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1. INTRODUCTION

Due to the finite precision nature of computer arithmetic, the output roundoff noise of a fixed-
point IIR digital filter usually arises. This noise is critically dependent on the internal structure
of an IIR digital filter [1],[2]. Error feedback (EF) is known as an effective technique for reduc-
ing the output roundoff noise in an IIR digital filter [3]-[5]. Williamson [6] has reduced the
output roundoff noise more effectively by choosing the filter structure and applying EF to the
filter. Lu and Hinamoto [7] have developed a jointly optimized technique of EF and realiza-
tion to minimize the effects of roundoff noise at the filter output subject to l2-norm dynamic-
range scaling constraints. Li and Gevers [8] have analyzed the output roundoff noise of the
closed-loop system with a state-estimate feedback controller, and presented an algorithm for
realizing the state-estimate feedback controller with minimum output roundoff noise under
l2-norm dynamic-range scaling constraints. Hinamoto and Yamamoto [9] have proposed a
method for applying EF to a given closed-loop system with a state-estimate feedback con-
troller.
This paper investigates the problem of jointly optimizing EF and realization for the closed-
loop system with a state-estimate feedback controller so as to minimize the output roundoff
noise subject to l2-norm dynamic-range scaling constraints. To this end, the problem at hand is
converted into an unconstrained optimization problem by using linear-algebraic techniques,
and then an iterative technique which relies on a quasi-Newton algorithm [10] is developed.
With a closed-form formula for gradient evaluation and an efficient quasi-Newton solver, the
unconstrained optimization problem can be solved efficiently. Our computer simulation re-
sults demonstrate the validity and effectiveness of the proposed technique.
Throughout the paper, In stands for the identity matrix of dimension n × n, the transpose
(conjugate transpose) of a matrix A is indicated by A

T (A
∗), and the trace and ith diagonal

element of a square matrix A are denoted by tr[A] and (A)ii, respectively.

2. ROUNDOFF NOISE ANALYSIS

Consider a stable, controllable and observable linear discrete-time system described by

x(k + 1) = Aox(k) + bou(k)

y(k) = cox(k)
(1)
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where x(k) is an n × 1 state-variable vector, u(k) is a scalar input, y(k) is a scalar output, and
Ao, bo and co are n × n, n × 1 and 1 × n real constant matrices, respectively. The transfer
function of the linear system in (1) is given by

Ho(z) = co(zIn − Ao)
−1bo. (2)

If a regulator is designed by using the full-order state observer, we obtain a state-estimate
feedback controller as

x̃(k + 1) = Fo x̃(k) + bou(k) + goy(k)

= Ro x̃(k) + bor(k) + goy(k)

u(k) = −ko x̃(k) + r(k)

(3)

where x̃(k) is an n × 1 state-variable vector in the full-order state observer, go is an n × 1 gain
vector chosen so that all the eigenvalues of Fo = Ao − goco are inside the unit circle in the
complex plane, ko is a 1 × n state-feedback gain vector chosen so that each of the eigenvalues
of Ao − boko is at a desirable location within the unit circle, r(k) is a scalar reference signal,
and Ro = Fo − boko. The closed-loop control system consisting of the linear system in (1) and
the state-estimate feedback controller in (3) is illustrated in Fig. 1.

~

u(k)r(k) y(k)
HO(z)

x(k)
z -1I

O

FO

kO

bO g

Fig. 1. The closed-loop control system with a state-estimate feedback controller.

When performing quantization before matrix-vector multiplication, we can express the finite-
word-length (FWL) implementation of (3) with error feedback as

x̂(k + 1) = R Q[x̂(k)] + br(k) + gy(k) + De(k)

u(k) = −k Q[x̂(k)] + r(k)
(4)

where

e(k) = x̂(k)− Q[x̂(k)]

is an n × 1 roundoff error vector and D is an n × n error feedback matrix. All coefficient
matrices R, b, g and k are assumed to have an exact fractional Bc bit representation. The FWL
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state-variable vector x̂(k) and signal u(k) all have a B bit fractional representation, while the
reference input r(k) is a (B − Bc) bit fraction. The vector quantizer Q[·] in (4) rounds the B
bit fraction x̂(k) to (B − Bc) bits after completing the multiplications and additions, where the
sign bit is not counted. It is assumed that the roundoff error vector e(k) can be modeled as a
zero-mean noise process with covariance σ

2 In where

σ
2 =

1

12
2−2(B−Bc).

