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1. Introduction

Needless to say, the signal detection is one of the most important problems in the signal pro-
cessing area for a long time, and a great deal of investigations has been done up to the present
time. Most of the conventional approaches are based on the (binary) hypothesis-testing, and
treat the corrupting (additive) noise as a stationary random process because stationary process
is rather easy to handle and moreover its (invariant) statistical parameters can be readily calcu-
lated under the ergodic hypothesis. However, it will be no doubt that the actual random noise
such as environmental noise is considered to be nonstationary because its statistical properties
are not always unchanged but vary according to underlying physical circumstances.
Thus the problem of detecting signals in nonstationary random noise is the more important.
For such problem, several interesting methods have been proposed. For example, Haykin
(1996) and Haykin & Bhattacharya (1997) treat this problem and proposed a method named
the modular learning strategy which incorporates such three fundamental blocks as time-
frequency analysis, feature extraction and pattern classification. Also, Haykin & Thomson
(1998) proposed an adaptive detector based on learning for the detection of the target signal
buried in nonstationary background noises.
Philosophically different from their method, the authors have proposed an approach to the
signal detection in nonstationary random noise, a new method of stationarization of the ob-
servation noise. The key of the approach is to convert the nonstationary random noise to a
stationary one, and this procedure was named as stationarization of the observation data.
In Ijima, Okui & Ohsumi (2005) and Ijima, Ohsumi & Okui (2006), the signal detection is per-
formed by testing the stationarized observation data whether there is some non-stationarized
portion or not, based on the KM2O-Langevin equation (which is the AR model with time-
varying coefficients). If there exists such a portion in the data, the existence of a signal is
decided. Related to the signal detection, the stationarization approach is also used in Ijima,
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Ohsumi & Yamaguchi (2006) to estimate the time-delay of signals in nonstationary random
noise, incorporated with the Wigner distribution-based maximum likelihood estimation.
In this paper the signal detection problem is investigated using the stationarization approach
to nonstationary data. The model of the corrupting noise is given by an ARMA(p, q) model
with unknown time-varying coefficients. These coefficient parameters are estimated from the
(original) observation data by the Kalman filter.

2. Problem Statement

Let {y(k)} be the (scalar) observation data taken at sampling time instant tk (k = 1, 2, · · · ),
and assume that it can be expressed as

y(k) = s(k) + n(k) (k = 1, 2, · · · ), (1)

where s(·) is a signal to be detected, whose form is surely known, and is assumed to exist
in a brief interval if it exists; and n(·) is the nonstationary random noise. In consequence,
the observation data {y(k)} becomes nonstationary, but its trend time series is assumed to be
removed by the process

y(k) = ∆dY(k), (2)

where Y(k) is the original data received by the receiver; ∆Y(k) = Y(k) − Y(k − 1); and d
indicates the order.
In this paper the random noise n(k) is assumed to be given as the output of ARMA(p, q)
model with time-varying coefficient parameters:

n(k) +
p

∑
i=1

αi(k)n(k − i) =
q

∑
j=1

β j(k)w(k − j) + w(k), (3)

where w(·) is the white Gaussian noise with zero-mean and variance parameter σ2; {αi(·)}
and {β j(·)} are slowly and smoothly varying parameters to be specified.
Then our purpose is to propose a method of detecting the signal s(k) from the noisy observa-
tion data {y(k)}.
The procedure taken in this paper is as follows:
(i) First, based on the noise model (3), coefficient functions {αi(·)} and {β j(·)} are estimated
using Kalman filter from the observation data {y(k)}.
(ii) Using the estimates {α̂i(·)} and {β̂ j(·)} obtained in (i), the observation data y(k) is modi-
fied to become stationary. This procedure is called the stationarization of observation data.
(iii) Using the stationarized observation data ŷ(k), the signal detection is based on the model

ŷ(k) = ŝ(k) + w(k), (4)

where ŝ(k) is the modified signal. Equation (4) is familiar in the conventional signal detection
problem where the noise is stationary.
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3. Stationarization of Observation Data

Recalling the assumption that the duration of the signal s(k) is short, neglect the signal in the
observation data and consider the signal-free case, i.e., y(k) = n(k), then the observation data
y(k) is expressed by (1) and (3) as follows:

y(k) = −
p

∑
i=1

αi(k)y(k − i) +
q

∑
j=1

β j(k)w(k − j) + w(k). (5)

In order to estimate the time-varying parameters {αi(k)} and {β j(k)} in (5), suppose that they
change from step k − 1 to k under random effects {e·(k)}. Define vectors

x(k) =



















−α1(k)
...

