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1. Introduction   
 

Intelligent agents in extreme conditions is an attempt to use agent based simulation to save 
lives, predict the outcome of catastrophic events like suicide bombing, and model the 
behavior of crowd in emergency situations. This work is set to implement, test, analyze and 
measure intelligent agents’ behavior and its consequences under extreme conditions like 
suicide bombing through multi-agent simulation.   
Suicide bombing has become one of the most lethal and favorite modus operandi of terrorist 
organizations around the world. It claims 48% of the casualties, while only 3% of all terrorist 
attacks can be classified as suicide bombing attacks. On average, there is a suicide bombing 
attack somewhere in the world on every 6th day that claims 13.4 lives (on average) per attack 
(Usmani a, 2009). While various attempts have been made to assess the impact of explosions 
on structures, little has been done on modeling the impact of a blast wave for an individual 
or a crowd. There is no tool exist to determine the impact of explosion as a function of 
crowd dynamics, and explosive characteristics. And there is not a single method available to 
map the blast overpressure to human injuries that is calibrated against the real-life victims’ 
data. All of the existing estimates and pressure-lethality curves are based on experiments on 
pigs, sheep, and data collected from stationary sensors without any consideration of 
blockage and 3D environment. 
Explosion modeling is a complicated task that requires the knowledge of physical properties 
of explosions, projectiles and debris, chemical properties of explosive materials and their 
reactions, complex details of simulating gaseous and combustion flows with boundary 
conditions, complex coding for blast waves and fragmentation models, know-how of 
computational fluid dynamics, and the overall impact of explosions on humans and 
structures supported by experimental and theoretical studies. This work explains the 
physics, explosive models, mathematics and the assumptions we need to create such a 
simulation. The work also describes human shields available in the crowd with partial and 
full blockage in both two dimensional and three dimensional environments.  
A virtual simulation tool (BlastSim) has been developed which is capable of assessing the 
impact of crowd formation patterns and their densities on the magnitude of injury and 
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number of casualties during a suicide bombing attack. Results indicated that the worst 
crowd formation is Zig-Zag (e.g., street) where 30% crowd can be dead and 45% can be 
injured, given typical explosive carrying capacity of a single suicide bomber. Row wise 
crowd formation was found to be the best for reducing the effectiveness of an attack with 
18% crowd in lethal zone and 38% in injury zones. For a typical suicide bombing attack, we 
can reduce the number of fatalities by 12%, and the number of injuries by 7% by simply 
following the recommendations in this chapter. Simulation results were compared and 
validated by the real-life incidents and found to be in good agreement. Line-of-sight with 
the attacker, rushing towards the exit, and stampede were found to be the most lethal 
choices both during and after the attack. These findings, although preliminary, may have 
implications for emergency response and counter terrorism.  

 
2. Literature Review 
 

Suicide bombing is an operational method in which the very act of the attack is dependent 
upon the death of the perpetrator (Pape, 2005). The world is full of unwanted explosives, 
brutal bombings, accidents, and violent conflicts, and there is a need to understand the 
impact of these explosions on one’s surroundings, the environment, and most importantly 
on human bodies. There is a growing need and interest in treating explosion related injuries 
in emergency rooms, a phenomenon traditionally only considered to be present in the 
emergency units of battlefields. From 1980 to 2001 (excluding 9/11/01) the average number 
of deaths per incident for suicide bombing attacks was 13. This number is far above the 
average of less than one death per incident across all types of terrorist attacks over the same 
time period (Harrison, 2004). In Israel, from November 2000 to November 2003 the average 
number of deaths per incident was 31.4 (Harrison, 2006). From 2006 to 2007 the average 
number of deaths in Pakistan was 14.2 (Usmani a, 2009). Suicide bombers, unlike any other 
device or means of destruction, can think and therefore detonate the charge at an optimal 
location with perfect timing to cause maximum carnage and destruction. Suicide bombers 
are adaptive and can quickly change targets if forced by security risk or the availability of 
better targets.  Suicide attacks are relatively inexpensive to fund and technologically 
primitive, as IEDs can be readily constructed.  
A significant progress has been made in the modeling and simulation of explosion and blast 
waves in last two decades (Pritchard et. al., 1999, Lester, et. al., 2004, Clutter, et. al., 2006). 
However, the majority of work (Redlins, 1977, HJertager, 1982, Ettouney, 2001) follows a 
trend of capabilities and limitations mainly influence by their requirements in industry and 
non-civil settings. For example, none of the models (Cates & Samuels, 1991, Baker, et. al. 
1998, Baker, et. al. 1994, Berg, 1985, Arntzen, 1982, Usmani c, et. al., 2009, Usmani d, et. al., 
2009, Usmani e, et. al., 2009) have considered the open space scenarios like markets and 
streets for simulating explosion effects. Another important parameter missed by almost all 
existing models is the plotting of multiple explosions, as witnessed recently by multiple 
suicide bombers in Iraq and Pakistan (Usmani a, 2009).  
Most of the models have also neglected the effects of the negative phase, reflection waves, 
and blockage shields by living and non-living objects, crowd density, projectiles and debris, 
different explosives, and the scenario visualization in a 3D environment. Blast/FX (Fertal & 
Leone, 2000) stands out to be the best available explosion model for testing and evaluation 
of blast loading, but it is also based on empirical studies on sheep and pigs. There is an acute 