It is noted that if the ith element of the roundoff error vector e(k) is indicated by ei(k) for i =
1, 2, · · · , n then the variable ei(k) can be approximated by a white noise sequence uniformly
distributed with the following probability density function:

p(ei(k)) =

{

2B−Bc for −
1

2
2−(B−Bc) ≤ ei(k) ≤

1

2
2−(B−Bc)

0 otherwise

u(k)r(k) y(k)
HO(z)

z -1I

R

k

b

g

Q

D
e(k)

^x(k)

^[x(k)]Q

Fig. 2. A state-estimate feedback controller with error feedback.

The closed-loop system consisting of the linear system in (1) and the state-estimate feedback
controller with error feedback in (4) is shown in Fig. 2, and is described by

[

x(k + 1)

x̂(k + 1)

]

= A

[

x(k)

x̂(k)

]

+ br(k) + Be(k)

y(k) = c

[

x(k)

x̂(k)

]

(5)
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where

A =

[

Ao −bok

gco R

]

, b =

[

bo

b

]

B =

[

bok

D − R

]

, c = [co 0] .

From (5), the transfer function from the roundoff error vector e(k) to the output y(k) is given
by

GD(z) = c (zI2n − A)−1B. (6)

The output noise gain J(D) = σ
2
out/σ

2 is then computed as

J(D) = tr[W D] (7)

with

W D =
1

2π j

∮

|z|=1
G∗

D(z)GD(z)
dz

z
(8)

where σ
2
out stands for the noise variance at the output. For tractability, we evaluate J(D) in (7)

by replacing R, b, g and k by Ro, bo, go and ko, respectively. Defining

S =

[

In 0

In −In

]

, (9)

the transfer function in (6) can be expressed as

GD(z) = cS(zI2n − S−1 AS)−1S−1B

= c(zI2n − Φ)−1

[

boko

Fo − D

]

= co(zIn − Ao + boko)−1boko(zIn − Fo)−1

·(zIn − D)

= c(zI2n − Φ)−1U(zIn − D)

(10)

where

Φ =

[

Ao − boko boko

0 Fo

]

U =

[

0

In

]

.

It is noted that the stability of the closed-loop control system is determined by the eigenvalues
of matrix A in (5), or equivalently, those of matrix Φ in (10). This means that neither of the
roundoff error vector e(k) and the error-feedback matrix D affects the stability.
Substituting (10) into matrix W D in (8) gives

W D = (b0k0)
TW1b0k0 + (b0k0)

TW2(F0 − D)

+(F0 − D)TW3b0k0

+(F0 − D)TW4(F0 − D)

(11)
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where
W = Φ

TWΦ + cTc

W =

[

W1 W2

W3 W4

]

.

Since W is positive semidefinite, it can be shown that there exists an n × n matrix P such that
W3 = W4P. In addition, (11) can be written by virtue of W2 = W T

3 as

W D = (F0 + Pb0k0 − D)TW4(F0 + Pb0k0 − D)

+(b0k0)
T(W1 − PTW4P)b0k0.

(12)

Alternatively, applying z-transform to the first equation in (5) under the assumption that
e(k) = 0, we obtain

[

X(z)

X̂(z)

]

= (zI − A)−1bR(z) (13)

where X(z), X̂(z) and R(z) represent the z-transforms of x(k), x̂(k) and r(k), respectively.
Replacing R, b, k and g by Ro, bo, ko and go, respectively, and then using

S−1

[

X(z)

X̂(z)

]

= (zI2n − S−1 AS)−1S−1b

yields
X̂(z) = X(z) = F(z)R(z) (14)

where
F(z) = [zIn − (Ao − boko)]

−1bo.

