated compression methods for different regions
of the image (e.g., text or halftones) (Salomon, 2000).
JPEG-LS was developed by the Joint Photographic Experts Group (JPEG) with the aim of pro-
viding a low complexity lossless image standard that could be able to offer better compression
efficiency than lossless JPEG (ISO/IEC, 1999; Taubman and Marcellin, 2002; Weinberger et al.,
2000). Part 1 of this standard was finalized in 1999. The core of JPEG-LS is based on the
LOCO-I algorithm, that relies on prediction, residual modeling and context-based coding of
the residuals. Most of the low complexity of this technique comes from the assumption that
prediction residuals follow a two-sided geometric probability distribution and from the use of
Golomb codes which are known to be optimal for this kind of distributions. Besides lossless
compression, JPEG-LS also provides a lossy mode where the maximum absolute error can
be controlled by the encoder. This is known as near-lossless compression or L∞-constrained
compression.
From the three image coding standards addressed in this section, JPEG2000 is the most recent
one (ISO/IEC, 2000a; Taubman and Marcellin, 2002). Part 1 was published as an Interna-
tional Standard in the year 2000. It is based on wavelet technology and EBCOT coding of
the wavelet coefficients, providing very good compression performance for a wide range of
bitrates, including lossless coding. Moreover, JPEG2000 allows the generation of embedded
code streams, meaning that from a higher bitrate stream it is possible to extract lower bitrate
instances without the need for re-encoding. This property is of fundamental importance for
progressive transmission, for example, over slow communication channels.
These three standard image encoders cover a great variety of coding approaches. In fact,
whereas JPEG2000 is transform based, JPEG-LS relies on predictive coding, and JBIG relies
on context-based arithmetic coding. This diversity in coding engines might be helpful for
drawing conclusions regarding the appropriateness of each of these technologies for the case
of microarray image compression.

3.1 Compression performance of the standards

Before trying to develop new compression methods, it is always useful to find out how ex-
isting compression standards behave on the class of images of interest. Therefore, for per-
forming that assessment, we collected microarray images from three different publicly avail-
able sources: (1) 32 images that we refer to as the Apo AI set and which have been col-
lected from http://www.stat.berkeley.edu/users/terry/zarray/Html/index.

html (this set was previously used by Jörnsten et al. (2003); Jörnsten and Yu (2002)); (2) 14 im-
ages forming the ISREC set which have been collected from http://www.isrec.isb-sib.

ch/DEA/module8/P5_chip_image/images/; (3) three images previously used to test Mi-
croZip (Lonardi and Luo, 2004), which were collected from http://www.cs.ucr.edu/

~yuluo/MicroZip/.
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JBIG compression was obtained using version 1.6 of the JBIG Kit package1, with sequential
coding (-q flag). JPEG2000 lossless compression was obtained using version 5.1 of the JJ2000
codec with default parameters (lossless compression)2. JPEG-LS coding was obtained using
version 2.2 of the SPMG JPEG-LS codec with default parameters3. For additional reference,
we also give compression results using the popular compression tool GZIP (version 1.2.4).
Table 1 shows the compression results, in number of bits per pixel (bpp), where the first group
of images corresponds to the Apo AI set, the second to the ISREC set and the third one to
the MicroZip image set. Image size ranges from 1000 × 1000 to 5496 × 1956 pixels, i.e., from
uncompressed sizes of about 2 megabytes to more than 20 megabytes (all images have 16 bits
per pixel). The average results presented take into account the different sizes of the images,
i.e., they correspond to the total number of bits divided by the total number of image pixels.

Image set Gzip JPEG2000 JBIG JPEG-LS

APO_AI 12.711 11.063 10.851 10.608
ISREC 12.464 11.366 10.925 11.145

Microzip 11.434 9.515 9.297 8.974

Average 12.273 10.653 10.393 10.218

Table 1. Compression results, in bits per pixel (bpp), using lossless JPEG2000, JBIG and JPEG-
LS. For reference, results are also given for the popular compression tool GZIP.