 

need of explosion effects model based on human data. While the models work well in 
general, collectively they lack the following characteristics, much needed for real-life risk 
assessment and emergency planning in case of events like terrorism and suicide bombing: 
1. Require too much computing and time resources when implemented with complex 

geometries and scenarios 
2. Need special hardware and software to execute 
3. Need a subject matter expert to tune the constants for new and different situations 
4. Do not consider blockage and obstacles in a three dimensional environment 
5. Lack the capability to work with different kinds of explosives 
6. Do not consider crowd formations, density and demographics 
7. Have no experimental data with humans 
8. None of the models provide a direct mapping of over-pressure to human injuries 
9. Provide no capability of new equation plug-in and algorithms 
10. Provide no venue for the assessment of sensitivity analysis due to change in explosive 

characteristics 
11. None of the models have considered the negative phase and reflection waves 
12. None of the models have considered crowd formation and topologies 
Resolution of these issues is needed for real-life risk assessment and emergency planning, 
and to develop a comprehensive model of a suicide bomber attack. Our model (BlastSim) is 
rightly filling the gap and providing exactly what is missing. 
Few researchers have also focused on developing psychological profiles of suicide bombers, 
understanding the economical logic behind the attacks (Gupta & Kussum, 2005, Harrison, 
2004, Harrison, 2006), explaining the strategic and political gains of these attacks, their role 
in destabilizing countries (Azam, 2005, Ganor, 2000), and the role of bystanders in reducing 
the casualties of suicide bombing attacks (Harrison, 2006, Kress, 2004). The specifics of the 
actual crowd formation and orientation of the bomber with respect to the crowd has not 
been examined. The presented simulation examines variables such as the number and 
arrangement of people within a crowd for typical layouts, the number of suicide bombers, 
and the nature of the explosion including equivalent weight of TNT and the duration of the 
resulting blast wave pulse for both 2D and 3D environments. The goals of the analysis are to 
determine optimal crowd formations to reduce the deaths and/or injuries of individuals in 
the crowd, to determine what architectural and geometric changes can reduce the number of 
casualties and injuries, and what is the correlation between variant crowd densities and 
formations with the weight and pulse duration of the explosives? The main objective of our 
research is to explore and identify crowd formation precautions that when followed will 
minimize the number of deaths and injuries during a suicide bombing attack.  

 
3. Modelling Overview 
 

Authors have developed a framework to predict the damage of a suicide bombing attack as 
illustrated in Figure 1. The main goal of our research is to define a general blast wave 
explosion model to predict and estimate the damage for such incidents. The proposed 
model will be a total turn-key solution for emergency response management, casualty 
prediction, classification of injuries, and will provide a safe distance matrix to event 
managers and security officials.  The model will be general enough to make it unclassified 
(thus avoiding misuse) and specific enough to give an educated guess for the outcome.  
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Fig. 1. Components of the suicide bombing model 
 
The effects of an explosion are contingent upon various factors, such as: explosive type (i.e. 
TNT, RDX, C4, AN etc.), explosive weight (pounds) and results overpressure (pressure-per 
square inch PSI), ignition source and criteria, crowd density (number of people per square 
meter), crowd demographics (i.e. age, gender, weight, height), pulse duration 
(milliseconds), and reflection waves, blockage ratios (percentage), size, shape, location, and 
number of obstacles, projectiles, debris and fragments, and shape of the explosive carrier. A 
suicide bombing model and simulation should consider all of the aforementioned factors. 
Furthermore, the model should be easy to use, contain appropriate physics, be able to work 
with different scenarios, blockage ratios, injury matrices, and different ambient conditions 
without special time consuming tuning of parameters. The model should also have 
sufficient numerical accuracy to allow realistic representation of geometry and explosive 
strength. It should be easy to configure, and run in a short amount of time.  
Some of these requirements are contradictory. For example, a complex model will require 
too many resources and time if it truly contains appropriate physics and complex 
geometries. Consequently, a good model should allow for a tradeoff between time, 
resources, physics, geometry and the resulting output. Sometimes there is a need of faster 
results to be able to save lives, and sometimes there are scarce resources to distribute for 

 

various purposes. A good model should be flexible enough to use in a diverse set of 
situations with varying requirements. Our proposed framework is fulfilling this gap by 
providing faster results while taking care of all required characteristics of a good model. 

 
4. Explosive Model 
 

In order to model the effects of an explosion on a given crowd formation, it is essential to 
properly model the deleterious properties of the blast waves themselves. A conventional 
bomb generates a blast wave that spreads out spherically from the origin of the explosion. 
The strength of the blast wave decreases exponentially with distance (Irwin, 1999, FEMA 
2004). Although the physics of blast waves are complex and nonlinear, a wave may be 
broadly characterized by its peak overpressure (pressure above atmospheric) and the 
duration of the positive phase of the blast event, as shown in Figure 2. Based on those two 
quantities, the intensity of the blast wave can be assessed and exposure threshold limits can 
be determined, although this only applies to a specific scenario. Enhanced-blast explosive 
devices, in contrast, can have more damaging effects, and cause a greater proportion of blast 
injuries than conventional devices. In an enhanced-blast device, a primary blast 
disseminates the explosive and later triggers a secondary explosion. The high-pressure wave 
then radiates from a much larger area, prolonging the duration of the over pressurization 
phase, thus increasing the total energy transmitted by the explosion. 