The controllability Gramian K defined by

K =
1

2π j

∮

|z|=1
F(z)F∗(z)

dz

z
(15)

can be obtained by solving the following Lyapunov equation:

K = (Ao − boko)K(Ao − boko)
T + bobT

o . (16)

3. ROUNDOFF NOISE MINIMIZATION

Consider the system in (4) with D = 0 and denote it by (R, b, g, k)n. By applying a coordinate
transformation x̃′(k) = T−1 x̂(k) to the above system (R, b, g, k)n, we obtain a new realization
characterized by (R̃, b̃, g̃, k̃)n where

R̃ = T−1RT , b̃ = T−1b

g̃ = T−1g, k̃ = kT .
(17)

For the system described by (17), the counterparts of W i for i = 1, 2, 3, 4 are given by

W̃ i = TTW iT (18)
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and the corresponding output noise gain is given by

J(D, T) = tr[W̃ D] (19)

where W̃ D can be obtained referring to (11) as

W̃ D =
[

T
−1(F0 + Pb0k0)T − D

]T

·TT
W4T

[

T
−1(F0 + Pb0k0)T − D

]

+T
T(b0k0)

T(W1 − P
T

W4P)b0k0T .

In addition, (15) can be written as

K̃ =
1

2π j

∮

|z|=1
T
−1

F(z)F
∗(z)T−T dz

z

= T
−1

KT
−T .

(20)

As a result, the output roundoff noise minimization problem amounts to obtaining matrices
D and T which jointly minimize J(D, T) in (19) subject to the l2-norm dynamic-range scaling
constraints specified by

(K̃)ii = (T−1
KT

−T)ii = 1, i = 1, 2, · · · , n. (21)

To deal with (21), we define

T̂ = T
T

K
− 1

2 . (22)

Then the l2-norm dynamic-range scaling constraints in (21) can be written as

(T̂
−T

T̂
−1

)ii = 1, i = 1, 2, · · · , n. (23)

These constraints are always satisfied if T̂
−1

assumes the form

T̂
−1

=

[

t1

||t1||
,

t2

||t2||
, · · · ,

tn

||tn||

]

. (24)

Substituting (22) into (19), we obtain

J(D, T̂) = tr
[

T̂(Â − T̂
T

DT̂
−T

)TŴ4

·(Â − T̂
T

DT̂
−T

)T̂
T
+ T̂ĈT̂

T
]

(25)

where
Â = K

− 1
2 (F0 + Pb0k0)K

1
2 , Ŵ4 = K

1
2 W4K

1
2

Ĉ = K
1
2 (b0k0)

T(W1 − P
T

W4P)b0k0K
1
2 .

From the foregoing arguments, the problem of obtaining matrices D and T that minimize (19)
subject to the scaling constraints in (21) is now converted into an unconstrained optimization
problem of obtaining D and T̂ that jointly minimize J(D, T̂) in (25).
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Let x be the column vector that collects the variables in matrix D and matrix [t1, t2, · · · , tn].
Then J(D, T̂) is a function of x, denoted by J(x). The proposed algorithm starts with an initial
point x0 obtained from an initial assignment D = T̂ = In. In the kth iteration, a quasi-Newton
algorithm updates the most recent point xk to point xk+1 as [10]

xk+1 = xk + αkdk (26)

where
dk = −Sk∇J(xk)

αk = arg
[

min
α

J(xk + αdk)
]

Sk+1 = Sk +

(

1 +
γT

k Skγk

γT
k δk

)

δkδ
T
k

γT
k δk

−
δkγT

k Sk+Skγkδ
T
k

γT
k δk

S0 = I, δk = xk+1−xk, γk = ∇J(xk+1)−∇J(xk).

Here, ∇J(x) is the gradient of J(x) with respect to x, and Sk is a positive-definite approxima-
tion of the inverse Hessian matrix of J(xk). This iteration process continues until

|J(xk+1)− J(xk)| < ε (27)

is satisfied where ε > 0 is a prescribed tolerance.
In what follows, we derive closed-form expressions of ∇J(x) for the cases where D assumes
the form of a general, diagonal, or scalar matrix.
1) Case 1: D Is a General Matrix: From (25), the optimal choice of D is given by

D = T̂
−T

ÂT̂
T
, (28)

which leads to
J(T̂

−T
ÂT̂

T
, T̂) = tr

[

T̂ĈT̂
T
]

. (29)

In this case, the number of elements in vector x consisting of T̂ is equal to n2 and the gradient
of J(x) is found to be

∂J(x)

∂tij
= lim

∆→ 0

J(T̂ ij)− J(T̂)

∆

= 2eT
j T̂ĈT̂

T
T̂gij, i, j = 1, 2, · · · , n

(30)

where T̂ ij is the matrix obtained from T̂ with a perturbed (i, j)th component, which is given
by

T̂ ij = T̂ +
∆T̂gije

T
j T̂

1 − ∆eT
j T̂gij

and gij is computed using

gij = ∂

{

t j

||t j||

}

/∂tij =
1

||t j||3
(tijt j − ||t j||

2ei).