The total average results show that gains of about 13.2%, 15.3% and 16.7%, in relation to GZIP
compression, are attained respectively for lossless JPEG2000, JBIG and JPEG-LS, showing the
superiority of image coding techniques over general purpose data compression methods in
the task of compressing images. The average results by image set show that JPEG-LS provides
the highest compression in the case of the Apo AI and MicroZip images, whereas JBIG gives
the best results for the ISREC set. Lossless JPEG2000 is always slightly behind these two. It
is interesting to note that the set for which JBIG gave the best results is also the one requiring
more bits per pixel for encoding.

3.1.1 Sensitivity to noise

It has been noted by Jörnsten et al. (2003) that, in general, the eight least significant bitplanes
of cDNA microarray images are close to random and, therefore, incompressible. Since this
fact may result in some degradation in the compression performance of the encoders, we
decided to address this problem and to study the effect of noisy bitplanes in the compression
performance of the standards.
To perform this evaluation, we separated the images into a number p of most significant bit-
planes and 16 − p least significant bitplanes. Whereas the p most significant bitplanes have
been sent to the encoder, the 16 − p least significant bitplanes have been left uncompressed.
This means that the bitrate of a given image is the sum of the bitrate generated by encoding
the p most significant bitplanes plus the 16 − p bits concerning the bitplanes that have been
left uncompressed.

1 http://www.cl.cam.ac.uk/~mgk25/jbigkit/.
2 http://jj2000.epfl.ch.
3 The original website of this codec, http://spmg.ece.ubc.ca, is currently unavailable. However, it

can be obtained from ftp://www.ieeta.pt/~ap/codecs/jpeg_ls_v2.2.tar.gz.
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Fig. 4. Influence of noisy bitplanes in the performance of the standard encoding methods. The
the curves indicate the bitrate obtained when only a given number p of the most significant
bitplanes are sent to the encoder, whereas the other 16 − p bitplanes are left uncompressed.

Image set JPEG2000 JBIG JPEG-LS
8 bp Best 8 bp Best 8 bp Best

Apo_AI 10.940 10.790 10.510 10.507 10.523 10.433
ISREC 11.100 10.954 10.607 10.583 10.838 10.713

MicroZip 9.918 9.321 9.506 9.030 9.588 8.912

Average 10.661 10.376 10.224 10.073 10.302 10.026

Table 2. Average compression results, in bits per pixel (bpp), when a number of bitplanes
is left uncompressed. The columns labeled “8 bp” provide results for the case where only
the 8 most significant bitplanes have been encoded and the 8 least significant bitplanes have
been left uncompressed. The column named “Best” contains the results for the case where the
separation of most and least significant bitplanes has been optimally found.
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Figure 4 depicts bitrate curves, as a function of p, for two different images, “1230c1G” and
“array1”. As can be observed, the best bitrate is generally not met when compressing all
16 bitplanes, but instead when some of the least significant bitplanes are left uncompressed.
However, the value of the optimum value of p, popt, varies not only from image to image,
but also from one encoder to the other. In fact, for the Apo AI set, which is characterized
by the most regular value of popt, JBIG is the encoder with the highest value of popt (around
8), then comes lossless JPEG2000 (around 10) and, finally, JPEG-LS (around 13). This result
is not surprising, since JBIG encodes the bitplanes independently. Therefore, without being
able to get information from other bitplanes, it is natural that JBIG starts considering bitplanes
as “noise” earlier than the other encoders. Moreover, this can also be the justification for its
better performance in the ISREC set, because it is the most noisy.
Table 2 compares average results for the three set of images regarding two situations: (1)
the image is divided into the eight most significant bitplanes (which are encoded) and the
eight least significant bitplanes (which are left uncompressed); (2) the optimum value of p

is determined for each image. From this table, and comparing with the Table 1, we can see
that, in fact, this splitting operation can provide some additional compression gains. The best
results attained provided improvements of 3.1%, 2.6% and 1.9% respectively for JBIG, lossless
JPEG2000 and JPEG-LS.
However, finding the right value for p may require as many as 16 iterations of the compression
phase in order to find it. Moreover, from the results shown in Table 2, we can see that a simple
separation of the bitplanes in an upper and lower half may improve the compression in some
cases (Apo AI and ISREC image sets), but may also produce the opposite result (MicroZip
image set).