 
Fig. 2. Blast wave showing positive and negative phase durations. Such waves may be 
characterized by the peak overpressure and duration of the positive phase 

 
Depending on the type of explosive and the proximity to the target, the positive phase 
duration can vary between a few microseconds up to several milliseconds (Kinney & 
Graham, 2985). Injury correlations as a function of peak overpressure and duration have 
been developed for various organs, such as the eardrums and lungs, as well as probability of 
fatality curves for humans in various orientations to the blast wave. Impulse, which is the 
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force-time product of the blast wave, is also important to consider, as two profiles with 
identical peak overpressure and duration can have different total impulses. Studies on blast-
related injuries have shown that both the peak overpressure and duration of the positive 
phase, which correlate to the overall impulse, each contribute to the magnitude of injury 
experienced by a victim. 
A simulation which seeks to study the impact of a suicide bomber on casualty rates and 
injuries related to crowd formation must be able to adequately model the influence of peak 
overpressure, duration, and impulse of the explosion; the next few paragraphs discuss blast 
modeling and the assumptions made in the simulation. 
Experimental and theoretical means have been used to obtain important parameters 
associated with blast waves. A theoretical analysis for peak overpressure utilizes the same 
mathematical approach as for a planar shock wave, but includes the effects of spherical 
divergence and the transient nature of the blast event (Cooper, 1996, Kinney and Graham, 
1985). As an example, values for the peak overpressure generated in a standard atmosphere 
for the blast wave generated by a one pound spherical charge of TNT are shown in Figure 3.  
At distances far from the center of an explosion, a blast wave behaves like a sound wave in 
that its energy-distance relation follows an inverse square law. The intensity of sound 
energy, however, is proportional to the square of sound pressure, so that a simple inverse 
relation between peak overpressure and distance is sufficiently great that the blast wave 
overpressure approaches zero. 
Also shown in Figure 3 is the peak overpressure that would be expected at various distances 
had the energy been released by one pound point source of TNT. It can be seen by 
comparing the two curves that the effect of the explosive charge is to initially spread out the 
energy and so to reduce the peak overpressure to some appreciable distance from the center 
of the explosion – around 5 charge diameters. At intermediate distances, the large amounts 
of gas produced from the TNT become evident in the peak overpressure curve. At greater 
distances, losses due to dissociation and ionization become evident in the point source and 
act to reduce the energy available so that observed peak overpressure is somewhat less than 
that from TNT with the same energy release. This demonstrates that although knowing the 
total energy release is important, it is inadequate to completely describe the blast event.  
 

 

 
Fig. 3. Peak overpressure ratio versus scaled distance, adopted from (Kinney & Graham, 
1985) 

 
Fig. 4. Scaled positive pulse duration versus scaled distance, adopted from (Kinney & 
Graham, 1985)  
 
The data depicted in Figure 3 and 4 applies for any weight of TNT through an energy-
weight scaling law. Two explosions can be expected to give identical blast wave peak 
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overpressures at distances which are proportional to the cube root of the respective energy 
release. For example, to produce a given blast overpressure at twice a given distance 
requires eight times the explosive energy release. The following scaling law is used (Cooper, 
1996), which also allows for compensation in different atmospheric pressures (Pa) and 
temperatures (Ta): 

 

Z =
R

(WTa=Pa)1=3
 (1) 

 
The energy release factor is contained in the ratio (R/WTaPa)1/3, where W is the energy 
release, or amount of TNT in kilograms, in the explosion to be described, R is the distance in 
feet, Ta is the ambient temperature in Kelvin and Pa is the ambient pressure in bars. By using 
this scaling law, the distance at which a given peak overpressure is produced by a reference 
explosion may be scaled up or down to provide a corresponding distance for other 
explosions. Different explosives can be considered by modifying the overpressure versus 
distance history or by utilizing data specific to the explosive composition.  
The time duration of a blast wave must also be considered because the magnitude of injury 
depends in part on how long the damaging forces are applied. Because of the relationship 
between the speed associated with the initial shock front and the changing local speed of 
sound as the blast wave propagates, the duration of the blast wave increases with distance 
from the center of the explosion, and reaches a limiting maximum value (and ultimately 
vanishes) as the shock front degenerates into a sound wave. To model duration increase as a 
function of distance from the origin of the explosion, the digitized data of Figure 4 has been 
used, where the distance is scaled as for Figure 3, and the curve in Figure 4 gives the 
corresponding scaled positive pulse duration in a given time.  
Impulse is also an important aspect of the damage-causing ability of the blast, and may 
become a controlling factor for short duration, small yield explosives. The significant 
portion of the impulse is associated with the positive phase. The decay of blast overpressure 
does not follow a typical logarithmic decay relation, because the overpressure drops to zero 
in finite time (Kinney & Graham, 1985). A quasi-exponential form for pressure in terms of a 
decay parameter  and of a time t, which is measured from the instant the shock front 
arrives, can be given as (Cooper, 1996): 

 

dt
t

d

e
t
tpp


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


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
 10  (2) 

 
Where p is the instantaneous overpressure at time t, p0 the maximum or peak overpressure 
observed when t is zero, and, td is the time duration. The decay parameter is also a measure 
of intensity of the shock system. Equation (2) may also be used in the simulation if the decay 
parameter  is specified, for example, to determine the evolution of the positive phase 
duration as a function of distance from the explosive center. 