−αp(k)

β1(k)
...

βq(k)



















, v(k) =



















−e1(k)
...

−ep(k)

ep+1(k)
...

ep+q(k)



















. (6)

Then, {αi(k)} and {β j(k)} are subject to the dynamics,

x(k + 1) = x(k) + v(k), (7)

where {e·(k)} are assumed to be Gaussian with zero-means and variances τ2
1 , · · · , τ2

p+q.
Then, Eq. (5) is expressed formally as

y(k) = H(k)x(k) + w(k) (8)

in which H(k) is given by

H(k) = [ y(k − 1), · · · , y(k − p), w(k − 1), · · · , w(k − q)] . (9)

At this stage it should be noted that the matrix H(k) consists of the (unmeasurable) past noise
sequence {w(·)}. To remedy this inadequate situation, we resort to replace it by

Ĥ(k) = [ y(k − 1), · · · , y(k − p), νm(k − 1), · · · , νm(k − q)] (10)

in which {νm(·)} is the sequence modified from the innovation sequence ν(·) as

νm(ℓ) = c(ℓ) ν(ℓ) (ℓ = k − q, k − q + 1, · · ·, k − 1) , (11)

where
ν(ℓ) = y(ℓ)− Ĥ(ℓ)x̂(ℓ|ℓ− 1) (12)

and

c(ℓ) =

[

1 +
1

σ2
Ĥ(ℓ)P(ℓ|ℓ− 1)ĤT(ℓ)

]− 1
2

. (13)

Here, x̂(ℓ|ℓ− 1) and P(ℓ|ℓ− 1) are the one-step prediction and its covariance matrix computed
by Kalman filter for the past interval.
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It is a simple exercise to show that the statistical properties of νm(·) is the same as that of w(·),
i.e., E{νm(k)} = 0 and E{|νm(k)|2} = σ2 (for proof, see Appendix). Then, instead of (8) we
have the expression,

y(k) = Ĥ(k)x(k) + w(k) . (14)

The procedure for computing Ĥ(k) is stated as follows:
(i) Preliminaries: Assume for the past k(< 0) that {νm(−1), νm(−2), · · ·, νm(−q)} are set appro-
priately (may be set all zero), and preassign x̂(0| − 1), P̂(0| − 1) and Ĥ(0) as initial values.
Then, at time k (k = 0, 1, 2, · · · )
(ii) Computation of ν(ℓ) and c(ℓ): Compute the innovation ν(ℓ) and coefficient c(ℓ) by (12) and
(13) using Ĥ(ℓ) = [ y(ℓ− 1), · · ·, y(ℓ− p), νm(ℓ− 1), · · ·, νm(ℓ− q)].
(iii) Computation of νm(ℓ): Compute νm(ℓ) by (11) using ν(ℓ) and c(ℓ) obtained in the previous
step.
Repeat Steps (ii) and (iii) for ℓ = k − q, k − q + 1, · · ·, k − 1 to obtain Ĥ(k). In computing (12)
and (13), x̂(ℓ|ℓ− 1) and P(ℓ|ℓ− 1) are computed by the Kalman filter (e.g., Jazwinski, 1970):

x̂(ℓ+ 1|ℓ) = x̂(ℓ|ℓ) (15)

x̂(ℓ|ℓ) = x̂(ℓ|ℓ− 1) + K(ℓ)ν(ℓ), (16)

K(ℓ) =
1

Ĥ(ℓ)P(ℓ|ℓ− 1)ĤT(ℓ) + σ2
P(ℓ|ℓ− 1)ĤT(ℓ) (17)

P(ℓ+ 1|ℓ) = P(ℓ|ℓ) + Q (18)

P(ℓ|ℓ) = P(ℓ|ℓ− 1)− K(ℓ)Ĥ(ℓ)P(ℓ|ℓ− 1), (19)

where Q = diag {τ2
1 , · · · , τ2

p+q}.