3.1.2 Lossy-to-lossless compression

From the point of view of compression efficiency, and taking into account the results pre-
sented in Table 1, JPEG-LS is the overall best lossless compression method, followed by JBIG
and lossless JPEG2000. The difference between JPEG-LS and lossless JPEG2000 is about 4.1%
and between JPEG-LS and JBIG is only 1.7%. However, the better compression performance
provided by JPEG-LS can be overshadowed by a potentially important functionality provided
by the other two standards, which is progressive, lossy-to-lossless, transmission.
In the case of lossless JPEG2000, this functionality is basically a by-product of the multi-
resolution wavelet technology used in its encoding engine and also due to a strategy of en-
coding the information in layers (Taubman and Marcellin, 2002). In the case of JBIG, this
property comes from two different sources. On one hand, images with more that one bitplane
are encoded using a bitplane-by-bitplane coding approach. This provides a kind of progres-
sive transmission, from most to least significant bitplanes, where the precision of the pixels
is improved for each added bitplane. Moreover, this technique produces a reduction of the
L∞ error by a factor of two for each additional bitplane. On the other hand, JBIG permits the
progressive transmission of each bitplane by progressively increasing its spatial resolution
(ISO/IEC, 1993; Salomon, 2000). However, the compression results that we present in Table 1
do not take into account the additional overhead implied by this encoding mode of JBIG (we
used the -q flag of the encoder, which disables this mode).
In Fig. 5, we present rate-distortion curves for two images, “1230c1G” and “array1”, obtained
with the lossless JPEG2000 and JBIG coding standards, and according to two error metrics:
L2-norm (root mean squared error) and L∞-norm (maximum absolute error). Regarding the
L2-norm, we observe that lossless JPEG2000 provides slightly better rate-distortion results for
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Fig. 5. Rate distortion curves showing the performance of lossless JPEG2000 and JBIG in a
lossy-to-lossless mode of operation. Results are given both for the L2 (root mean squared
error) and L∞ (maximum absolute error) norms.

bitrates less than 8 bpp. For higher bitrates, this codec exhibits a sudden degradation of the
rate-distortion. We believe that this phenomenon is related to the default parameters used by
the encoder, which might not be well suited for images having 16 bits per pixel, such as those
of the microarrays. Moreover, we think that a careful setting of these parameters may lead to
improvements in the rate-distortion of JPEG2000 for bitrates higher than 8 bpp, although we
consider this tuning a problem that is beyond the scope of this work.
With respect to the L∞-norm, we observe that JBIG is the one with the best rate-distortion
performance. In fact, due to its bitplane-by-bitplane approach, it guarantees an exponential
and upper bounded decrease of the maximum absolute error. The upper bound of the error is

given by 2(16−p)
− 1, where p is the number of bitplanes already decoded. Contrarily, lossless

JPEG2000 cannot guarantee such bound, which may be a major drawback in some cases. Fi-
nally, we note that the sudden deviation of the lossless JPEG2000 curves around bitrates of 8
bpp is probably related to the same problem pointed out earlier for the case of the L2-norm.