 
 

 

5. Injury Model 
 

In order to tie together the influence of peak overpressure and duration to injury and fatality 
probability, a series of data curves were utilized.  Figure 5 shows the fatality curves 
predicted for a 70-kg man applicable to free-steam situations where the long axis of the body 
is perpendicular to the direction of blast wave propagation. 
Specifying the amount of TNT, using the scaling law of equation (1), and the overpressure 
versus distance curve of Figure 3, then allows for the calculation of the peak overpressure at 
any distance away from the explosive origin. Using this peak overpressure and the 
increasing duration given by the digitized dataset of Figure 4 a new duration of the blast 
wave can be calculated at any distance away from the explosion. Using these two pieces of 
information and injury or fatality probability curves, such as Figure 5, an estimate of the 
injury or fatality levels at any location of the explosion can be calculated for various crowd 
formations. 
Injuries that occur as a result of explosions can be grouped into several broad categories, as 
primary, secondary and tertiary injuries. Primary injuries caused by the direct result of 
pressure wave impacting and travelling through the body; it includes rupture of tympanic 
membranes, pulmonary damage, rupture of hollow viscera. Secondary injuries result from 
flying debris that damage body; it includes penetrating trauma and fragmentation injuries. 
Tertiary blast injuries results from victim’s body being thrown by blast wind, and then 
impacting stationary object; it includes crushing injuries and blunt trauma, penetrating or 
blunt trauma, fractures and traumatic amputations. And miscellaneous blast injuries are 
caused by flame and chemicals that includes burns, asphyxia, and exposure to toxic 
inhalants 
 

 
Fig. 5. Fatality curves as a function of blast wave peak overpressure and positive pulse 
duration (Cooper, 1996). 
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overpressures at distances which are proportional to the cube root of the respective energy 
release. For example, to produce a given blast overpressure at twice a given distance 
requires eight times the explosive energy release. The following scaling law is used (Cooper, 
1996), which also allows for compensation in different atmospheric pressures (Pa) and 
temperatures (Ta): 

 

Z =
R

(WTa=Pa)1=3
 (1) 
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Where p is the instantaneous overpressure at time t, p0 the maximum or peak overpressure 
observed when t is zero, and, td is the time duration. The decay parameter is also a measure 
of intensity of the shock system. Equation (2) may also be used in the simulation if the decay 
parameter  is specified, for example, to determine the evolution of the positive phase 
duration as a function of distance from the explosive center. 
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The exact explosive mass used in suicide attacks is hard to determine. However, it is 
possible to give some general indications of the overall level of injuries to be expected based 
on the size of an explosion, the number of participants and crowd formation. Large trucks 
typically contain 25,000 pounds or more of TNT equivalent, and vans typically contain 5,000 
to 25,000 pounds. Small automobiles can contain 50 to 5,000 pounds of TNT equivalent. A 
briefcase bomb is about 50 pounds, and a suicide bomber wearing a vest belt generally 
carries up to 30 pounds of TNT equivalent (Air Force, 2004). 
The preliminary results described in this paper are based on a division of the blast area into 
six zones: three for lethality, and three for injuries. Lethal zone #1 results in a 99% 
probability of death, lethal zone #2 results in a 50% probability of death, and the zone #3 
results in a 1% probability of death. Similarly, injuries are divided into three zones. Injury 
zone #1 includes people who get 60 PSI or more overpressure, zone #2 refers to more than 
40 and less than 60 PSI overpressure, and zone #3 for more than 20 and less than 40 PSI 
overpressure. In general, 60 PSI results in severe injuries such as missing body parts, 
amputation, brain or heart rupture, or Abbreviated Injury Score (AIS) 3. PSI of 40 usually 
results in the rupture of air-filled organs like lungs and kidney or AIS 2, and 20 PSI is 
usually responsible for minor bruises and ear-drum rupture or AIS 1. Persons below the 
range of 20 PSI are generally unharmed (Irwin, 1999).  

Lethal 
Zones 

No Blocker Partial Blocker Full Blocker 

#1 Death 99% Death 99% Death 50% 
#2 Death 50% Death 1% Unharmed 
#3 Death 1% Unharmed Unharmed 

Injury 
Zones 

   

#1 Injured 60 PSI Injured 40 PSI Injured 20 PSI 
#2 Injured 40 PSI Injured 20 PSI Unharmed 
#3 Injured 20 PSI Unharmed Unharmed 

Table 1. Full and partial blockers impact 
 
Table 1 provides the details of the respective impacts of the full and partial blockers on the 
lethal and injury zones. For example, a person within the 50% lethality zone blocked by a 
full blocker will be unharmed, on the other hand, the same person blocked by a partial 
blocker will be downgraded to lethal zone 3 (1% probability of death). 

 
6. Crowd Formation – Full and Partial Blockers 
 

Blockage or shields present in a crowd can play an important role in the event of an 
explosion. Even a person providing a blockage in the line-of-sight between another person 
and an explosion can actually save the later person’s life by absorbing most of the shrapnel 
or by consuming part of the blast wave overpressure. Spatial distribution of individuals in a 
crowd can therefore significantly alter the casualty toll. Thus different crowd formations can 
yield different outcomes with the same amount and type of explosive, even when the 
average distance to the bomber between two different crowd configurations is identical.   
This section introduces 2D and 3D models for finding the exact number of full and partial 
blockers between each person and the point of explosion. Persons in the line of sight 

 

between a given target and the blast point are termed full blockers. Blockers who are not in 
the line of sight, but whose body width covers some part of the body of the person from the 
blast projectiles, is referred as a partial blocker. For example, imagine a person of 4 feet 
standing in front of a 6 feet 10 inches person, or a person standing next to another. These 
persons, while not covering another person completely, can provide partial blockage.   
To the best of our knowledge, this study is the first to consider partial blockers in blast wave 
simulation.  Figure 6 presents the blockage model for 2D. Each person in the area is modeled 
by a vertical line segment, where the mid-point of the vertical line represents the position of 
the person, and the length represents their width.  
Each line in the model is represented by the coordinates of its two end points. The line 
between the mid-point of the target and the blast point is called the line-of-sight. Each target 
is also represented by a vertical line called the body-width-line. The triangle, whose base is the 
body-width-line of the target and the blast point, is termed the blast triangle.  