2) Case 2: D Is a Diagonal Matrix: Here, matrix D assumes the form

D = diag{d1, d2, · · · , dn}. (31)
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In this case, (25) becomes

J(D, T̂) = tr
[

T̂ MdT̂
T
]

(32)

where
Md = Ĉ + Â

T
Ŵ4 Â + Ŵ4T̂

T
D2T̂

−T

−Â
T

Ŵ4T̂
T

DT̂
−T

− Ŵ4 ÂT̂
T

DT̂
−T

.

It follows that
∂J(x)

∂tij
= 2eT

j T̂ MdT̂
T

T̂gij, i, j = 1, 2, · · · , n

∂J(x)

∂di
= 2eT

i (DT̂ − T̂ Â
T
)Ŵ4T̂

T
ei, i = 1, 2, · · · , n.

(33)

3) Case 3: D Is a Scalar Matrix: It is assumed here that D = αIn with a scalar α. The gradient of
J(x) can then be calculated as

∂J(x)

∂tij
= 2eT

j T̂ MsT̂
T

T̂gij, i, j = 1, 2, · · · , n

∂J(x)

∂α
= tr

[

T̂(2αŴ4 − Â
T

Ŵ4 − Ŵ4 Â)T̂
T
]

(34)

where
Ms = (Â − αIn)

TŴ4(Â − αIn) + Ĉ.

4. A NUMERICAL EXAMPLE

In this section we illustrate the proposed method by considering a linear discrete-time system
specified by

Ao =





0 1 0
0 0 1

0.339377 −1.152652 1.520167



 , bo =





0
0
1





co =
[

0.093253 0.128620 0.314713
]

.

Suppose that the poles of the observer and regulator in the system are required to be located
at z = 0.1532, 0.2861, 0.1137, and z = 0.5067, 0.6023, 0.4331, respectively. This can be achieved
by choosing

ko =
[

0.471552 −0.367158 3.062267
]

go =
[

−0.006436 3.683651 5.083920
]T

.

Performing the l2-norm dynamic-range scaling to the state-estimate feedback controller, we
obtain J(0) = 686.4121 in (7) where D = 0. Next, the controller is transformed into the optimal
realization that minimizes J(0) in (7) under the l2-norm dynamic-range scaling constraints.
This leads to Jmin(0) = 28.6187. Finally, EF and state-variable coordinate transformation are
applied to the above optimal realization so as to jointly minimize the output roundoff noise.
The profiles of J(x) during the first 20 iteration for the cases of D being a general, diagonal,
and scalar matrix are depicted in Fig. 3.
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1) Case 1: D Is a General Matrix: The quasi-Newton algorithm was applied to minimize (25). It
took the algorithm 20 iterations to converge to the solution

D =





0.211191 −3.078211 −3.344596
−1.321589 1.897308 3.243515

1.917916 −1.890027 −3.807473





T =





−11.039974 −43.683697 −30.131793
−3.231505 8.919473 9.118205

2.620911 6.462685 7.032260





and the minimized noise gain was found to be J(D, T̂) = 4.8823. Next, the above optimal
EF matrix D was rounded to a power-of-two representation with 3 bits after the binary point,
which resulted in

D3bit =





0.250 −3.125 −3.375
−1.375 1.875 3.250

1.875 −1.875 −3.750





and a noise gain J(D3bit, T̂) = 23.4873. Furthermore, when the optimal EF matrix D was
rounded to the integer representation

Dint =





0 −3 −3
−1 2 3

2 −2 −4



 ,

the noise gain was found to be J(Dint, T̂) = 293.0187.
2) Case 2: D Is a Diagonal Matrix: Again, the quasi-Newton algorithm was applied to minimize
J(D, T̂) in (25) for a diagonal EF matrix D. It took the algorithm 20 iterations to converge to
the solution