www.intechopen.com



Signal Processing438

3.2 Conclusions

The main objective of this section was to provide a set of comprehensive results regarding
the lossless compression of microarray images by state-of-the-art image coding standards,
namely, lossless JPEG2000, JBIG and JPEG-LS. In order to facilitate future comparisons by
other researchers, we collected a total of 49 microarray images available from the Internet. We
believe that the development of specialized compression techniques should be supported by a
preliminary study of the performance provided by well established methods and, particularly,
by those that are standards. Only after making such study it is possible to be in a comfortable
position for arguing about the relevance of some specialized technique.
From the experimental results obtained, we conclude that JPEG-LS gives the best lossless com-
pression performance. However, it lacks lossy-to-lossless capability, which may be a decisive
functionality if remote transmission over possibly slow links is a requirement. Complying to
this requirement we find JBIG and lossless JPEG2000, lossless JPEG2000 being the best consid-
ering rate-distortion in the sense of the L2-norm and JBIG the most efficient when considering
the L∞-norm. Moreover, JBIG is consistently better than lossless JPEG2000 regarding lossless
compression ratios. Also, JBIG is the method that can benefit most from a correct separa-
tion of most significant bitplanes that are encoded and least significant bitplanes that are left
uncompressed (it gained 3.1%), and it is also the coding technique that, due to the bitplane-
by-bitplane coding, can search for the optimum point of separation on-the-fly. In fact, this can
be done by monitoring the bitrate resulting from the compression of each bitplane, and stop
doing compression when this value is over 1 bpp. As a final conclusion, and according to
what we presented in this section, it is our opinion that the technology behind JBIG seems to
be the most appropriate for microarray image coding.

4. Compression of microarray images using finite-context models and arithmetic

coding

4.1 Finite-context models

The core of the methods proposed in the remainder of this chapter consists of an adaptive
finite-context model followed by arithmetic coding. A finite-context model (see Fig. 6) of an
information source assigns probability estimates to the symbols of an alphabet A, according to
a conditioning context computed over a finite and fixed number, M, of past outcomes (order-
M finite-context model) (Rissanen, 1983; Rissanen and Langdon, Jr., 1981; Sayood, 2000). At
time t, we represent these conditioning outcomes by c

t = xt−M+1, . . . , xt−1, xt. The number of
conditioning states of the model is |A|M, dictating its complexity (or model cost). In our case,
A = {0, 1} and, therefore, |A| = 2.
In practice, the probability that the next outcome, xt+1, is “0” is obtained using the estimator

P(xt+1 = 0|ct) =
n(0, c

t) + δ

n(0, ct) + n(1, ct) + 2δ
, (1)

where n(s, c
t) represents the number of times that, in the past, the information source gen-

erated symbol s ∈ A having c
t as the conditioning context. The parameter δ > 0, besides

allowing fine tuning the estimator, avoids generating zero probabilities when a symbol is en-
coded for the first time. In our case, we used δ = 1, which corresponds to Laplace’s estimator
(it can be seen as an initialization of all counters to one). The counters are updated each time
a symbol is encoded. Since the context template is causal, the decoder is able to reproduce the
same probability estimates without needing additional information.
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Fig. 6. Finite-context model: the probability of the next outcome, xt+1, is conditioned by the
M last outcomes. In this example, M = 5.

Context, c
t

n(0, c
t) n(1, c

t) n(0, c
t) + n(1, c

t)
00000 23 41 64
00001 16 6 22
00010 19 30 49
00011 34 42 76
00100 36 17 53

...
...

...
...

11111 8 2 10

Table 3. Simple example illustrating how finite-context models are implemented. The rows
of the table represent a probability model at a given instant t. In this example, the particular
model that is chosen for encoding a symbol depends on the last five encoded symbols (order-5
context).

Table 3 shows an example of how a finite-context is typically implemented. In this example,
an order-5 finite-context model is presented. Each row represents a probability model that
is used to encode a given symbol according to the last encoded symbols (five in this exam-
ple). Therefore, if the last symbols were “00010”, i.e., c

t = 00010, then the model communi-
cates the following probability estimates to the arithmetic encoder: P(0|00010) = 19/49 and
P(1|00010) = 30/49.
The block denoted “Encoder” in Fig. 6 is an arithmetic encoder. It is well known that prac-
tical arithmetic coding generates output bit-streams with average bitrates almost identical to
the entropy of the model (Bell et al., 1990; Salomon, 2000; Sayood, 2000). In our case, the
theoretical bitrate average (entropy) of the model after encoding N symbols is given by

HN = −
1

N

N−1

∑
t=0

log2 P(xt+1 = s|ct) bps, (2)

where “bps” stands for “bits per symbol”. Since we are dealing with images, instead of using
the generic “bps” measure we use “bpp”, which stands for “bits per pixel”. Recall that the
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entropy of any sequence of two symbols is limited to 1 bps, a value that is achieved when the
symbols are independent and equally likely.