 
Fig. 6. Full, partial and no blockers in 2D 
 
The line segment between the blast point (b1, b2) and the center of the target (t1, t2) is 
constructed and its slope is calculated. Assuming all people face towards the blast, the body-
width-line of the target will be perpendicular to the line of sight. The slope of this line is the 
negation of the slope of the line of sight. Using simple coordinate geometry, one can easily 
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The line segment between the blast point (b1, b2) and the center of the target (t1, t2) is 
constructed and its slope is calculated. Assuming all people face towards the blast, the body-
width-line of the target will be perpendicular to the line of sight. The slope of this line is the 
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determine the end points of the body-width-line of the target ((x,y):(z,w)) given the mid-
point of the line (t1,t2), the body width and the slope of the line. Given the end points of the 
body-width-line of the target, one can easily construct the two other sides of the blast 
triangle. All other people’s body-width-line is assumed to have the same slope as the slope 
of the body-width- line of the target. Taking this slope, the position coordinate, and the 
width, it is trivial to determine the end points of the body-width-line of each person.   

It is also worth noting that all infinite slopes are approximated by 1 106. To determine 
the blockage, one has to determine if the body-width-line (representing a person) is 
intersecting with either the line-of-sight or the sides of the blast triangle. If a body-width-
line is intersecting the line of sight, the person represented by this line is taken as full 
blocker. Otherwise, if it intersects with either side of the blast triangle, the person will be 
considered a partial blocker. Figure 6 shows full and partial blockers, and other individuals 
that do not provide any blockage at all (non-blockers).  

 
Fig. 7. Percentage of partial blocking in 3D 
 
To find blockers in three-dimensions, a Cartesian(x-y-z) plane is used as a reference to the 
distribution of agents. Each agent is modeled by a four sided polygon whose dimensions are 
determined by their height and width. These polygons are made to lie parallel to the y-z 
plane to reduce the computational overhead. Figure 7 illustrates the concept. 

 

There are four planes which enclose the cone whose vertex is the point of explosion and 
whose base is the four sided polygons modeling an agent. The cone referred to as the blast 
cone and the enclosing planes are referred to as blast cone planes.  The plane containing this 
polygon is called the agent body plane and the polygon is called the agent body polygon.  
The four line segments extending from the bomb position and the corner points of the 
polygon are called the blast lines.  
The algorithm consecutively considers each agent as a target, and checks if any other agent 
is interfering with it from the blast point. A blocker is referred to as a full blocker if its’ four-
sided polygon intersects the line of sight between the explosion and the target agent. An 
agent is referred to ask a Partial Blocker if it is not a full blocker, but its’ four-sided polygon 
intrudes into the blast cone. To check if an agent is intruding into the blast cone, first the 
smallest distance between the line of sight and the blast lines from the position point of the 
agent and the explosion is calculated. If this distance is less than half of the width of the 
agent, the line crosses the body plane between the polygon sides and the agent is considered 
a blocker. If the line is the line of sight, the agent is a full blocker and if the line is only one of 
the blast lines, it is a partial blocker. If the smallest distance from each of the lines obtained 
is greater than half the width of the agents then it is not a blocker at all.  
To check if an agent is intruding into the blast cone, first we find the smallest distance 
between the line of sight and the blast lines from the position point of the agent and the 
bomb. If this distance is less than half of the width of the agent, the line apparently crosses 
the body plane between the polygon sides and the agent will be considered as a blocker. If 
the line is the line of sight, it will be the full blocker and if the line is one of the blast lines, it 
will be considered as a partial blocker. If the smallest distance from each of the lines 
obtained is greater than half of the width the agent it is not a blocker.  
If an agent is a partial blocker, the percentage of blockage can also be determined. This is 
done by constructing additional lines that extend between the target agent body plane in the 
polygon area and the point of explosion. The percentage of lines crossing the body plane 
between the sides of the polygon is used as the percentage of the partial blockage, as shown 
in Figure 7. 

 
7. Suicide Bombing Database 
 

As part of this research we have compiled a real-life bombing and injuries database from the 
actual records of the suicide bombing incidents in Pakistan from November 15, 1995 to April 
18, 2009. During that time there was a total of 169 suicide bombing incidents in 42 cities of 
Pakistan that left 2,327 dead and 5,410 injured. This study compiled the records of the 
patients in most of these attacks from the hospitals, which include patients’ medico-legal 
reports, X-Rays, ECGs, PSTD profiles, injury types and characteristics. The database also 
contains blast characteristics (explosive type, weight, shape, fragmentation signatures, and 
temperature of the day), crowd characteristics (crowd density, gender, age ratio, weight, 
and the distance from the bomber with +- 2 feet of error). To the best of our knowledge, this 
database is the first of its’ kind one of its kinds in the blast research on human body.  
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8. Simulation Tool Development 
 