Thus, the estimates of the coefficient parameters {αi(k)} and {β j(k)} are obtained by the
Kalman filter constructed for (7) and (14) (whose form is the same as (15)-(19) replacing ℓ

by the present k). Under the basic assumption that the coefficient parameters vary slowly and
smoothly, they can be treated like constants in an interval Ik around the current time k. Write
them as α̂ik and β̂ jk in Ik. Replacing the past {w(k − j)} in (5) by the statistically equivalent
sequence {νm(k − j)}, define the sequence ŷ(k) by

ŷ(k) := y(k) +
p

∑
i=1

α̂iky(k − i)−
q

∑
j=1

β̂ jkνm(k − j). (20)

Then, we have the following adequate approximation for (5),

ŷ(k) = w(k) (21)

which implies that the sequence {ŷ(k)} is stationary because w(k) is the stationary white
noise.

4. Signal Detection

After obtained the estimates of coefficient parameters, the observation process (14) may be
written using estimates as

y(k) = Ĥ(k)x̂(k|k) + w(k) (22)
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or

y(k)+
p

∑
i=1

α̂iky(k − i) =
q

∑
j=1

β̂ jkνm(k − j) + w(k). (23)

Now, let us revive the signal s(k) in the observation data. To do this, replace {y(k)} formally
by {y(k)− s(k)} in (23) to obtain

y(k) +
p

∑
i=1

α̂iky(k − i) =

[

s(k) +
p

∑
i=1

α̂iks(k − i)

]

+
q

∑
j=1

β̂ jkνm(k − j) + w(k) (24)

or
ŷ(k) = ŝ(k) + w(k), (4)bis

where ŷ(k) has the same form as (20) and

ŝ(k) = s(k) +
p

∑
i=1

α̂iks(k − i). (25)

Note that (4)bis is familiar to us as the mathematical model for the detection problem of signals
in stationary noise (e.g., Van Trees, 1968).
Now, consider the binary hypotheses: H1: ŷ(k) = ŝ(k) +w(k), and H0: ŷ(k) = w(k), and let Ŷk

be the stationarized observation data taken up to k, Ŷk = {ŷ(ℓ), ℓ = 1, 2, · · · , k}. Since the ad-
ditive noise w(k) is white Gaussian sequence with zero-mean and variance σ2, the likelihood-
ratio function Λ(k) = p{Ŷk|H

1}/Ŷk|H
0} is evaluated as follows:

Λ(k) =

k

∏
ℓ=1

(2π)−
1
2 exp

{

−
{ŷ(ℓ)− ŝ(ℓ)}2

2σ2

}

k

∏
ℓ=1

(2π)−
1
2 exp

{

−
ŷ2(ℓ)

2σ2

}

. (26)

We use rather its logarithmic form,

L(k) := ln Λ(k)

=
1

σ2

k

∑
ℓ=1

ŝ(ℓ)ŷ(ℓ)−
1

2σ2

k

∑
ℓ=1

ŝ2(ℓ) (27)

as the signal detector.

5. Simulation Studies

In this section, we provide a typical set of several simulation results to demonstrate the pro-
posed method.

(i) Experiment 1.
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The top of Fig.1 depicts a sample path of the observation data {Y(k)} generated by calculating
the output of the ARMA(4, 1)-model:

n(k) = −

4

∑
i=1

αi(k)n(k − i) + β(k)w(k − 1) + w(k) .

Time-varying coefficients {αi(k)} and β(k) are set as

α1(k) = −1.24 sin(0.002k − 0.95), α2(k) = 0.38 − 2 cos(0.004k − 1.89)

α3(k) = α1(k), α4(k) = 1, β(k) = 1.5.