4.2 Image-independent contexts

In Section 3, we presented a study of the compression performance of three image coding stan-
dards in the context of microarray image compression: JPEG2000, JBIG and JPEG-LS. Since
they rely on three different coding technologies, we were able not only to evaluate the perfor-
mance of each of these standards, but also to collect hints regarding what might be the best
coding technology regarding microarray image compression. In that study, we concluded
that from the three technologies evaluated (predictive coding in the case of JPEG-LS, trans-
form coding in the case of JPEG2000 and context-based arithmetic coding in the case of JBIG),
the technology behind JBIG seemed to be the most promising. In fact, JPEG-LS provided the
highest compression, closely followed by JBIG. However, unlike JPEG2000 and JBIG, it does
not provide lossy-to-lossless capabilities, a characteristic that might be of high interest, spe-
cially in the case where remote databases have to be accessed using transmission channels of
reduced bandwidth. Moreover, with JBIG, the image bitplanes are compressed independently,
suggesting the existence of some room for improvement.
Motivated by these observations, we developed a compression method for microarray images
which is based on the same technology as JBIG but that, unlike JBIG, exploits inter-bitplane
dependencies, providing coding gains in relation to JBIG (Neves and Pinho, 2006). Designing
contexts that gather information from more than one bitplane (multi-bitplane contexts) is not
just a matter of joining more bits to the context, because for each new bit added the memory
required doubles. Moreover, there is the danger of running into the context dilution problem,
due to the lack of sufficient data for estimating the probabilities. Therefore, this extension to
multi-bitplane contexts must be done carefully.
The method proposed by Neves and Pinho (2006) was inspired by EIDAC (Yoo et al., 1998), a
compression method that has been used with success for coding images with a reduced num-
ber of intensities (simple images). The images are compressed on a bitplane basis, from the
most to the least significant bitplane. The causal finite-context model that drives the arithmetic
encoder uses pixels both from the bitplane currently being encoded and from the bitplanes
already encoded. As encoding proceeds, the average bitrate obtained after encoding each bit-
plane is monitored. If, for some bitplane, the average bitrate exceeds one bit per pixel, then
the encoding process is stopped and the remaining bitplanes are saved without compression.
The encoding procedure is outlined in Fig. 7.
The context modeling part of EIDAC was designed mainly with the aim of compressing im-
ages with eight bitplanes or less, implying, at most, 19 bits of context. A straightforward ex-
tension to images with 16 bitplanes would require contexts of 27 bits, i.e., at least 2× 227 = 228

counters. Essentially, the technique proposed by Neves and Pinho (2006) differs from EIDAC
in three aspects: (1) it was designed taking into account the specific nature of the images,
keeping the size of the contexts limited to 21 bits; (2) it does not use the histogram packing
procedure proposed for EIDAC because, generally, microarray images have dense intensity
histograms; (3) it implements a rate-control mechanism that avoids producing average bitrates
of more than one bit per pixel in bitplanes that are too noisy (this is a common characteristic
of the least significant bitplanes of microarray images (Jörnsten et al., 2003)).
As we mentioned before, choosing the context template for a multi-bitplane image is a critical
task, requiring tradeoffs involving aspects such as the maximum size of the context, the prob-
lem of context dilution and the placement of the context bits such that the maximum informa-
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bitplanes uncompressed
Save the remaining
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in the bitplane
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Fig. 7. Encoding procedure of the method proposed by Neves and Pinho (2006). The choice of
the context shape is based on Fig. 8. Note that, being a bitplane based encoder, it is possible
to monitor the bitrate used to encode each bitplane.