The simulation is being programmed in Visual C#. Visual C# was utilized due to its 
extensive library of graphics and geometry functions (to generate the Cartesian grid with 
agents). The explosive range is determined by the explosive weight. By using the scaling law 
as described in Eq. 1, and the TNT overpressure versus scaled distance data of Figure 3 and 
4, it is easy to calculate the exact overpressure received by each agent at particular locations 
given the weight and type of explosive. Specific simulation inputs are the number of 
individuals and bombers in the vicinity, explosive characteristics (type, weight, 
fragmentation etc.), and crowd formation (topology, gender, height, width, weight etc). 
Additionally the arrival time of the explosive pressure front to travel from the point of 
explosion to any given location may also be calculated. 
The work has only considered primary and direct injuries. Persons who are directly in the 
line-of-sight with an explosion will absorb the effects, and thus act as a shield for person(s) 
behind them. Direct injuries mean injuries caused by the bomb’s blast wave overpressure 
during the explosion, and not by fire or debris (pieces of furniture or glass). The simulation 
has, however, incorporated the effects of stampede. Stampede usually occurs when a large 
number of people start running towards the same direction and surpass the capacity of flow 
from that particular channel. 
The work has also considered mostly “open space” scenarios to serve as the basis for our 
crowd formation types (e.g., mosques, streets, concerts etc.). The types of injury caused by 
overpressure depend on whether overpressure occurs in open air or within buildings. In the 
later case the type of injuries also depends on whether the explosion causes collapse of a 
building or other structure. There are numerous objects to consider in closed environments 
that can either increase the casualty/injury toll (primarily by working as flying debris) or 
decrease the toll by providing a shield to humans. Closed environments also need to 
entertain reflection waves. A blast wave can amplify in closed environments by reflection 
and reduced ventilation. Ventilation, reflection waves, and non-human objects are out of 
scope of this work.  
There are two types of formations user can choose from – random formations and user 
created scenarios, like circles, zigzags, rectangular etc to represent real-life settings like 
cafeteria, mosques, concerts etc. – to estimate the outcome of an attack for a particular crowd 
formation. Figure 8 shows few examples of crowd formations, and Figure 9 shows the 
display after the blast is simulated. 
The simulation takes care of beam and line-of-sight adjustments in cases of uneven surfaces 
(e.g., concert stage, mosque or shopping mall). To date, this work has not considered 
physical objects (like walls, trees, furniture etc.) as obstacles, or a means to harm people. A 
suicide bomber is a pedestrian in all cases and the explosion does not originate from a 
moving vehicle. The reason for choosing a suicide bomber location in almost all cases 
(except in a zigzag formation) on the entrance or exit gate was based upon recent attacks in 
Iraq, Israel and Pakistan where suicide bombers detonated their bombs at the gates of 
mosques and restaurants (Johnson, 2005). 
 
 

 

 
Fig. 8. An example of possible formations like circle, zigzag, and rectangular 

 

 
Fig. 9. Simulation screen after the blast 
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Fig. 8. An example of possible formations like circle, zigzag, and rectangular 

 

 
Fig. 9. Simulation screen after the blast 
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The simulation display depicts casualties by red colored icons, injuries in green colored 
icons, and unharmed individuals in blue colored icons. Thus, there are three states of 
victims after the blast: dead, injured and unharmed (but in panic and contributing to 
stampede).   

 
The simulation can run in three different models, as presented in Table 2: 
 

 
Table 2. Models Description 

 
9. Results and Validation 
 

The average case scenario has been simulated for all of the models (M1, M2, and M3). The 
weight of the explosives used in the simulation ranged from 1 to 30 lbs. The number of 
participants ranged from 20 to 100 and the pulse duration ranged from 0.5 milliseconds to 2 
milliseconds. The simulation was also performed for bigger crowds ranging from 500 to 
1000 participants. The overall impact of a blast on participants stabilized as the number of 
participants increased, as shown in Figure 10. For example, the average number of 
participants in the lethal zone was 11, with 20 total participants (55%), and 185 with 500 total 
participants (37%). These findings are consistent with Moshe Kress findings (Kress, 2004).  

 
Fig. 10. Percentage of participants killed in the lethal zone vs. number of participants in the 
lethal zone. For this example, the bomber is carrying 30 lbs of TNT, which corresponds to a 
lethality radius (without blockage) of 37.5 feet. The results are based on 200 simulations with 
random crowd distributions. 
 

 

The simulation was performed for different example crowd formations with the same 
number of participants and weight of explosives. The height, weight and the number of 
participants were exactly the same for each run for all three models. Figure 11 shows the 
average results of 200 simulation runs for each crowd formation with different explosive 
mass, pulse duration and number of participants. The expected output for the model M1 
was an upper bound or least conservative, since there is no blockage available to people in 
the crowd, so the model should report more injuries and deaths. For M2 the expected output 
was a lower bound of the results or most conservative, since in two-dimensions anyone in 
the line-of-sight can provide blockage, thus minimizing the impact of blast wave 
overpressure to the people behind the shields. While the expectations for the model M3 
results were in between M1 and M2, it should be lower than M1 since it is providing 
blockage shields to the crowd and it should be greater than M2 due to its three-dimensional 
capabilities. For example, a child standing in front of an adult person in 2D simulation can 
provide the full blockage while he will be providing only partial blockage in 3D simulation 
model. 
Figure 11 summarizes the findings of the percentages of the people in the lethal and injury 
zones with given crowd formations. Each set of three bars in Figure 11 represents a crowd 
formation. It is clear to see that model M2 with blockers results in a fewer number of dead 
and injured people than M1 (without blockers), while M3 has the higher number of death 
and injuries as compared to M2. M3 is more realistic due to its three-dimensional 
capabilities. The simulation was also performed using 40 and 50 lbs of explosives (though it 
is uncommon to see a pedestrian suicide bombing attack of that magnitude). The 
relationship between the increase in the percentage of casualties and injuries with the 
amount of explosive is observed to be piecewise linear. This relationship is logical since 
augmenting the explosive material will increase the overpressure pounds per square inch 
(psi) in the vicinity. 