The bottom of Fig.1 shows a signal embedded in the observation data around k = 300 given
by

s(ℓ) = 12 e−2.78ℓ2
sin(1.26ℓ),

where ℓ = k − 300. Figure 2 depicts trend-removed data and stationarized data ŷ(k). The
trend was removed by setting d = 1. For the Kalman filter (15)∼(19), the parameters are set
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Fig. 1. A sample path of the observation data Y(k) (top) and the embedded signal s(k) (bot-
tom).
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Fig. 2. The trend-removed data y(k) (top) and the stationarized observation data ŷ(k) (bot-
tom).
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Fig. 3. Log-likelihood function L(k).

as Q = diag {0.05, 0.05, 0.05, 0.05, 0.05} and σ2 = 40. It should be noted that from Fig. 2 the
observation data is well stationarized and that even in this figure the signal emerges from the
background noise.
Figure 3 shows the result of signal detection by the current log-likelihood ratio function L(k).
Clearly, it exhibits a salient peak around the true time instant k = 300 and this shows the
existence of the signal.

(ii) Experiment 2.

Efficacy of the signal detector proposed in this paper is also tested for the pulse signal.
Figure 4 depicts observation data and embedded three pulses. Random noise n(k) is gener-
ated by the same manner of previous simulation with same coefficients αi(k) and β(k). As a
signals s(k), a train of pulses with same magnitude is considered:

s(k) =







20 for Di ≤ k < Di + 5 (i = 1, 2, 3)

0 otherwise,

where D1 = 200, D2 = 500, D3 = 800.
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Figure 5 depicts trend-removed data and stationarized data ŷ(k). The trend was also removed
by setting d = 1. The parameters of Kalman filter are set as the same of previous experiment.
Figure 6 shows the result of signal detection. Clearly, log-likelihood ratio function L(k)
has large value around each time when each pulse exists. Thus the signal detection is well
succeeded.
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Fig. 4. A sample path of the observation data Y(k) (top) and the pulse signal s(k) (bottom).
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Fig. 5. The trend-removed data (top) and the stationarized observation data ŷ(k) (bottom).
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Fig. 6. Log-likelihood function L(k).

6. Conclusion

The efficacy of the proposed signal detection method based on the stationarization of
nonstationary observation data has been confirmed by simulation studies. The key to use the
Kalman filter to estimate the coefficient parameters of the ARMA noise model is laid on the
replacement of the unobservable past noise sequence by the equivalent (modified) innovation
sequence which is observation data-measurable. The stationarization of a nonstationary data
as introduced in this paper will have potential ability to treat the nonstationary noise or
observation data in the signal processing.

Appendix. Proof of Statistical Equivalence Between {w(k)} and {νm(k)}

The mean of the modified innovation sequence νm(k) is clearly zero. Indeed,

E{νm(k)} = c(k)E{ν(k)}

= c(k)E{y(k)− Ĥ(k)x̂(k|k − 1)}.
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Here, recalling that y(k) is given by the form (14), we have

= c(k)[Ĥ(k)E{x(k)− x̂(k|k − 1)}+ E{w(k)}]

= c(k)Ĥ(k)E{E{x(k)− x̂(k|k − 1)|Yk−1}}

= c(k)Ĥ(k)E{E{x(k)|Yk−1} − x̂(k|k − 1)}

= 0,

where Yk−1 = {y(ℓ), 0 ≤ ℓ ≤ k − 1}.
Next, the variance of νm(k) is evaluated as follows:

E{ν2
m(k)} = c2(k)E{ν2(k)}

= c2(k)E{[Ĥ(k)[x(k)− x̂(k|k − 1)] + w(k)]2}

= c2(k)[Ĥ(k)E{[x(k)− x̂(k|k − 1)][x(k)− x̂(k|k − 1)]T}ĤT(k) + E{w2(k)}]

= c2(k)[Ĥ(k)P(k|k − 1)ĤT(k) + σ2].

If we select c(k) as (13), the variance of νm(k)-sequence becomes σ2 which is just the variance
of {w(k)}.
(Q.E.D.)
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