D = diag{0.050638,−0.608845,−0.951572}

T =





3.588878 0.735966 0.010417
−2.457241 0.728171 0.556762

1.514232 −2.058856 0.142204





and the minimized noise gain was found to be J(D, T̂) = 12.7097. Next, the above opti-
mal diagonal EF matrix D was rounded to a power-of-two representation with 3 bits af-
ter the binary point to yield D3bit = diag{0.000,−0.625,−1.000}, which leads to a noise
gain J(D3bit, T̂) = 12.7722. Furthermore, when the optimized diagonal EF matrix D was
rounded to the integer representation Dint = diag{0,−1,−1}, the noise gain was found to be
J(Dint, T̂) = 13.7535.
3) Case 3: D Is a Scalar Matrix: In this case, the quasi-Newton algorithm was applied to mini-
mize (25) for D = αI3 with a scalar α. The algorithm converges after 20 iterations to converge
to the solution

D = −0.779678 I3

T =





3.252790 −0.081745 −0.198376
−1.717225 1.220068 −0.792487

0.546599 −0.854316 2.295944





and the minimized noise gain was found to be J(D, T̂) = 16.2006. Next, the EF matrix D = αI3

was rounded to a power-of-two representation with 3 bits after the binary point as well as
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Fig. 3. Profiles of iterative noise gain minimization.

an integer representation. It was found that these representations were given by D3bit =
diag{0.750, 0.750, 0.750} and Dint = diag{1, 1, 1}, respectively. The corresponding noise gains
were obtained as J(D3bit, T̂) = 16.2370 and J(Dint, T̂) = 18.2063, respectively.
The above simulation results in terms of noise gain J(D, T̂) in (25) are summarized in Table 1.
For comparison purpose, their counterparts obtained using the method in [9] are also included
in the table, where the minimization of the roundoff noise was carried out using EF and state-
variable coordinate transformation, but in a separate manner. From the table, it is observed
that the proposed joint optimization offers improved reduction in roundoff noise gain for the
cases of a scalar EF matrix and a diagonal EF matrix when compared with those obtained by
using separate optimization. However, in the case of a general EF matrix, the optimal solution
with infinite precision appears to be quite sensitive to the parameter perturbations.

Error-Feedback
Accuracy of D

Scheme Infinite
Precision

3 Bit
Quantization

Integer
Quantization

D = 0

Separate
28.6187

Scalar
Separate [9]

20.1235 20.1810 26.0527

Scalar
Joint

16.2006 16.2370 18.2063

Diagonal
Separate [9]

16.4104 16.4547 17.4039

Diagonal
Joint

12.7097 12.7722 13.7535

General
Separate [9]

11.6352 11.7054 16.5814

General
Joint

4.8823 23.4873 293.0187

Table 1. Noise gain J(D, T̂) for different EF schemes.

More reduction of the noise gain might be possible by re-designing the coordinate transfor-
mation matrix T for the optimally quantized D.
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5. CONCLUSION

The joint optimization problem of EF and realization to minimize the effects of roundoff
noise of the closed-loop system with a state-estimate feedback controller subject to l2-norm
dynamic-range scaling constraints has been investigated. The probelm at hand has been con-
verted into an unconstrained optimization problem by using linear algebraic techniques. An
efficient quasi-Newton algorithm has been employed to solve the unconstrained optimization
problem. The proposed technique has been applied to the cases where EF matrix is a general,
diagonal, or scalar matrix. The effectiveness for the cases of a scalar EF matrix and a diag-
onal EF matrix compared with the existing method [9] has been illustrated by a numerical
example.
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This book intends to provide highlights of the current research in signal processing area and to offer a

snapshot of the recent advances in this field. This work is mainly destined to researchers in the signal

processing related areas but it is also accessible to anyone with a scientific background desiring to have an

up-to-date overview of this domain. The twenty-five chapters present methodological advances and recent

applications of signal processing algorithms in various domains as telecommunications, array processing,

biology, cryptography, image and speech processing. The methodologies illustrated in this book, such as

sparse signal recovery, are hot topics in the signal processing community at this moment. The editor would like

to thank all the authors for their excellent contributions in different areas of signal processing and hopes that

this book will be of valuable help to the readers.
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