 
Fig. 11. Casualties and crowd formations 
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The average deadliest crowd formation for casualties was found to be the zigzag scenario, 
where 30% of participants were in the lethal zone and 45% in the injury zone. Row wise 
crowd formations were found to be the best for reducing the effectiveness of an attack, with 
on average 18% of the crowd in the lethal zone and 38% in the injury zone. Thus by only 
changing the way a crowd forms, one can reduce deaths by 12% and injuries by 7%, on 
average. This is really useful where one has control to form the crowd, like in airports by 
placing them in queues.  One of the reasons for the dramatic change in casualties is that in 
row wise formations there are fewer people in the direct line-of-sight with the bomber and 
more people also provide the blockage to others. 
To validate our results and to see how close they are with real-life incidents, the results were 
compared against a database of every single suicide bombing attack in Pakistan from 2000 
to 2009 that fits the open-scenario criterion (Johnson, 2005). Figure 12 shows a comparison of 
the average number of persons killed and injured in all of the simulation runs against the 
suicide bombing attacks in Pakistan. The real-life averages come from mostly open-space 
scenarios with a single pedestrian suicide bomber. For the sake of consistency, the database 
excluded the suicide bombing attacks in close environments like buses or with multiple 
suicide bombers, or ones carried out with the help of an automobile.  

 
Fig. 12. Models comparison with the real-life database of suicide bombing incidents in 
Pakistan 
 
Clearly, the model M3 with blockers is more close to real-life results than M1 with no 
blockers and M2 of blockers in 2D. The average injury per fatality ratio in real-life incidents 

 

is 2.18, that is, for every dead person there are 2.18 injured people. The number is pretty 
much consistent in the history of the modern world, where there are 2.6 injuries per fatality 
in Vietnam War, 2.8 in the Korean War, 1.8 in the World War I, and 1.6 in the World War II. 
Simulation models, on the other hand, had produced 1.9 injuries per fatality in M1, 1.6 for 
M2, and 1.54 for M3. This can be explained as follows: First the current simulation does not 
count for secondary and tertiary blast injuries by fire, debris, fragmentation and shrapnel. 
Second, the current simulation only accounts for TNT explosive, while in the real-life 
instances there are quite a few mixtures of explosives being used. As examples, note an RDX 
and TNT mixture in the recent suicide bombing attack in Pakistan that claimed the life of 
former Prime Minister Benazir Bhutto, and the mixture of Ammonium Nitrate and RDX in 
Oklahoma City bombings. Third, the simulation is not giving the exact number of dead and 
injured people; instead it is gives the number of people in the lethal and injury zones based 
on their probabilities of death and injury. For example, a person in lethal zone 3 with 1% 
chances of being dead is most likely to be injured and not dead, similarly a person in Injury 
zone 3 with 20 PSI can be unharmed.  

 
Fig. 13. Model comparison with injury and lethal levels 1 
 
There are demographical, environmental and physical characteristics as well, that play an 
important role in the overall toll. For example, an infant next to a fire cracker can die while a 
muscular six and half foot person with 250 lbs of weight can survive a 1 pound TNT 
explosion. The simulation yields more realistic results with the incorporation of non-human 
shields, reflection waves, secondary and tertiary blast injuries and physical characteristics. 
However, simulation at current stage can provide a good upper bound, lower bound, and 
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medium estimates of the number of dead and injured for emergency preparedness, triage of 
patients, and the required number of medical and ambulance facilities for such an event.  
The simulation was performed against the real-life results with persons only in Lethal Zone 
1 (99% probability of death) and Injury Zone 1 (60 PSI). These models will be referred to as 
optimized models from the point forward. Figure 13 portrays the findings of this 
comparison. 

 
Fig. 14. Injury per fatality ratios 
 
Figure 14 shows a comparison of injury per fatality count. Here models have provided 2.3 
injuries per fatality in M1, 3.2 for M2 and 1.53 for M3. The number of deaths is higher in M1, 
lower in M2, and more close to real life in M3. 
The results are in good agreement for the death count but are off slightly for injury counts. 
Beside the aforementioned reasons, one of the reasons for this difference can be totally 
political, where governments tend to show the manipulated figures to minimize the 
aftereffects (for example, riots, revenge etc) by victim supporters or a huge outcry in the 
home state. For example, 4,000 soldiers have been killed in Iraq so far since the invasion of 
the country by US forces in October 2003. Media have only concentrate on the dead, while 
little has known about the more than 250,000 injured soldiers. An injured soldier costs at 
least three times more than a dead soldier economically to the country, according to one 
estimate the cost is 10.1 million dollar for injured, and 3.7 million dollar for a dead soldier 
(Stiglitz, 2008). The government has to pay disability and social security allowances, and it is 
a loss of one worker from the labor force. Thus a loss of one statistical value of life, and the 
injured also need a caretaker, therefore another loss of the statistical value of life. According 
to the recent work by the authors, the cost of human life only for US soldiers in the Iraq 
comes to 14.8 billion dollar (Usmani b et. al., 2009), readers are referred to the authors 
website www.FindMyWorth.com for further information. Given the current geo-political 