tion can be collected. This work was done in (Neves and Pinho, 2006) mainly using a trial and
error procedure, leading to the image-independent context configuration displayed in Fig. 8.
Note that, when encoding the eight least significant bitplanes, the finite-context model is only
formed with pixels from the higher numbered bitplanes. This specific context configuration
together with the rate-control mechanism avoids the degradation in compression rate when
there are bitplanes that are close to random and, therefore, are almost incompressible.
Although being able to provide state-of-the-art compression results, the method proposed in
(Neves and Pinho, 2006) could be improved. In fact, due to its image-independent nature,
and despite being designed for a specific type of images (microarrays), the context configura-
tion depicted in Fig. 8 resulted from a complicated process that tried to balance the inevitable
particularities among the images. From the point of view of a single image, this context con-
figuration might seem overkill, i.e., a smaller context might suffice. However, it is needed for
satisfying the ensemble of images. This observation motivated the image-dependent context-
modeling approach that we describe in the next section.
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(a) BP = 15

(b) BP = 14

(c) BP = 13

(e) 0 <= BP <= 7

(d) 8 <= BP <= 12

Fig. 8. Image-independent context configuration used in (Neves and Pinho, 2006) at five dif-
ferent compression stages: (a) when encoding the most significant bitplane (four bits of con-
text); (b) when encoding the second most significant bitplane (ten bits of context); (c) when
encoding the third most significant bitplane (16 bits of context); (d) from the fourth until the
eighth most significant bitplanes (17–21 bits of context); (e) the eight least significant bitplanes
(13–20 bits of context). Context positions falling outside the image at the image borders are
considered as having zero value.

5. Image-dependent finite-context models

Instead of using the image-independent context model presented in Fig. 8, the algorithm that
we describe in this section tries to find the “best” context configuration to encode the current
bitplane, based on the templates depicted in Fig. 9. The test of all possible context configura-
tions is a hard task, virtually impossible, due to the huge number of possibilities. To overcome
this drawback, we developed a greedy approach that we explain next.
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(a) (b)

Fig. 9. (a) The template used for growing the context at the level of the bitplane currently
being encoded; (b) The template used for growing the context corresponding to the bitplanes
already encoded.

Before encoding a bitplane, p, the algorithm constructs an appropriate context configuration
through an iterative process (note that bitplanes are numbered from 0, the least significant
bitplane, to 15, the most significant bitplane). In each iteration, an additional context bit is
tested in each of the 16 − p possible locations, one in each of the 16 − p context bitplanes that
are available. In a given context bitplane, the additional bit can only be inserted in position k
of the corresponding template displayed in Fig. 9 if all positions i < k belong already to the
best context configuration found so far. This means that the part of the context belonging to a
given bitplane can grow only according to the pixel numbering shown in Fig. 9. The template
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in Fig. 9(a) is used for the context bitplane p, whereas the template in Fig. 9(b) applies to the
remaining context bitplanes, i.e., from bitplane p + 1 to bitplane 15.
After performing an iteration, the new context bit is assigned to the position where the largest
improvement in the compression performance of bitplane p occurred. If none of the possi-
ble 16 − p context bit positions were able to improve the compression, then the search stops
and the context configuration found so far is used for encoding the bitplane p. Otherwise, a
new context bit is tested. This iterative process proceeds while the new context bit is able to
improve the compression performance of bitplane p or until the maximum context depth is
reached. For the results presented in this section, we used a maximum of 20 context bits. Fig-
ure 10 presents an example of the context configuration obtained with this process for some
of the bitplanes of the image “1230c1G” (APO_AI image set).
The configuration of the context bits for a particular bitplane, p, can be communicated to the
decoder using approximately 4(16 − p) bits. Note that the maximum number of context bits
per context bitplane is less that 16 (see Fig. 9) and, therefore, can be represented in four bits.
Hence, the total overhead regarding the image-dependent contexts is just some tens of bytes.
The algorithm is outlined next.