 

conditions of the world and the US ongoing war in Iraq and Afghanistan, it is more 
necessary than ever to examine and employed the technologies to reduce the rate of injured 
and dead. Another reason for the gap in the number of injured might be the level of injuries 
– a victim who has a minor injury and was able to walk may not have been included in the 
actual count of the injuries in the real life events.  
The sensitive analysis for all of the models was also performed. M1 or the basic model 
results are the same as M2 2D model without blockage. And the M2 2D models without 
blockage results are similar to the results of M3 3D model without blockage. The results 
suggest using the M1 basic model if there is no need to consider the blockage. M1 can also 
give an upper bound of body count. If blockage has to be considered, the results suggest 
using M2 2D model, since the M3 3D models contribution is statistically insignificant if only 
considering the blockage in the crowd. On the other hand, 3D demands more computational 
power and resources. M3 3D should be used when there is a need of blockage with uneven 
surfaces like stages or stadiums, and when the user has to work on bomb fragments, 
shrapnel, projectiles, and secondary and tertiary blast injuries. The 3D model is more 
realistic when used with the majority of blast characteristics. For the simple estimates M2 2D 
model is as good as 3D, while the M1 basic model can be used for quick estimation of the 
required number of medical and emergency management facilities. 
Announcing the threat of suicide bombing in the crowd can only make the condition and 
the causality toll much worse. People will panic and thus increase the possibility of more 
victims in the line-of-sight with the suicide bomber than before. People will also try to rush 
towards the exit gates (thus coming closer to a bomber in the majority of cases), and there 
will be high chances of a stampede.  

 
10. Conclusion and Future Work 
 

There are a number of lessons one can learn from the analysis of this suicide bombing 
simulation. For example, one can reduce the number of fatalities by 12% and the number of 
injuries by 7% by switching the crowd formation from zigzag to row-wise formation styles. 
Doing this reduces the minimum average distance of each person in the crowd with the 
bomber. For example, a blast may yield more casualties in a heavily dense crowd with fewer 
people than a least dense crowd with more people. The topological impact highly depends 
on the minimum average distance of a person from the bomber in near-field scenarios. 
Blockage can only play a minimum role when a person is close enough to the bomber with 
respect to explosive characteristics. To avoid a stampede in possible crowd formations, one 
could arrange more exit points than normally available. Suggestions can also be made for 
architectural design changes in the buildings to reduce the count. For example by placing 
entrance and exit gates X feet away from the main venue, victims can be reduced by Y% (the 
values depends on environment, crowd information and the weight of explosive). The 
results can also help planning for post-disaster management. For example, how many 
ambulances and doctors one will need if something like this should happens to a given 
crowd or how to direct the crowd to behave or run towards particular exits by announcing it 
through loudspeakers. In the light of these findings, the crowd can be manipulated in real-
life by imposing formation guidelines like queues at the airport or by placing chairs in 
particular orders that will block the line-of-sight with of any perspective attacker. 
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There is an acute shortage of accurate data for many other variables and conditions that are 
pertinent to such an attacks (e.g. was a bomber running or standing? Carrying methods for 
the explosive, Weight of the explosive). It makes it difficult to validate the numbers of the 
simulation results with actual events. Also the simulation assumed continuous uniform 
distribution for the people, which is the least preferred distribution, but realistic in this case 
due to unknown real distribution). If that assumption is eliminated, it will have very little 
effect on the overall simulation results since the simulation is only calculating the blast 
overpressure (at this stage) from the origin of the explosion to the agent. In any case the 
agent will receive overpressure proportional to its distance from the bomber.  
The simulation and findings are limited in that they only incorporate primary injuries. 
Future plans are to add secondary effects (e.g., injuries by fire, debris, etc.) so as better 
approximate the real world environment and provide more valid comparisons with the data 
of suicide bombing attack aftermaths (Usmani a, 2009). The flexibility to create a user 
defined crowd formation with variable number of entrances and exits will be added in the 
future. This paper provides an interesting direction for future research to take in 
investigating the catastrophic event of the suicide bomber attack in hopes of making the 
world a safer place. 
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There is an acute shortage of accurate data for many other variables and conditions that are 
pertinent to such an attacks (e.g. was a bomber running or standing? Carrying methods for 
the explosive, Weight of the explosive). It makes it difficult to validate the numbers of the 
simulation results with actual events. Also the simulation assumed continuous uniform 
distribution for the people, which is the least preferred distribution, but realistic in this case 
due to unknown real distribution). If that assumption is eliminated, it will have very little 
effect on the overall simulation results since the simulation is only calculating the blast 
overpressure (at this stage) from the origin of the explosion to the agent. In any case the 
agent will receive overpressure proportional to its distance from the bomber.  
The simulation and findings are limited in that they only incorporate primary injuries. 
Future plans are to add secondary effects (e.g., injuries by fire, debris, etc.) so as better 
approximate the real world environment and provide more valid comparisons with the data 
of suicide bombing attack aftermaths (Usmani a, 2009). The flexibility to create a user 
defined crowd formation with variable number of entrances and exits will be added in the 
future. This paper provides an interesting direction for future research to take in 
investigating the catastrophic event of the suicide bomber attack in hopes of making the 
world a safer place. 
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