bestCtx := 0-order context;

bestRate := rate for encoding bitplane

with 0-order context;

do

improved := FALSE;

for p := bitplane to be encoded, 15

if p = bitplane to be encoded

add bit according to Fig. 9(a);

else

add bit according to Fig. 9(b);

end

rate := rate for encoding bitplane

using current context;

if rate < bestRate

bestCtx := current context;

bestRate := rate;

improved := TRUE;

end

remove bit added above;

end

while size of bestCtx < 20 AND improved

Being a greedy approach, it is not guaranteed that the optimum is found. In fact, as can be
seen, for each context bitplane the context can only grow according to a predefined order
which is given by the pixel numbering associated to the templates of Fig. 9. This limits the
number of degrees of freedom of the search process, reducing the probability of finding the
optimum configuration, but, on the other hand, also allowing running this procedure in a
reasonable time.
In order to further accelerate the process of choosing these image-dependent contexts, and
due to the highly structured nature of microarray images, we developed another version of
the algorithm where only a small region of the image is used for constructing the contexts.
Using this faster approach, the results obtained for a region of 256 × 256 pixels have been
slightly worse. However, we verified a significant reduction in the time spent. In a 2 GHz
Pentium 4 computer with 512 MBytes of memory, the MicroZip test set (three images totaling
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(a) BP = 14

(b) BP = 13
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?

?

(c) BP = 12

?

(d) BP = 11

(e) BP = 10
Fig. 10. Context configuration obtained by the proposed method in five different bitplanes of
the image “1230c1G”: (a) when encoding bitplane 14 (seven bits of context); (b) when encoding
bitplane 13 (11 bits of context); (c) when encoding bitplane 12 (13 bits of context); (d) when
encoding bitplane 11 (17 bits of context); (e) when encoding bitplane 10 (20 bits of context).
Context positions falling outside the image at the image borders are considered as having zero
value.

approximately 21 million pixels) required about 220 minutes to compress when the whole
image was used to performed the search. When we used a region of 256 × 256 pixels, it
required approximately 6 minutes to compress the MicroZip test set (about 2 minutes more
than the image-independent approach). These three images have sizes of 1916 × 1872, 5496 ×
1956 and 3625 × 1929 pixels. Decoding is faster, because the decoder does not have to search
for the best context: that information is embedded in the bitstream.

6. Experimental results

Table 4 shows the average compression results, in bits per pixel, for the three sets of images
described previously (see Section 3). In this table, we present experimental results of both the
image-independent and the image-dependent approaches. We also include results obtained
with SPIHT (Said and Pearlman, 1996)4 and EIDAC (Yoo et al., 1998).
Comparing with the results presented in Table 1, we can see that the fast version of the image-
dependent method (indicated as “256 × 256” in the table) is 6.3% better than JBIG, 4.7% bet-
ter than JPEG-LS and 8.6% better than lossless JPEG2000. It is important to remember that
JPEG-LS does not provide progressive decoding, a characteristic that is intrinsic to the image-
dependent multi-bitplane finite-context method and also to JPEG2000 and JBIG. From the re-
sults presented in Table 4, it can also be seen that using an area of 256× 256 pixels in the center
of the image for finding the context, instead of the whole image, leads to a small degradation
in the performance (about 0.3%), showing the appropriateness of this approach.

4 SPIHT codec from http://www.cipr.rpi.edu/research/SPIHT/ (version 8.01).
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Image set SPIHT EIDAC Image Image-dependent
independent 256×256 Full

APO_AI 10.812 10.543 10.280 10.225 10.194
ISREC 11.098 10.446 10.199 10.198 10.158

MicroZip 9.198 8.837 8.840 8.667 8.619
Average 10.378 10.005 9.826 9.741 9.708

Table 4. Average compression results, in bits per pixel, using SPIHT, EIDAC, the image-
independent and the image-dependent methods. The “256 × 256” column indicates results
obtained with a context model adjusted using only a square of 256 × 256 pixels at the center
of the microarray image, whereas “Full” indicates that the search was performed in the whole
image. The average results presented take into account the different sizes of the images, i.e.,
they correspond to the total number of bits divided by the total number of image pixels.

Table 5 confirms the performance of the image-dependent method relatively to two recent
specialized methods for compressing microarray images: MicroZip (Lonardi and Luo, 2004)
and Zhang’s method (Adjeroh et al., 2006; Zhang et al., 2005). As can be observed, the image-
dependent multi-bitplane finite-context method provides compression gains of 9.1% relatively
to MicroZip and 6.2% in relation to Zhang’s method, on a set of test images that has been used
by all these methods.

Images MicroZip Zhang Image Image-dependent
independent 256×256 Full

array1 11.490 11.380 11.105 11.120 11.056
array2 9.570 9.260 8.628 8.470 8.423
array3 8.470 8.120 7.962 7.717 7.669

Average 9.532 9.243 8.840 8.667 8.619

Table 5. Compression results, in bits per pixel, using two specialized methods, MicroZip
and Zhang’s method, the image-independent method and the image-dependent method. The
“256 × 256” column indicates results obtained with a context model adjusted using only a
square of 256 × 256 pixels at the center of the microarray image, whereas “Full” indicates that
the search was performed in the whole image.

Figure 11 shows, for three different images, the average number of bits per pixel that are
needed for representing each bitplane. As expected, this value generally increases when
going from most significant bitplanes to least significant bitplanes. For the case of images
“Def661Cy3” and “1230c1G”, it can be seen that the average number of bits per pixel re-
quired by the eight least significant bitplanes is close to one, as pointed out by Jörnsten et al.
(2003). However, image “array3” shows a different behavior. Because this image is less
noisy, the compression algorithm is able to exploit redundancies even in lower bitplanes. This
is done without compromising the compression efficiency of noisy images, due to the mech-
anism that monitors and controls the average number of bits per pixel required for encoding
each bitplane.
The maximum number of context bits that we allowed for building the contexts was limited
to 20. Since the coding alphabet is binary, this implies, at most, 2 × 220 = 2 097 152 counters
that can be stored in approximately 8 MBytes of computer memory. In a 2 GHz Pentium 4
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Fig. 11. Average number of bits per pixel required for encoding each bitplane of three different
microarray images (one from each test set).

computer with 512 MBytes of memory, the image-dependent algorithm required about six
minutes to compress the MicroZip test set (note that this compression time is only indicative,
because the code has not been optimized for speed). Decoding is faster, because the decoder
does not have to search for the best context. Just for comparison, the codecs of the compression
standards took approximately one minute to encode the same set of images.

7. Conclusions

The use of microarray expression data in state-of-the-art biology has been well established.
The widespread adoption of this technology, coupled with the significant volume of data gen-
erated per experiment, in the form of images, has led to significant challenges in storage and
query-retrieval. In this work, we have studied the problem of coding this type of images.
We presented a set of comprehensive results regarding the lossless compression of microar-
ray images by state-of-the-art image coding standards, namely, lossless JPEG2000, JBIG and
JPEG-LS. From the experimental results obtained, we conclude that JPEG-LS gives the best
lossless compression performance. However, it lacks lossy-to-lossless capability, which may
be a decisive functionality if remote transmission over possibly slow links is a requirement.
Complying to this requirement we find JBIG and lossless JPEG2000, lossless JPEG2000 being
the best considering rate-distortion in the sense of the L2-norm and JBIG the most efficient
when considering the L∞-norm. Moreover, JBIG is consistently better than lossless JPEG2000
regarding lossless compression ratios.
Motivated by these findings, we have developed efficient methods for lossless compression
of microarray images, allowing progressive, lossy-to-lossless decoding. These methods are
based on bitplane compression using image-independent or image-dependent finite-context
models and arithmetic coding. They do not require griding and/or segmentation as most
of the specialized methods that have been proposed do. This may be an advantage if only
compression is sought, since it reduces the complexity of the method. Moreover, since they
do not require griding, they are robust, for example, against layout changes in spot placement.
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The results obtained by the multi-bitplane context-based methods have been compared with
the three image coding standards and with two recent specialized methods: MicroZip and
Zhang’s method. The results obtained show that these new methods have better compression
performance in all image test sets used.
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